Nothing Special   »   [go: up one dir, main page]

JP5458672B2 - Vertical induction furnace for slabs for grain-oriented electrical steel sheets - Google Patents

Vertical induction furnace for slabs for grain-oriented electrical steel sheets Download PDF

Info

Publication number
JP5458672B2
JP5458672B2 JP2009130468A JP2009130468A JP5458672B2 JP 5458672 B2 JP5458672 B2 JP 5458672B2 JP 2009130468 A JP2009130468 A JP 2009130468A JP 2009130468 A JP2009130468 A JP 2009130468A JP 5458672 B2 JP5458672 B2 JP 5458672B2
Authority
JP
Japan
Prior art keywords
slab
heat insulating
heating
insulating material
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009130468A
Other languages
Japanese (ja)
Other versions
JP2010275604A (en
Inventor
健一 定廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009130468A priority Critical patent/JP5458672B2/en
Publication of JP2010275604A publication Critical patent/JP2010275604A/en
Application granted granted Critical
Publication of JP5458672B2 publication Critical patent/JP5458672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

本発明は、方向性電磁鋼板用スラブの竪型誘導加熱炉に関し、特にスラブ長さが変動した場合における加熱のばらつきを減らし、もってスラブの歩留り向上を図ろうとするものである。   The present invention relates to a vertical induction heating furnace for a slab for grain-oriented electrical steel sheets, and particularly to reduce the variation in heating when the slab length varies, thereby improving the yield of the slab.

一般に知られているように、方向性電磁鋼板の優れた磁気特性は、板面に(110)面、圧延方向に<001>軸の2次再結晶粒を、それぞれ最終焼鈍で優先して発達させることによって得られる。そのため、鋼中にインヒビターとよばれる微細な析出物、たとえば、MnS 、MnSe、 AlN などを均一に分散析出させることが重要であり、このインヒビターの分散形態のコントロールは、熱間圧延に先立つスラブ加熱中に、これらの析出物を一旦固溶させた後、熱間圧延時の冷却過程で行われる。   As is generally known, the excellent magnetic properties of grain-oriented electrical steel sheets are preferentially developed in the final annealing with secondary recrystallized grains with the (110) plane on the plate and the <001> axis in the rolling direction. To obtain. For this reason, it is important to uniformly disperse fine precipitates called inhibitors, such as MnS, MnSe, and AlN, in the steel. In the inside, these precipitates are once dissolved, and are then cooled in the hot rolling process.

このような目的で行われるスラブ加熱は、インヒビターを十分に固溶させるため、通常、竪型の誘導加熱炉にスラブを直立させた状態で 1300 ℃以上の高温に加熱して行なわれるが、その際、スラブの長さにばらつきがあると、誘導加熱炉内でのスラブ加熱にもばらつきが生じ、特にスラブ端部での温度が低下して、均一な加熱が阻害されるという問題があった。   Slab heating performed for this purpose is usually performed by heating to a high temperature of 1300 ° C or higher with the slab standing upright in a vertical induction heating furnace in order to dissolve the inhibitor sufficiently. At this time, if the length of the slab varies, the slab heating in the induction heating furnace also varies, and particularly the temperature at the end of the slab decreases, and there is a problem that uniform heating is hindered. .

このため、誘導加熱によるスラブ全長にわたる均一加熱に関して、これまで多くの手段が提案されている。
例えば、特許文献1には、被加熱材(スラブ)端部を耐火断熱材で覆うようにした誘導加熱装置が提案されている。この誘導加熱装置は、被加熱材端部からの熱放散の防止を意図したものであるが、炉内空間が大きい場合、耐火断熱材背面からの炉内空間への放散熱が大きくなり、やはり加熱不足となる。加えて、被加熱材は誘導加熱効率を上げるため、予め1000℃〜1200℃に予備加熱されているので、被加熱部材を低温の耐火断熱材で覆うことになり、かえって温度むらを助長する結果となっていた。
For this reason, many means have been proposed so far for uniform heating over the entire length of the slab by induction heating.
For example, Patent Document 1 proposes an induction heating device in which a heated material (slab) end is covered with a refractory heat insulating material. This induction heating device is intended to prevent heat dissipation from the end of the material to be heated, but if the furnace space is large, the heat dissipated from the back of the refractory heat insulating material to the furnace space increases. Insufficient heating. In addition, since the material to be heated is preheated to 1000 ° C. to 1200 ° C. in advance in order to increase the induction heating efficiency, the material to be heated is covered with a low-temperature refractory heat insulating material, which in turn promotes uneven temperature. It was.

また、特許文献2には、加熱コイルの外側から、コ字形の鉄心をコ字先端が被加熱材端部の上部にくるように配設し、コ字先端に誘起磁束を集束させて被加熱材端部を加熱する誘導加熱装置が、また、特許文献3には、被加熱材の端部に近接して抵抗発熱体やラジアントチューブなどの発熱体を配設した誘導加熱装置が、それぞれ提案されているが、これらは、端部加熱補助装置である鉄心のコ字先端や発熱体の配設位置が固定されているため、スラブ長さがそれぞれの加熱炉の最適長さ(以下単に所定長さという)に対して、短く変動した場合には、スラブ端部の温度を安定して確保することができないという問題があった。   Further, in Patent Document 2, a U-shaped iron core is disposed from the outside of the heating coil so that the U-shaped tip is located above the end of the heated material, and the induced magnetic flux is focused on the U-shaped tip to be heated. An induction heating device that heats the end of the material is proposed, and Patent Document 3 proposes an induction heating device in which a heating element such as a resistance heating element or a radiant tube is disposed in the vicinity of the end of the material to be heated. However, since the U-shaped tip of the iron core that is the end heating auxiliary device and the position of the heating element are fixed, the slab length is the optimum length of each heating furnace (hereinafter simply referred to as “predetermined”). When the variation is short with respect to the length), there is a problem that the temperature of the end portion of the slab cannot be secured stably.

上記した問題に対し、特許文献4には、耐火断熱材付の側壁を、上部に設置したレールを用いて移動可能とし、スラブ長さとの距離を調整する装置が提案され、また、特許文献5には、炉壁とスラブ端部との空間に断熱材を充填することで、加熱不足を防止する技術が提案されている。   In order to solve the above problem, Patent Document 4 proposes an apparatus that adjusts the distance from the slab length by allowing a side wall with a refractory heat insulating material to be moved using a rail installed on the upper side. Has proposed a technique for preventing insufficient heating by filling a space between the furnace wall and the end portion of the slab with a heat insulating material.

ここで、図1に、特許文献4に従う竪型誘導加熱炉の側断面図の一例を示す。図中、1は加熱コイル、2はスラブ材、2aはスラブ端部、3は耐火断熱材、4は天井断熱材、5は炉蓋、6スラブ支持台、7は可動耐火断熱材、8は支持棒、9は台車、10は車輪、11はレールである。
図1の可動耐火断熱材7は、支持棒8、台車9、車輪10、レール11によって、左右に移動することができ、この断熱材7を移動することで、スラブ端面2aと断熱材7との距離を調整している。
Here, FIG. 1 shows an example of a side sectional view of a vertical induction heating furnace according to Patent Document 4. As shown in FIG. In the figure, 1 is a heating coil, 2 is a slab material, 2a is a slab end, 3 is a refractory heat insulating material, 4 is a ceiling heat insulating material, 5 is a furnace lid, 6 is a slab support, 7 is a movable refractory heat insulating material, A support bar, 9 is a cart, 10 is a wheel, and 11 is a rail.
The movable refractory heat insulating material 7 in FIG. 1 can be moved left and right by a support bar 8, a carriage 9, a wheel 10, and a rail 11. By moving the heat insulating material 7, the slab end surface 2a, the heat insulating material 7 and The distance is adjusted.

特公昭52-47179号公報Japanese Patent Publication No.52-47179 実公昭52−50447号公報Japanese Utility Model Publication No. 52-50447 実開昭61−39149号公報Japanese Utility Model Publication No. 61-39149 特開昭64−77894号公報JP-A-64-77894 特開平6−10052号公報Japanese Patent Laid-Open No. 6-10052

しかしながら、上記した特許文献4に開示の技術は、可動耐火断熱材7の横方向の移動がレールを介したものであるため、可動耐火断熱材7の可動代に不可避的に存在する‘遊び’により、正確な距離の制御が難しくなり、結果的に、スラブ端部の温度にバラつきが生じると言う問題があった。さらに、誘導発熱板の熱変形や、炉壁断熱材の脱落による厚みむら、さらには長期間の使用による誘導発熱体の酸化に起因した発熱不足などにより、不均一加熱が生じるという問題も残っている。
また、特許文献5に開示された断熱材を充填する方法では、断熱材の大きさを、毎回選定する必要があり、様々な大きさのスラブサイズに柔軟に対応する点で難が残っている。
However, in the technique disclosed in Patent Document 4 described above, since the lateral movement of the movable refractory heat insulating material 7 is via the rail, 'play' inevitably exists in the movable allowance of the movable refractory heat insulating material 7. Therefore, it becomes difficult to control the distance accurately, and as a result, there is a problem that the temperature at the end of the slab varies. Furthermore, there remains a problem that non-uniform heating occurs due to thermal deformation of the induction heating plate, uneven thickness due to dropping of the furnace wall insulation, and insufficient heat generation due to oxidation of the induction heating element due to long-term use. Yes.
Moreover, in the method of filling the heat insulating material disclosed in Patent Document 5, it is necessary to select the size of the heat insulating material every time, and there remains a difficulty in flexibly corresponding to various slab sizes. .

本発明は、上記の状況に鑑み、スラブ長さの変動に起因したスラブ端部での温度低下を有利に解決するもので、加熱炉壁(加熱補助材)とスラブとの距離を適正に制御し、かつ、様々な長さのスラブサイズに柔軟に対応することことができる竪型誘導加熱炉を提案することを目的とする。   In view of the above situation, the present invention advantageously solves the temperature drop at the end of the slab caused by the fluctuation of the slab length, and appropriately controls the distance between the heating furnace wall (heating auxiliary material) and the slab. And it aims at proposing the vertical induction heating furnace which can respond flexibly to the slab size of various length.

発明者は、誘導加熱炉内に生じる隙間を、簡単にかつ正確に制御する方法につき検討した。
その結果、加熱補助材として、対向面が傾斜面からなる一対の断熱材を用い、この傾斜面を利用して、当該断熱材を上下移動させることで、従来のレールを利用した横方向の移動の際に懸念された‘遊び’を解消しつつ、スラブ端面と加熱補助材との隙間を調整することが可能となり、その結果、竪型誘導加熱炉におけるスラブの温度むらの発生を防止できることを見出した。
The inventor examined a method for easily and accurately controlling the gap generated in the induction heating furnace.
As a result, as a heating auxiliary material, a pair of heat insulating materials whose opposing surfaces are inclined surfaces are used, and by using the inclined surfaces, the heat insulating materials are moved up and down to move in the horizontal direction using conventional rails. It is possible to adjust the gap between the end face of the slab and the heating auxiliary material while eliminating the “play” that was a concern during the process, and as a result, it is possible to prevent the occurrence of slab temperature unevenness in the vertical induction heating furnace. I found it.

つまり、所定長さに満たないスラブを加熱するに際し、スラブ端面に近接して傾斜面で接する一対の断熱材からなる加熱補助材を配置し、一方の断熱材を上下移動させることによって、加熱補助材のスラブ端面への近接、離隔移動を可能ならしめ、もって炉内空間の解消を図り、放熱量を減少させることで、スラブ端部での均一な加熱が達成できることが分かった。また、この装置によれば、上記した断熱材の脱落等による断熱性能の劣化にも、傾斜面を有する断熱材の挿入量を最適に調整することで十分対応可能であり、その結果、長期間の操業にも対応できることを併せて見出した。
本発明は上記知見に立脚するものである。
In other words, when heating a slab that is less than a predetermined length, a heating auxiliary material consisting of a pair of heat insulating materials that are in contact with the inclined surface in the vicinity of the slab end surface is disposed, and one of the heat insulating materials is moved up and down to assist heating. It was found that uniform heating at the end of the slab can be achieved by making it possible to move the material close to and away from the end face of the slab, thereby eliminating the space inside the furnace and reducing the amount of heat released. In addition, according to this apparatus, it is possible to sufficiently cope with the deterioration of the heat insulating performance due to the above-described dropout of the heat insulating material, etc. by optimally adjusting the insertion amount of the heat insulating material having the inclined surface. It was also found that it can respond to the operation.
The present invention is based on the above findings.

すなわち、本発明の構成は以下の通りである。
(1)方向性電磁鋼板用スラブの竪型誘導加熱炉であって、該スラブの一端面側または両端面側それぞれに端部の加熱補助材を備え、該加熱補助材は、対向面が傾斜面でかつ非対向面が平行になる一対の断熱材からなり、該断熱材の片方を炉壁内面に固定する一方、他方の断熱材の傾斜面を上記片方の断熱材の傾斜面に接したまま、上下に摺動運動可能として配置し、スラブ長さの変動に応じて、他方の断熱材を上下移動させることにより、該スラブ端面と該加熱補助材の間隔を調整することを特徴とする方向性電磁鋼板用スラブの竪型誘導加熱炉。
That is, the configuration of the present invention is as follows.
(1) A vertical induction heating furnace for a slab for grain-oriented electrical steel sheets, comprising a heating auxiliary material at one end on each of one end surface side or both end surface sides of the slab, the heating auxiliary material having an inclined opposing surface It is composed of a pair of heat insulating materials that are parallel and non-facing surfaces, and one of the heat insulating materials is fixed to the furnace wall inner surface, while the other heat insulating material is in contact with the inclined surface of the one heat insulating material. It is arranged so that sliding movement is possible up and down, and the distance between the end surface of the slab and the heating auxiliary material is adjusted by moving the other heat insulating material up and down according to the fluctuation of the slab length. Vertical induction furnace for slabs for grain-oriented electrical steel sheets.

(2)前記断熱材の傾斜角が10〜30度であることを特徴とする前記(1)に記載の方向性電磁鋼板用スラブの竪型誘導加熱炉。   (2) The vertical induction heating furnace for slabs for grain-oriented electrical steel sheets according to (1), wherein the heat insulating material has an inclination angle of 10 to 30 degrees.

本発明によれば、誘導加熱炉内に生じる隙間を簡単かつより正確に埋めることができるため、スラブ加熱時に懸念されたスラブ端部の温度低下を減じて均一な加熱を達成することができる。その結果、製品磁気特性の良好な部分を大幅に増やすことができる。   According to the present invention, the gap generated in the induction heating furnace can be easily and more accurately filled, so that uniform heating can be achieved by reducing the temperature drop at the end of the slab, which is a concern during slab heating. As a result, it is possible to greatly increase the portion with good product magnetic properties.

従来法に従う竪型誘導加熱炉の側断面図である。It is a sectional side view of a vertical induction heating furnace according to a conventional method. 本発明に従う竪型誘導加熱炉の加熱補助材の近接離隔移動を示す断面図である。It is sectional drawing which shows the proximity separation movement of the heating auxiliary material of the vertical induction heating furnace according to this invention. 本発明に従う竪型誘導加熱炉の側断面図である。It is a sectional side view of a vertical induction heating furnace according to the present invention.

以下、本発明を具体的に説明する。
図2に、加熱補助材の離隔時(同図a)、および近接時(同図b)の断面図を例示する。図中、21がスラブ、22が加熱補助材である。この加熱補助材22は、対向面が傾斜面でかつ非対向面が平行になる一対の断熱材22a、22bからなり、この例では、スラブ21の両端面側それぞれに配置している。なお、22cは上下駆動させる機能を有する支持棒、23は誘導加熱炉の側壁である。この加熱補助材22は、上記した断熱材22bの非対向面を炉壁23に固定する一方、対になっている断熱材22aの傾斜面を断熱材22bに接したまま、上下に摺動運動可能として配置されている。
Hereinafter, the present invention will be specifically described.
FIG. 2 illustrates a cross-sectional view of the heating auxiliary material at the time of separation (FIG. 2A) and at the time of proximity (FIG. 2B). In the figure, 21 is a slab and 22 is a heating auxiliary material. The heating auxiliary material 22 is composed of a pair of heat insulating materials 22a and 22b whose opposing surfaces are inclined surfaces and whose non-facing surfaces are parallel. In this example, the heating auxiliary materials 22 are arranged on both end surfaces of the slab 21. In addition, 22c is a support rod having a function of driving up and down, and 23 is a side wall of the induction heating furnace. The heating auxiliary material 22 fixes the non-facing surface of the heat insulating material 22b described above to the furnace wall 23, while the inclined surface of the pair of heat insulating material 22a is in contact with the heat insulating material 22b and slides up and down. Arranged as possible.

本発明では、スラブ端面に近接する加熱補助材が傾斜面を利用して、離隔(同図a)、近接(同図b)できることが最大の特徴である。傾斜面を利用することで、実質的に長手方向に遊びのない移動が可能となるため、スラブ端面の加熱にバラツキがなくなる。
この傾斜面については、特に制限はないが、傾斜角が10〜30度の範囲であれば、本発明の加熱補助材として好適に使用できる。
The greatest feature of the present invention is that the heating auxiliary material adjacent to the end face of the slab can be separated (FIG. A) and close (FIG. B) using the inclined surface. By using the inclined surface, it is possible to move substantially without play in the longitudinal direction, so that there is no variation in heating of the slab end surface.
Although there is no restriction | limiting in particular about this inclined surface, if it is a range whose inclination-angle is 10-30 degrees, it can use suitably as a heating auxiliary material of this invention.

本発明で使用する断熱材としては、放熱量の観点から、加熱炉側壁と同等の材質とすることが好ましく、その長さは、スラブ長さと同等かまたはそれ以上とすることが好ましい。   The heat insulating material used in the present invention is preferably made of a material equivalent to the side wall of the heating furnace from the viewpoint of the amount of heat radiation, and the length is preferably equal to or longer than the slab length.

つぎに、図3に、本発明に従う竪型誘導加熱炉を側断面図で示す。なお、同図において、24は誘導加熱炉の天井、25は炉床である。   Next, FIG. 3 shows a vertical induction heating furnace according to the present invention in a side sectional view. In the figure, 24 is the ceiling of the induction heating furnace, and 25 is the hearth.

本発明に従う電磁鋼板用スラブの誘導加熱炉において、その基本構造、加熱設備、断熱材の材質、その他補助設備は、特に制限はなく、従来公知のものいずれもが適合する。   In the induction heating furnace for slabs for electrical steel sheets according to the present invention, the basic structure, heating equipment, heat insulating material, and other auxiliary equipment are not particularly limited, and any conventionally known ones are suitable.

以上、スラブ21を中央部に配置して、その両端部に加熱補助材22をそれぞれ配置した場合について例示したが、本発明はこれだけに限るものではなく加熱補助材22をスラブ21の端面側に配置する場合も、本発明に含まれることは言うまでもない。   As described above, the case where the slab 21 is arranged in the center portion and the heating auxiliary material 22 is arranged at both ends thereof is exemplified, but the present invention is not limited to this, and the heating auxiliary material 22 is arranged on the end face side of the slab 21. Needless to say, the arrangement is also included in the present invention.

質量%で、C:0.060%、Si:3.24%、Mn:0.07%、S:0.003%、Se:0.015%、Al:0.023%、N:0.085%、Sb:0.012%を含有し、残部Feおよび不可避的不純物の組成になる電磁鋼板用連鋳スラブ (スラブ厚:200mm )で、スラブ長さが9mのスラブを2本用意した。   In mass%, C: 0.060%, Si: 3.24%, Mn: 0.07%, S: 0.003%, Se: 0.015%, Al: 0.023%, N: 0.085%, Sb: 0.012%, the balance Fe and Two continuous slabs for electromagnetic steel sheets (slab thickness: 200 mm) having an inevitable impurity composition and a slab length of 9 m were prepared.

これらのうちの1本を従来の堅型誘導加熱炉(加熱補助材22がないもの)に装入して、1430℃、20分間の加熱を行った。なお、この堅型誘導加熱炉における所定長さは10mである。また、もう一方のスラブについては、本発明に従う堅型誘導加熱炉に装入して、1430℃、20分間の加熱を行った。この際、加熱補助材22を調整して、スラブの両端面とも加熱補助材22とスラブの端面21aとのギャップが5cmとなるように調整した。
その結果、従来炉ではスラブ端部に30℃の温度低下が見られたが、本発明に従う炉では10℃程度の低下しか見られなかった。
One of these was placed in a conventional solid induction heating furnace (without heating auxiliary material 22) and heated at 1430 ° C. for 20 minutes. The predetermined length in this rigid induction heating furnace is 10 m. The other slab was placed in a rigid induction furnace according to the present invention and heated at 1430 ° C. for 20 minutes. At this time, the heating auxiliary material 22 was adjusted so that the gap between the heating auxiliary material 22 and the end surface 21a of the slab was 5 cm on both end surfaces of the slab.
As a result, in the conventional furnace, a temperature decrease of 30 ° C. was observed at the end of the slab, but in the furnace according to the present invention, only a decrease of about 10 ° C. was observed.

以上のように、堅型誘導加熱炉による加熱を行った後、熱延により板厚:2.5 mmの熱延板とした。その後1次冷延で板厚:0.7 mmとして、中間焼鈍を行ってから2次冷延により0.23mmの製品板厚とした。ついで、脱炭焼鈍を行ったのち、MgO を主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。かくして得られた製品鋼板について、鋼板の鉄損が、中央部に対して0.05W/kg以上低下したところを不良として、歩留りを調査した。   As described above, after heating by a solid induction heating furnace, a hot-rolled sheet having a thickness of 2.5 mm was formed by hot rolling. Thereafter, the sheet thickness was set to 0.7 mm by primary cold rolling, intermediate annealing was performed, and then the product sheet thickness was 0.23 mm by secondary cold rolling. Then, after decarburization annealing, an annealing separator mainly composed of MgO was applied and finish annealing was performed. With respect to the product steel plate thus obtained, the yield was investigated, assuming that the iron loss of the steel plate decreased by 0.05 W / kg or more with respect to the central portion as a failure.

調査の結果、従来炉で製造した方向性電磁鋼板の歩留りは、97%であったのに対し、本発明に従う堅型誘導加熱炉を用いて製造した方向性電磁鋼板の歩留まりは99.5%であり、従来に比べて歩留りが格段に向上した。   As a result of the investigation, the yield of grain-oriented electrical steel sheets manufactured in a conventional furnace was 97%, while the yield of grain-oriented electrical steel sheets manufactured using a solid induction heating furnace according to the present invention was 99.5%. Yield is significantly improved compared to the conventional method.

本発明の堅型誘導加熱炉では、スラブ端部での温度降下を防止して、スラブ全長にわたった均一加熱を達成することができ、もってスラブ歩留りの大幅な向上を図ることができる。   In the solid induction heating furnace of the present invention, it is possible to prevent a temperature drop at the end of the slab and to achieve uniform heating over the entire length of the slab, thereby significantly improving the slab yield.

1 加熱コイル
2 スラブ材
2a スラブ材端部
3 耐火断熱材
4 天井断熱材
5 炉蓋
6 スラブ支持台
7 可動耐火断熱材
8 支持棒
9 台車
10 車輪
11 レール
21 スラブ
21a スラブ端部
22 加熱補助材
22a 断熱材(スラブ側)
22b 断熱材(炉壁側)
22c 支持棒
23 側壁
24 天井
25 炉床
1 Heating coil 2 Slab material
2a Slab edge 3 Fireproof insulation
4 Ceiling insulation 5 Furnace 6 Slab support 7 Movable fireproof insulation 8 Support rod 9 Bogie
10 wheels
11 rails
21 Slab
21a Slab end
22 Heating aid
22a Insulation (slab side)
22b Thermal insulation (furnace wall side)
22c Support rod
23 Side wall
24 Ceiling
25 hearth

Claims (2)

方向性電磁鋼板用スラブの竪型誘導加熱炉であって、該スラブの一端面側または両端面側それぞれに端部の加熱補助材を備え、該加熱補助材は、対向面が傾斜面でかつ非対向面が平行になる一対の断熱材からなり、該断熱材の片方を炉壁内面に固定する一方、他方の断熱材の傾斜面を上記片方の断熱材の傾斜面に接したまま、上下に摺動運動可能として配置し、スラブ長さの変動に応じて、他方の断熱材を上下移動させることにより、該スラブ端面と該加熱補助材の間隔を調整することを特徴とする方向性電磁鋼板用スラブの竪型誘導加熱炉。   A vertical induction heating furnace for a slab for grain-oriented electrical steel sheet, comprising a heating auxiliary material at an end on each of one end surface side or both end surface sides of the slab, the heating auxiliary material having an inclined surface and an opposing surface It consists of a pair of heat insulating materials whose non-facing surfaces are parallel, and one side of the heat insulating material is fixed to the furnace wall inner surface, while the other heat insulating material is in contact with the inclined surface of the one heat insulating material while The directional electromagnetic wave is characterized in that the distance between the end surface of the slab and the heating auxiliary material is adjusted by moving the other heat insulating material up and down according to the fluctuation of the slab length. Vertical induction furnace for steel plate slabs. 前記断熱材の傾斜角が10〜30度であることを特徴とする請求項1に記載の方向性電磁鋼板用スラブの竪型誘導加熱炉。   The vertical induction heating furnace for slabs for grain-oriented electrical steel sheets according to claim 1, wherein an inclination angle of the heat insulating material is 10 to 30 degrees.
JP2009130468A 2009-05-29 2009-05-29 Vertical induction furnace for slabs for grain-oriented electrical steel sheets Active JP5458672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130468A JP5458672B2 (en) 2009-05-29 2009-05-29 Vertical induction furnace for slabs for grain-oriented electrical steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130468A JP5458672B2 (en) 2009-05-29 2009-05-29 Vertical induction furnace for slabs for grain-oriented electrical steel sheets

Publications (2)

Publication Number Publication Date
JP2010275604A JP2010275604A (en) 2010-12-09
JP5458672B2 true JP5458672B2 (en) 2014-04-02

Family

ID=43422837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130468A Active JP5458672B2 (en) 2009-05-29 2009-05-29 Vertical induction furnace for slabs for grain-oriented electrical steel sheets

Country Status (1)

Country Link
JP (1) JP5458672B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107574437A (en) * 2017-08-18 2018-01-12 芜湖鼎恒材料技术有限公司 A kind of adjustable preheating device of shaft-like workpiece
CN118326129A (en) * 2024-04-16 2024-07-12 长兴中顺电炉制造有限公司 Fork truck type rapid quenching mechanism

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263929A (en) * 1986-05-08 1987-11-16 Mitsubishi Electric Corp Induction heater
JPH0612695B2 (en) * 1987-09-08 1994-02-16 川崎製鉄株式会社 Slab material induction heating device
JP5329057B2 (en) * 2007-07-31 2013-10-30 富士電子工業株式会社 Heating coil body eccentric drive device for induction heating device

Also Published As

Publication number Publication date
JP2010275604A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
KR101701191B1 (en) Rapid heating apparatus of continuous annealing line
RU2465348C1 (en) Manufacturing method of plates from electrical steel with oriented grain
JP5564571B2 (en) Low iron loss high magnetic flux density grain-oriented electrical steel sheet and manufacturing method thereof
CN102605267B (en) Low-temperature-heating technology-optimized high-magnetic-induction-orientation electric steel plate and production method thereof
KR20180113556A (en) Method for manufacturing directional electromagnetic steel sheet
JP5458672B2 (en) Vertical induction furnace for slabs for grain-oriented electrical steel sheets
JP6813143B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5803223B2 (en) Inner case for finish annealing of grain-oriented electrical steel sheet and finish annealing method
JP6296242B2 (en) Heating method and continuous annealing equipment for thin steel sheet
JP6083156B2 (en) Rapid heating apparatus and rapid heating method for continuous annealing equipment
JP6292160B2 (en) Heat treatment method and bogie type heat treatment furnace
JP2019116680A (en) Slab for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and manufacturing method thereof
JP2006257486A (en) Method for annealing grain oriented electrical steel sheet, and inner cover for batch annealing of grain oriented electrical steel sheet
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JP5839177B2 (en) Finishing annealing equipment and finishing annealing method for grain-oriented electrical steel sheets
KR101789515B1 (en) Quenching heating apparatus for continuous heat treatment coil steel plate
JP3151000B2 (en) Induction heating method for slab for electrical steel sheet
JP2637632B2 (en) Heating method for silicon steel slab and holding device for slab in heating furnace
JP2863351B2 (en) Heating method of directional magnetic steel slab
JP4211540B2 (en) Continuous hot rolling mills for grain oriented electrical steel sheets
JP2005177781A (en) Hot rolling method
JPH0610052A (en) Induction heating method for slab for silicon steel sheet
RU2384631C1 (en) Method of cooling of rails of hot-rolled strip with simultaneous thermal treatment of external coils and facility for its realisation
JPH0524202B2 (en)
JP2005256034A (en) Edge-heater for steel plate in hot-rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250