Nothing Special   »   [go: up one dir, main page]

JP5454756B2 - Diphosphine compounds, transition metal complexes thereof, catalysts containing the transition metal complexes, phosphine oxide compounds and diphosphine oxide compounds - Google Patents

Diphosphine compounds, transition metal complexes thereof, catalysts containing the transition metal complexes, phosphine oxide compounds and diphosphine oxide compounds Download PDF

Info

Publication number
JP5454756B2
JP5454756B2 JP2008217233A JP2008217233A JP5454756B2 JP 5454756 B2 JP5454756 B2 JP 5454756B2 JP 2008217233 A JP2008217233 A JP 2008217233A JP 2008217233 A JP2008217233 A JP 2008217233A JP 5454756 B2 JP5454756 B2 JP 5454756B2
Authority
JP
Japan
Prior art keywords
diphosphine
transition metal
complex
group
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008217233A
Other languages
Japanese (ja)
Other versions
JP2010053049A (en
Inventor
孝 三野
昌巳 坂本
力 藤田
義朗 成瀬
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to JP2008217233A priority Critical patent/JP5454756B2/en
Publication of JP2010053049A publication Critical patent/JP2010053049A/en
Application granted granted Critical
Publication of JP5454756B2 publication Critical patent/JP5454756B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、ジホスフィン化合物、その遷移金属錯体及びその遷移金属錯体を含む触媒並びにホスフィンオキシド化合物及びジホスフィンオキシド化合物に関する。   The present invention relates to a diphosphine compound, a transition metal complex thereof, a catalyst containing the transition metal complex, a phosphine oxide compound and a diphosphine oxide compound.

従来から、炭素−炭素結合形成反応、炭素−窒素結合形成反応、炭素−酸素結合形成反応、炭素−硫黄結合形成反応等の合成反応に利用できる遷移金属錯体や、不斉水素化反応、不斉異性化反応、不斉ヒドロシリル化反応等の不斉合成に利用できる遷移金属錯体については、数多くの報告がなされている。   Conventionally, transition metal complexes that can be used for synthesis reactions such as carbon-carbon bond formation reaction, carbon-nitrogen bond formation reaction, carbon-oxygen bond formation reaction, carbon-sulfur bond formation reaction, asymmetric hydrogenation reaction, asymmetric Many reports have been made on transition metal complexes that can be used for asymmetric synthesis such as isomerization and asymmetric hydrosilylation.

例えば、芳香族アミン類をアリ−ルハライドとアミンとの縮合により製造することができる炭素−窒素結合形成反応に関しては、これまでに数多く報告されており、例えば下記非特許文献1には、銅触媒を用いるUllmann反応に関する技術が開示されている。銅触媒を用いるUllmann反応において、アリ−ルハライドとして反応性の高いヨウ化物だけが利用でき、臭化物が利用できないことは利点であると同時に課題でもある。一方、下記非特許文献2には、パラジウム触媒を用いるUllmann反応に関する技術が開示されている。この文献には、アリ−ルハライドとしてヨウ素化物だけでなく臭化物、塩化物をも利用することが開示されている。また、この文献には、光学活性な三級ホスフィン化合物に遷移金属を作用させて製造した触媒が不斉合成反応の触媒として有用である旨についても開示されている。   For example, many carbon-nitrogen bond forming reactions that can produce aromatic amines by condensation of aryl halides and amines have been reported so far. For example, the following Non-Patent Document 1 discloses a copper catalyst. Techniques relating to the Ullmann reaction using the method are disclosed. In the Ullmann reaction using a copper catalyst, only highly reactive iodides can be used as aryl halides, and the inability to use bromides is both an advantage and a problem. On the other hand, Non-Patent Document 2 below discloses a technique related to the Ullmann reaction using a palladium catalyst. This document discloses that not only iodinated compounds but also bromides and chlorides are used as aryl halides. This document also discloses that a catalyst produced by allowing a transition metal to act on an optically active tertiary phosphine compound is useful as a catalyst for an asymmetric synthesis reaction.

更に、上記非特許文献1、2のほか、下記非特許文献3及び4で例示されるように、様々な構造のホスフィン化合物がこれまでに多数開発されている。   Furthermore, in addition to the above Non-Patent Documents 1 and 2, as exemplified in Non-Patent Documents 3 and 4 below, many phosphine compounds having various structures have been developed so far.

また、下記特許文献1には、2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル(以下「BINAP」という。)を配位子としたロジウム錯体に関する技術が開示されており、下記特許文献2には、このBINAPを配位子としたルテニウム錯体に関する技術が開示されている。   Patent Document 1 below discloses a technique relating to a rhodium complex having 2,2′-bis (diphenylphosphino) -1,1′-binaphthyl (hereinafter referred to as “BINAP”) as a ligand. Patent Document 2 listed below discloses a technique related to a ruthenium complex using BINAP as a ligand.

更に、下記特許文献3には、2,2’−ビス(ジ−(p−トリル)ホスフィノ)−1,1’−ビナフチル(以下「p−TolBINAP」という。)を配位子としたロジウム錯体に関する技術が開示されており、下記特許文献2には、このp−TolBINAPを配位子としたルテニウム錯体に関する技術が開示されている。   Further, Patent Document 3 below discloses a rhodium complex having 2,2′-bis (di- (p-tolyl) phosphino) -1,1′-binaphthyl (hereinafter referred to as “p-TolBINAP”) as a ligand. The following patent document 2 discloses a technique related to a ruthenium complex using p-TolBINAP as a ligand.

Goodbrandら、Journal of Organic Chemistry、670ペ−ジ、1999年Goodbrand et al., Journal of Organic Chemistry, page 670, 1999. Buchwaldら、Acc.Chem.Res.、Vol31、805ペ−ジ及び852ペ−ジ、1998年Buchwald et al., Acc. Chem. Res. Vol. 31, pages 805 and 852, 1998. ”有機金属錯体の化学”、 日本化学会編 化学総説32、237−238頁、昭和57年"Chemistry of organometallic complexes", Chemical Review 32, 237-238, edited by the Chemical Society of Japan, 1982 野依良治著、”Asymmetric CatalysisIn Organic Synthesis”,AWiley−Interscience PublicationRyoji Noyori, “Asymmetric Catalysis In Organic Synthesis”, AWiley-Interscience Publication 特開昭55−61973号公報JP-A-55-61973 特開昭61−6390号公報JP 61-6390 A 特開昭60−199898号公報JP-A-60-199898

しかしながら、上記特許文献及び非特許文献に記載の技術では選択性及び触媒活性においてまだ改善の余地が残る。   However, the techniques described in the above patent documents and non-patent documents still have room for improvement in selectivity and catalytic activity.

そこで本発明は、上記課題を鑑み、より選択性及び触媒活性に優れた触媒及びそれに用いられる化合物を提供することを目的とする。   Then, in view of the said subject, this invention aims at providing the catalyst which was more excellent in selectivity and catalytic activity, and the compound used therefor.

上記課題について本発明者らが鋭意検討を行ったところ、2,2’−ジフェニルホスフィノ−1,1’−ビ−5,6−ジヒドロベンゾフラン(以下、「BICMAP」ともいう。)の遷移金属錯体が触媒として有用であることを発見し、本発明を完成させるに至った。   When the present inventors diligently studied about the said subject, the transition metal of 2,2'- diphenylphosphino-1,1'-bi-5,6- dihydrobenzofuran (henceforth "BICMAP"). It was discovered that the complex is useful as a catalyst, and the present invention has been completed.

即ち、本発明の一観点に係る化合物は、下記式(1)で表されるジホスフィン化合物である。
(上記式中、R,Rは、各々独立に、シクロアルキル基、非置換若しくは置換フェニル基、または五員複素芳香環残基を示す。)
That is, the compound according to one aspect of the present invention is a diphosphine compound represented by the following formula (1).
(In the above formula, R 1 and R 2 each independently represents a cycloalkyl group, an unsubstituted or substituted phenyl group, or a 5-membered heteroaromatic ring residue.)

また、本発明の他の一観点に係る遷移金属ジホスフィン錯体は、上記式(1)で表されるジホスフィン化合物を配位子として有する。   Moreover, the transition metal diphosphine complex which concerns on another one viewpoint of this invention has the diphosphine compound represented by the said Formula (1) as a ligand.

また、本発明の他の一観点に係る触媒は、上記式(1)で示されるジホスフィン化合物を配位子として有する遷移金属ジホスフィン錯体を有する。   A catalyst according to another aspect of the present invention includes a transition metal diphosphine complex having the diphosphine compound represented by the above formula (1) as a ligand.

また、本発明の他の一観点に係るジホスフィンオキシド化合物は、下記式(2)で表される。
(上記式中、R,Rは、各々独立に、シクロアルキル基、非置換若しくは置換フェニル基、または五員複素芳香環残基を示す。)
A diphosphine oxide compound according to another aspect of the present invention is represented by the following formula (2).
(In the above formula, R 1 and R 2 each independently represents a cycloalkyl group, an unsubstituted or substituted phenyl group, or a 5-membered heteroaromatic ring residue.)

また、本発明の他の一観点に係るホスフィンオキシド化合物は、下記式(3)で表される。
(式中、R1及びR2は各々独立に、シクロアルキル基、非置換若しくは置換フェニル基、または五員複素芳香環残基を示し;aは0又は1を示す。)
A phosphine oxide compound according to another aspect of the present invention is represented by the following formula (3).
(Wherein R1 and R2 each independently represents a cycloalkyl group, an unsubstituted or substituted phenyl group, or a 5-membered heteroaromatic ring residue; a represents 0 or 1).

以上本発明により、より選択性及び触媒活性に優れた触媒及びそれに用いられる化合物を提供することができる。   As described above, according to the present invention, a catalyst excellent in selectivity and catalytic activity and a compound used therefor can be provided.

以下、本発明を実施するための最良の形態について詳細に説明するが、本発明は多くの異なる形態による実施が可能であり、以下に示す実施の形態、実施例の記載にのみ限定して解釈されるものではない。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described in detail. However, the present invention can be implemented in many different forms, and is limited to the description of the following embodiments and examples. Is not to be done.

本実施形態に係る触媒は、下記式(1)で示される化合物が遷移金属に配位してなる触媒である。本実施形態に係る触媒は、炭素−窒素結合形成反応の触媒として有用であり、特に光学活性なものは不斉水素化反応の触媒としても有用である。
(式中、R,Rは、各々独立に、シクロアルキル基、非置換若しくは置換フェニル基、または五員複素芳香環残基を示す。)
The catalyst according to this embodiment is a catalyst in which a compound represented by the following formula (1) is coordinated to a transition metal. The catalyst according to the present embodiment is useful as a catalyst for carbon-nitrogen bond formation reaction, and particularly optically active is also useful as a catalyst for asymmetric hydrogenation reaction.
(Wherein R 1 and R 2 each independently represents a cycloalkyl group, an unsubstituted or substituted phenyl group, or a 5-membered heteroaromatic ring residue.)

上記式において、シクロアルキル基は限定されるわけではないが、シクロペンチル基、シクロヘキシル基又はシクロヘプチル基のいずれかであることが好ましい。   In the above formula, the cycloalkyl group is not limited, but is preferably any one of a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.

また、R及びRが五員複素芳香環残基である場合、五員複素芳香環としては、限定されるわけではないが例えば2−フリル基、3−フリル基、2−ベンゾフリル基及び3−ベンゾフリル基を挙げることができる。 When R 1 and R 2 are 5-membered heteroaromatic residues, examples of the 5-membered heteroaromatic ring include, but are not limited to, a 2-furyl group, a 3-furyl group, a 2-benzofuryl group, and the like. A 3-benzofuryl group can be mentioned.

また、R又はRが置換フェニルである場合において、置換基としては、限定されるわけではないが炭素数1以上4以下のアルキル基若しくはアルコキシ基、ジ(低級アルキル)アミノ基、又はハロゲン原子を挙げることができる。なおここでいう低級アルキルとは炭素数が1以上4以下のアルキル基をいう。なお、R又はRが置換フェニルである場合の好ましい化合物の一例としては、例えば下記式(1−1)で示される化合物を挙げることができる。
In the case where R 1 or R 2 is substituted phenyl, examples of the substituent include, but are not limited to, an alkyl group or alkoxy group having 1 to 4 carbon atoms, a di (lower alkyl) amino group, or a halogen atom. Atoms can be mentioned. Here, the lower alkyl refers to an alkyl group having 1 to 4 carbon atoms. In addition, as an example of a preferable compound in case R < 1 > or R < 2 > is substituted phenyl, the compound shown by following formula (1-1) can be mentioned, for example.

なお、上記式中、R及びRは、各々独立に、水素原子、炭素数1以上4以下のアルキル基又はアルコキシ基を示す。またRは、水素原子、炭素数1以上4以下のアルキル基又はアルコキシ基、ジ−(炭素数1以上4以下のアルキル)−アミノ基を示す。 In the above formula, R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group. R 6 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group, and a di- (alkyl having 1 to 4 carbon atoms) -amino group.

なお、上記式(1−1)において、RとRは同一であって、水素原子、t−ブチル基、n−ブチル基、n−プロピル基、イソプロピル基、エチル基又はメチル基であることがより好ましく、Rは、水素原子、t−ブトキシ基、イソプロポキシ基、エトキシ基又はメトキシ基であることがより好ましい。 In the above formula (1-1), R 4 and R 5 are the same and are a hydrogen atom, t-butyl group, n-butyl group, n-propyl group, isopropyl group, ethyl group or methyl group. More preferably, R 9 is more preferably a hydrogen atom, a t-butoxy group, an isopropoxy group, an ethoxy group, or a methoxy group.

また本実施形態において遷移金属は、錯体を形成するために用いられるものであって、限定されるわけではないがロジウム、ルテニウム、イリジウム、パラジウム、ニッケル又は銅を挙げることができる。なお、配位子に遷移金属を作用させる方法としては、後で詳細に説明するが、公知の方法を用いることができる。   In the present embodiment, the transition metal is used to form a complex, and includes, but is not limited to, rhodium, ruthenium, iridium, palladium, nickel, or copper. In addition, as a method of making a transition metal act on a ligand, although demonstrated in detail later, a well-known method can be used.

ここで、本実施形態に係る化合物の製造方法について以下に説明する。なお、ここでは、わかりやすく説明するため、本実施形態に係る化合物の一例である下記(1−2)で表される化合物((+)−2,2’−ジフェニルホスフィノ−1,1’−ビ−5,6−ジヒドロベンゾフラン(以下「(+)−BICMAP」という。)を用いて説明する。なお他の化合物については、ここで示す製造方法及び技術常識を考慮し適宜変更して製造することができる。例えばフェニル基に置換基を有するジホスフィン化合物は、下記クロロジフェニルホスフィンの代わりに、置換基を有するフェニル基を有するクロロジフェニルホスフィン誘導体を利用することで調製可能である。
Here, the manufacturing method of the compound which concerns on this embodiment is demonstrated below. In addition, here, for easy understanding, the compound ((+)-2,2′-diphenylphosphino-1,1 ′) represented by the following (1-2) which is an example of the compound according to the present embodiment. -Bi-5,6-dihydrobenzofuran (hereinafter referred to as "(+)-BICMAP"), and other compounds can be produced by appropriately changing the production method and technical common sense shown here. For example, a diphosphine compound having a substituent on the phenyl group can be prepared by using a chlorodiphenylphosphine derivative having a phenyl group having a substituent instead of the following chlorodiphenylphosphine.

下記は、上記式(1−2)で示される化合物の製造工程を示すものである。
The following shows the production process of the compound represented by the formula (1-2).

まず、n−ブチルリチウムと2−ブロモエトキシ−1,4−ジブロモベンゼンとを反応させてリチウム試薬とし、これにクロロジフェニルホスフィンを作用させ、ホスフィン(3a)を調製する。次に、このホスフィン(3a)を公知の方法で酸化するとホスフィンオキシド(3b)を得ることができる。そして、このホスフィンオキシド(3b)をt−ブチルリチウムの存在下で塩化鉄(III)と反応させて、ラセミ体のジホスフィンオキシドを得る。そして、このジホスフィンオキシドをトリクロロシランを用いて還元するとラセミ体BICMAPを得ることができる。そして更に、光学活性カラムを使用する液体クロマトグラフィ−によりラセミ体からエナンチオマ−を分割し、目的とする(+)−BICMAPを得ることができる。なお、(−)−2,2’−ジフェニルホスフィノ−1,1’−ビ−5,6−ジヒドロベンゾフラン(以下「(−)−BICMAP」という。)は、上記(+)−BICMAPと同様、光学活性カラムを使用する液体クロマトグラフィ−によりラセミ体から得ることができる。   First, n-butyllithium and 2-bromoethoxy-1,4-dibromobenzene are reacted to form a lithium reagent, which is reacted with chlorodiphenylphosphine to prepare phosphine (3a). Next, when this phosphine (3a) is oxidized by a known method, a phosphine oxide (3b) can be obtained. The phosphine oxide (3b) is reacted with iron (III) chloride in the presence of t-butyllithium to obtain a racemic diphosphine oxide. When this diphosphine oxide is reduced using trichlorosilane, racemic BICMAP can be obtained. Furthermore, the target (+)-BICMAP can be obtained by separating the enantiomer from the racemate by liquid chromatography using an optically active column. In addition, (−)-2,2′-diphenylphosphino-1,1′-bi-5,6-dihydrobenzofuran (hereinafter referred to as “(−)-BICMAP”) is the same as the above (+)-BICMAP. It can be obtained from the racemate by liquid chromatography using an optically active column.

本実施形態にかかる触媒は、上記の方法により得られるジホスフィン化合物に対し、遷移金属を作用させることで得ることができる。作用させることができる限りにおいて遷移金属は限定されるわけではないが、例えばロジウム錯体、ルテニウム錯体、イリジウム錯体、パラジウム錯体、ニッケル錯体又は銅錯体を挙げることができる。以下に上記錯体の製造方法について記載する。   The catalyst according to this embodiment can be obtained by allowing a transition metal to act on the diphosphine compound obtained by the above method. The transition metal is not limited as long as it can act, but examples thereof include a rhodium complex, a ruthenium complex, an iridium complex, a palladium complex, a nickel complex, and a copper complex. The method for producing the complex is described below.

(ロジウム錯体)
本実施形態に係る配位子にロジウムを作用させてロジウム錯体を製造する方法としては、製造できる限りにおいて限定されるわけではないが、例えば“日本化学会編「第4版
実験化学講座」、第18巻、有機金属錯体、1991年、丸善 339−344頁”に記載の方法に従い、ビス(シクロオクタ−1,5−ジエン)ロジウム(I)テトラフロロホウ酸塩とBICMAPを反応せしめて製造することができる。
(Rhodium complex)
The method for producing a rhodium complex by allowing rhodium to act on the ligand according to the present embodiment is not limited as long as it can be produced. For example, “The Chemical Society of Japan,“ Fourth Edition Experimental Chemistry Course ”, Vol. 18, Organometallic Complex, 1991, Maruzen, pages 339-344 ", by reacting bis (cycloocta-1,5-diene) rhodium (I) tetrafluoroborate with BICMAP. be able to.

ロジウム錯体の具体例としては、例えば以下のものを挙げることができる。なお、以下に示すロジウム錯体において、“L”は上記化合物(1)であって、ラセミ体又は光学活性な化合物を、“cod”は1,5−シクロオクタジエンを、“nbd”はノルボルナジエンを、“Ph”はフェニル基を、“Ac”はアセチル基をそれぞれ表す。これは他の遷移金属において同様である。   Specific examples of the rhodium complex include the following. In the rhodium complex shown below, “L” is the above compound (1), which is a racemic or optically active compound, “cod” is 1,5-cyclooctadiene, “nbd” is norbornadiene. "Ph" represents a phenyl group, and "Ac" represents an acetyl group. This is the same for other transition metals.

[Rh(L)Cl]、[Rh(L)Br]、[Rh(L)I]、[Rh(cod)(L)]BF、[Rh(cod)(L)]ClO、h(cod)(L)]PF、[Rh(cod)(L)]BPh、[Rh(nbd)(L)]BF、[Rh(nbd)(L)]ClO、[Rh(nbd)(L)]PF、[Rh(nbd)(L)]BPh [Rh (L) Cl] 2 , [Rh (L) Br] 2, [Rh (L) I] 2, [Rh (cod) (L)] BF 4, [Rh (cod) (L)] ClO 4 , H (cod) (L)] PF 6 , [Rh (cod) (L)] BPh 4 , [Rh (nbd) (L)] BF 4 , [Rh (nbd) (L)] ClO 4 , [Rh (Nbd) (L)] PF 6 , [Rh (nbd) (L)] BPh 4

(ルテニウム錯体)
本実施形態に係る配位子にルテニウムを作用させてルテニウム錯体を製造する方法としては、製造できる限りにおいて限定されるわけではないが、例えば“T.Ikariya,Y.Ishii,H.Kawano,T.Arai,M.Saburi,S.Yoshikawa,and
S.Akutagawa、J.Chem.Soc.,Chem.Commun.,922(1988)”に記載の方法に従い、[Ru(cod)ClとBICMAPとをトリエチルアミンの存在下、トルエン溶媒中で加熱還流することで製造できる。
(Ruthenium complex)
The method for producing a ruthenium complex by allowing ruthenium to act on the ligand according to the present embodiment is not limited as long as it can be produced. For example, “T. Ikariya, Y. Ishii, H. Kawano, T Arai, M. Saburi, S. Yoshikawa, and
S. Akutagawa, J. et al. Chem. Soc. , Chem. Commun. , 922 (1988) ", [Ru (cod) Cl 2 ] n and BICMAP can be produced by heating to reflux in a toluene solvent in the presence of triethylamine.

また、ルテニウム錯体は、“K.Mashima,K.Kusano,T.Ohta,R.Noyori,H.Takaya、J.Chem.Soc.,Chem.Commun.、1208(1989)”に記載の方法に従い、[Ru(p−cymene)IとBICMAPとを塩化メチレンとエタノ−ル中で加熱撹拌することで製造することもできる。 In addition, the ruthenium complex is prepared according to the method described in “K. Masima, K. Kusano, T. Ohta, R. Noyori, H. Takaya, J. Chem. Soc., Chem. Commun., 1208 (1989)”. [Ru (p-cymene) I 2 ] 2 and BICMAP can also be produced by heating and stirring in methylene chloride and ethanol.

なおルテニウム錯体の具体例として、例えば以下のものを挙げることができる。   Specific examples of the ruthenium complex include the following.

Ru(OAc)(L)、RuCl(L)NEt、[RuCl(benzene)(L)]Cl、[RuBr(benzene)(L)]Br、[RuI(benzene)(L)]I、[RuCl(p−cymene)(L)]Cl、[RuBr(p−cymene)(L)]Br、[RuI(p−cymene)(L)]I、[Ru(L)](BF、[Ru(L)](ClO、[Ru(L)](PF、[Ru(L)](BPh4) Ru (OAc) 2 (L), Ru 2 Cl 4 (L) 2 NEt 3 , [RuCl (benzone) (L)] Cl, [RuBr (benzone) (L)] Br, [RuI (benzene) (L) ] I, [RuCl (p-cymene) (L)] Cl, [RuBr (p-cymene) (L)] Br, [RuI (p-cymene) (L)] I, [Ru (L)] (BF 4) 2, [Ru (L )] (ClO 4) 2, [Ru (L)] (PF 6) 2, [Ru (L)] (BPh4) 2

(イリジウム錯体)
イリジウム錯体は、作製することができる限りにおいて限定されるわけではないが、例えば“K.Mashima,T.Akutagawa,X.Zhang,T.Taketomi,H.Kumobayashi,S.Akutagawa、J.Organomet.Chem.、1992年、428,213.“に記載の方法に従い、BICMAPと[Ir(cod)(CH3CN)]BFとを、テトラヒドロフラン中にて撹拌下に反応させることにより作製できる。なおイリジウム錯体の具体例としては、例えば以下のものを挙げることができる。
(Iridium complex)
The iridium complex is not limited as long as it can be produced. For example, “K. Masima, T. Akutagawa, X. Zhang, T. Taketomi, H. Kumobayashi, S. Akutagawa, J. Organomet. ., 1992, in accordance with the method described in 428,213. "a BICMAP and [Ir (cod) (CH3CN) 2] BF 4, can be prepared by reacting under stirring at tetrahydrofuran. In addition, as a specific example of an iridium complex, the following can be mentioned, for example.

[Ir(L)Cl]、[Ir(L)Br]、[Ir(L)I]、[Ir(cod)(L)]BF4、[Ir(cod)(L)]Cl04、[Ir(cod)(L)]PF6、[Ir(cod)(L)]BPh4、[Ir(nbd)(L)]BF4、[Ir(nbd)(L)]Cl04、[Ir(nbd)(L)]PF6、[Ir(nbd)(L)]BPh4 [Ir (L) Cl] 2 , [Ir (L) Br] 2 , [Ir (L) I] 2 , [Ir (cod) (L)] BF4, [Ir (cod) (L)] Cl04, [ Ir (cod) (L)] PF6, [Ir (cod) (L)] BPh4, [Ir (nbd) (L)] BF4, [Ir (nbd) (L)] Cl04, [Ir (nbd) (L )] PF6, [Ir (nbd) (L)] BPh4

(パラジウム錯体)
パラジウム錯体も、作製することができる限りにおいて限定されるわけではないが、例えば“Y.Uozumi
and T.Hayashi,J.Am.Chem.Soc.,1991,113,9887.”に記載の方法に従い、BICMAPとπ−アリルパラジウムクロリドを反応させることにより作製できる。なおパラジウム錯体の具体例としては、例えば以下のものを挙げることができる。
(Palladium complex)
The palladium complex is not limited as long as it can be produced. For example, “Y. Uozumi”
and T.A. Hayashi, J .; Am. Chem. Soc. 1991, 113, 9887. According to the method described in the above, “BICMAP and π-allyl palladium chloride can be reacted. Specific examples of the palladium complex include the following.

PdCl(L),(π−allyl)Pd(L)、[(Pd(L))BF、[(Pd(L))ClO、[(Pd(L))PF、[(Pd(L))BPh PdCl 2 (L), (π-allyl) Pd (L), [(Pd (L)) BF 4 , [(Pd (L)) ClO 4 , [(Pd (L)) PF 6 , [(Pd ( L)) BPh 4

(ニッケル触媒)
ニッケル錯体も、作製することができる限りにおいて限定されるわけではないが、例えば“日本化学会編「第4版
実験化学講座」第18巻、有機金属錯体、1991年、376頁 、丸善”に記載の方法で作製できる。また、ニッケル錯体は、“Y.Uozumi and T.Hayashi,J.Am.Chem.Soc.,1991,113,9887”に記載の方法に従って、BICMAPと塩化ニッケルとを、イソプロパノ−ルとメタノ−ルの混合溶媒に溶解し、加熱撹拌することで作製することもできる。なお、ニッケル錯体の具体例としては、例えば以下のものを挙げることができる。
(Nickel catalyst)
The nickel complex is not limited as long as it can be produced. For example, “Chemical Society of Japan“ 4th edition, experimental chemistry course ”, Volume 18, Organometallic Complex, 1991, page 376, Maruzen” The nickel complex can be prepared by the method described in “Y. Uozumi and T. Hayashi, J .; Am. Chem. Soc. , 1991, 113, 9887 ", BICMAP and nickel chloride can be dissolved in a mixed solvent of isopropanol and methanol and heated and stirred. Specific examples include the following.

NiCl(L)、NiBr(L)、NiI(L) NiCl 2 (L), NiBr 2 (L), NiI 2 (L)

(銅錯体)
銅錯体も、作製することができる限りにおいて限定されるわけではないが、例えば“B.H.Lipshutz,B.Frieman and H.Birkedal、Org.Lett.、2004、6、2305”に記載の方法に従って、BICMAPと塩化銅(I)とを、トルエン中に溶解し、撹拌することで作製できる。なお銅錯体の具体例としては、例えば以下のものを挙げることができる。
(Copper complex)
The copper complex is not limited as long as it can be produced. For example, the method described in “B. H. Lipshutz, B. Frieman and H. Birkedal, Org. Lett., 2004, 6, 2305” is used. Thus, BICMAP and copper (I) chloride can be dissolved in toluene and stirred. In addition, as a specific example of a copper complex, the following can be mentioned, for example.

CuF(L)、CuCl(L)、CuBr(L)、CuI(L)、CuPF(L)、CuBPh(L)、CuBF(L)、CuOAc(L)、CuF2(L)、CuCl(L)、CuBr(L)、CuI(L)、Cu(PF(L)、Cu(BPh(L)、Cu(BF(L)、Cu(OAc)(L) CuF (L), CuCl (L ), CuBr (L), CuI (L), CuPF 6 (L), CuBPh 4 (L), CuBF 4 (L), CuOAc (L), CuF 2 (L), CuCl 2 (L), CuBr 2 (L), CuI 2 (L), Cu (PF 6 ) 2 (L), Cu (BPh 4 ) 2 (L), Cu (BF 4 ) 2 (L), Cu (OAc 2 (L)

本実施形態に係るこの新規なジホスフィン化合物を配位子とする遷移金属錯体は、炭素−窒素結合形成反応の触媒として有用である。また、軸不斉光学活性を有するジホスフィン化合物を配位子とする遷移金属錯体は不斉水素化反応の触媒として有用である。錯体を触媒として使用する場合は、錯体の純度を高めてから使用してもよいが、また、錯体を精製することなく使用してもよい。上記の遷移金属錯体のなかでは、特にパラジウムとジホスフィン化合物であるBICMAPを配位子として含む錯体は、芳香族アミン類をアリ−ルハライドとアミンとの縮合により製造する方法である炭素窒素結合形成反応において、BINAP等を配位子とするパラジウム錯体より高い反応性を与えるものである。また、特に、銅と光学活性ジホスフィン化合物であるBICMAPを配位子として含む錯体はアセトフェノンの不斉水素化反応において、BINAP等を配位子とする銅錯体より高いエナンチオ選択性を与えるものである。   The transition metal complex having the novel diphosphine compound according to this embodiment as a ligand is useful as a catalyst for a carbon-nitrogen bond forming reaction. A transition metal complex having a diphosphine compound having axial asymmetric optical activity as a ligand is useful as a catalyst for an asymmetric hydrogenation reaction. When the complex is used as a catalyst, it may be used after increasing the purity of the complex, or it may be used without purifying the complex. Among the above transition metal complexes, in particular, a complex containing palladium and diphosphine compound BICMAP as a ligand is a carbon-nitrogen bond forming reaction which is a method for producing aromatic amines by the condensation of aryl halides and amines. In the present invention, a higher reactivity than a palladium complex having BINAP or the like as a ligand is given. In particular, a complex containing copper and BICMAP which is an optically active diphosphine compound as a ligand gives higher enantioselectivity than a copper complex having BINAP or the like as a ligand in the asymmetric hydrogenation reaction of acetophenone. .

なお、本実施形態のうち、上記の記載から明らかなように、下記一般式(2)で示されるジホスフィンオキシド化合物は、上記一般式(1)で示されるジホスフィン化合物を得るための中間体として有用である。
(式中、R,Rは、各々独立に、シクロアルキル基、非置換若しくは置換フェニル基、または五員複素芳香環残基を示す。)
In the present embodiment, as is clear from the above description, the diphosphine oxide compound represented by the following general formula (2) is useful as an intermediate for obtaining the diphosphine compound represented by the above general formula (1). It is.
(Wherein R 1 and R 2 each independently represents a cycloalkyl group, an unsubstituted or substituted phenyl group, or a 5-membered heteroaromatic ring residue.)

また、本実施形態のうち、上記記載から明らかなように、下記一般式(3)で示されるジホスフィン化合物は、上記一般式(1)、(2)で示されるジホスフィン化合物又はジホスフィンオキシド化合物を得るための中間体として有用である。
(式中、各々独立に、シクロアルキル基、非置換若しくは置換フェニル基、または五員複素芳香環残基を示す。)
In addition, as is clear from the above description of the present embodiment, the diphosphine compound represented by the following general formula (3) obtains the diphosphine compound or diphosphine oxide compound represented by the above general formulas (1) and (2). It is useful as an intermediate for.
(In the formula, each independently represents a cycloalkyl group, an unsubstituted or substituted phenyl group, or a 5-membered heteroaromatic ring residue.)

以下、上記実施形態に係る化合物及びこれら化合物を用いた遷移金属触媒を実際に作製し、その効果を確認した。以下に説明する。   Hereinafter, the compounds according to the above embodiments and transition metal catalysts using these compounds were actually produced, and the effects were confirmed. This will be described below.

(実施例1:2−ジフェニルホスフィノ−5,6−ジヒドロベンゾフランの合成)
反応器に2−ブロモエトキシ−1,4−ジブロモベンゼン0.356g(1mmol)を加え、反応容器内をアルゴンで完全に置換し、さらに無水テトラヒドロフラン2mlを加えた。そして−80 ℃に冷却した後、n−ブチルリチウム(1.66M)のヘキサン溶液0.6 mlをゆっくり加えた。そして2時間後さらにn−ブチルリチウム(1.66M)のヘキサン溶液0.6 mlをゆっくり加え、1時間半後にクロロジフェニルホスフィン0.2 ml(1.1mmol)を加えた。−80
℃で23時間撹拌したのち、氷浴下反応器に飽和アンモニウム水溶液を加え反応を止め、酢酸エチルを加えて有機層を分離した。飽和食塩水で処理し硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧下で濃縮し、シリカゲルカラムクロマトグラフィ−(溶離液ヘキサン:酢酸エチル=20:1)にて精製し、0.201gの2−ジフェニルホスフィノ−5,6−ジヒドロベンゾフランを得た。なお、下記に2−ジフェニルホスフィノ−5,6−ジヒドロベンゾフランの融点(m.p.)及び1H−NMRデ−タを示しておく。
Example 1: Synthesis of 2-diphenylphosphino-5,6-dihydrobenzofuran
To the reactor, 0.356 g (1 mmol) of 2-bromoethoxy-1,4-dibromobenzene was added, the inside of the reaction vessel was completely replaced with argon, and 2 ml of anhydrous tetrahydrofuran was further added. And after cooling to -80 degreeC, 0.6 ml of hexane solutions of n-butyllithium (1.66M) were added slowly. After 2 hours, 0.6 ml of a hexane solution of n-butyllithium (1.66 M) was slowly added, and after 1 hour and a half, 0.2 ml (1.1 mmol) of chlorodiphenylphosphine was added. -80
After stirring at ° C for 23 hours, a saturated aqueous ammonium solution was added to the reactor in an ice bath to stop the reaction, and ethyl acetate was added to separate the organic layer. The mixture was treated with saturated brine and dried over magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and purified by silica gel column chromatography (eluent hexane: ethyl acetate = 20: 1) to give 0.201 g of 2-diphenylphosphino-5,6-dihydrobenzofuran. Obtained. The melting point (mp) and 1H-NMR data of 2-diphenylphosphino-5,6-dihydrobenzofuran are shown below.

m.p.:76−78℃
1H−NMR(CDCl):δ3.20 (t, J=8.7Hz,2H),4.55(t, J=8.7Hz,2H),6.69(d,J=7.1Hz,1H),6.87(ddd,J=1.3,7.6 and 8.7Hz,1H), 7.17(dd,J=0.8 and 7.5Hz,1H),7.24−7.35(m,10H).
31P−NMR(CDCl):δ−4.1
m. p. : 76-78 ° C
1H-NMR (CDCl 3 ): δ 3.20 (t, J = 8.7 Hz, 2H), 4.55 (t, J = 8.7 Hz, 2H), 6.69 (d, J = 7.1 Hz, 1H), 6.87 (ddd, J = 1.3, 7.6 and 8.7 Hz, 1H), 7.17 (dd, J = 0.8 and 7.5 Hz, 1H), 7.24-7 .35 (m, 10H).
31P-NMR (CDCl 3 ): δ-4.1

(実施例2:2−ジフェニルホスファノ−5,6−ジヒドロベンゾフランの合成)
窒素気流下、上記実施例1で得られた2−ジフェニルホスフィノ−5,6−ジヒドロベンゾフランのうち0.304g(1mmol)をクロロホルム5mlに溶解した。次に、この溶液に過酸化水素水2mlを室温にて2時間撹拌を続けた。そして反応液を水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルカラムクロマトグラフィ−(溶離液ヘキサン:酢酸エチル=1:3)にて精製し、0.317gの表題化合物を得た。なお下記に2−ジフェニルホスファノ−5,6−ジヒドロベンゾフランの融点および1H−NMRデ−タを示しておく。
(Example 2: Synthesis of 2-diphenylphosphano-5,6-dihydrobenzofuran)
Under a nitrogen stream, 0.304 g (1 mmol) of 2-diphenylphosphino-5,6-dihydrobenzofuran obtained in Example 1 was dissolved in 5 ml of chloroform. Next, 2 ml of hydrogen peroxide solution was continuously stirred at room temperature for 2 hours. The reaction solution was washed with water and then dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (eluent hexane: ethyl acetate = 1: 3) to obtain 0.317 g of the title compound. The melting point and 1H-NMR data of 2-diphenylphosphano-5,6-dihydrobenzofuran are shown below.

m.p.:127−128℃
1H−NMR(CDCl3):δ3.26 (t, J=8.8Hz,2H),4.59(t, J=8.8Hz,2H),6.99(d,J=12.4Hz,1H),7.18−7.32(m,2H),7.41−7.57(m,6H),7.62−7.72(m,4H).
31P−NMR(CDCl3):δ30.0
m. p. 127-128 ° C
1H-NMR (CDCl3): δ 3.26 (t, J = 8.8 Hz, 2H), 4.59 (t, J = 8.8 Hz, 2H), 6.99 (d, J = 12.4 Hz, 1H) ), 7.18-7.32 (m, 2H), 7.41-7.57 (m, 6H), 7.62-7.72 (m, 4H).
31P-NMR (CDCl 3): δ 30.0

(実施例3:(±)−2,2’−ジフェニルホスファノ−1,1’−ビ−5,6−ジヒドロベンゾフランの合成)
反応器に、上記実施例2で得られたホスフィンオキシド0.961g(3mmol)を加え、反応容器内をアルゴンで完全に置換し、さらに無水テトラヒドロフラン24mlを加えた。−80
℃に冷却した後、t−ブチルリチウム(1.66M)のテトラヒドロフラン溶液0.6mlをゆっくり加えた。3時間後に塩化鉄(III)0.591g(3.6mmol)を加えた。−80 ℃で16時間撹拌したのち、反応液をセライトろ過し、減圧下で濃縮した。残渣をクロロホルムに溶解し、6N水酸化ナトリウム水溶液、6N塩酸で処理し硫酸マグネシウムで乾燥した。ろ過後、ろ液を減圧下で濃縮し、シリカゲルカラムクロマトグラフィ−(溶離液クロロホルム:メタノ−ル=40:1)にて精製し、0.409gの表題化合物を得た。なお、下記に、(±)−2,2’−ジフェニルホスファノ−1,1’−ビ−5,6−ジヒドロベンゾフランの融点及び1H−NMRのデ−タを示しておく。
(Example 3: Synthesis of (±) -2,2'-diphenylphosphano-1,1'-bi-5,6-dihydrobenzofuran)
To the reactor, 0.961 g (3 mmol) of the phosphine oxide obtained in Example 2 was added, the inside of the reaction vessel was completely replaced with argon, and 24 ml of anhydrous tetrahydrofuran was further added. -80
After cooling to ° C., 0.6 ml of a tetrahydrofuran solution of t-butyllithium (1.66M) was slowly added. Three hours later, 0.591 g (3.6 mmol) of iron (III) chloride was added. After stirring at −80 ° C. for 16 hours, the reaction solution was filtered through Celite and concentrated under reduced pressure. The residue was dissolved in chloroform, treated with 6N aqueous sodium hydroxide solution and 6N hydrochloric acid, and dried over magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography (eluent chloroform: methanol = 40: 1) to obtain 0.409 g of the title compound. In the following, the melting point and 1H-NMR data of (±) -2,2′-diphenylphosphano-1,1′-bi-5,6-dihydrobenzofuran are shown.

m.p.:156−158℃
1H−NMR(CDCl3):δ2.92−3.18(m,4H),3.78(dd,J=8.7 and 18.7Hz,2H),4.17−4.28(m,2H),6.76(dd,J=7.6 and 13.8Hz,2H),7.23−7.31(m,4H),7.32−7.51(m,8H),7.57−7.66(m,4H),7.68−7.76(m,4H).
31P−NMR(CDCl3):δ29.9
m. p. 156-158 ° C
1H-NMR (CDCl3): δ 2.92-3.18 (m, 4H), 3.78 (dd, J = 8.7 and 18.7 Hz, 2H), 4.17-4.28 (m, 2H) ), 6.76 (dd, J = 7.6 and 13.8 Hz, 2H), 7.23-7.31 (m, 4H), 7.32-7.51 (m, 8H), 7.57 -7.66 (m, 4H), 7.68-7.76 (m, 4H).
31 P-NMR (CDCl 3): δ 29.9

(実施例4:(±)−2,2’−ジフェニルホスフィノ−1,1’−ビ−5,6−ジヒドロベンゾフラン:(±)−BICMAPの合成)
上記(±)−2,2’−ジフェニルホスファノ−1,1’−ビ−5,6−ジヒドロベンゾフラン0.233g(0.364mmol)、トリエチルアミン1.82ml(13.1mmol)、m−キシレン(4.9ml)中にトリクロロシラン1.10ml(10.9mmol)を滴下し、110℃で6時間撹拌した。反応混合物を氷冷し、6N水酸化ナトリウム水溶液を加え、分液後、水層中の反応生成物をクロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィ−(溶離液ヘキサン:酢酸エチル=10:1)にて精製し、白色固体の表題化合物0.117g(収率53%)が得られた。なお以下に、(±)−BICMAPの融点及び1H−NMR、31P−NMRのデ−タを示しておく。
Example 4: Synthesis of (±) -2,2′-diphenylphosphino-1,1′-bi-5,6-dihydrobenzofuran: (±) -BICMAP
(±) -2,2′-diphenylphosphano-1,1′-bi-5,6-dihydrobenzofuran 0.233 g (0.364 mmol), triethylamine 1.82 ml (13.1 mmol), m-xylene ( 4.9 ml) was added dropwise with 1.10 ml (10.9 mmol) of trichlorosilane and stirred at 110 ° C. for 6 hours. The reaction mixture was ice-cooled, 6N aqueous sodium hydroxide solution was added, and after separation, the reaction product in the aqueous layer was extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (eluent hexane: ethyl acetate = 10: 1) to give 0.117 g (yield) of the title compound as a white solid. 53%) was obtained. The melting point of (±) -BICMAP and 1H-NMR and 31P-NMR data are shown below.

m.p.:229−231℃
1H−NMR(CDCl3):δ2.90−3.04(m,2H),3.06−3.04(m,2H),3.74(dd,J=8.8 and 18.7Hz,2H),4.24−4.36(m,2H),6.60(dt,J=1.7 and 7.6Hz,2H),7.08(d,J=7.6Hz,2H),7.13−7.34(m,20H).
31P−NMR(CDCl3):δ−13.06 EI−MS:m/z606(M+)
m. p. : 229-231 ° C
1H-NMR (CDCl3): δ 2.90-3.04 (m, 2H), 3.06-3.04 (m, 2H), 3.74 (dd, J = 8.8 and 18.7 Hz, 2H ), 4.24-4.36 (m, 2H), 6.60 (dt, J = 1.7 and 7.6 Hz, 2H), 7.08 (d, J = 7.6 Hz, 2H), 7 .13-7.34 (m, 20H).
31P-NMR (CDCl3): δ-13.06 EI-MS: m / z 606 (M +)

(実施例5:(±)−2,2’−ジフェニルホスフィノ−1,1’−ビ−5,6−ジヒドロベンゾフラン:(±)−BICMAPの光学分割) (Example 5: (±) -2,2′-diphenylphosphino-1,1′-bi-5,6-dihydrobenzofuran: optical resolution of (±) -BICMAP)

(±)−BICMAP2.9mg(0.48μmol)をヘキサン29mLに溶解し、CHIRALPAC IA(10mmx250mm、Eluent:Hexane/Ethanol=98/2、Flow:0.8ml/min.)を用いて光学分割し、(+)−BICMAP0.79mg(収率27%、光学純度100% ee)を得た。なお、この結果物の旋光角は以下の通りであった。   (±) -BICMAP 2.9 mg (0.48 μmol) was dissolved in 29 mL of hexane, and optically resolved using CHIRALPAC IA (10 mm × 250 mm, Eluent: Hexane / Ethanol = 98/2, Flow: 0.8 ml / min.), 0.79 mg (+)-BICMAP (yield 27%, optical purity 100% ee) was obtained. The optical rotation angle of the resultant product was as follows.

[α]D20=+38゜(c0.0275,EtOH) [Α] D20 = + 38 ° (c 0.0275, EtOH)

(使用例1:N−(4−ニトロフェニル)−p−トルイジンの合成)
反応器に4−ニトロフェニルブロミド50.0mg(0.25mmol)、p−トルイジン32.2mg(0.30mmol)、トリスジベンジリデンアセトンジパラジウム2.3mg(0.0025mmol)、(±)−BICMAP4.6mg(0.0075mmol)、炭酸セシウム0.114g(0.35mmol)を加えた。アルゴン置換した後、トルエン1mlを加え、100℃で18時間撹拌した。蒸留水を加えて反応を停止させ、酢酸エチルを加えて有機層を分離し、飽和食塩水で処理し、硫酸マグネシウムを加え乾燥した。ろ過後、ろ液を減圧下で濃縮し、シリカゲルカラムクロマトグラフィー溶離液ヘキサン:酢酸エチル=6:1)にて精製し、表題化合物56.2mg(収率98%)が得られた。なお、得られた化合物のNMRデ−タは以下の通りであった。
(Use Example 1: Synthesis of N- (4-nitrophenyl) -p-toluidine)
4-Nitrophenyl bromide 50.0 mg (0.25 mmol), p-toluidine 32.2 mg (0.30 mmol), trisdibenzylideneacetone dipalladium 2.3 mg (0.0025 mmol), (±) -BICMAP4. 6 mg (0.0075 mmol) and 0.114 g (0.35 mmol) of cesium carbonate were added. After replacing with argon, 1 ml of toluene was added, and the mixture was stirred at 100 ° C. for 18 hours. Distilled water was added to stop the reaction, and ethyl acetate was added to separate the organic layer, which was treated with saturated brine, and magnesium sulfate was added to dry. After filtration, the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography eluent hexane: ethyl acetate = 6: 1) to obtain 56.2 mg (yield 98%) of the title compound. The NMR data of the obtained compound were as follows.

1H−NMR(CDCl):δ2.36(s,3H),6.25(br−s,1H),6.87(d,J=9.2Hz,2H),7.11(d,J=8.3Hz,2H),7.20(d,J=8.3Hz,2H),8.10(d,J=9.2Hz,2H). 1H-NMR (CDCl 3 ): δ 2.36 (s, 3H), 6.25 (br-s, 1H), 6.87 (d, J = 9.2 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.3 Hz, 2H), 8.10 (d, J = 9.2 Hz, 2H).

(使用例2:N−(4−ニトロフェニル)−p−アニシジンの合成) (Use Example 2: Synthesis of N- (4-nitrophenyl) -p-anisidine)

反応器に4−ニトロフェニルブロミド50.0mg(0.25mmol)、p−アニシジン37.0mg(0.30mmol)、トリスジベンジリデンアセトンジパラジウム2.3mg(0.0025mmol)、(±)−BICMAP4.6mg(0.0075mmol)、炭酸セシウム0.114g(0.35mmol)を加えた。アルゴン置換した後、トルエン1mlを加え、100℃で18時間撹拌した。蒸留水を加えて反応を停止させ、酢酸エチルを加えて有機層を分離し、飽和食塩水で処理し、硫酸マグネシウムを加え乾燥した。ろ過後、ろ液を減圧下で濃縮し、シリカゲルカラムクロマトグラフィー(溶離液ヘキサン:酢酸エチル=6:1)にて精製し、表題化合物55.3mg(収率91%)が得られた。なお、NMRデ−タを以下に示しておく。   4-Nitrophenyl bromide 50.0 mg (0.25 mmol), p-anisidine 37.0 mg (0.30 mmol), trisdibenzylideneacetone dipalladium 2.3 mg (0.0025 mmol), (±) -BICMAP4. 6 mg (0.0075 mmol) and 0.114 g (0.35 mmol) of cesium carbonate were added. After replacing with argon, 1 ml of toluene was added, and the mixture was stirred at 100 ° C. for 18 hours. Distilled water was added to stop the reaction, and ethyl acetate was added to separate the organic layer, which was treated with saturated brine, and magnesium sulfate was added to dry. After filtration, the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography (eluent hexane: ethyl acetate = 6: 1) to obtain 55.3 mg (yield 91%) of the title compound. The NMR data is shown below.

1H−NMR(CDCl3):δ3.84(s,3H),6.18(br−s,1H),6.77(d,J=9.2Hz,2H),6.94(d,J=8.9Hz,2H),7.16(d,J=8.9Hz,2H),8.08(d,J=9.2Hz,2H).   1H-NMR (CDCl3): δ 3.84 (s, 3H), 6.18 (br-s, 1H), 6.77 (d, J = 9.2 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 7.16 (d, J = 8.9 Hz, 2H), 8.08 (d, J = 9.2 Hz, 2H).

(使用例3:N−(4−アセチルフェニル)−p−トルイジンの合成)
反応器に4−ブロモアセトフェノン49.8mg(0.25mmol)、p−トルイジン32.8mg(0.305mmol)、トリスジベンジリデンアセトンジパラジウム2.3mg(0.0025mmol)、(±)−BICMAP4.6mg(0.0075mmol)、炭酸セシウム0.114g(0.35mmol)を加えた。アルゴン置換した後、トルエン1mlを加え、100℃で18時間撹拌した。蒸留水を加えて反応を停止させ、酢酸エチルを加えて有機層を分離し、飽和食塩水で処理し、硫酸マグネシウムを加え乾燥した。ろ過後、ろ液を減圧下で濃縮し、シリカゲルカラムクロマトグラフィー(溶離液ヘキサン:酢酸エチル=6:1)にて精製し、表題化合物52.3mg(収率93%)が得られた。なお、得られた化合物のNMRデータは以下の通りであった。
(Use Example 3: Synthesis of N- (4-acetylphenyl) -p-toluidine)
In the reactor, 4-bromoacetophenone 49.8 mg (0.25 mmol), p-toluidine 32.8 mg (0.305 mmol), trisdibenzylideneacetone dipalladium 2.3 mg (0.0025 mmol), (±) -BICMAP 4.6 mg (0.0075 mmol) and 0.114 g (0.35 mmol) of cesium carbonate were added. After replacing with argon, 1 ml of toluene was added, and the mixture was stirred at 100 ° C. for 18 hours. Distilled water was added to stop the reaction, and ethyl acetate was added to separate the organic layer, which was treated with saturated brine, and magnesium sulfate was added to dry. After filtration, the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography (eluent hexane: ethyl acetate = 6: 1) to obtain 52.3 mg (yield 93%) of the title compound. The NMR data of the obtained compound were as follows.

1H−NMR(CDCl3):δ2.34(s,3H),2.52(s,3H),6.07(br−s,1H),6.92(d,J=8.8Hz,2H),7.09(d,J=8.4Hz,2H),7.16(d,J=8.3Hz,2H),7.85(d,J=8.8Hz,2H).   1H-NMR (CDCl3): δ 2.34 (s, 3H), 2.52 (s, 3H), 6.07 (br-s, 1H), 6.92 (d, J = 8.8 Hz, 2H) 7.09 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 7.85 (d, J = 8.8 Hz, 2H).

(使用例4:N−(4−シアノフェニル)−p−トルイジンの合成)
反応器に4−ブロモベンゾニトリル45.5mg(0.25mmol)、p−トルイジン32.8mg(0.305mmol)、トリスジベンジリデンアセトンジパラジウム2.3mg(0.0025mmol)、(±)−BICMAP4.6mg(0.0075mmol)、炭酸セシウム0.114g(0.35mmol)を加えた。アルゴン置換した後、トルエン1mlを加え、100℃で18時間撹拌した。蒸留水を加えて反応を停止させ、酢酸エチルを加えて有機層を分離し、飽和食塩水で処理し、硫酸マグネシウムを加え乾燥した。ろ過後、ろ液を減圧下で濃縮し、シリカゲルカラムクロマトグラフィー(溶離液ヘキサン:酢酸エチル=6:1)にて精製し、表題化合物48.1mg(収率92%)が得られた。なお、得られた化合物のNMRデータは以下の通りであった。
(Use Example 4: Synthesis of N- (4-cyanophenyl) -p-toluidine)
4-Bromobenzonitrile 45.5 mg (0.25 mmol), p-toluidine 32.8 mg (0.305 mmol), trisdibenzylideneacetone dipalladium 2.3 mg (0.0025 mmol), (±) -BICMAP4. 6 mg (0.0075 mmol) and 0.114 g (0.35 mmol) of cesium carbonate were added. After replacing with argon, 1 ml of toluene was added, and the mixture was stirred at 100 ° C. for 18 hours. Distilled water was added to stop the reaction, and ethyl acetate was added to separate the organic layer, which was treated with saturated brine, and magnesium sulfate was added to dry. After filtration, the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography (eluent hexane: ethyl acetate = 6: 1) to obtain 48.1 mg (yield 92%) of the title compound. The NMR data of the obtained compound were as follows.

1H−NMR(CDCl3):δ2.35(s,3H),6.01(br−s,1H),6.90(d,J=8.8Hz,2H),7.07(d,J=8.4Hz,2H),7.17(d,J=8.2Hz,2H),7.45(d,J=8.8Hz,2H).   1H-NMR (CDCl3): δ 2.35 (s, 3H), 6.01 (br-s, 1H), 6.90 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H).

(使用例5:アセトフェノンの不斉水素化反応)
アルゴン雰囲気下、酢酸銅(II)一水和物3.0mg(0.015mmol)、(+)−BICMAP9.1mg(0.015mmol)、トルエン0.2mlの混合物を10分間50℃でかき混ぜた。0℃に冷却した後に、ポリ(メチルヒドロシラン)0.17ml(2.5mmol)を加えで30分間かき混ぜ、アセトフェノン60.0mg(0.5mmol)とトルエン0.3mlを加え、16時間反応させた。蒸留水を加えて反応を停止させ、ジエチルエーテルと6N水酸化ナトリウム水溶液を加え、激しくかき混ぜた。その後、有機層を分離し、硫酸マグネシウムを加え乾燥した。ろ過後、ろ液を減圧下で濃縮し、シリカゲルカラムクロマトグラフィー(溶離液ヘキサン:酢酸エチル=8:1)にて精製し、R−体の表題化合物52.5mg(収率86%、光学純度81% ee)が得られた。なお、光学純度は光学活性HPLC (Chiralcel OD−H)を用い、常法に従い測定した。なお、得られた化合物のNMRデータは以下の通りであった。
(Use Example 5: Asymmetric hydrogenation reaction of acetophenone)
Under an argon atmosphere, a mixture of copper acetate (II) monohydrate 3.0 mg (0.015 mmol), (+)-BICMAP 9.1 mg (0.015 mmol), and toluene 0.2 ml was stirred at 50 ° C. for 10 minutes. After cooling to 0 ° C., 0.17 ml (2.5 mmol) of poly (methylhydrosilane) was added and stirred for 30 minutes, 60.0 mg (0.5 mmol) of acetophenone and 0.3 ml of toluene were added and reacted for 16 hours. Distilled water was added to stop the reaction, diethyl ether and 6N aqueous sodium hydroxide solution were added, and the mixture was vigorously stirred. Thereafter, the organic layer was separated and dried by adding magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography (eluent hexane: ethyl acetate = 8: 1) to give 52.5 mg (yield 86%, optical purity) of the title compound of R-form. 81% ee) was obtained. The optical purity was measured according to a conventional method using optically active HPLC (Chiralcel OD-H). The NMR data of the obtained compound were as follows.

1H−NMR(CDCl):δ1.50(d,J=6.5Hz,3H),1.84(br−s,1H),4.91(q,J=6.5Hz,1H),7.24−7.41(m,5H). 1H-NMR (CDCl 3 ): δ 1.50 (d, J = 6.5 Hz, 3H), 1.84 (br-s, 1H), 4.91 (q, J = 6.5 Hz, 1H), 7 .24-7.41 (m, 5H).

なお比較例として(+)−BICMAPの代わりに(S)−BINAPを使用して同様の反応を行ったところ、S−体の表題化合物42.2mg(収率69%、光学純度78% ee)が得られた。 As a comparative example, the same reaction was carried out using (S) -BINAP instead of (+)-BICMAP. As a result , 42.2 mg (yield 69%, optical purity 78% ee) of the S-form title compound. was gotten.

本実施例の(+)−BICMAPを配位子とする遷移金属錯体触媒を使用して水素化を行った使用例5では、類似のビアリール骨格を有するBINAPを使用して水素化を行った比較例よりも、収率、光学純度のいずれにおいても高かった。その結果から、本発明のBICMAPは不斉水素化を行うことにおいて極めて有用な配位子であることがわかる。   In Use Example 5 in which hydrogenation was performed using the transition metal complex catalyst having (+)-BICMAP as a ligand in this Example, hydrogenation was performed using BINAP having a similar biaryl skeleton. It was higher in both yield and optical purity than the examples. From the results, it can be seen that the BICMAP of the present invention is a very useful ligand in carrying out asymmetric hydrogenation.

本発明に係るジホスフィン化合物は遷移金属を作用させることで遷移金属錯体の配位子として有用である。特に、この遷移金属錯体は炭素−窒素結合形成反応の触媒として、また、光学活性のものは不斉水素化反応の触媒としても有用であり、産業上の利用可能性がある。   The diphosphine compound according to the present invention is useful as a ligand of a transition metal complex by allowing a transition metal to act. In particular, this transition metal complex is useful as a catalyst for carbon-nitrogen bond forming reaction, and an optically active one is also useful as a catalyst for asymmetric hydrogenation reaction, and has industrial applicability.

Claims (7)

下記式(1)で表されるジホスフィン化合物。
(上記式(1)中、R1,R2は、各々独立に、シクロアルキル基、非置換若しくは置換のフェニル基、または五員複素芳香環残基を示す。)
The diphosphine compound represented by following formula (1).
(In the above formula (1), R1 and R2 each independently represents a cycloalkyl group, an unsubstituted or substituted phenyl group, or a 5-membered heteroaromatic ring residue.)
軸不斉光学活性体である請求項1記載のジホスフィン化合物。   The diphosphine compound according to claim 1, which is an axially asymmetric optically active substance. 請求項1記載のジホスフィン化合物を配位子とする遷移金属ジホスフィン錯体。   A transition metal diphosphine complex having the diphosphine compound according to claim 1 as a ligand. 前記遷移金属は、ルテニウム、イリジウム、ロジウム、パラジウム、ニッケル、銅及び白金からなる群より選ばれる一種以上の遷移金属である請求項3記載の遷移金属ジホスフィン錯体。   The transition metal diphosphine complex according to claim 3, wherein the transition metal is one or more transition metals selected from the group consisting of ruthenium, iridium, rhodium, palladium, nickel, copper, and platinum. 請求項3項記載の遷移金属ジホスフィン錯体を含む不斉水素化触媒。 An asymmetric hydrogenation catalyst comprising the transition metal diphosphine complex according to claim 3. 下記式(2)で表されるジホスフィンオキシド化合物。
(上記式中、R1,R2は、各々独立に、シクロアルキル基、非置換若しくは置換フェニル基、または五員複素芳香環残基を示す。)
The diphosphine oxide compound represented by following formula (2).
(In the above formula, R 1 and R 2 each independently represent a cycloalkyl group, an unsubstituted or substituted phenyl group, or a 5-membered heteroaromatic ring residue.)
下記式(3)で表されるホスフィンオキシド化合物。
(式中、R1及びR2は各々独立に、シクロアルキル基、非置換若しくは置換フェニル基、または五員複素芳香環残基を示し、aは0又は1を示す。)
A phosphine oxide compound represented by the following formula (3).
(Wherein R1 and R2 each independently represents a cycloalkyl group, an unsubstituted or substituted phenyl group, or a 5-membered heteroaromatic ring residue, and a represents 0 or 1)
JP2008217233A 2008-08-26 2008-08-26 Diphosphine compounds, transition metal complexes thereof, catalysts containing the transition metal complexes, phosphine oxide compounds and diphosphine oxide compounds Expired - Fee Related JP5454756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008217233A JP5454756B2 (en) 2008-08-26 2008-08-26 Diphosphine compounds, transition metal complexes thereof, catalysts containing the transition metal complexes, phosphine oxide compounds and diphosphine oxide compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008217233A JP5454756B2 (en) 2008-08-26 2008-08-26 Diphosphine compounds, transition metal complexes thereof, catalysts containing the transition metal complexes, phosphine oxide compounds and diphosphine oxide compounds

Publications (2)

Publication Number Publication Date
JP2010053049A JP2010053049A (en) 2010-03-11
JP5454756B2 true JP5454756B2 (en) 2014-03-26

Family

ID=42069343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008217233A Expired - Fee Related JP5454756B2 (en) 2008-08-26 2008-08-26 Diphosphine compounds, transition metal complexes thereof, catalysts containing the transition metal complexes, phosphine oxide compounds and diphosphine oxide compounds

Country Status (1)

Country Link
JP (1) JP5454756B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135264B2 (en) * 2009-03-12 2013-02-06 独立行政法人科学技術振興機構 Method for producing phosphonic acid analog and catalyst
CN106995461B (en) * 2017-03-03 2019-11-08 中山大学 A kind of Phosphine ligands of the structure containing benzofuran and its preparation method and application
EP3730502B1 (en) * 2018-02-08 2024-10-02 Shenzhen Catalys Technology Co., Ltd. Synthesis and application of oxaspirocyclodiphosphine ligand
CN110128471B (en) * 2018-02-08 2021-01-15 凯特立斯(深圳)科技有限公司 Synthesis and application of oxaspiro diphosphine ligand
CN109503659B (en) * 2019-01-03 2021-06-18 凯特立斯(深圳)科技有限公司 Oxaspiro diphosphine ligand and application thereof in asymmetric hydrogenation of alpha, beta-unsaturated carboxylic acid
CN111635435B (en) * 2020-05-22 2023-04-28 上海应用技术大学 Bivalent copper complex containing biphosphine ortho-carborane ligand, and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685001B2 (en) * 2004-03-30 2011-05-18 高砂香料工業株式会社 Phosphine compound, transition metal complex using it as a ligand, and process for producing optically active carboxylic acid
DE102004047836A1 (en) * 2004-09-29 2006-03-30 Basf Ag Process for the preparation of optically active 2-methylalkanols
US7683186B2 (en) * 2006-12-11 2010-03-23 National University Corporation Tokyo University Of Agriculture And Technology Optically active biaryl phosphorus compound and production process thereof

Also Published As

Publication number Publication date
JP2010053049A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP3148136B2 (en) Novel chiral diphosphine compound, intermediate for producing the same, transition metal complex having the diphosphine compound as a ligand, and asymmetric hydrogenation catalyst containing the complex
JP4488739B2 (en) P-chiral phosphoranes and phosphocyclic compounds and their use in asymmetric catalysis
KR100384411B1 (en) Chiral ligand in heteroaromatic diphosphine
JP5454756B2 (en) Diphosphine compounds, transition metal complexes thereof, catalysts containing the transition metal complexes, phosphine oxide compounds and diphosphine oxide compounds
JP3566955B2 (en) Novel ruthenium complex and method for producing alcohol compound using the same as catalyst
US20040229846A1 (en) P-chiral phospholanes and phosphocyclic compounds and their use in asymmetric catalytic reactions
JP2733880B2 (en) Optically active tertiary phosphine compound and transition metal complex containing it as ligand
JP4290265B2 (en) Novel asymmetric ligand
JPH09124669A (en) Production of optically active diphosphine
JPH1067789A (en) New optically active diphosphine compound, its production, transition metal complex comprising the same compound as ligand and production of optically active substance using the same complex
EP1095946B1 (en) Optically active diphosphine compound, production intermediates therefor, transition metal complex containing the compound as ligand and asymmetric hydrogenation catalyst containing the complex
EP2614069A1 (en) Biaryl diphosphine ligands, intermediates of the same and their use in asymmetric catalysis
JP2003535869A (en) Chiral ligands for asymmetric catalysts
JP3789508B2 (en) Optically active asymmetric diphosphine and method for obtaining optically active substance in the presence of the compound
JP2004517901A (en) Ligand and its use
JP4231274B2 (en) Phosphine compound, transition metal complex having the compound as a ligand, and catalyst for asymmetric synthesis containing the complex
JP3338243B2 (en) Optically active asymmetric diphosphine compound and method for producing the same
JP2003206295A (en) Optically active diphosphine ligand
JP4148702B2 (en) Novel diphosphine compound, production intermediate thereof, transition metal complex having the compound as a ligand, and asymmetric hydrogenation catalyst containing the complex
WO2006082054A1 (en) 1,4-bis-diphosphines, 1,4-bis-diphosphites and 1,4-bis- diphosphonites from optically active (z)-olefines as chiral ligands
JP5009613B2 (en) Chiral ligands for use in asymmetric synthesis
JP4713134B2 (en) Process for producing optically active alkylphthalides
JP5011262B2 (en) Phosphine compound
JP4013217B2 (en) A novel phosphine compound, a transition metal complex having the compound as a ligand, and an asymmetric synthesis catalyst containing the complex.
JP5546294B2 (en) Axial asymmetric phosphine compound and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Ref document number: 5454756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees