Nothing Special   »   [go: up one dir, main page]

JP5336399B2 - Heat-resistant compound lens - Google Patents

Heat-resistant compound lens Download PDF

Info

Publication number
JP5336399B2
JP5336399B2 JP2010021828A JP2010021828A JP5336399B2 JP 5336399 B2 JP5336399 B2 JP 5336399B2 JP 2010021828 A JP2010021828 A JP 2010021828A JP 2010021828 A JP2010021828 A JP 2010021828A JP 5336399 B2 JP5336399 B2 JP 5336399B2
Authority
JP
Japan
Prior art keywords
group
lens
sio
groups
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010021828A
Other languages
Japanese (ja)
Other versions
JP2011158797A (en
Inventor
範之 平賀
俊宏 河谷
正敏 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2010021828A priority Critical patent/JP5336399B2/en
Publication of JP2011158797A publication Critical patent/JP2011158797A/en
Application granted granted Critical
Publication of JP5336399B2 publication Critical patent/JP5336399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant compound lens which is durable against a solder reflow process and applied as a lens for camera module. <P>SOLUTION: The heat-resistant compound lens is obtained by joining a resin layer to a lens base material, wherein at least the resin layer is formed by curing a silicone resin represented by formula: [[(R<SP>1</SP>SiO<SB>3/2</SB>)<SB>n</SB>](R<SP>2</SP><SB>2</SB>SiO<SB>2/2</SB>)]<SB>m</SB>[[XO<SB>2/2</SB>](R<SP>2</SP><SB>2</SB>SiO<SB>2/2</SB>)]<SB>l</SB>, having a weight-average molecular weight Mw of 5,000 to 1,000,000, and containing two or more groups of at least one kind of reactive functional group selected from the group comprising vinyl group, allyl group and (meth)acryloyl group having an unsaturated double bond. In the formula, R<SP>1</SP>and R<SP>2</SP>are each vinyl group, allyl group, alkyl group, aryl group, (meth)acryloyl group or a group having an oxirane ring; X is a 5-50C aliphatic structure, alicyclic structure, aromatic structure or a structure having one or more -OCOO-bonds; n, m and l are each represent an average value, and n is a number of 6-14, m and l are each 1 or more, and m+l is 2 to 2,000. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、レンズ基材に樹脂層を接合してなる複合型レンズに関し、例えば携帯電話、デジタルカメラ等に搭載されているレンズ付きCCD(Charge Coupled Device)やレンズ付きCMOS(相補性金属酸化膜半導体)センサーなどのような、半導体とレンズとを一体化したカメラモジュールのレンズ等として好適に使用される耐熱性複合型レンズに関する。   The present invention relates to a compound lens in which a resin layer is bonded to a lens substrate, for example, a CCD with a lens (Charge Coupled Device) or a CMOS with a lens (complementary metal oxide film) mounted on a mobile phone, a digital camera or the like. The present invention relates to a heat-resistant compound lens that is preferably used as a lens of a camera module in which a semiconductor and a lens are integrated, such as a semiconductor sensor.

従来、カメラモジュール用レンズとしては低価格化の目的でプラスチック製レンズが使用されるようになってきている。プラスチック製レンズは、ポリカーボネート樹脂、メタクリル樹脂、脂環式オレフィンポリマー等のような透明樹脂を射出成形することなどにより凸レンズや凹レンズを得ている。   Conventionally, as a lens for a camera module, a plastic lens has been used for the purpose of reducing the price. A plastic lens has a convex lens and a concave lens obtained by injection molding a transparent resin such as a polycarbonate resin, a methacrylic resin, and an alicyclic olefin polymer.

近年、電子部品の実装コスト低減の目的でカメラモジュールを他の電子部品と同様にハンダリフローにて一括実装する方法が提案されており、リフロー炉の熱(260℃)に耐えうる必要がある。しかしながら、現状のプラスチック製レンズは耐熱温度が180℃以下であるため、リフロー炉に通すことができない。   In recent years, for the purpose of reducing the mounting cost of electronic components, a method of batch mounting a camera module by solder reflow like other electronic components has been proposed, and it is necessary to withstand the heat (260 ° C.) of a reflow furnace. However, since the current plastic lens has a heat resistant temperature of 180 ° C. or lower, it cannot be passed through a reflow furnace.

この課題を解決する手段として、例えば特開2004-133328(特許文献1)に記載されているように、リフロー温度に耐えうる熱又は光硬化性樹脂が候補材料として考えられる。ところが、一般に硬化性樹脂は反応時に生じる硬化収縮により成形過程での成型割れが生じ易く、加えて成型物の金型転写性を安定して確保することが難しいという問題がある。   As means for solving this problem, for example, as described in Japanese Patent Application Laid-Open No. 2004-133328 (Patent Document 1), a heat or photo-curable resin that can withstand the reflow temperature is considered as a candidate material. However, in general, the curable resin tends to cause molding cracks in the molding process due to curing shrinkage that occurs during the reaction, and in addition, there is a problem that it is difficult to stably secure the mold transferability of the molded product.

また、例えば特開平2005-60657(特許文献2)に記載されているように、ガラスレンズを母材としてその表面に熱又は光硬化性樹脂を成膜した複合型レンズの適用が考えられる。複合型レンズは成型機を必要とせず、樹脂の使用量が少ないため硬化収縮の光学特性への影響が少ない。   For example, as described in JP-A-2005-60657 (Patent Document 2), it is conceivable to apply a composite lens in which a glass lens is used as a base material and a heat or photocurable resin is formed on the surface thereof. The compound lens does not require a molding machine, and since the amount of resin used is small, the effect of curing shrinkage on the optical characteristics is small.

しかしながら、上記のような従来の複合型レンズでは、ガラスと樹脂との線膨張係数の差などに起因して、特に湿熱環境下においてガラス−樹脂界面での密着性が低下し易く、耐久性の面から不十分である。   However, in the conventional composite lens as described above, due to the difference in linear expansion coefficient between glass and resin, the adhesion at the glass-resin interface is likely to be lowered, particularly in a humid heat environment, and the durability is high. Inadequate from the aspect.

特開2004-133328公報Japanese Patent Laid-Open No. 2004-133328 特開2005-60657公報JP2005-60657

したがって、本発明は、上記の課題を解決するためになされたものであり、例えばハンダリフロー工程に耐え得るような、カメラモジュール用レンズとして適用可能な耐熱性複合型レンズを提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and an object thereof is to provide a heat-resistant composite lens that can be applied as a lens for a camera module, for example, capable of withstanding a solder reflow process. To do.

本発明者等は、従来のプラスチック製レンズや複合型レンズの問題点を解消させるべく鋭意検討した結果、籠型構造を有するポリオルガノシルセスキオキサンを主たる成分とするシリコーン樹脂からなる硬化樹脂を少なくとも樹脂層に適用し、更にレンズ基材にこの樹脂層を接合することで、安価でかつハンダリフロー工程に供することが可能な耐熱性複合型レンズが得られることを見出し、本発明を完成した。   As a result of intensive investigations to solve the problems of conventional plastic lenses and compound lenses, the present inventors have found that a cured resin comprising a silicone resin mainly composed of polyorganosilsesquioxane having a cage structure. It was found that a heat-resistant composite lens that can be used in a solder reflow process can be obtained by applying the resin layer to at least a resin layer and then bonding the resin layer to a lens base material, thereby completing the present invention. .

すなわち、本発明は、レンズ基材に樹脂層を接合してなる複合型レンズであって、レンズ基材および樹脂層が、それぞれ硬化樹脂からなり、少なくとも樹脂層が、下記一般式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(但し、R1及びR2は、ビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよく、Xは炭素数5〜50の脂肪族構造、脂環式構造、芳香族構造及び−OCOO−結合の1つもしくは複数含む構造であり、n、m及びlはそれぞれ平均値を表し、nは6〜14の数であり、m及びlは1以上であり、m+lは2〜2,000である。)で表されて、重量平均分子量がMw=5,000〜1,000,000であり、不飽和二重結合を有するビニル基、アリル基、及び(メタ)アクリロイル基からなる群から選ばれた1種又は2種以上の反応性官能基を1分子中に少なくとも2つ有するシリコーン樹脂を硬化させてなることを特徴とする耐熱性複合型レンズである。
That is, the present invention is a composite lens in which a resin layer is bonded to a lens substrate, wherein the lens substrate and the resin layer are each made of a cured resin, and at least the resin layer is represented by the following general formula (1).
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(However, R 1 and R 2 are vinyl groups, allyl groups, alkyl groups, aryl groups, (meth) acryloyl groups, or groups having an oxirane ring, and may be the same or different from each other, The structure includes one or more of an aliphatic structure having 5 to 50 carbon atoms, an alicyclic structure, an aromatic structure, and an —OCOO— bond, and n, m, and l each represent an average value, and n is 6 to 14 M and l are 1 or more, and m + 1 is 2 to 2,000). The weight average molecular weight is Mw = 5,000 to 1,000,000 and unsaturated Curing a silicone resin having at least two reactive functional groups in one molecule selected from the group consisting of a vinyl group having a double bond, an allyl group, and a (meth) acryloyl group; Heat-resistant composite type It is a diagram.

また、本発明における好ましい態様は、更に上記レンズ基材が、一般式(1)で表されるシリコーン樹脂を硬化させてなる耐熱性複合型レンズである。   Moreover, the preferable aspect in this invention is a heat resistant compound type lens in which the said lens base material hardens the silicone resin represented by General formula (1) further.

本発明においては、上記シリコーン樹脂に対して、分子中に少なくとも1つのエチレン性不飽和基を有する化合物及び/又はヒドロシリル基を有する化合物を配合し、さらにラジカル開始剤及び/又はヒドロシリル化触媒を配合して硬化性樹脂組成物を得た後、この硬化性樹脂組成物を熱硬化又は光硬化させて硬化樹脂を得るようにしてもよい。   In the present invention, a compound having at least one ethylenically unsaturated group and / or a compound having a hydrosilyl group in the molecule is blended with the silicone resin, and a radical initiator and / or a hydrosilylation catalyst is blended. Then, after obtaining a curable resin composition, the curable resin composition may be thermally cured or photocured to obtain a cured resin.

以下、本発明を具体的に説明する。
本発明におけるレンズ基材及び樹脂層はそれぞれ硬化樹脂からなり、このうち少なくとも樹脂層は以下で具体的に説明するようなシリコーン樹脂を硬化させたものからなる。すなわち、本発明に用いられるシリコーン樹脂は、上記一般式(1)で表されて、構造単位中に籠型構造を有するポリオルガノシルセスキオキサン(以下、「籠型ポリオルガノシルセスキオキサン」ともいう)を主成分とする。ここで、構造単位は、具体的には一般式(1)においてmで表される繰返し単位を意味し、構造単位中に籠型構造を有するとは、m及びnが1以上であることを意味する。また、籠型構造を有するポリオルガノシルセスキオキサンは、下記で説明するように、三次元多面体構造骨格とR1、R2により構成されるが、このうち三次元多面体構造骨格の一部が開環したもの(すなわち不完全な籠型構造)も含むものとする。
Hereinafter, the present invention will be specifically described.
The lens substrate and the resin layer in the present invention are each made of a cured resin, and at least the resin layer is made of a cured silicone resin as will be described in detail below. That is, the silicone resin used in the present invention is a polyorganosilsesquioxane represented by the above general formula (1) and having a cage structure in the structural unit (hereinafter referred to as “cocoon-type polyorganosilsesquioxane”). (Also called) as the main component. Here, the structural unit specifically means a repeating unit represented by m in the general formula (1), and having a cage structure in the structural unit means that m and n are 1 or more. means. The polyorganosilsesquioxane having a cage structure is composed of a three-dimensional polyhedral structure skeleton and R 1 and R 2 , as described below. Among these, a part of the three-dimensional polyhedral structure skeleton is formed. It shall also include those that have opened (ie, incomplete cage structures).

ここで、一般式(1)中のR1及びR2は、ビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよいが、R1又はR2の少なくとも1つは不飽和基であることが必要である。これらの不飽和基の具体例を示せば、例えば3-メタアクリロキシプロピル基、3-アクリロキシプロピル基等の(メタ)アクリロイル基のほか、アリール基、ビニル基、アリル基、及びスチリル基等の不飽和二重結合を有するものなどが挙げられる。 Here, R 1 and R 2 in the general formula (1) are groups having a vinyl group, an allyl group, an alkyl group, an aryl group, a (meth) acryloyl group or an oxirane ring, and are the same or different from each other. There may be, but it is necessary that at least one of R 1 or R 2 is an unsaturated group. Specific examples of these unsaturated groups include (meth) acryloyl groups such as 3-methacryloxypropyl group and 3-acryloxypropyl group, as well as aryl groups, vinyl groups, allyl groups, and styryl groups. And those having an unsaturated double bond.

本発明において少なくとも樹脂層を形成するシリコーン樹脂は、籠型構造を有するポリオルガノシルセスキオキサンを主成分とするが、少量であれば、一般式(1)のシリコーン樹脂を製造する際に副生される、籠構造を含まないポリオルガノシルセスキオキサンを含んでいてもよい。ただし、その割合は、樹脂層を形成するシリコーン樹脂中で30wt%未満であることが望ましい。   In the present invention, at least the silicone resin forming the resin layer is mainly composed of polyorganosilsesquioxane having a cage structure. However, if the amount is small, a secondary resin is produced in the production of the silicone resin of the general formula (1). The resulting polyorganosilsesquioxane containing no cocoon structure may be included. However, the ratio is desirably less than 30 wt% in the silicone resin forming the resin layer.

本発明では、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(但し、R1及びR2は、ビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよく、Xは炭素数5〜50の脂肪族構造、脂環式構造、芳香族構造及び−OCOO−結合の1つもしくは複数含む構造であり、n、m、lはそれぞれ平均値を表し、nは6〜14の数であり、m及びlは1以上であり、m+lは2〜2,000である。)で表されて、重量平均分子量Mw=5,000〜1,000,000であり、1分子中に少なくとも2つは不飽和二重結合を有するビニル基、アリル基、及び(メタ)アクリロイル基からなる群から選ばれた1種又は2種以上の反応性官能基を有する有機−無機複合体を、複合型レンズを形成する樹脂層に用いるようにし、好ましくは樹脂層とレンズ基材の両方に用いるようにする。
In the present invention, the following formula (1)
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(However, R 1 and R 2 are vinyl groups, allyl groups, alkyl groups, aryl groups, (meth) acryloyl groups, or groups having an oxirane ring, and may be the same or different from each other, The structure includes one or more of an aliphatic structure having 5 to 50 carbon atoms, an alicyclic structure, an aromatic structure, and an —OCOO— bond, and n, m, and l each represent an average value, and n is 6 to 14 M and l are 1 or more, and m + 1 is 2 to 2,000.), And the weight average molecular weight Mw is 5,000 to 1,000,000. And an organic-inorganic composite having at least one reactive functional group selected from the group consisting of a vinyl group having an unsaturated double bond, an allyl group, and a (meth) acryloyl group. As used in the resin layer that forms the compound lens Preferably, it is used for both the resin layer and the lens substrate.

上記式(1)で表される有機−無機複合体を得るための好ましい方法としては、下記式(2)
(R1SiO3/2)n(HO2/2)k (2)
(但し、R1はビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって互いに同じか異なるものであってもよく、n及びkは平均値であり、nは6〜14の数、kは1〜4の数を示す。)で表されるシラノール基含有籠型シロキサンと、下記式(3)
HO−X−OH (3)
(但し、Xは炭素数5〜50の脂肪族構造、脂環式構造、芳香族構造及び−OCOO−結合の1つもしくは複数含む構造である。)で表される有機ジオール化合物とに対し、下記式(4)

Figure 0005336399
(但し、R2は水素原子、ビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって互いに同じか異なるものであってもよい。)で表されるジクロロシランをシラノール基含有籠型シロキサン及び有機ジオールの合計モルに対して0.5〜5倍モル、好ましくは0.5〜3.0倍モルの範囲で添加して脱塩酸縮合させて、式(1)で表される有機−無機複合体とすることができる。なお、一般式(2)又は(4)におけるR1とR2のいずれかに不飽和基が含まれ、式(1)で表される有機−無機複合体1分子中にすくなくとも不飽和基を2以上含むようにしておく必要がある。 As a preferable method for obtaining the organic-inorganic composite represented by the above formula (1), the following formula (2):
(R 1 SiO 3/2 ) n (HO 2/2 ) k (2)
(However, R 1 may be a vinyl group, an allyl group, an alkyl group, an aryl group, a (meth) acryloyl group or a group having an oxirane ring, and may be the same or different from each other, and n and k are average values. And n represents a number of 6 to 14, and k represents a number of 1 to 4.) and a silanol group-containing cage-type siloxane represented by the following formula (3):
HO-X-OH (3)
(Wherein X is an aliphatic structure having 5 to 50 carbon atoms, an alicyclic structure, an aromatic structure and a structure containing one or more of —OCOO— bonds), and an organic diol compound represented by Following formula (4)
Figure 0005336399
(However, R 2 is a hydrogen atom, a vinyl group, an allyl group, an alkyl group, an aryl group, a (meth) acryloyl group, or a group having an oxirane ring and may be the same or different from each other). Dichlorosilane is added in a range of 0.5 to 5 times mol, preferably 0.5 to 3.0 times mol to the total mol of silanol group-containing cage-type siloxane and organic diol, and dehydrochlorinated, It can be set as the organic-inorganic composite represented by Formula (1). In addition, an unsaturated group is included in either R 1 or R 2 in the general formula (2) or (4), and at least an unsaturated group is contained in one molecule of the organic-inorganic complex represented by the formula (1). It is necessary to include two or more.

上記式(2)のシラノール基含有籠型シロキサンと上記式(3)の有機ジオール化合物とを、上記式(4)のジクロロシランを用いて脱塩酸により共重合する具体的な反応条件について、好ましくは塩基性条件下で行うようにするのがよい。例えば、シラノール基含有籠型シロキサンと有機ジオール化合物とを溶媒兼塩基としてピリジン、又はテトラヒドロフランとトリエチルアミンの混合液に溶解し、ジクロロシランをピリジンに溶解した溶液を窒素等の不活性ガス雰囲気下、室温で滴下し、その後、室温で2時間以上撹拌を行うようにするのがよい。この際、反応時間が短いと反応が完結しない。反応終了後、トルエンと水を加え、式(1)で表される有機−無機複合体をトルエンに溶解し、副成する塩酸及び塩酸塩を水層に溶解し除去するようにする。また、有機層を硫酸マグネシウム等の乾燥剤を用いて乾燥し、使用した塩基及び溶媒を減圧濃縮によって除去するようにする。   Regarding specific reaction conditions for copolymerizing silanol group-containing cage-type siloxane of formula (2) and organic diol compound of formula (3) by dehydrochlorination using dichlorosilane of formula (4), Should be carried out under basic conditions. For example, a solution obtained by dissolving a silanol group-containing cage-type siloxane and an organic diol compound as a solvent and base in a mixed solution of pyridine or tetrahydrofuran and triethylamine, and dissolving dichlorosilane in pyridine at room temperature under an inert gas atmosphere such as nitrogen It is good to carry out stirring at room temperature for 2 hours or more after that. At this time, if the reaction time is short, the reaction is not completed. After completion of the reaction, toluene and water are added, and the organic-inorganic complex represented by the formula (1) is dissolved in toluene, and by-product hydrochloric acid and hydrochloride are dissolved and removed in the aqueous layer. Further, the organic layer is dried using a desiccant such as magnesium sulfate, and the used base and solvent are removed by concentration under reduced pressure.

下記式(2)
(R1SiO3/2)n(HO2/2)k (2)
(但し、R1はビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって互いに同じか異なるものであってもよく、n及びkは平均値であり、nは6〜14の数、kは1〜4の数を示す。)で表されるシラノール基含有籠型シロキサンを得る好ましい手段については、下記式(5)
1SiY3 (5)
(但し、R1はビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって、Yはアルコキシ基、ハロゲン原子及びヒドロキシル基からなる群から選ばれた加水分解性基を示す。)で表されるケイ素化合物を、単独又は複数用いて、塩基性触媒をR1SiY3:塩基性触媒=3〜7モル:1モルとなる範囲の塩基性触媒存在下、極性溶媒又は非極性溶媒あるいはこれらの混合溶媒中で加水分解すると共に加水分解物を縮合反応させ、更に、シロキサン結合の形成(シラノール基の縮合)と開裂を繰り返す過程(平衡)で、塩基性触媒由来のカウンターカチオンを開裂部と結合せしめた後、酸で処理し、開裂部を水酸基に変換して得ることができる。この際、使用する塩基性触媒が上記範囲より少ないとシラノール基の縮合が優先され、シラノール基が減少する。反対に上記範囲より多いと、シロキサン結合の開裂が優先されて、過剰のシラノール基が増加する。これらのことから塩基性触媒の量が上記範囲から外れた場合、次工程の有機化合物とのジクロロシランの脱塩酸反応を用いての縮合反応で、反応不足やゲル化の原因となる。
Following formula (2)
(R 1 SiO 3/2 ) n (HO 2/2 ) k (2)
(However, R 1 may be a vinyl group, an allyl group, an alkyl group, an aryl group, a (meth) acryloyl group or a group having an oxirane ring, and may be the same or different from each other, and n and k are average values. Yes, n represents a number of 6 to 14, and k represents a number of 1 to 4. For a preferable means for obtaining a silanol group-containing cage-type siloxane represented by the following formula (5):
R 1 SiY 3 (5)
(Wherein R 1 is a vinyl group, an allyl group, an alkyl group, an aryl group, a (meth) acryloyl group or a group having an oxirane ring, and Y is selected from the group consisting of an alkoxy group, a halogen atom and a hydroxyl group. 1 or 2 is used, and the basic catalyst is R 1 SiY 3 : basic catalyst = 3 to 7 mol: 1 mol of basic catalyst is present. In the process of hydrolysis (condensation of silanol groups) and cleavage (equilibrium), hydrolysis is performed in a polar solvent or nonpolar solvent or a mixed solvent thereof and the hydrolyzate is subjected to a condensation reaction. After the counter cation derived from the sex catalyst is bonded to the cleavage portion, it can be obtained by treating with an acid and converting the cleavage portion to a hydroxyl group. At this time, if the basic catalyst used is less than the above range, the condensation of the silanol group is prioritized and the silanol group is reduced. On the other hand, when the amount is larger than the above range, cleavage of the siloxane bond is given priority, and excess silanol groups are increased. From these facts, when the amount of the basic catalyst is out of the above range, the condensation reaction using the dehydrochlorination reaction of dichlorosilane with the organic compound in the next step causes insufficient reaction or gelation.

上記式(2)で表されるシラノール基含有籠型シロキサンを得る際に用いる溶媒については、非極性溶媒と極性溶媒のうち1つもしくは両方を合わせた溶媒である。このうち、非極性溶媒については、ヘキサン、トルエン、キシレン、ベンゼン等の炭化水素系溶媒が例示される。極性溶媒については、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、酢酸エチル等のエステル系溶媒、メタノール、エタノール、2−プロパノール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒が例示される。これらの中でも、反応速度制御の観点から2−プロパノールとトルエンの2相系が好ましい。2−プロパノール/トルエンの体積比は1/2であるのが好ましい。これらの有機溶媒の好ましい使用量は、式(5)のケイ素化合物に対するモル濃度(モル/リットル:M)が0.01〜10Mの範囲であるのがよく、より好ましくは0.01〜1Mであるのがよい。   The solvent used for obtaining the silanol group-containing cage-type siloxane represented by the above formula (2) is a solvent obtained by combining one or both of a nonpolar solvent and a polar solvent. Among these, examples of the nonpolar solvent include hydrocarbon solvents such as hexane, toluene, xylene, and benzene. Examples of the polar solvent include ether solvents such as diethyl ether and tetrahydrofuran, ester solvents such as ethyl acetate, alcohol solvents such as methanol, ethanol and 2-propanol, and ketone solvents such as acetone and methyl ethyl ketone. Among these, a two-phase system of 2-propanol and toluene is preferable from the viewpoint of reaction rate control. The volume ratio of 2-propanol / toluene is preferably 1/2. The preferred amount of these organic solvents used is such that the molar concentration (mol / liter: M) relative to the silicon compound of formula (5) is in the range of 0.01 to 10M, more preferably 0.01 to 1M. There should be.

上記式(2)のシラノール基含有籠型シロキサンを合成する際の反応条件について、反応温度は0〜60℃が好ましく、20〜40℃がより好ましい。反応温度が0℃より低いと、反応速度が遅くなり未反応の加水分解性基及びシラノール基が多く残存する結果となる。反対に60℃より高いと、反応速度が速すぎるために複雑な縮合反応が進行し、結果として高分子量化が促進される。また、反応時間は上記式(5)で表される構造のR1によっても異なるが、通常は数分〜数時間であり、好ましくは1〜3時間であるのがよい。 About the reaction conditions at the time of synthesize | combining the silanol group containing cage-type siloxane of said Formula (2), 0-60 degreeC is preferable and 20-40 degreeC is more preferable. When the reaction temperature is lower than 0 ° C., the reaction rate becomes slow, resulting in a large amount of unreacted hydrolyzable groups and silanol groups remaining. On the other hand, when the temperature is higher than 60 ° C., the reaction rate is too high, so that a complicated condensation reaction proceeds, and as a result, high molecular weight is promoted. Although the reaction time varies depending on R 1 a structure represented by the above formula (5), typically a few minutes to several hours, preferably good is 1-3 hours.

式(2)で表されるシラノール基含有籠型シロキサン化合物の具体例を、下記構造式(6)〜(12)にそれぞれ示す。構造式(6)はn=6,k=2、(7)はn=7,k=3、(8)−1及び(8)−2はn=8,k=2、(9)はn=9,k=1、(10)はn=10,k=2、(11)はn=12,k=2、(12)はn=14,k=2である。但し、式(2)で表される構造単位は、構造式(6)〜(12)に示すものに限らない。また、構造式(6)〜(12)において、R1は式(5)と同じである。

Figure 0005336399
Figure 0005336399
Specific examples of the silanol group-containing cage-type siloxane compound represented by the formula (2) are shown in the following structural formulas (6) to (12), respectively. Structural formula (6) is n = 6, k = 2, (7) is n = 7, k = 3, (8) -1 and (8) -2 are n = 8, k = 2, (9) is n = 9, k = 1, (10) is n = 10, k = 2, (11) is n = 12, k = 2, (12) is n = 14, k = 2. However, the structural unit represented by the formula (2) is not limited to those shown in the structural formulas (6) to (12). In Structural Formulas (6) to (12), R 1 is the same as Formula (5).
Figure 0005336399
Figure 0005336399

上記式(5)で表されるケイ素化合物としては、フェニルトリメトキシシラン、フェニルトリエトキシシラン、メチルトリメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、t−ブチルトリメトキシシラン、t−ブチルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロへキシルエチル)トリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、p−スチリルトリメトキシシラン、p−スチリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等が例示される。中でも原料の入手が容易である、フェニルトリメトキシシラン、メチルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン及びビニルトリメトキシシランが好ましい。   Examples of the silicon compound represented by the above formula (5) include phenyltrimethoxysilane, phenyltriethoxysilane, methyltrimethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, and n-propyltrimethoxysilane. Ethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, t-butyltrimethoxysilane, t-butyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, methacryloxymethyltrimethoxy Silane, methacryloxymethyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyl Reethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexylethyl) trimethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, Examples include p-styryltrimethoxysilane, p-styryltriethoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane. Of these, phenyltrimethoxysilane, methyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and vinyltrimethoxysilane, which are easily available, are preferred.

上記式(5)の加水分解及び縮合反応に用いられる塩基性触媒としては、水酸化カリウム、水酸化ナトリウム、水酸化セシウムなどのアルカリ金属水酸化物、或いはテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシドなどの水酸化アンモニウム塩が例示される。これらの中でも、触媒活性の高い点からテトラメチルアンモニウムヒドロキシドが好ましく用いられる。   Examples of the basic catalyst used in the hydrolysis and condensation reaction of the above formula (5) include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide. And ammonium hydroxide salts such as tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, and benzyltriethylammonium hydroxide. Among these, tetramethylammonium hydroxide is preferably used because of its high catalytic activity.

上記式(2)で表されるシラノール基含有籠型シロキサンを得る反応の終了後は、反応溶液を弱酸性溶液で中和する。中性もしくは酸性よりにした後、水または水含有反応溶媒を分離する。その後、有機層を水又は飽和食塩水で十分に洗浄する。その後、無水硫酸マグネシウム等の乾燥剤で乾燥する。乾燥剤をろ別除去した後、減圧濃縮することで、反応生成物(シラノール基含有籠型シロキサン)を回収できる。減圧濃縮は40℃以下で行う。40℃を超えると反応で生じたシラノール基が縮合し、高分子量化及びゲル化や、次の反応が進行しなくなるという問題が生じる。弱酸性溶液としては硫酸希釈溶液、塩酸希釈溶液、クエン酸希釈溶液、酢酸、塩化アンモニウム水溶液、リンゴ酸溶液、シュウ酸溶液などが例示される。   After completion of the reaction for obtaining the silanol group-containing cage-type siloxane represented by the above formula (2), the reaction solution is neutralized with a weakly acidic solution. After neutralization or acidification, water or water-containing reaction solvent is separated. Thereafter, the organic layer is sufficiently washed with water or saturated saline. Then, it dries with drying agents, such as anhydrous magnesium sulfate. After removing the desiccant by filtration, the reaction product (silanol group-containing cage siloxane) can be recovered by concentration under reduced pressure. Concentration under reduced pressure is performed at 40 ° C or lower. If the temperature exceeds 40 ° C., the silanol groups produced by the reaction are condensed, resulting in a problem that the high molecular weight and gelation and the subsequent reaction do not proceed. Examples of the weakly acidic solution include sulfuric acid diluted solution, hydrochloric acid diluted solution, citric acid diluted solution, acetic acid, ammonium chloride aqueous solution, malic acid solution, oxalic acid solution and the like.

次いで、上記で得られた式(2)シラノール基含有籠型シロキサンと式(3)の有機ジオール化合物とを、式(4)のジクロロシランを用いて共重合することにより籠型シロキサンと有機成分とからなる有機−無機複合体を得ることができる。   Next, the siloxane siloxane and the organic component are obtained by copolymerizing the silanol group-containing cage siloxane obtained above and the organic diol compound of the formula (3) using dichlorosilane of the formula (4). An organic-inorganic composite consisting of

ここで、式(3)で表される有機ジオール化合物としては、ペンタンジオール、ヘキサンジオール、1,9−ノナンジオール、下記式(13)〜(20)、

Figure 0005336399
(但し、上記式(20)のR3は炭素数5〜10の脂肪族炭化水素及び/又は脂環式炭化水素であり、Mw=500〜2,000である。)等を例示することができるが、これらに何ら制限されるものではない。またこれらを単独で使用してもよく、2種以上併用してもよい。 Here, as the organic diol compound represented by the formula (3), pentanediol, hexanediol, 1,9-nonanediol, the following formulas (13) to (20),
Figure 0005336399
(However, R 3 in the above formula (20) is an aliphatic hydrocarbon and / or alicyclic hydrocarbon having 5 to 10 carbon atoms, and Mw = 500 to 2,000). Yes, but you are not limited to these. Moreover, these may be used independently and may be used together 2 or more types.

式(4)で表されるジクロロシラン化合物としては、アリルジクロロシラン、アリルへキシルジクロロシラン、アリルメチルジクロロシラン、アリルフェニルジクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、ジビニルジクロロシラン、ジエチルジクロロシラン、メチルプロピルジクロロシラン、ジエトキシジクロロシラン、ブチルメチルジクロロシラン、フェニルジクロロシラン、ジアリルジクロロシラン、メチルペンチルジクロロシラン、メチルフェニルジクロロシラン、シクロへキシルメチルジクロロシラン、ヘキシルメチルジクロロシラン、フェニルビニルジクロロシラン、6−メチルジクロロシリル−2−ノルボルネン、2−メチルジクロロシリルノルボルネン、3−メタクリロキシプロピルジクロロメチルシラン、ヘプチルメチルシラン、ジブチルジクロロシラン、メチル−β−フェネチルジクロロシラン、メチルオクチルジクロロシラン、t−ブチルフェニルジクロロシラン、デシルメチルジクロロシラン、ジフェニルジクロロシラン、ジへキシルジクロロシラン、ドデシルメチルジクロロシラン、メチルオクタデシルジクロロシラン等を例示することができるが、これらに何ら制限されるものではない。またこれらを単独で使用してもよく、2種以上を併用してもよい。   Examples of the dichlorosilane compound represented by the formula (4) include allyldichlorosilane, allylhexyldichlorosilane, allylmethyldichlorosilane, allylphenyldichlorosilane, methyldichlorosilane, dimethyldichlorosilane, divinyldichlorosilane, diethyldichlorosilane, Methylpropyldichlorosilane, diethoxydichlorosilane, butylmethyldichlorosilane, phenyldichlorosilane, diallyldichlorosilane, methylpentyldichlorosilane, methylphenyldichlorosilane, cyclohexylmethyldichlorosilane, hexylmethyldichlorosilane, phenylvinyldichlorosilane, 6-methyldichlorosilyl-2-norbornene, 2-methyldichlorosilylnorbornene, 3-methacryloxypropyldichloromethylsilane , Heptylmethylsilane, dibutyldichlorosilane, methyl-β-phenethyldichlorosilane, methyloctyldichlorosilane, t-butylphenyldichlorosilane, decylmethyldichlorosilane, diphenyldichlorosilane, dihexyldichlorosilane, dodecylmethyldichlorosilane, methyl Although octadecyl dichlorosilane etc. can be illustrated, it is not restrict | limited at all to these. Moreover, these may be used independently and may use 2 or more types together.

また、本発明においては、樹脂層、又は樹脂層とレンズ基材の両方を形成する硬化樹脂を得る際、上記一般式(1)で表されるシリコーン樹脂に対して、分子中に少なくとも1つのエチレン性不飽和二重結合を有する化合物、又は分子中に少なくともヒドロシリル基を有する化合物のいずれか一方を配合して硬化性樹脂組成物としてもよく、これら両方を配合して硬化性樹脂組成物としてもよい。そして、このような硬化性樹脂組成物を熱硬化又は光硬化させてレンズ基材又は樹脂層のいずれか一方又は両方を得るようにしてもよい。ここで、分子中に少なくとも1つのエチレン性不飽和二重結合を有する化合物を配合する場合には、硬化性樹脂組成物中にラジカル開始剤を含めるようにするのがよく、分子中に少なくともヒドロシリル基を有する化合物を配合する場合には、硬化性樹脂組成物中にヒドロシリル化触媒を含めるようにするのがよい。   Moreover, in this invention, when obtaining the cured resin which forms both a resin layer or a resin layer, and a lens base material, with respect to the silicone resin represented by the said General formula (1), at least 1 in a molecule | numerator Either a compound having an ethylenically unsaturated double bond or a compound having at least a hydrosilyl group in the molecule may be blended to form a curable resin composition, or both may be blended to form a curable resin composition. Also good. Then, such a curable resin composition may be heat-cured or photocured to obtain either one or both of the lens substrate and the resin layer. Here, when a compound having at least one ethylenically unsaturated double bond is included in the molecule, it is preferable to include a radical initiator in the curable resin composition, and at least hydrosilylation in the molecule. When a compound having a group is blended, a hydrosilylation catalyst is preferably included in the curable resin composition.

上記分子中に少なくとも1つのエチレン性不飽和二重結合を有する化合物については、一般式(1)のシリコーン樹脂とラジカル共重合が可能な不飽和化合物であればよいが、上記シリコーン樹脂に配合するのに適したものとしては、その構造単位の繰り返し数が2〜20程度の重合体である反応性オリゴマーと、低分子量かつ低粘度の反応性モノマーとに大別される。また、不飽和基を1個有する単官能不飽和化合物と2個以上有する多官能不飽和化合物とにも大別できる。良好な3次元架橋体を得るためには、多官能不飽和化合物を極少量(1%以下程度)含むことがよいが、共重合体の耐熱性、強度等を期待する場合には一般式(1)のシリコーン樹脂1分子当たり平均1.1個以上、好ましくは1.5個以上、より好ましくは1.6〜5個とすることがよい。このためには、単官能不飽和化合物と不飽和基を2〜5個有する多官能不飽和化合物とを混合使用して、平均の官能基数を調整するのがよい。   The compound having at least one ethylenically unsaturated double bond in the molecule may be any unsaturated compound that can be radically copolymerized with the silicone resin of the general formula (1), but is added to the silicone resin. Suitable for the above are roughly classified into a reactive oligomer which is a polymer having about 2 to 20 repeating structural units, and a low molecular weight and low viscosity reactive monomer. Further, it can be broadly classified into a monofunctional unsaturated compound having one unsaturated group and a polyfunctional unsaturated compound having two or more. In order to obtain a good three-dimensional crosslinked product, it is preferable to contain a very small amount of polyfunctional unsaturated compound (about 1% or less). However, when the heat resistance, strength, etc. of the copolymer are expected, a general formula ( The average of 1.1 or more, preferably 1.5 or more, more preferably 1.6 to 5 per molecule of 1) silicone resin. For this purpose, it is preferable to adjust the average number of functional groups using a mixture of a monofunctional unsaturated compound and a polyfunctional unsaturated compound having 2 to 5 unsaturated groups.

具体的には、反応性オリゴマーとして、例えばエポキシアクリレート、エポキシ化油アクリレート、ウレタンアクリレート、不飽和ポリエステル、ポリエステルアクリレート、ポリエーテルアクリレート、ビニルアクリレート、ポリエン/チオール、シリコーンアクリレート、ポリブタジエン、ポリスチリルエチルメタクリレート等を例示することができる。これらには、単官能不飽和化合物と多官能不飽和化合物があり、反応性の単官能モノマーとしては、スチレン、酢酸ビニル、N−ビニルピロリドン、ブチルアクリレート、2−エチルヘキシルアクリレート、n−ヘキシルアクリレート、シクロヘキシルアクリレート、n−デシルアクリレート、イソボニルアクリレート、ジシクロペンテニロキシエチルアクリレート、フェノキシエチルアクリレート、トリフルオロエチルメタクリレート等を例示することができる。また、反応性の多官能モノマーとしては、一般式(2)以外の不飽和化合物であるトリプロピレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ビスフェノールAジグリシジルエーテルジアクリレート、テトラエチレングリコールジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート等を例示することができる。   Specifically, as reactive oligomers, for example, epoxy acrylate, epoxidized oil acrylate, urethane acrylate, unsaturated polyester, polyester acrylate, polyether acrylate, vinyl acrylate, polyene / thiol, silicone acrylate, polybutadiene, polystyrylethyl methacrylate, etc. Can be illustrated. These include monofunctional unsaturated compounds and polyfunctional unsaturated compounds, and reactive monofunctional monomers include styrene, vinyl acetate, N-vinylpyrrolidone, butyl acrylate, 2-ethylhexyl acrylate, n-hexyl acrylate, Examples include cyclohexyl acrylate, n-decyl acrylate, isobornyl acrylate, dicyclopentenyloxyethyl acrylate, phenoxyethyl acrylate, trifluoroethyl methacrylate, and the like. In addition, reactive polyfunctional monomers include unsaturated compounds other than the general formula (2) such as tripropylene glycol diacrylate, 1,6-hexanediol diacrylate, bisphenol A diglycidyl ether diacrylate, and tetraethylene glycol diacrylate. Examples thereof include acrylate, hydroxypivalate neopentyl glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, and the like.

また、本発明において硬化性樹脂組成物を得る際に使用することができる、分子中に少なくとも1つのエチレン性不飽和二重結合を有する化合物としては、上記で例示したもの以外に、各種反応性オリゴマー又はモノマーを用いることができる。また、これらの反応性オリゴマーやモノマーは、それぞれ単独で使用しても、2種類以上を混合して使用してもよい。これらをラジカル共重合することにより、同様に、シリコーン樹脂共重合体を得ることができる。   In addition, the compound having at least one ethylenically unsaturated double bond in the molecule that can be used in obtaining the curable resin composition in the present invention includes various reactivity in addition to those exemplified above. Oligomers or monomers can be used. These reactive oligomers and monomers may be used alone or in combination of two or more. Similarly, a silicone resin copolymer can be obtained by radical copolymerization thereof.

分子中に少なくとも1つのエチレン性不飽和二重結合を有する化合物と共に配合されるラジカル開始剤としては、光重合開始剤又は熱重合開始剤を用いるようにすればよい。ここで、光重合開始剤としては、アセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサンソン系、アシルホスフィンオキサイド系等の化合物を好適に使用することができる。具体的には、トリクロロアセトフェノン、ジエトキシアセトフェノン、1-フェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、ベンゾインメチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、チオキサンソン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、メチルフェニルグリオキシレート、カンファーキノン、ベンジル、アンスラキノン、ミヒラーケトン等を例示することができる。また、光重合開始剤と組み合わせて効果を発揮する光開始助剤や鋭感剤を併用することもできる。これら光重合開始剤は単独で使用しても、2種類以上を混合して使用してもよい。   As a radical initiator to be blended with a compound having at least one ethylenically unsaturated double bond in the molecule, a photopolymerization initiator or a thermal polymerization initiator may be used. Here, as the photopolymerization initiator, compounds such as acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, and acylphosphine oxide-based compounds can be suitably used. Specifically, trichloroacetophenone, diethoxyacetophenone, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone, etc. can do. Moreover, the photoinitiator adjuvant and the sharpening agent which show an effect in combination with a photoinitiator can also be used together. These photopolymerization initiators may be used alone or in combination of two or more.

また、上記目的で使用される熱重合開始剤としては、ケトンパーオキサイド系、パーオキシケタール系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ジアシルパーオキサイド系、パーオキシジカーボネート系、パーオキシエステル系など各種の有機過酸化物を好適に使用することができる。具体的にはシクロヘキサノンパーオキサイド、1,1-ビス(t-ヘキサパーオキシ)シクロヘキシサノン、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキサイド、t-ブチルパオキシー2-エチルヘキサノエート等を例示する事ができるが、これに何ら制限されるものではない。また、これら熱重合開始剤は単独で使用しても、2種類以上を混合して使用してもよい。   In addition, as the thermal polymerization initiator used for the above purpose, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, peroxyester Various organic peroxides can be suitably used. Specifically, cyclohexanone peroxide, 1,1-bis (t-hexaperoxy) cyclohexanone, cumene hydroperoxide, dicumyl peroxide, benzoyl peroxide, diisopropyl peroxide, t-butyl peroxide-2-ethyl Although hexanoate etc. can be illustrated, it is not restrict | limited at all to this. These thermal polymerization initiators may be used alone or in combination of two or more.

ラジカル開始剤として光重合開始剤又は熱重合開始剤を配合する場合、その添加量は硬化性樹脂組成物100重量部に対して0.1〜5重量部の範囲とするのがよく、0.1〜3重量部の範囲とするのがより好ましい。この添加量が0.1重量部に満たないと硬化が不十分となり、得られるレンズの強度や剛性が低くなる。一方、5重量部を超えるとレンズの着色等の問題が生じるおそれがある。   When a photopolymerization initiator or a thermal polymerization initiator is blended as the radical initiator, the addition amount is preferably in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of the curable resin composition. A range of 1 to 3 parts by weight is more preferable. If this addition amount is less than 0.1 parts by weight, curing will be insufficient and the strength and rigidity of the resulting lens will be reduced. On the other hand, when the amount exceeds 5 parts by weight, there is a possibility that problems such as coloring of the lens may occur.

一方、上記分子中に少なくともヒドロシリル基を有する化合物について、好ましくは、分子中に少なくとも1つ以上のヒドロシリル化可能な水素原子をケイ素原子上に有しているオリゴマー及びモノマーであるのがよい。ケイ素原子上に水素原子を有しているオリゴマーとしては、ポリハイドロジェンシロキサン類、ポリジメチルヒロドシロキシシロキサン類及びその共重合体、末端がジメチルヒドロシロキシで修飾されたシロキサン等が挙げられる。また、ケイ素原子上に水素原子を有しているモノマーとしては、テトラメチルシクロテトラシロキサン、ペンタメチルシクロペンタ等の環状シロキサン類、ジヒドロジシロキサン類、トリヒドロモノシラン類、ジヒドロモノシラン類、モノヒドロモノシラン類、ジメチルシロキシシロキサン類等を例示することができる。これらについては2種類以上混合してもよい。   On the other hand, the compound having at least a hydrosilyl group in the molecule is preferably an oligomer or monomer having at least one hydrosilylatable hydrogen atom on the silicon atom in the molecule. Examples of the oligomer having a hydrogen atom on a silicon atom include polyhydrogensiloxanes, polydimethylhydroxysiloxanes and copolymers thereof, and siloxanes whose ends are modified with dimethylhydrosiloxy. Examples of the monomer having a hydrogen atom on a silicon atom include cyclic siloxanes such as tetramethylcyclotetrasiloxane and pentamethylcyclopenta, dihydrodisiloxanes, trihydromonosilanes, dihydromonosilanes, and monohydromonosilanes. And dimethylsiloxysiloxanes. Two or more of these may be mixed.

分子中に少なくともヒドロシリル基を有する化合物と共に配合されるヒドロシリル化触媒については、塩化第2白金、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトンとの錯体、塩化白金酸とオレフィン類との錯体、白金とビニルシロキサンとの錯体、ジカルボニルジクロロ白金及びパラジウム系触媒、ロジウム系触媒等の白金族金属系触媒が挙げられる。これらの中で、触媒活性の点から、塩化白金酸、塩化白金酸とオレフィン類との錯体、及び白金とビニルシロキサンとの錯体から選ばれたものが好ましい。また、これらを単独で使用してもよく、2種類以上併用してもよい。   For hydrosilylation catalysts formulated with compounds having at least a hydrosilyl group in the molecule, platinum chloride, chloroplatinic acid, chloroplatinic acid and alcohol, aldehyde, ketone complex, chloroplatinic acid and olefin complex And platinum group metal catalysts such as platinum and vinylsiloxane complexes, dicarbonyldichloroplatinum and palladium catalysts, rhodium catalysts, and the like. Among these, those selected from chloroplatinic acid, complexes of chloroplatinic acid and olefins, and complexes of platinum and vinylsiloxane are preferable from the viewpoint of catalytic activity. Moreover, these may be used independently and may be used together 2 or more types.

上記ヒドロシリル化触媒を配合する場合、その添加量は、硬化性樹脂組成物の重量に対し、金属原子として1〜1000ppm、より好ましくは20〜500ppmの範囲で添加するのがよい。また、ヒドロシリル化触媒を単独で使用してもよく、先に説明したラジカル開始剤と組み合わせて2種類以上併用して用いることもできる。   When the hydrosilylation catalyst is blended, the amount added is preferably 1 to 1000 ppm, more preferably 20 to 500 ppm as a metal atom with respect to the weight of the curable resin composition. Further, the hydrosilylation catalyst may be used alone or in combination with two or more of the radical initiators described above.

上述したように、本発明において、上記シリコーン樹脂を含んだ硬化性樹脂組成物を得る際には、シリコーン樹脂を硬化させて樹脂層又は樹脂層とレンズ基材の両方を形成して複合型レンズを得る目的や、複合型レンズの物性を改良する目的から、分子中に少なくとも1つのエチレン性不飽和二重結合を有する化合物、分子中に少なくともヒドロシリル基を有する化合物、ラジカル開始剤、ヒドロシリル化触媒等を適宜選択して配合すればよい。すなわち、エチレン性不飽和二重結合を有する化合物やヒドロシリル基を有する化合物を配合した場合には、反応を促進する添加剤としてヒドロシリル化触媒やラジカル開始剤(熱重合開始剤や光重合開始剤)を配合すればよく、更に、熱重合促進剤、光開始助剤、鋭感剤等を配合してもよい。また、本発明の目的から外れない範囲であれば、有機/無機フィラー、可塑剤、難燃剤、熱安定剤、酸化防止剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤、離型剤、発泡剤、核剤、着色剤、架橋剤、分散助剤、樹脂成分等の各種添加剤を添加することもできる。   As described above, in the present invention, when the curable resin composition containing the silicone resin is obtained, the silicone resin is cured to form a resin layer or both a resin layer and a lens base material, thereby forming a composite lens. Compounds having at least one ethylenically unsaturated double bond in the molecule, compounds having at least a hydrosilyl group in the molecule, radical initiator, hydrosilylation catalyst Etc. may be appropriately selected and blended. That is, when a compound having an ethylenically unsaturated double bond or a compound having a hydrosilyl group is blended, a hydrosilylation catalyst or radical initiator (thermal polymerization initiator or photopolymerization initiator) is used as an additive for promoting the reaction. In addition, a thermal polymerization accelerator, a photoinitiator assistant, a sharpener, and the like may be added. In addition, organic / inorganic fillers, plasticizers, flame retardants, thermal stabilizers, antioxidants, light stabilizers, ultraviolet absorbers, lubricants, antistatic agents, mold release agents are within the scope of the present invention. Various additives such as a foaming agent, a nucleating agent, a colorant, a crosslinking agent, a dispersion aid, and a resin component can also be added.

また、本発明においては、レンズ基材として、上述した一般式(1)で表されるシリコーン樹脂を硬化させたもの以外のものを用いて形成してもよい。この場合、例えば、上述したような、分子中に少なくとも1つのエチレン性不飽和二重結合を有する化合物を硬化させたものを用いるのがよい。   Moreover, in this invention, you may form using things other than what hardened the silicone resin represented by General formula (1) mentioned above as a lens base material. In this case, for example, a compound obtained by curing a compound having at least one ethylenically unsaturated double bond in the molecule as described above may be used.

本発明の複合型レンズを形成する樹脂層は、レンズ曲面を形成する機能をするものであり、その形状や厚み等については用途によっても異なるため、特に制限されないが、例えば球面レンズ、非球面レンズのいずれも形成することができる。一方、レンズ基材は、レンズ厚みを調節するなどの機能をするものであり、その形状や厚み等については用途によっても異なるため、特に制限されないが、例えば平板であっても、擬似レンズ形状であってもよい。また、樹脂層は、レンズ基材を介してその両面に備えるようにしてもよく、レンズ基材の片側のみに形成されるようにしてもよい。   The resin layer forming the composite lens of the present invention has a function of forming a curved lens surface, and its shape, thickness, and the like vary depending on the application, and are not particularly limited. For example, a spherical lens or an aspheric lens Any of these can be formed. On the other hand, the lens base material functions to adjust the lens thickness, and the shape and thickness thereof are not particularly limited because they vary depending on the application. There may be. In addition, the resin layer may be provided on both surfaces of the lens base material, or may be formed only on one side of the lens base material.

本発明の複合型レンズは、レンズ基材上に上記シリコーン樹脂を加熱又は光照射によって硬化することにより、レンズ基材上に樹脂層を形成することによって得ることができるが、加熱によってレンズ基材を製造する場合、その成形温度は、熱重合開始剤や促進剤等の選択により、室温から200℃前後までの広い範囲から選択することができる。この場合、例えば金属板やガラス板上に一般式(1)のシリコーン樹脂(又はこれを含んだ硬化性樹脂組成物)をキャストし、加熱硬化することでシート状のレンズ基材を得ることができる。   The composite lens of the present invention can be obtained by forming the resin layer on the lens substrate by curing the silicone resin on the lens substrate by heating or light irradiation. In the case of manufacturing, the molding temperature can be selected from a wide range from room temperature to around 200 ° C. by selection of a thermal polymerization initiator, an accelerator and the like. In this case, for example, a sheet-shaped lens base material can be obtained by casting the silicone resin of the general formula (1) (or a curable resin composition containing the same) on a metal plate or a glass plate, followed by heat curing. it can.

また、光照射によってレンズ基材を製造する場合、波長100〜400nmの紫外線や波長400〜700nmの可視光線を照射することで、成形体(レンズ基材)を得ることができる。用いる光の波長は特に制限されるものではないが、なかでも波長200〜400nmの近紫外線が好適に用いられる。紫外線発生源として用いられるランプとしては、低圧水銀ランプ(出力:0.4〜4W/cm)、高圧水銀ランプ(40〜160W/cm)、超高圧水銀ランプ(173〜435W/cm)、メタルハライドランプ(80〜160W/cm)、パルスキセノンランプ(80〜120W/cm)、無電極放電ランプ(80〜120W/cm)等を例示することができる。これらの紫外線ランプは、各々その分光分布に特徴があるため、使用する光重合開始剤の種類に応じて選定される。また、前記の加熱によって製造する方法と同様に、例えばガラス板上に一般式(1)のシリコーン樹脂(又はこれを含んだ硬化性樹脂組成物)をキャストし、光硬化することでシート状のレンズ基材を得ることができる。   Moreover, when manufacturing a lens base material by light irradiation, a molded object (lens base material) can be obtained by irradiating the ultraviolet rays with a wavelength of 100-400 nm and the visible light with a wavelength of 400-700 nm. The wavelength of light to be used is not particularly limited, but near ultraviolet light having a wavelength of 200 to 400 nm is preferably used. The lamps used as ultraviolet light sources include low-pressure mercury lamps (output: 0.4 to 4 W / cm), high-pressure mercury lamps (40 to 160 W / cm), ultra-high pressure mercury lamps (173 to 435 W / cm), metal halide lamps (80 ˜160 W / cm), pulse xenon lamp (80 to 120 W / cm), electrodeless discharge lamp (80 to 120 W / cm), and the like. Each of these ultraviolet lamps is characterized by its spectral distribution, and is therefore selected according to the type of photopolymerization initiator used. Moreover, similarly to the method of manufacturing by heating, for example, a silicone resin of the general formula (1) (or a curable resin composition containing the same) is cast on a glass plate and photocured to form a sheet. A lens substrate can be obtained.

上述したように、本発明の複合型レンズを構成する樹脂層は、一般式(1)のシリコーン樹脂(又はこれを含んだ硬化性樹脂組成物)を上記レンズ基材上に載置し(液状物の場合にはキャスト等による場合も含む)、加熱又は光照射によって硬化させることにより形成することができる。   As described above, the resin layer constituting the composite lens of the present invention is obtained by placing the silicone resin of the general formula (1) (or a curable resin composition containing the same) on the lens substrate (liquid state). In the case of an object, including the case of casting or the like), it can be formed by curing by heating or light irradiation.

また、レンズ基材や樹脂層を所定の形状や厚さにするために、従来公知の方法を用いることもできる。例えば、所定の形状に加工された金型(例えば球面形状の凹部を備えた金型等)に樹脂層となる一般式(1)のシリコーン樹脂(又はこれを含んだ硬化性樹脂組成物)を所定量充填し、その上部側に予め硬化させたレンズ基材を設置した状態で加熱または光照射し硬化することで、レンズ形状の成型物を得ることができる。この成型物によって複合型レンズとすることも可能であるが、レンズ基材の残りの面にも同様にして所定の形状をした樹脂層を設けて、レンズ基材の両面に2つの樹脂層が接合してなる複合型レンズとしてもよい。なお、予め硬化させた樹脂層に、所定の形状をした金型を設置し、一般式(1)のシリコーン樹脂(又はこれを含んだ硬化性樹脂組成物)を充填してレンズ基材を形成するようにしてもよい。   Moreover, in order to make a lens base material and a resin layer into a predetermined shape and thickness, a conventionally well-known method can also be used. For example, a silicone resin of the general formula (1) (or a curable resin composition containing the same) serving as a resin layer on a mold (for example, a mold having a spherical recess) processed into a predetermined shape. A lens-shaped molded product can be obtained by curing with heating or light irradiation in a state where a predetermined amount is filled and a preliminarily cured lens base material is placed on the upper side. Although it is possible to form a compound lens by this molding, a resin layer having a predetermined shape is similarly provided on the remaining surface of the lens substrate, and two resin layers are formed on both surfaces of the lens substrate. A composite lens formed by bonding may be used. A pre-cured resin layer is provided with a mold having a predetermined shape and filled with a silicone resin of general formula (1) (or a curable resin composition containing the same) to form a lens substrate. You may make it do.

また、複合型レンズを得る際に、必要に応じて反射防止、高硬度付与、耐摩耗性向上、防曇性付与等の改良を行う目的で、表面研磨、帯電防止処理、ハードコート処理、無反射コート処理、調光処理等の公知の物理的又は化学処理を施すようにしてもよい。   In addition, when obtaining a compound lens, surface polishing, antistatic treatment, hard coat treatment, no coating, etc. are performed for the purpose of improving antireflection, imparting high hardness, improving abrasion resistance, imparting antifogging, etc. as necessary. You may make it perform well-known physical or chemical processes, such as a reflective coating process and a light control process.

本発明の複合型レンズは、少なくとも樹脂層が、一般式(1)で表されるかご型構造を有するポリオルガノシルセスキオキサンを主たる成分とするシリコーン樹脂からなるため、耐熱性に優れる。また、レンズ基材と同様に樹脂層についても上記シリコーン樹脂から形成することで、レンズ基材−樹脂界面での密着性を上げることができる。そのため、ハンダリフロー工程に供することが可能であり、例えば携帯電話、デジタルカメラ等に搭載されているレンズ付きCCDやレンズ付きCMOSセンサー等のような、半導体とレンズとが一体化したカメラモジュールのレンズ等として好適に利用される。   The composite lens of the present invention is excellent in heat resistance because at least the resin layer is made of a silicone resin mainly composed of polyorganosilsesquioxane having a cage structure represented by the general formula (1). Further, by forming the resin layer from the silicone resin in the same manner as the lens substrate, the adhesion at the lens substrate-resin interface can be improved. Therefore, it can be used in the solder reflow process. For example, a lens of a camera module in which a semiconductor and a lens are integrated, such as a CCD with a lens and a CMOS sensor with a lens mounted on a mobile phone, a digital camera, etc. Etc. are suitably used.

図1は本発明の耐熱性複合型レンズの製造方法を示すフロー図。FIG. 1 is a flowchart showing a method for producing a heat-resistant composite lens of the present invention.

以下、実施例等に基づいて本発明を具体的に説明する。なお、本発明はこれらの実施例等によりその範囲が限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples and the like. The scope of the present invention is not limited by these examples.

以下、本発明の実施例を示す。なお、下記実施例で使用したシリコーン樹脂は、以下の合成例に示した方法で得たものである。   Examples of the present invention will be described below. In addition, the silicone resin used in the following Example was obtained by the method shown in the following synthesis examples.

[合成例1]
撹拌機、滴下ロート及び温度計を備えた反応容器に、塩基性触媒として水酸化テトラメチルアンモニウム・5水和物14.3gを加え、水17gに溶解し、続いてトルエン189mLと2−プロパノール95mLを入れた。滴下ロートに、ビニルトリメトキシシラン(信越化学工業株式会社製;KBM1003)23.4g、及びエチルトリメトキシシラン(信越化学工業株式会社製;LS−890)23.7gを加え、反応容器を撹拌しながら、室温でビニルトリメトキシシランとエチルトリメトキシシランの混合液を3時間かけて滴下した。滴下終了後、室温で2時間撹拌した。撹拌終了後、撹拌を停止し、1日静止した。次に、反応容器にディンスターク、冷却管を備え、トルエン95mLを加え、オイルバスを用いて90℃で2−プロパノール、及び加水分解の際に生じたメタノールの除去を行った。その後、オイルバスの温度を120℃に設定し、水を除去しながらトルエンを過熱還流し、再縮合反応を行った。トルエン還流後、3時間撹拌した後、室温に戻して反応を終了とした。反応溶液を10%クエン酸水溶液82.9gで中和した。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体シラノール基含有籠型シロキサン(23)25.5g(98%)を得た。
[Synthesis Example 1]
To a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 14.3 g of tetramethylammonium hydroxide pentahydrate as a basic catalyst is added and dissolved in 17 g of water, followed by 189 mL of toluene and 95 mL of 2-propanol. Put. To the dropping funnel, 23.4 g of vinyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd .; KBM1003) and 23.7 g of ethyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd .; LS-890) are added, and the reaction vessel is stirred. Then, a mixed solution of vinyltrimethoxysilane and ethyltrimethoxysilane was added dropwise at room temperature over 3 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After completion of the stirring, the stirring was stopped and the mixture was left for one day. Next, the reaction vessel was equipped with a Din Stark and a cooling tube, 95 mL of toluene was added, and 2-propanol and methanol generated during hydrolysis were removed at 90 ° C. using an oil bath. Thereafter, the temperature of the oil bath was set to 120 ° C., and toluene was heated to reflux while removing water to perform a recondensation reaction. After refluxing toluene, the mixture was stirred for 3 hours and then returned to room temperature to complete the reaction. The reaction solution was neutralized with 82.9 g of 10% aqueous citric acid solution. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 25.5 g (98%) of a colorless and transparent viscous liquid silanol group-containing cage-type siloxane (23).

上記で得た無色透明粘性液体シラノール基含有籠型シロキサン(23)のGPCを測定した結果から、Mw=1136、Mw/Mn=1.390であることが確認された。その中でも面積比70%を占めている低分子側のピークは、Mw=659、Mw/Mn=1.084であった。次に、1H−NMRを測定した結果、5.8〜6.2ppmのビニル基によるマルチプレットピーク、0.4〜1.2ppmのエチル基によるマルチプレットピーク、及び1.6ppmのシラノール基のピーク積分比は、ビニル基1に対してエチル基1、シラノール基0.189であった。従って、メインピークである低分子側Mw及び積分比から見積もられた化合物は、下記式(2)
[R1SiO3/2]n[HO1/2]k (2)
として仮定した場合、nが8、及びkが2(R1はビニル基:エチル基=1:1)であることが示唆された。
From the result of measuring GPC of the colorless and transparent viscous liquid silanol group-containing cage-type siloxane (23) obtained above, it was confirmed that Mw = 1136 and Mw / Mn = 1.390. Among them, the peaks on the low molecular side occupying 70% of the area ratio were Mw = 659 and Mw / Mn = 1.084. Next, as a result of measuring 1 H-NMR, a multiplet peak due to a vinyl group of 5.8 to 6.2 ppm, a multiplet peak due to an ethyl group of 0.4 to 1.2 ppm, and a silanol group of 1.6 ppm The peak integration ratio was 1 for ethyl group and 0.189 for silanol group relative to 1 vinyl group. Therefore, the compound estimated from the low molecular side Mw which is the main peak and the integration ratio is represented by the following formula (2).
[R 1 SiO 3/2 ] n [HO 1/2 ] k (2)
It was suggested that n is 8 and k is 2 (R 1 is vinyl group: ethyl group = 1: 1).

撹拌機及び滴下ロートを備えた反応容器に、上記で得られたシラノール基含有籠型シルセスキオキサン化合物(23)20.0g、及びシクロヘキサンジメタノール(東京化成株式会社製)4.4gをはかり込み窒素置換し、ピリジン61mLに溶解した。滴下ロートにジメチルジクロロシラン19.2g及びピリジン76mLを入れ、室温で2時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、トルエン140mL、蒸留水70mLを加えた。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体の有機−無機複合体(24)を35.3g(回収率92%)得た。   In a reaction vessel equipped with a stirrer and a dropping funnel, 20.0 g of the silanol group-containing cage-type silsesquioxane compound (23) obtained above and 4.4 g of cyclohexanedimethanol (manufactured by Tokyo Chemical Industry Co., Ltd.) are weighed. The solution was purged with nitrogen and dissolved in 61 mL of pyridine. To the dropping funnel, 19.2 g of dimethyldichlorosilane and 76 mL of pyridine were added dropwise at room temperature over 2 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 140 mL of toluene and 70 mL of distilled water were added. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated to obtain 35.3 g (recovery rate: 92%) of an organic-inorganic composite (24) as a colorless transparent viscous liquid.

上記で得た有機−無機複合体(24)のGPCを測定した結果から、Mw=6671、Mw/Mn=2.095であった。従って、得られた有機−無機複合体(24)は、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(R1はビニル基:エチル基=1:1、R2はメチル基、及びXはシクロヘキサンジメタノール(CHDM)からなる)で表され、nは6〜14、m+l=13のシリコーン樹脂であることを確認した。
From the result of measuring GPC of the organic-inorganic composite (24) obtained above, it was Mw = 6671 and Mw / Mn = 2.095. Therefore, the obtained organic-inorganic composite (24) has the following formula (1):
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(R 1 is a vinyl resin: ethyl group = 1: 1, R 2 is a methyl group, and X is composed of cyclohexanedimethanol (CHDM)), n is a silicone resin of 6 to 14, m + 1 = 13 It was confirmed.

[合成例2]
ジクロロシランとしてジメチルジクロロシランの代わりにジフェニルジクロロシランを用いた以外は合成例1と同様にして合成を行い、無色透明粘性液体の有機−無機複合体(25)を35.3g(回収率92%)得た。
[Synthesis Example 2]
Synthesis was performed in the same manner as in Synthesis Example 1 except that diphenyldichlorosilane was used instead of dimethyldichlorosilane as dichlorosilane, and 35.3 g of a colorless and transparent viscous liquid organic-inorganic composite (25) (recovery rate: 92%) )Obtained.

上記で得た有機−無機複合体(25)のGPCを測定した結果から、Mw=6263、Mw/Mn=1.849であった。従って、得られた有機−無機複合体(25)は、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(R1はビニル基:エチル基=1:1、R2はフェニル基、及びXはシクロヘキサンジメタノール(CHDM)からなる)で表され、nは6〜14、m+l=10のシリコーン樹脂であることを確認した。
From the results of measuring GPC of the organic-inorganic composite (25) obtained above, Mw = 6263 and Mw / Mn = 1.849. Therefore, the obtained organic-inorganic composite (25) has the following formula (1)
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(R 1 is vinyl group: ethyl group = 1: 1, R 2 is phenyl group, and X is made of cyclohexanedimethanol (CHDM)), n is a silicone resin of 6-14, m + 1 = 10 It was confirmed.

[合成例3]
撹拌機、滴下ロート及び温度計を備えた反応容器に、塩基性触媒として水酸化テトラメチルアンモニウム・5水和物14.3gを加え、水17gに溶解し、続いてトルエン189mLと2−プロパノール95mLを入れた。滴下ロートに、3−メタクリロキシプロピルトリメトキシキシシラン(信越化学工業株式会社製;KBM503)78.4gを加え、反応容器を撹拌しながら、室温で3−メタクリロキシプロピルトリメトキシシランを3時間かけて滴下した。滴下終了後、室温で2時間撹拌した。撹拌終了後、撹拌を停止し、1日静止した。次に、反応容器にディンスターク、冷却管を備え、トルエン95mLを加え、オイルバスを用いて90℃で2−プロパノール、及び加水分解の際に生じたメタノールの除去を行った。その後、オイルバスの温度を120℃に設定し、水を除去しながらトルエンを過熱還流し、再縮合反応を行った。トルエン還流後、3時間撹拌した後、室温に戻して反応を終了とした。反応溶液を10%クエン酸水溶液82.9gで中和した。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体シラノール基含有籠型シロキサン(26)47.4g(98%)を得た。
[Synthesis Example 3]
To a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 14.3 g of tetramethylammonium hydroxide pentahydrate as a basic catalyst is added and dissolved in 17 g of water, followed by 189 mL of toluene and 95 mL of 2-propanol. Put. To the dropping funnel, 78.4 g of 3-methacryloxypropyltrimethoxyxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .; KBM503) was added, and 3-methacryloxypropyltrimethoxysilane was added at room temperature for 3 hours while stirring the reaction vessel. And dripped. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After completion of the stirring, the stirring was stopped and the mixture was left for one day. Next, the reaction vessel was equipped with a Din Stark and a cooling tube, 95 mL of toluene was added, and 2-propanol and methanol generated during hydrolysis were removed at 90 ° C. using an oil bath. Thereafter, the temperature of the oil bath was set to 120 ° C., and toluene was heated to reflux while removing water to perform a recondensation reaction. After refluxing toluene, the mixture was stirred for 3 hours and then returned to room temperature to complete the reaction. The reaction solution was neutralized with 82.9 g of 10% aqueous citric acid solution. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 47.4 g (98%) of a colorless transparent viscous liquid silanol group-containing cage-type siloxane (26).

上記で得た無色透明粘性液体シラノール基含有籠型シロキサン(26)のGPCを測定した結果から、Mw=1575、Mw/Mn=1.222であることが確認された。その中でも面積比70%を占めている低分子側のピークは、Mw=1198、Mw/Mn=1.082であった。次に、1H−NMRを測定した結果、5.4〜6.2ppmのメタクリル基によるピーク、及び1.6ppmのシラノール基のピーク積分比は、メタクリル基1に対してシラノール基0.189であった。従って、メインピークである低分子側Mw及び積分比から見積もられた化合物は、下記式(2)
[R1SiO3/2]n[HO1/2]k (2)
として仮定した場合、nが8、及びkが2(R1は3−メタクリロキシプロピル基)であることが示唆された。
From the result of measuring GPC of the colorless and transparent viscous liquid silanol group-containing cage-type siloxane (26) obtained above, it was confirmed that Mw = 1575 and Mw / Mn = 1.222. Among them, the peaks on the low molecular side occupying 70% of the area ratio were Mw = 1198 and Mw / Mn = 1.082. Next, as a result of measuring 1 H-NMR, the peak integration ratio of 5.4 to 6.2 ppm methacryl group and 1.6 ppm silanol group was 0.189 with respect to methacryl group 1. there were. Therefore, the compound estimated from the low molecular side Mw which is the main peak and the integration ratio is represented by the following formula (2).
[R 1 SiO 3/2 ] n [HO 1/2 ] k (2)
It was suggested that n is 8, and k is 2 (R 1 is a 3-methacryloxypropyl group).

撹拌機及び滴下ロートを備えた反応容器に、上記で得られたシラノール基含有籠型シルセスキオキサン化合物(26)20.0g、及びシクロヘキサンジメタノール(東京化成株式会社製)4.4gをはかり込み窒素置換し、ピリジン61mLに溶解した。滴下ロートにジメチルジクロロシラン19.2g及びピリジン76mLを入れ、室温で2時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、トルエン140mL、蒸留水70mLを加えた。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体の有機−無機複合体(27)を35.3g(回収率92%)得た。   In a reaction vessel equipped with a stirrer and a dropping funnel, 20.0 g of the silanol group-containing cage silsesquioxane compound (26) obtained above and 4.4 g of cyclohexanedimethanol (manufactured by Tokyo Chemical Industry Co., Ltd.) are weighed. The solution was purged with nitrogen and dissolved in 61 mL of pyridine. To the dropping funnel, 19.2 g of dimethyldichlorosilane and 76 mL of pyridine were added dropwise at room temperature over 2 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 140 mL of toluene and 70 mL of distilled water were added. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 35.3 g (recovery rate: 92%) of an organic-inorganic composite (27) as a colorless transparent viscous liquid.

上記で得た有機−無機複合体(27)のGPCを測定した結果から、Mw=88013、Mw/Mn=8.536であった。従って、得られた有機−無機複合体(27)は、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(R1は3−メタクリロキシプロピル基、R2はメチル基、及びXはシクロヘキサンジメタノール(CHDM)からなる)で表され、nは6〜14、m+l=88のシリコーン樹脂であることを確認した。
From the result of measuring GPC of the organic-inorganic composite (27) obtained above, Mw = 88013 and Mw / Mn = 8.536. Therefore, the obtained organic-inorganic composite (27) has the following formula (1):
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(R 1 is a 3-methacryloxypropyl group, R 2 is a methyl group, and X is composed of cyclohexanedimethanol (CHDM)), and n is a silicone resin of 6 to 14 and m + 1 = 88 did.

[合成例4]
ジクロロシランとしてジメチルジクロロシランの代わりにジフェニルジクロロシランを用いた以外は合成例3と同様にして合成を行い、無色透明粘性液体の有機−無機複合体(28)を35.3g(回収率92%)得た。
[Synthesis Example 4]
Synthesis was performed in the same manner as in Synthesis Example 3 except that diphenyldichlorosilane was used instead of dimethyldichlorosilane as dichlorosilane, and 35.3 g of a colorless and transparent viscous liquid organic-inorganic composite (28) (recovery rate: 92%) )Obtained.

上記で得た有機−無機複合体(28)のGPCを測定した結果から、Mw=40025、Mw/Mn=4.769であった。従って、得られた有機−無機複合体(28)は、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(R1は3−メタクリロキシプロピル基、R2はフェニル基、及びXはシクロヘキサンジメタノール(CHDM)からなる)で表され、nは6〜14、m+l=36のシリコーン樹脂であることを確認した。
From the result of measuring GPC of the organic-inorganic composite (28) obtained above, Mw = 40025 and Mw / Mn = 4.769. Therefore, the obtained organic-inorganic composite (28) has the following formula (1):
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(R 1 is a 3-methacryloxypropyl group, R 2 is a phenyl group, and X is cyclohexanedimethanol (CHDM)), and n is a silicone resin of 6 to 14 and m + 1 = 36 did.

[合成例5]
撹拌機及び滴下ロートを備えた反応容器に、上記で得られたシラノール基含有籠型シルセスキオキサン化合物(23)20.0g、及びシクロヘキサンジメタノール(東京化成株式会社製)4.4gをはかり込み窒素置換し、ピリジン61mLに溶解した。滴下ロートにジメチルジクロロシラン15.3g、ジフェニルジクロロシラン3.9g及びピリジン76mLを入れ、室温で2時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、トルエン140mL、蒸留水70mLを加えた。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体の有機−無機複合体(29)を35.3g(回収率92%)得た。
[Synthesis Example 5]
In a reaction vessel equipped with a stirrer and a dropping funnel, 20.0 g of the silanol group-containing cage-type silsesquioxane compound (23) obtained above and 4.4 g of cyclohexanedimethanol (manufactured by Tokyo Chemical Industry Co., Ltd.) are weighed. The solution was purged with nitrogen and dissolved in 61 mL of pyridine. To the dropping funnel, 15.3 g of dimethyldichlorosilane, 3.9 g of diphenyldichlorosilane, and 76 mL of pyridine were added dropwise at room temperature over 2 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 140 mL of toluene and 70 mL of distilled water were added. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated to obtain 35.3 g (recovery rate 92%) of an organic-inorganic composite (29) as a colorless transparent viscous liquid.

上記で得た有機−無機複合体(29)のGPCを測定した結果から、Mw=6467、Mw/Mn=1.972であった。従って、得られた有機−無機複合体(29)は、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(R1はビニル基:エチル基=1:1、R2はメチル基:フェニル基=8:2、及びXはシクロヘキサンジメタノール(CHDM)からなる)で表され、nは6〜14、m+l=12のシリコーン樹脂であることを確認した。
From the result of measuring GPC of the organic-inorganic composite (29) obtained above, Mw = 6467 and Mw / Mn = 1.972. Therefore, the obtained organic-inorganic composite (29) has the following formula (1):
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(R 1 is represented by vinyl group: ethyl group = 1: 1, R 2 is methyl group: phenyl group = 8: 2, and X is composed of cyclohexanedimethanol (CHDM)), n is 6 to 14, m + 1 = 12 silicone resin was confirmed.

[合成例6]
撹拌機及び滴下ロートを備えた反応容器に、上記で得られたシラノール基含有籠型シルセスキオキサン化合物(26)20.0g、及びシクロヘキサンジメタノール(東京化成株式会社製)4.4gをはかり込み窒素置換し、ピリジン61mLに溶解した。滴下ロートにジメチルジクロロシラン15.3g、ジフェニルジクロロシラン3.9g及びピリジン76mLを入れ、室温で2時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、トルエン140mL、蒸留水70mLを加えた。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体の有機−無機複合体(30)を35.3g(回収率92%)得た。
[Synthesis Example 6]
In a reaction vessel equipped with a stirrer and a dropping funnel, 20.0 g of the silanol group-containing cage silsesquioxane compound (26) obtained above and 4.4 g of cyclohexanedimethanol (manufactured by Tokyo Chemical Industry Co., Ltd.) are weighed. The solution was purged with nitrogen and dissolved in 61 mL of pyridine. To the dropping funnel, 15.3 g of dimethyldichlorosilane, 3.9 g of diphenyldichlorosilane, and 76 mL of pyridine were added dropwise at room temperature over 2 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 140 mL of toluene and 70 mL of distilled water were added. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 35.3 g (recovery rate: 92%) of an organic-inorganic composite (30) as a colorless transparent viscous liquid.

上記で得た有機−無機複合体(30)のGPCを測定した結果から、Mw=64019、Mw/Mn=6.653であった。従って、得られた有機−無機複合体(30)は、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(R1は3−メタクリロキシプロピル基、R2はメチル基:フェニル基=7:3、及びXはシクロヘキサンジメタノール(CHDM)からなる)で表され、nは6〜14、m+l=64のシリコーン樹脂であることを確認した。
From the result of measuring GPC of the organic-inorganic composite (30) obtained above, Mw = 64019 and Mw / Mn = 6.653. Therefore, the obtained organic-inorganic composite (30) has the following formula (1):
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(R 1 is 3-methacryloxypropyl group, R 2 is methyl group: phenyl group = 7: 3, and X is composed of cyclohexanedimethanol (CHDM)), n is 6 to 14, and m + 1 = 64 It was confirmed that it was a silicone resin.

[合成例7]
撹拌機、滴下ロート及び温度計を備えた反応容器に、塩基性触媒として水酸化テトラメチルアンモニウム・5水和物14.3gを加え、水17gに溶解し、続いてトルエン189mLと2−プロパノール95mLを入れた。滴下ロートに、ビニルトリメトキシシラン(信越化学工業株式会社製;KBM1003)23.4g、及び3−メタクリロキシプロピルトリメトキシキシシラン(信越化学工業株式会社製;KBM503)39.2gを加え、反応容器を撹拌しながら、室温でビニルトリメトキシシランと3−メタクリロキシプロピルトリメトキシキシシランの混合液を3時間かけて滴下した。滴下終了後、室温で2時間撹拌した。撹拌終了後、撹拌を停止し、1日静止した。次に、反応容器にディンスターク、冷却管を備え、トルエン95mLを加え、オイルバスを用いて90℃で2−プロパノール、及び加水分解の際に生じたメタノールの除去を行った。その後、オイルバスの温度を120℃に設定し、水を除去しながらトルエンを過熱還流し、再縮合反応を行った。トルエン還流後、3時間撹拌した後、室温に戻して反応を終了とした。反応溶液を10%クエン酸水溶液82.9gで中和した。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体シラノール基含有籠型シロキサン(31)25.5g(98%)を得た。
[Synthesis Example 7]
To a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 14.3 g of tetramethylammonium hydroxide pentahydrate as a basic catalyst is added and dissolved in 17 g of water, followed by 189 mL of toluene and 95 mL of 2-propanol. Put. To the dropping funnel, 23.4 g of vinyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd .; KBM1003) and 39.2 g of 3-methacryloxypropyltrimethoxyxysilane (Shin-Etsu Chemical Co., Ltd .; KBM503) were added and the reaction vessel was added. While stirring, a mixed liquid of vinyltrimethoxysilane and 3-methacryloxypropyltrimethoxyxysilane was added dropwise at room temperature over 3 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After completion of the stirring, the stirring was stopped and the mixture was left for one day. Next, the reaction vessel was equipped with a Din Stark and a cooling tube, 95 mL of toluene was added, and 2-propanol and methanol generated during hydrolysis were removed at 90 ° C. using an oil bath. Thereafter, the temperature of the oil bath was set to 120 ° C., and toluene was heated to reflux while removing water to perform a recondensation reaction. After refluxing toluene, the mixture was stirred for 3 hours and then returned to room temperature to complete the reaction. The reaction solution was neutralized with 82.9 g of 10% aqueous citric acid solution. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 25.5 g (98%) of a colorless and transparent viscous liquid silanol group-containing cage-type siloxane (31).

上記で得た無色透明粘性液体シラノール基含有籠型シロキサン(31)のGPCを測定した結果から、Mw=1707、Mw/Mn=1.369であることが確認された。その中でも面積比70%を占めている低分子側のピークは、Mw=1021、Mw/Mn=1.097であった。次に、1H−NMRを測定した結果、5.8〜6.2ppmのビニル基によるマルチプレットピーク、5.4〜6.2ppmのメタクリル基によるピーク、及び1.6ppmのシラノール基のピーク積分比は、ビニル基1に対してメタクリル基1、シラノール基0.189であった。従って、メインピークである低分子側Mw及び積分比から見積もられた化合物は、下記式(2)
[R1SiO3/2]n[HO1/2]k (2)
として仮定した場合、nが8、及びkが2(R1はビニル基:3−メタクリロキシプロピル基=1:1)であることが示唆された。
From the result of measuring GPC of the colorless and transparent viscous liquid silanol group-containing cage-type siloxane (31) obtained above, it was confirmed that Mw = 1707 and Mw / Mn = 1.369. Among them, the peaks on the low molecular side occupying 70% of the area ratio were Mw = 1021 and Mw / Mn = 1.097. Next, as a result of measuring 1 H-NMR, a peak of a multiplet peak due to a vinyl group of 5.8 to 6.2 ppm, a peak due to a methacryl group of 5.4 to 6.2 ppm, and a peak integration of a silanol group of 1.6 ppm The ratio of vinyl group 1 to methacryl group 1 and silanol group 0.189. Therefore, the compound estimated from the low molecular side Mw which is the main peak and the integration ratio is represented by the following formula (2).
[R 1 SiO 3/2 ] n [HO 1/2 ] k (2)
It was suggested that n is 8 and k is 2 (R 1 is vinyl group: 3-methacryloxypropyl group = 1: 1).

撹拌機及び滴下ロートを備えた反応容器に、上記で得られたシラノール基含有籠型シルセスキオキサン化合物(31)20.0g、及びシクロヘキサンジメタノール(東京化成株式会社製)4.4gをはかり込み窒素置換し、ピリジン61mLに溶解した。滴下ロートにジメチルジクロロシラン15.3g、ジフェニルジクロロシラン3.9g及びピリジン76mLを入れ、室温で2時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、トルエン140mL、蒸留水70mLを加えた。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体の有機−無機複合体(32)を35.3g(回収率92%)得た。   In a reaction vessel equipped with a stirrer and a dropping funnel, 20.0 g of the silanol group-containing cage silsesquioxane compound (31) obtained above and 4.4 g of cyclohexanedimethanol (manufactured by Tokyo Chemical Industry Co., Ltd.) are weighed. The solution was purged with nitrogen and dissolved in 61 mL of pyridine. To the dropping funnel, 15.3 g of dimethyldichlorosilane, 3.9 g of diphenyldichlorosilane, and 76 mL of pyridine were added dropwise at room temperature over 2 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 140 mL of toluene and 70 mL of distilled water were added. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated to obtain 35.3 g (recovery rate 92%) of an organic-inorganic composite (32) as a colorless transparent viscous liquid.

上記で得た有機−無機複合体(32)のGPCを測定した結果から、Mw=36793、Mw/Mn=4.386であった。従って、得られた有機−無機複合体(32)は、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(R1はビニル基:3−メタクリロキシプロピル基=1:1、R2はメチル基:フェニル基=7:3、及びXはシクロヘキサンジメタノール(CHDM)からなる)で表され、nは6〜14、m+l=47のシリコーン樹脂であることを確認した。
From the result of measuring the GPC of the organic-inorganic composite (32) obtained above, Mw = 36793 and Mw / Mn = 4.386. Therefore, the obtained organic-inorganic composite (32) has the following formula (1):
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(R 1 is represented by vinyl group: 3-methacryloxypropyl group = 1: 1, R 2 is methyl group: phenyl group = 7: 3, and X is composed of cyclohexanedimethanol (CHDM)), and n is 6 It was confirmed that the silicone resin was ˜14, m + 1 = 47.

上記合成例1〜7で使用した原料に関してまとめたものを表1に示す。   Table 1 summarizes the raw materials used in Synthesis Examples 1-7.

Figure 0005336399
Figure 0005336399

[実施例1]
上記合成例1で得られた有機−無機複合体(24)90重量部、及び下記式(33)で表される化合物ジシクロペンタニルジアクリレート(共栄社化学株式会社製;DCP−A)10重量部を混合し、下記式(34)で表される硬化触媒ジクミルパーオキサイド(日本油脂株式会社製;パークミルD)を1重量部混合し、よく撹拌し、実施例1の硬化性樹脂組成物を調製した。

Figure 0005336399
Figure 0005336399
[Example 1]
90 parts by weight of the organic-inorganic composite (24) obtained in Synthesis Example 1 and 10 parts by weight of the compound dicyclopentanyl diacrylate (Kyoeisha Chemical Co., Ltd .; DCP-A) represented by the following formula (33) 1 part by weight of a curing catalyst dicumyl peroxide (Nippon Yushi Co., Ltd .; Park Mill D) represented by the following formula (34) is mixed and stirred well, and the curable resin composition of Example 1 is mixed. Was prepared.
Figure 0005336399
Figure 0005336399

上記で得た硬化性樹脂組成物をガラス板で組んだ型に厚み2mmになるように流し込み、100℃で1時間、120℃で1時間、140℃で1時間、160℃で1時間、及び180℃で2時間加熱して、所定の厚みとしたシート状のシリコーン樹脂成形体(レンズ基材1)を得た。   The curable resin composition obtained above was poured into a mold made of glass plates to a thickness of 2 mm, 1 hour at 100 ° C, 1 hour at 120 ° C, 1 hour at 140 ° C, 1 hour at 160 ° C, and A sheet-shaped silicone resin molded body (lens substrate 1) having a predetermined thickness was obtained by heating at 180 ° C. for 2 hours.

次に、図1に示したように、所定の球面形状に加工された凹部を備えた金属製の金型3に上記硬化性樹脂組成物2を充填し、充填した硬化性樹脂組成物2の表面(液面)に触れるように、先に形成したレンズ基材を設置した状態にて100℃で1時間、120℃で1時間、140℃で1時間、160℃で1時間、及び180℃で2時間加熱硬化させることで、最も厚い部分で厚み0.02mmの樹脂層4をレンズ基材1と接合させた。   Next, as shown in FIG. 1, the curable resin composition 2 is filled into a metal mold 3 having a concave portion processed into a predetermined spherical shape, and the filled curable resin composition 2 With the previously formed lens base material placed in contact with the surface (liquid surface), 100 ° C. for 1 hour, 120 ° C. for 1 hour, 140 ° C. for 1 hour, 160 ° C. for 1 hour, and 180 ° C. The resin layer 4 having a thickness of 0.02 mm was bonded to the lens substrate 1 at the thickest part by heating and curing for 2 hours.

さらに、レンズ基材1の残りの上面に、上記硬化性樹脂組成物2を同様な方法にて硬化させ、レンズ基材1の両面に樹脂層4が接合された複合型レンズ5を得た。   Further, the curable resin composition 2 was cured on the remaining upper surface of the lens substrate 1 by the same method, and a composite lens 5 in which the resin layers 4 were bonded to both surfaces of the lens substrate 1 was obtained.

[実施例2、7]
有機−無機複合体(24)の代わりに、それぞれ上記合成例2、7で得られた有機−無機複合体(25)、(32)を70重量部、及び上記式(33)で表される化合物ジシクロペンタニルジアクリレート(共栄社化学株式会社製;DCP−A)30重量部を混合し、上記式(34)で表される硬化触媒ジクミルパーオキサイド(日本油脂株式会社製;パークミルD)を1重量部混合し、よく撹拌し、実施例2、7の硬化性樹脂組成物を調製した。その他は実施例1と同様にして複合型レンズ5を得た。
[Examples 2 and 7]
Instead of the organic-inorganic composite (24), 70 parts by weight of the organic-inorganic composite (25) and (32) obtained in Synthesis Examples 2 and 7, respectively, and the above formula (33) are used. Compound dicyclopentanyl diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; DCP-A) 30 parts by weight is mixed, and the curing catalyst dicumyl peroxide represented by the above formula (34) (manufactured by NOF Corporation; Park Mill D) 1 part by weight was mixed and stirred well to prepare curable resin compositions of Examples 2 and 7. Otherwise, the composite lens 5 was obtained in the same manner as in Example 1.

[実施例5]
有機−無機複合体(24)の代わりに、上記合成例5で得られた有機−無機複合体(29)を用いた以外は実施例1と同様にして、実施例5の硬化性樹脂組成物を調製した。その他は実施例1と同様にして複合型レンズ5を得た。
[Example 5]
The curable resin composition of Example 5 was the same as Example 1 except that the organic-inorganic composite (29) obtained in Synthesis Example 5 was used instead of the organic-inorganic composite (24). Was prepared. Otherwise, the composite lens 5 was obtained in the same manner as in Example 1.

[実施例3]
上記合成例3で得られた有機−無機複合体(27)70重量部、及び上記式(33)30重量部を混合し、下記式(35)で表される硬化触媒1−ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製;Irgacure184)を1重量部混合し、よく撹拌し、実施例3の硬化性樹脂組成物を調製した。

Figure 0005336399
[Example 3]
70 parts by weight of the organic-inorganic composite (27) obtained in Synthesis Example 3 and 30 parts by weight of the above formula (33) are mixed, and the curing catalyst 1-hydroxycyclohexyl phenyl ketone represented by the following formula (35) 1 part by weight (manufactured by Ciba Japan Co., Ltd .; Irgacure184) was mixed and stirred well to prepare the curable resin composition of Example 3.
Figure 0005336399

上記で得た硬化性樹脂組成物をガラス板で組んだ型に厚み2mmになるように流し込み、30W/cmの高圧水銀ランプを用い、2000mJ/cm2の積算露光量で硬化させ、所定の厚みとしたシート状のシリコーン樹脂成形体(レンズ基材1)を得た。 The curable resin composition obtained above is poured into a mold made of glass plates so as to have a thickness of 2 mm, and cured with an accumulated exposure amount of 2000 mJ / cm 2 using a 30 W / cm high-pressure mercury lamp, to a predetermined thickness. A sheet-shaped silicone resin molded body (lens substrate 1) was obtained.

次に、図1に示したように、所定の球面形状に加工された凹部を備えたガラス製の金型3に、上記硬化性樹脂組成物2を充填し、充填した硬化性樹脂組成物2の表面(液面)に触れるように、レンズ基材1を設置した状態にて30W/cmの高圧水銀ランプを用い、1000mJ/cm2の積算露光量で硬化させることで、最も厚い部分で厚み0.02mmの樹脂層4をレンズ基材1と接合させた。 Next, as shown in FIG. 1, the curable resin composition 2 filled with the above-described curable resin composition 2 is filled in a glass mold 3 having a concave portion processed into a predetermined spherical shape. By using a 30 W / cm high-pressure mercury lamp with the lens substrate 1 placed so as to touch the surface (liquid level) of the film, it is cured at an accumulated exposure amount of 1000 mJ / cm 2 , so that the thickness is the thickest part. A 0.02 mm resin layer 4 was bonded to the lens substrate 1.

さらに、レンズ基材1の残りの上面に、上記硬化性樹脂組成物2を同様な方法にて硬化させ、レンズ基材1の両面に樹脂層4が接合された複合型レンズ5を得た。   Further, the curable resin composition 2 was cured on the remaining upper surface of the lens substrate 1 by the same method, and a composite lens 5 in which the resin layers 4 were bonded to both surfaces of the lens substrate 1 was obtained.

[実施例4、6]
有機−無機複合体(27)の代わりに、それぞれ上記合成例4、6で得られた有機−無機複合体(28)、(30)を用いた以外は実施例3と同様にして、実施例4、6の硬化性樹脂組成物を調製した。その他は実施例3と同様にして複合型レンズ5を得た。
[Examples 4 and 6]
In the same manner as in Example 3, except that the organic-inorganic composites (28) and (30) obtained in Synthesis Examples 4 and 6 were used instead of the organic-inorganic composite (27), respectively. 4 and 6 curable resin compositions were prepared. Otherwise, the composite lens 5 was obtained in the same manner as in Example 3.

[比較例1]
ジメタクロキシプロピルポリジメチルシロキサン(アヅマックス株式会社製DMS−R11)50重量部、ジペンタエリスリトールヘキサアクリレート(共栄社化学(株)製ライトアクリレートDPE−6A)30重量部、及びジシクロペンタニルジアクリレート(共栄社化学(株)製ライトアクリレートDCP−A)20重量部を混合し、上記式(35)で表される硬化触媒1−ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製;Irgacure184)を樹脂の合計100重量部に対して1重量部混合し、よく撹拌し、比較例1の硬化性樹脂組成物を調製した。その他は実施例3と同様にして複合型レンズ5を得た。
[Comparative Example 1]
50 parts by weight of dimethacryloxypropyl polydimethylsiloxane (DMS-R11 manufactured by AMAX Co., Ltd.), 30 parts by weight of dipentaerythritol hexaacrylate (light acrylate DPE-6A manufactured by Kyoeisha Chemical Co., Ltd.), and dicyclopentanyl diacrylate ( 20 parts by weight of Kyoeisha Chemical Co., Ltd. light acrylate DCP-A) is mixed, and the curing catalyst 1-hydroxycyclohexyl phenyl ketone represented by the above formula (35) (Ciba Japan Co., Ltd .; Irgacure184) is added to the resin. 1 part by weight was mixed with respect to 100 parts by weight and stirred well to prepare a curable resin composition of Comparative Example 1. Otherwise, the composite lens 5 was obtained in the same manner as in Example 3.

[比較例2]
ジメタクロキシプロピルポリジメチルシロキサン(アヅマックス株式会社製DMS−R11)70重量部、ジペンタエリスリトールヘキサアクリレート(共栄社化学(株)製ライトアクリレートDPE−6A)20重量部、及びジシクロペンタニルジアクリレート(共栄社化学(株)製ライトアクリレートDCP−A)10重量部を混合し、上記式(35)で表される硬化触媒1−ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製;Irgacure184)を樹脂の合計100重量部に対して1重量部混合し、よく撹拌し、比較例2の硬化性樹脂組成物を調製した。その他は実施例3と同様にして複合型レンズ5を得た。
[Comparative Example 2]
70 parts by weight of dimethacryloxypropyl polydimethylsiloxane (DMS-R11 manufactured by Amax Co., Ltd.), 20 parts by weight of dipentaerythritol hexaacrylate (light acrylate DPE-6A manufactured by Kyoeisha Chemical Co., Ltd.), and dicyclopentanyl diacrylate ( 10 parts by weight of Kyoeisha Chemical Co., Ltd. light acrylate DCP-A) is mixed, and the curing catalyst 1-hydroxycyclohexyl phenyl ketone represented by the above formula (35) (Ciba Japan Co., Ltd .; Irgacure184) is added to the resin. 1 part by weight was mixed with respect to 100 parts by weight and stirred well to prepare a curable resin composition of Comparative Example 2. Otherwise, the composite lens 5 was obtained in the same manner as in Example 3.

上記実施例及び比較例で得た硬化性樹脂組成物の組成をまとめたものを表2に示す。なお、表中の数値は重量部を表す。また、表2中で使用した記号A〜Fの意味は次のとおりであり、項目Aの数値のうしろの( )は、合成例で得られた具体的なシリコーン樹脂(有機−無機複合体)を示す。
A:合成例で得られたシリコーン樹脂
B:ジメタクロキシプロピルポリジメチルシロキサン(アヅマックス株式会社製DMS−R11)
C:ジペンタエリスリトールヘキサアクリレート(共栄社化学(株)製ライトアクリレートDPE−6A)
D:ジシクロペンタニルジアクリレート(共栄社化学(株)製ライトアクリレートDCP−A)
E:ジクミルパーオキサイド(日本油脂株式会社製;パークミルD)
F:1−ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製;Irgacure184)
Table 2 summarizes the compositions of the curable resin compositions obtained in the above Examples and Comparative Examples. In addition, the numerical value in a table | surface represents a weight part. The meanings of symbols A to F used in Table 2 are as follows, and the parentheses () after the numerical value of item A are specific silicone resins (organic-inorganic composites) obtained in the synthesis examples. ).
A: Silicone resin B obtained in the synthesis example B: Dimethacryloxypropyl polydimethylsiloxane (DMS-R11 manufactured by Amax Co., Ltd.)
C: Dipentaerythritol hexaacrylate (Kyoeisha Chemical Co., Ltd. light acrylate DPE-6A)
D: Dicyclopentanyl diacrylate (Kyoeisha Chemical Co., Ltd. light acrylate DCP-A)
E: Dicumyl peroxide (Nippon Yushi Co., Ltd .; Park Mill D)
F: 1-hydroxycyclohexyl phenyl ketone (Ciba Japan Co., Ltd .; Irgacure184)

Figure 0005336399
Figure 0005336399

上記実施例及び比較例で得られた複合型レンズ5の物性評価は次のようにして行った。その結果を表3に示す。   The physical properties of the composite lens 5 obtained in the above examples and comparative examples were evaluated as follows. The results are shown in Table 3.

1)全光線透過率(JIS K 7361-1):紫外可視光赤外分光光度計(V-630M日本分光(株)製)を用いて測定した。
2)屈折率:アッベ屈折計(DR-M4アタゴ(株)製)を用いて測定した。
3)吸水率:サンプルを50℃で乾燥させた後、重量を測定し、ついで25℃の温水中に24hr浸漬した。24hr後の重量を測定し、次の式により吸水率を求めた。
吸水率(%)=[(吸水重量−乾燥重量)/乾燥重量]×100
4)線膨張係数:熱機械分析装置(TMA 製)を用いて、昇温速度5℃/min、圧縮荷重0.1Nの条件にて、30℃から200℃の範囲における線膨張係数を測定した。
5)硬化収縮率:硬化前後の比重を測定し体積収縮率を算出した。硬化性樹脂組成物の比重はピクノメーター法(JIS K 7112)、硬化物は水中置換法(JIS K 7112)により求めた。
硬化収縮率=(1−硬化前の樹脂の比重/硬化後の樹脂の比重)×100
1) Total light transmittance (JIS K 7361-1): Measured using an ultraviolet-visible light infrared spectrophotometer (V-630M manufactured by JASCO Corporation).
2) Refractive index: Measured using an Abbe refractometer (DR-M4 Atago Co., Ltd.).
3) Water absorption: The sample was dried at 50 ° C., weighed, and then immersed in warm water at 25 ° C. for 24 hours. The weight after 24 hours was measured, and the water absorption was determined by the following formula.
Water absorption rate (%) = [(water absorption weight−dry weight) / dry weight] × 100
4) Linear expansion coefficient: Using a thermomechanical analyzer (manufactured by TMA), the linear expansion coefficient in the range of 30 ° C. to 200 ° C. was measured under conditions of a heating rate of 5 ° C./min and a compression load of 0.1 N .
5) Curing shrinkage: The specific gravity before and after curing was measured to calculate the volume shrinkage. The specific gravity of the curable resin composition was determined by a pycnometer method (JIS K 7112), and the cured product was determined by an underwater substitution method (JIS K 7112).
Curing shrinkage = (1-specific gravity of resin before curing / specific gravity of resin after curing) × 100

Figure 0005336399
Figure 0005336399

本発明における複合型レンズは、例えば携帯電話やデジタルカメラ等に搭載されるレンズ付きCCD、レンズ付きCMOSセンサー等のような、半導体とレンズとが一体化してなるカメラモジュール等のレンズとして好適に利用される。その他、耐熱性が要求される車載用カメラモジュール等のレンズ等にも利用可能である。   The compound lens according to the present invention is suitably used as a lens for a camera module in which a semiconductor and a lens are integrated, such as a CCD with a lens and a CMOS sensor with a lens mounted on a mobile phone or a digital camera. Is done. In addition, it can also be used for lenses such as in-vehicle camera modules that require heat resistance.

1:レンズ基材
2:硬化性樹脂組成物
3:ガラス製金型
4:樹脂層
5:複合型レンズ
1: Lens substrate 2: Curable resin composition 3: Glass mold 4: Resin layer 5: Composite lens

Claims (3)

レンズ基材に樹脂層を接合してなる複合型レンズであって、レンズ基材および樹脂層が、それぞれ硬化樹脂からなり、少なくとも樹脂層が、下記一般式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(但し、R1及びR2は、ビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって、互いに同じか異なるものであってもよく、Xは炭素数5〜50の脂肪族構造、脂環式構造、芳香族構造及び−OCOO−結合の1つもしくは複数含む構造であり、n、m及びlはそれぞれ平均値を表し、nは6〜14の数であり、m及びlは1以上であり、m+lは2〜2,000である。)で表されて、重量平均分子量がMw=5,000〜1,000,000であり、不飽和二重結合を有するビニル基、アリル基、及び(メタ)アクリロイル基からなる群から選ばれた1種又は2種以上の反応性官能基を1分子中に少なくとも2つ有するシリコーン樹脂を硬化させてなることを特徴とする耐熱性複合型レンズ。
A compound lens in which a resin layer is bonded to a lens substrate, wherein the lens substrate and the resin layer are each made of a cured resin, and at least the resin layer has the following general formula (1)
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(However, R 1 and R 2 are vinyl groups, allyl groups, alkyl groups, aryl groups, (meth) acryloyl groups, or groups having an oxirane ring, and may be the same or different from each other, The structure includes one or more of an aliphatic structure having 5 to 50 carbon atoms, an alicyclic structure, an aromatic structure, and an —OCOO— bond, and n, m, and l each represent an average value, and n is 6 to 14 M and l are 1 or more, and m + 1 is 2 to 2,000). The weight average molecular weight is Mw = 5,000 to 1,000,000 and unsaturated Curing a silicone resin having at least two reactive functional groups in one molecule selected from the group consisting of a vinyl group having a double bond, an allyl group, and a (meth) acryloyl group; Heat-resistant composite type 'S.
レンズ基材が、上記一般式(1)で表されるシリコーン樹脂を硬化させてなることを特徴とする請求項1に記載の耐熱性複合型レンズ。   2. The heat resistant composite lens according to claim 1, wherein the lens substrate is formed by curing a silicone resin represented by the general formula (1). レンズ基材及び/又は樹脂層が、シリコーン樹脂に対して、分子中に少なくとも1つのエチレン性不飽和二重結合を有する化合物及び/又は分子中に少なくともヒドロシリル基を有する化合物を配合し、さらにラジカル開始剤及び/又はヒドロシリル化触媒を配合して得られる硬化性樹脂組成物を硬化させてなることを特徴とする請求項1又は2に記載の耐熱性複合型レンズ。   The lens base material and / or the resin layer is compounded with a compound having at least one ethylenically unsaturated double bond in the molecule and / or a compound having at least a hydrosilyl group in the molecule with respect to the silicone resin. 3. The heat resistant composite lens according to claim 1, wherein a curable resin composition obtained by blending an initiator and / or a hydrosilylation catalyst is cured.
JP2010021828A 2010-02-03 2010-02-03 Heat-resistant compound lens Expired - Fee Related JP5336399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021828A JP5336399B2 (en) 2010-02-03 2010-02-03 Heat-resistant compound lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021828A JP5336399B2 (en) 2010-02-03 2010-02-03 Heat-resistant compound lens

Publications (2)

Publication Number Publication Date
JP2011158797A JP2011158797A (en) 2011-08-18
JP5336399B2 true JP5336399B2 (en) 2013-11-06

Family

ID=44590767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021828A Expired - Fee Related JP5336399B2 (en) 2010-02-03 2010-02-03 Heat-resistant compound lens

Country Status (1)

Country Link
JP (1) JP5336399B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550879B1 (en) 2016-12-13 2023-07-03 미쯔비시 케미컬 주식회사 Electrolytic solution for electrolytic capacitor containing polyorganosiloxane, polyorganosiloxane composition, cured product thereof, and polyorganosiloxane, and electrolytic capacitor using the same
CN117783199B (en) * 2024-02-27 2024-05-14 中国科学院长春光学精密机械与物理研究所 Device and method for detecting linear expansion coefficient

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073450B2 (en) * 2007-10-26 2012-11-14 新日鐵化学株式会社 Manufacturing method of heat-resistant compound lens
JP5342795B2 (en) * 2008-03-24 2013-11-13 新日鉄住金化学株式会社 籠 Structure-containing curable silicone copolymer, method for producing the same, curable resin composition using 籠 structure-containing curable silicone copolymer, and cured product thereof
JP5383250B2 (en) * 2009-02-26 2014-01-08 新日鉄住金化学株式会社 Curable resin composition and cured product

Also Published As

Publication number Publication date
JP2011158797A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
Jiang et al. Recent advances in UV/thermal curing silicone polymers
JP4381636B2 (en) Silicone resin composition and silicone resin molded article
WO2009119253A1 (en) Silanol-group-containing curable cage-type silsesquioxane compound, cage-structure-containing curable silicone copolymer, processes for producing these, and curable resin composition
JP5000303B2 (en) Silica-containing silicone resin composition and molded article thereof
JP5433426B2 (en) Method for producing silicone resin and curable resin composition containing the silicone resin
JP4142385B2 (en) Silicone resin composition and silicone resin molded article
KR102095315B1 (en) Cage silsesquioxane compound, curable resin composition using the same and its cured resin
JPWO2007119627A1 (en) Curable composition, cured product of silsesquioxane, and production method thereof
JP5342795B2 (en) 籠 Structure-containing curable silicone copolymer, method for producing the same, curable resin composition using 籠 structure-containing curable silicone copolymer, and cured product thereof
JP5108751B2 (en) Curable resin, curable resin composition, and molded article thereof
WO2013094585A1 (en) Glass fiber composite resin substrate
US20140323677A1 (en) Thermal-shock-resistant cured product and method for producing same
JP5073450B2 (en) Manufacturing method of heat-resistant compound lens
JP5073738B2 (en) lens
JP6994562B2 (en) A coating film containing a coating resin composition and a cured product thereof as a coating layer.
JP5844796B2 (en) Curable silicone resin composition and silicone resin cured product
JP5336399B2 (en) Heat-resistant compound lens
JP5383250B2 (en) Curable resin composition and cured product
CN101762835B (en) Heat-resistant compound type lens
JP5385832B2 (en) Curable resin composition and molded product obtained therefrom
KR101514725B1 (en) Heat-resistant complex type lens
JP2012082303A (en) Curable composition
TW202406993A (en) Silsesquioxane derivative and method of producing the same, curable composition, hard coating agent, cured product, hard coating, and base material
JP2022157239A (en) Resin composition for photo-molding and photo-molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees