Nothing Special   »   [go: up one dir, main page]

JP5333424B2 - Fuel supply device for internal combustion engine - Google Patents

Fuel supply device for internal combustion engine Download PDF

Info

Publication number
JP5333424B2
JP5333424B2 JP2010273984A JP2010273984A JP5333424B2 JP 5333424 B2 JP5333424 B2 JP 5333424B2 JP 2010273984 A JP2010273984 A JP 2010273984A JP 2010273984 A JP2010273984 A JP 2010273984A JP 5333424 B2 JP5333424 B2 JP 5333424B2
Authority
JP
Japan
Prior art keywords
fuel
temperature
cooler
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010273984A
Other languages
Japanese (ja)
Other versions
JP2012122416A (en
Inventor
雅裕 本間
健治 加藤
久人 月元
文治 多武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2010273984A priority Critical patent/JP5333424B2/en
Priority to RU2011149784/06A priority patent/RU2490510C1/en
Publication of JP2012122416A publication Critical patent/JP2012122416A/en
Application granted granted Critical
Publication of JP5333424B2 publication Critical patent/JP5333424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、内燃機関に燃料タンクの燃料を供給するため装備される燃料供給装置、特に、内燃機関より燃料タンク内に還流される燃料の高温化を防止するための燃料クーラーを備えた内燃機関の燃料供給装置に関する。   The present invention relates to a fuel supply device equipped to supply fuel in a fuel tank to an internal combustion engine, and more particularly, to an internal combustion engine having a fuel cooler for preventing high temperature of fuel recirculated from the internal combustion engine into the fuel tank. The present invention relates to a fuel supply apparatus.

内燃機関、例えば、ディーゼルエンジン(以後単にエンジンと記す)には、燃料タンクの燃料を供給管路を通して供給し、燃料噴射装置で消費されなかった余剰燃料を戻し管路により燃料タンクに戻すようにした燃料供給装置が設けられる。
ところで、従来式の副室式燃料噴射装置を備えたエンジン(IDIディーゼルエンジン)に比べ,直噴式コモンレール燃料噴射装置を備えたエンジン(DIコモンレール式ディーゼルエンジン)は、通常、リターン燃料温度が高いことが知られている。更に、エンジンの高圧燃料ポンプへ供給する燃料の温度は高圧燃料ポンプ側要求燃料温度以下に抑える必要がある。このため、戻し管路(リターンフューエルライン)に燃料クーラーを装着する等の工夫で燃料を冷やしている。
In an internal combustion engine, for example, a diesel engine (hereinafter simply referred to as an engine), fuel in a fuel tank is supplied through a supply line, and surplus fuel that has not been consumed in the fuel injection device is returned to the fuel tank through a return line. A fuel supply device is provided.
By the way, an engine with a direct injection type common rail fuel injection device (DI common rail type diesel engine) usually has a higher return fuel temperature than an engine with a conventional sub chamber type fuel injection device (IDI diesel engine). It has been known. Furthermore, the temperature of the fuel supplied to the high-pressure fuel pump of the engine needs to be kept below the required fuel temperature of the high-pressure fuel pump. For this reason, the fuel is cooled by means such as mounting a fuel cooler on the return pipe (return fuel line).

例えば、従来の燃料供給装置では、図8に示すように、エンジン100に装備される燃料噴射装置110に対し、燃料タンク120の燃料がフィルタ130を備える供給管路140を介して供給される。ここでの燃料噴射装置100はエンジン駆動に連動して駆動する高圧ポンプ150を備え、高圧ポンプ150に連結された燃料噴射弁160が高圧燃料をエンジン本体内の燃焼室(不図示)に噴射することで、エンジン100の出力発生が成されている。   For example, in the conventional fuel supply device, as shown in FIG. 8, the fuel in the fuel tank 120 is supplied to the fuel injection device 110 provided in the engine 100 via the supply line 140 including the filter 130. The fuel injection device 100 here includes a high-pressure pump 150 that is driven in conjunction with engine driving, and a fuel injection valve 160 connected to the high-pressure pump 150 injects high-pressure fuel into a combustion chamber (not shown) in the engine body. Thus, the output of the engine 100 is generated.

この燃料噴射装置100で消費されなかった余剰燃料はサーモスタット190及び燃料クーラー170を備えた戻し管路180を介して燃料タンク120に戻されている。この際、戻し管路180の燃料クーラー170が余剰燃料を冷却するので、一旦、燃料タンクに戻され、再度エンジン側に供給される燃料が過度に高温化することを抑制している。このため、高圧燃料ポンプ側要求燃料温度以下に抑制でき、またガソリンエンジンの場合は、燃料気化によりベーパ発生や燃料中のベーパ発生に起因する空燃比の希薄化が生じることを抑制でき、エンジン出力が低下することを防止している。   Excess fuel that has not been consumed by the fuel injection device 100 is returned to the fuel tank 120 via a return line 180 including a thermostat 190 and a fuel cooler 170. At this time, since the fuel cooler 170 in the return pipe line 180 cools the surplus fuel, the fuel that is once returned to the fuel tank and supplied to the engine side again is prevented from being excessively heated. For this reason, it can be suppressed below the required fuel temperature on the high-pressure fuel pump side, and in the case of a gasoline engine, it is possible to suppress the occurrence of vapor or the dilution of the air-fuel ratio due to the generation of vapor in the fuel due to fuel vaporization. Is prevented from falling.

一方、雰囲気温度が低い場合、高圧ポンプ150と燃料クーラー170の間のサーモスタット190が切り換え操作され、これによりサーモスタット190の上流側の戻し管路180の燃料がサーモスタット190の下流側のバイパス路200を通して燃料クーラー170を迂回して燃料タンク120に戻されている。ここでは、余剰燃料(低温軽油)が燃料クーラー170で過度に冷却されることを防ぐことが出来、余剰燃料が過冷却されてワックス析出温度を下回り、あるいは、燃料タンク120内の燃料温度が低温軽油中に析出したワックスを溶融させるに必要な溶融温度を確保することができない状態に至り、燃料中に含まれるワックス成分の析出が生じ、これに伴う流動抵抗急増によりエンジンの燃料供給不足が発生してしまうという事態の発生を防ぐようにしている。   On the other hand, when the ambient temperature is low, the thermostat 190 between the high pressure pump 150 and the fuel cooler 170 is switched, whereby the fuel in the return line 180 upstream of the thermostat 190 passes through the bypass path 200 downstream of the thermostat 190. The fuel cooler 170 is bypassed and returned to the fuel tank 120. Here, excessive fuel (low-temperature light oil) can be prevented from being excessively cooled by the fuel cooler 170, and the excessive fuel is supercooled and falls below the wax precipitation temperature, or the fuel temperature in the fuel tank 120 is low. The melt temperature required to melt the wax deposited in the light oil cannot be secured, and the wax component contained in the fuel precipitates, resulting in a rapid increase in flow resistance, resulting in insufficient fuel supply to the engine. I try to prevent the occurrence of the situation.

なお、エンジンの燃料噴射装置からの余剰燃料を戻し管路に設けた燃料クーラーで冷却してから燃料タンクに戻すようにした燃料供給装置の一例が引用文献1(特開2004−162538号公報)に開示される。
ここでは燃料クーラーの上流側分岐部に流路切換え用のサーモスタットを設け、このサーモスタットが余剰燃料の温度が高いと燃料クーラーに燃料を流して燃料の過度の高温化を抑制し、温度が低いとバイパス管路に燃料を流して燃料の過冷却を防止し燃料中に含まれるワックスの析出やエンジンへの燃料供給不足の発生を防止している。
An example of a fuel supply device in which surplus fuel from a fuel injection device of an engine is cooled by a fuel cooler provided in a return pipe and then returned to a fuel tank is disclosed in JP-A-2004-162538. Is disclosed.
Here, a thermostat for switching the flow path is provided at the upstream branch of the fuel cooler, and when the temperature of the surplus fuel is high, the fuel flows to the fuel cooler to suppress excessively high temperature of the fuel, and when the temperature is low Fuel is allowed to flow through the bypass pipe to prevent overcooling of the fuel, thereby preventing the precipitation of wax contained in the fuel and the occurrence of insufficient fuel supply to the engine.

更に、引用文献2(特開2003−56344号公報)に開示される燃料供給装置には、エンジンのラジエータと、オイルクーラーと、インタークーラーと、フューエルクーラーとを一体に配置した建設機械のエンジン冷却装置が開示される。ここで、燃料噴射ポンプ17のリターンラインには燃料クーラーの上流側にサーモバルブが設けられ、このサーモバルブは燃料噴射ポンプからの燃料が低温時にあると、燃料クーラーをバイパスして燃料タンクに戻し、過冷却を防止している。   Further, the fuel supply device disclosed in the cited document 2 (Japanese Patent Laid-Open No. 2003-56344) includes an engine cooling device for a construction machine in which an engine radiator, an oil cooler, an intercooler, and a fuel cooler are integrally arranged. Is disclosed. Here, a thermo valve is provided on the return line of the fuel injection pump 17 on the upstream side of the fuel cooler. When the fuel from the fuel injection pump is at a low temperature, the thermo valve bypasses the fuel cooler and returns it to the fuel tank. Prevents overcooling.

特開2004−162538号公報JP 2004-162538 A 特開2003−56344号公報JP 2003-56344 A

上述のように、従来のDIコモンレール式ディーゼルエンジンでは、雰囲気温度が比較的高温の場合、例えば図8に示すように、余剰燃料を燃料クーラー170で冷却してから燃料タンク120に戻すことで、再度エンジン100に供給される燃料が過度に高温化することを抑制し、高圧燃料ポンプ側要求燃料温度以下に抑え、エンジン出力低下を防止している。
一方、雰囲気温度が低い場合、例えば図8に示すように、燃料クーラー170の上流位置のサーモスタット190が燃料温度の低下を検出し、これに応じて燃料をバイパス路200に流して燃料クーラーによる過冷却を避け、余剰燃料(低温軽油)が過度に冷却されることを防止し、燃料中に含まれるワックス成分の析出に伴う流動抵抗急増によりエンジンの燃料供給不足が発生することを抑制している。
As described above, in the conventional DI common rail type diesel engine, when the ambient temperature is relatively high, for example, as shown in FIG. 8, the surplus fuel is cooled by the fuel cooler 170 and then returned to the fuel tank 120. The fuel supplied to the engine 100 again is prevented from being excessively heated, and is kept below the required fuel temperature on the high-pressure fuel pump side to prevent a decrease in engine output.
On the other hand, when the ambient temperature is low, for example, as shown in FIG. 8, the thermostat 190 upstream of the fuel cooler 170 detects a decrease in the fuel temperature, and in response to this, the fuel is caused to flow through the bypass passage 200 and the excess by the fuel cooler. Avoids cooling, prevents excessive fuel (low-temperature gas oil) from being cooled excessively, and suppresses the occurrence of insufficient fuel supply to the engine due to a rapid increase in flow resistance accompanying the precipitation of the wax component contained in the fuel. .

しかし、上述の引用文献1、2や、図8に示した燃料供給装置では、燃料クーラーの上流位置である、燃料クーラーを通過する前の位置における余剰燃料の温度をサーモスタットで検知して、過冷却防止制御を行っている。
このため、従来装置では高圧ポンプからサーモスタットに達した余剰燃料の温度に応じて余剰燃料を燃料クーラーに流すか、バイパス路に流して保温性を維持するかの切換を行っており、燃料クーラー通過後の燃料温度が雰囲気温度の影響でどの程度低下するかは考慮していない。
However, in the fuel supply devices shown in the above cited references 1 and 2 and FIG. 8, the temperature of the surplus fuel at the position before passing through the fuel cooler, which is the upstream position of the fuel cooler, is detected by the thermostat, Cooling prevention control is performed.
For this reason, in the conventional apparatus, switching is performed between flowing the surplus fuel to the fuel cooler according to the temperature of the surplus fuel that has reached the thermostat from the high-pressure pump or maintaining the heat retaining property by flowing to the bypass passage. It does not consider how much the later fuel temperature decreases due to the influence of the ambient temperature.

即ち、引用文献1、2や図8に示した燃料供給装置では、寒冷地を走行する場合、例え、高圧ポンプ1からサーモスタットに達した段階での余剰燃料の温度が、バイパス路への切換を必要としない場合でも、燃料クーラー通過後の余剰燃料の温度が外気で過度に低温化されてしまうような場合には、ワックス析出温度を下回り、あるいは、燃料タンク内の燃料温度が低温化して燃料中に析出したワックスを溶融させるに必要な溶融温度を確保することができず、これに伴い流動抵抗急増によりエンジンの燃料供給不足が生じてしまうという事態の発生を防止できない。   That is, in the fuel supply devices shown in the cited documents 1 and 2 and FIG. 8, when traveling in a cold region, for example, the temperature of the surplus fuel when it reaches the thermostat from the high-pressure pump 1 switches to the bypass path. Even if it is not necessary, if the temperature of the surplus fuel after passing through the fuel cooler is excessively lowered by the outside air, the temperature becomes lower than the wax deposition temperature, or the fuel temperature in the fuel tank is lowered and the fuel is cooled. The melting temperature necessary for melting the wax precipitated therein cannot be ensured, and accordingly, it is impossible to prevent the occurrence of a situation in which insufficient fuel supply to the engine occurs due to a rapid increase in flow resistance.

本発明は以上のような課題に基づきなされたもので、目的とするところは、リターン燃料が燃料クーラーで過度に冷却されるような場合に、タンク内の燃料中に析出したワックスを溶融することができずフィルタが目詰まりし、エンジンの燃料供給不足が発生するという事態の発生を確実に防止できる内燃機関の燃料供給装置を提供することにある。   The present invention has been made on the basis of the above problems, and the object is to melt the wax precipitated in the fuel in the tank when the return fuel is excessively cooled by the fuel cooler. It is an object of the present invention to provide a fuel supply device for an internal combustion engine that can reliably prevent the occurrence of a situation in which the engine cannot be supplied and the filter is clogged, resulting in insufficient fuel supply to the engine.

本願請求項1の発明は、燃料タンクからの燃料をエンジンの燃料噴射装置に供給する供給管路と、前記燃料噴射装置からの余剰燃料を燃料クーラーで冷却して前記燃料タンクへ戻す戻し管路と、該戻し管路を流動する燃料を前記燃料クーラーの上流側の分岐部より下流側の合流部に燃料クーラーを迂回して流動させるバイパス路と、前記合流部を通過する燃料の温度に応じて前記戻し管路又は前記バイパス路のどちらか一方と前記燃料タンクとを連通させる流路切換え手段を備え、前記流路切換え手段は、前記合流部を通過する燃料温度が高温側第一温度より高温であると前記燃料クーラーと燃料タンクを連通させ、該燃料温度が低温側第一温度以下の低温であると前記バイパス路と燃料タンクを連通させるように切換えるサーモスタットであり、前記燃料噴射装置からの余剰燃料量を制御する余剰燃料制御手段を備え、前記余剰燃料制御手段は、前記燃料温度が前記低温側第一温度より低温の低温側第二温度を下回ると前記余剰燃料量を増量することを特徴とするThe invention of claim 1 of the present application is a supply line for supplying fuel from a fuel tank to a fuel injection device of an engine, and a return line for cooling surplus fuel from the fuel injection device by a fuel cooler and returning it to the fuel tank. Depending on the temperature of the fuel that passes through the junction, and a bypass path that causes the fuel flowing through the return pipe to flow around the fuel cooler by bypassing the fuel cooler to the downstream junction from the upstream branch of the fuel cooler Flow path switching means for communicating either the return pipe line or the bypass path with the fuel tank, wherein the flow path switching means is configured such that the temperature of the fuel passing through the junction is higher than the first temperature on the high temperature side. A thermostat for switching the fuel cooler and the fuel tank to communicate with each other when the temperature is high, and to switch the fuel passage between the bypass passage and the fuel tank when the fuel temperature is lower than the first temperature on the low temperature side. And a surplus fuel control means for controlling an amount of surplus fuel from the fuel injection device, wherein the surplus fuel control means is configured to control the surplus fuel control means when the fuel temperature falls below a low temperature side second temperature lower than the low temperature side first temperature. The amount of surplus fuel is increased .

本願請求項の発明は、請求項に記載の内燃機関の燃料供給装置において、前記バイパス路は車体下部に支持された収容ボックス内に保持されたことを特徴とする。 The invention of claim 2 of the present application is the fuel supply device for an internal combustion engine according to claim 1 , wherein the bypass path is held in a storage box supported at the lower part of the vehicle body.

本願請求項の発明は、請求項に記載の内燃機関の燃料供給装置において、前記バイパス路は前記燃料クーラーと共に車体下部に支持された収容ボックス内に保持されたことを特徴とする。 According to a third aspect of the present invention, in the fuel supply device for an internal combustion engine according to the second aspect , the bypass path is held in a storage box supported at a lower part of a vehicle body together with the fuel cooler.

本願請求項の発明は、請求項に記載の内燃機関の燃料供給装置において、前記収容ボックスは前記燃料クーラーに外気を導くシャッターを備え、前記制御手段は該シャッターを前記燃料温度が前記高温側第一温度を上回ると開放状態に切換え、前記低温側第二温度を下回ると閉鎖状態に切換えることを特徴とする。 According to a fourth aspect of the present invention, in the fuel supply apparatus for an internal combustion engine according to the third aspect , the storage box includes a shutter for guiding outside air to the fuel cooler, and the control means controls the shutter so that the fuel temperature is the high temperature. When it exceeds the first temperature on the side, it switches to the open state, and when it falls below the second temperature on the low temperature side, it switches to the closed state.

本願請求項の発明は、請求項1〜のいずれか1つに記載の内燃機関の燃料供給装置において、前記内燃機関が発生する出力を制御する出力制御手段を備え、前記出力制御手段は、前記燃料温度が前記高温側第一温度より高温の高温側第二温度を上回ると前期内燃機関からの所値以上の高出力発生を制限することを特徴とする。 The invention of claim 5 of the present application is the internal combustion engine fuel supply apparatus according to any one of claims 1 to 4 , further comprising output control means for controlling an output generated by the internal combustion engine, wherein the output control means comprises: When the fuel temperature exceeds the high temperature side second temperature that is higher than the high temperature side first temperature, the generation of a high output exceeding the predetermined value from the internal combustion engine is limited.

請求項1の発明は、合流部を通過する燃料の温度、即ち燃料タンクに戻る実際の燃料温度に応じて戻し管路とバイパス路を切換え、燃料タンク内の燃料温度をより正確に制御する。この際、サーモスタットの切換えにより、合流部を通過する燃料の温度が高温側第一温度より高温であると、燃料クーラーで燃料を冷却し、高圧燃料ポンプ側要求燃料温度へと至ることを抑制してエンジン出力低下を防止する。一方、低温側第一温度以下の低温であると、燃料をバイパス路より燃料タンクに戻して、燃料中のワックス析出へと至ることを抑制し、ワックスによるフィルタの目詰まりを抑え、エンジンの燃料供給不足が発生することを確実に防止できる。特に、燃料温度が低温側第二温度を下回ると燃料タンクに戻される高温の余剰燃料量を増量させることで、燃料タンク内の燃料温度が過剰に冷却されることを防止できる。 According to the first aspect of the present invention, the return pipe and the bypass are switched according to the temperature of the fuel passing through the junction, that is, the actual temperature of the fuel returning to the fuel tank, and the temperature of the fuel in the fuel tank is more accurately controlled . At this time, by switching the thermostat, if the temperature of the fuel passing through the junction is higher than the first temperature on the high temperature side, the fuel is cooled by the fuel cooler, and it is suppressed from reaching the required fuel temperature on the high pressure fuel pump side. To prevent a decrease in engine output. On the other hand, when the temperature is lower than the first temperature on the low temperature side, the fuel is returned to the fuel tank from the bypass passage, and the wax is prevented from depositing in the fuel, and the filter of the filter due to the wax is suppressed. It is possible to reliably prevent a supply shortage from occurring. In particular, when the fuel temperature falls below the second temperature on the low temperature side, the amount of high-temperature surplus fuel returned to the fuel tank is increased, thereby preventing the fuel temperature in the fuel tank from being excessively cooled.

請求項の発明は、バイパス路が収容ボックス内に保持されるので、燃料温度が低温側第一温度以下の低温であって、燃料をバイパス路より燃料タンクに戻す際に、バイパス路での燃料温度の低下を防止して、より確実に、燃料の過冷却による燃料中のワックス析出を抑え、タンク内の燃料がワックスを溶融させるに必要な温度以上に保持することができ、フィルタの目詰まり、エンジンの燃料供給不足を確実に防止できる。 In the invention of claim 2 , since the bypass path is held in the storage box, the fuel temperature is a low temperature lower than the first temperature on the low temperature side, and when returning the fuel from the bypass path to the fuel tank, This prevents the fuel temperature from dropping and more reliably suppresses wax precipitation in the fuel due to overcooling of the fuel, keeping the fuel in the tank above the temperature necessary to melt the wax, and Clogging and insufficient fuel supply to the engine can be reliably prevented.

請求項の発明は、バイパス路と燃料クーラーとが共に収容ボックス内に保持されるので、請求項に記載の内燃機関の燃料供給装置と同様の効果に加え、バイパス路と燃料クーラーとを共に走行時における路面の異物との接触を防止して、耐久性を確保できる。 In the invention of claim 3 , since both the bypass passage and the fuel cooler are held in the storage box, in addition to the same effect as the fuel supply device for the internal combustion engine according to claim 2 , the bypass passage and the fuel cooler are provided. Both can prevent contact with foreign matter on the road surface side during traveling and ensure durability.

請求項の発明は、請求項に記載の内燃機関の燃料供給装置と同様の効果に加え、収容ボックスに設けたシャッターを燃料温度が高温側第一温度を上回ると開放状態にあるように制御して燃料クーラーに外気を導き、燃料タンクに流入する燃料の過度の昇温を抑制でき、逆に、燃料温度が低温側第一温度以下でかつバイパス路側に流路が切換え状態にあってもなお低温状態にあると、即ち低温側第二温度を下回るとシャッターを閉鎖して燃料クーラーの冷却機能を抑え、バイパス路側より燃料タンクに流入する燃料の過冷却を防止できる。 According to a fourth aspect of the present invention, in addition to the same effect as the fuel supply device for the internal combustion engine according to the third aspect , the shutter provided in the housing box is opened when the fuel temperature exceeds the first temperature on the high temperature side. Control the outside air to the fuel cooler and suppress excessive temperature rise of the fuel flowing into the fuel tank. Conversely, the fuel temperature is lower than the first temperature on the low temperature side and the flow path is switched to the bypass path side. However, when the temperature is still low, that is, when the temperature is lower than the second temperature on the low temperature side, the shutter is closed to suppress the cooling function of the fuel cooler, and overcooling of the fuel flowing into the fuel tank from the bypass path side can be prevented.

請求項の発明は、燃料温度が高温側第二温度を上回る場合、機関出力制御を行うことで余剰燃料の燃料温度を抑制し、燃料温度の過昇温を防止できる。 According to the fifth aspect of the present invention, when the fuel temperature is higher than the second temperature on the high temperature side, the engine temperature is controlled to suppress the fuel temperature of the surplus fuel and prevent the fuel temperature from excessively rising.

本発明の一実施形態としての内燃機関の燃料供給装置の全体構成図である。1 is an overall configuration diagram of a fuel supply device for an internal combustion engine as one embodiment of the present invention. 図1の内燃機関の燃料供給装置の全体概略模式図である。FIG. 2 is an overall schematic diagram of the fuel supply device for the internal combustion engine of FIG. 1. 図1の内燃機関の燃料供給装置における複数箇所での燃料温度の変動特性を示す線図である。FIG. 2 is a diagram showing fluctuation characteristics of fuel temperature at a plurality of locations in the fuel supply device for the internal combustion engine of FIG. 1. 本発明の他の実施形態である内燃機関の燃料供給装置の全体構成図である。It is a whole block diagram of the fuel supply apparatus of the internal combustion engine which is other embodiment of this invention. 図4の内燃機関の燃料供給装置で用いる燃料流路切換え処理ルーチンのフローチャートである。6 is a flowchart of a fuel flow path switching processing routine used in the fuel supply device for the internal combustion engine of FIG. 4. 本発明の他の実施形態である内燃機関の燃料供給装置で用いる戻し管路とその周りの燃料クーラー、バイパス管路及び三方切換え弁、燃料クーラーシャッターの拡大部分切欠正面図である。FIG. 6 is an enlarged partial cutaway front view of a return pipe used in a fuel supply device for an internal combustion engine according to another embodiment of the present invention, a fuel cooler around it, a bypass pipe, a three-way switching valve, and a fuel cooler shutter. 図6の内燃機関の燃料供給装置で用いる燃料流路切換え処理ルーチンのフローチャートである。It is a flowchart of the fuel flow-path switching process routine used with the fuel supply apparatus of the internal combustion engine of FIG. 従来装置の内燃機関の燃料供給装置の全体概略模式図である。It is a whole schematic diagram of the fuel supply device of the internal combustion engine of the conventional device.

以下、本発明の第1の実施の形態である内燃機関の燃料供給装置M1について説明する。
図1は本発明の内燃機関の燃料供給装置M1の全体構成を示し、図2には要部概略構成図を示した。
この内燃機関の燃料供給装置M1は内燃機関としてのディーゼルエンジン(以後エンジンと記す)1と、エンジン1に供給する燃料を貯蔵するための燃料タンク2と、燃料タンク2からの燃料をエンジン1の燃料噴射装置3に供給する供給管路4と、燃料噴射装置3からの余剰燃料を燃料タンク2へ戻す戻し管路5とを備え、図2に示すように、燃料供給路R1は概略的に環状を成すように形成される。
Hereinafter, the fuel supply device M1 for an internal combustion engine according to the first embodiment of the present invention will be described.
FIG. 1 shows an overall configuration of a fuel supply device M1 for an internal combustion engine according to the present invention, and FIG.
A fuel supply device M1 for the internal combustion engine includes a diesel engine (hereinafter referred to as an engine) 1 as an internal combustion engine, a fuel tank 2 for storing fuel supplied to the engine 1, and fuel from the fuel tank 2 for the engine 1. As shown in FIG. 2, the fuel supply path R1 is schematically shown as a supply line 4 for supplying the fuel injection apparatus 3 and a return line 5 for returning surplus fuel from the fuel injection apparatus 3 to the fuel tank 2. It is formed so as to form an annular shape.

更に、内燃機関の燃料供給装置M1はエンジン1から燃料タンク2へ還流される燃料を冷却するための燃料クーラー6と、戻し管路5を流動する燃料を燃料クーラー6の上流側の分岐部7より下流側の合流部8に燃料クーラー6を迂回して流動させるバイパス管路9と、合流部8に配備された流路切換え手段11とを備える。
流路切換え手段11は合流部8に配備されたサーモスタット45と、
合流部8を通過する燃料の温度を検知する温度センサ13と、サーモスタット45の切換え状態(不図示のリミットスイッチの出力)を検出し、ラジエーターシャッター、燃料クーラーシャッター、エンジン余剰燃料増量減量制御、エンジン出力制限を制御する制御手段14とを有する。
Furthermore, the fuel supply device M1 for the internal combustion engine cools the fuel that is recirculated from the engine 1 to the fuel tank 2 and the fuel flowing through the return pipe 5 from the upstream branch 7 of the fuel cooler 6. A bypass pipe line 9 for bypassing the fuel cooler 6 to flow to the merging section 8 on the downstream side and a flow path switching means 11 provided in the merging section 8 are provided.
The flow path switching means 11 includes a thermostat 45 provided in the junction 8;
The temperature sensor 13 for detecting the temperature of the fuel passing through the junction 8 and the switching state of the thermostat 45 (the output of a limit switch (not shown)) are detected, and the radiator shutter, the fuel cooler shutter, the engine excess fuel increase / decrease control, the engine And control means 14 for controlling output limitation.

図1に示す燃料噴射装置3はエンジン1に連動する高圧燃料ポンプ15と、エンジン本体101の長手方向に沿って配備されると共に高圧燃料ポンプ15から高圧燃料が供給されるコモンレール16と、不図示の各気筒の燃焼室に燃料噴射する各気筒と対向配備された燃料噴射弁17とを備える。エンジン本体101に支持された高圧燃料ポンプ15には車体側2支持された燃料タンク2内の燃料が直接フィルタ30を備える供給管路4を介して吸引されている。
また、図1に2点差線で示すように、低圧燃料ポンプ18有り仕様の場合は、電動の低圧燃料ポンプ18からフィルタ30を備える供給管路4を介して燃料を吸引し、その低圧燃料が高圧燃料ポンプ15で吸引され供給される。
A fuel injection device 3 shown in FIG. 1 includes a high-pressure fuel pump 15 that is linked to the engine 1, a common rail 16 that is disposed along the longitudinal direction of the engine body 101 and that is supplied with high-pressure fuel from the high-pressure fuel pump 15, and is not illustrated. Each cylinder for injecting fuel into the combustion chamber of each cylinder and a fuel injection valve 17 arranged oppositely. The fuel in the fuel tank 2 supported on the vehicle body side 2 is directly sucked into the high-pressure fuel pump 15 supported by the engine body 101 via the supply line 4 including the filter 30.
Further, as shown by a two-dotted line in FIG. 1, in the case of the specification with the low-pressure fuel pump 18, the fuel is sucked from the electric low-pressure fuel pump 18 through the supply line 4 provided with the filter 30, It is sucked and supplied by the high-pressure fuel pump 15.

ここでは、高圧燃料ポンプ30のポンプ作動により供給された燃料を高圧化し、高圧燃料をコモンレール16を経て各気筒の燃料噴射弁17に供給し、制御手段14に制御される燃料噴射弁17により高圧燃料を対向する各燃焼室に噴射する。なお、図1中の符号181はタンク内フィルタを示す。更に、二点差線で示す符号19は低圧燃料ポンプ18有り仕様の場合に用いる供給管路4の低圧燃料圧を所定値に調整する調圧バルブである。
コモンレール16の一端には燃料圧を検知する燃圧センサ21が配備され、他端には燃圧調整弁20が配備され、燃圧調整弁20にはコモンレール16からの余剰燃料を燃料タンク2へ戻す戻し管路5が接続される。ここでは燃圧センサ21の燃圧信号に応じて制御手段14が高圧燃料ポンプ15の駆動及び燃圧調整弁20、余剰燃料量を調整してコモンレール圧を所定値に保持するよう制御している。
Here, the pressure of the fuel supplied by the pump operation of the high-pressure fuel pump 30 is increased, the high-pressure fuel is supplied to the fuel injection valve 17 of each cylinder via the common rail 16, and the pressure is increased by the fuel injection valve 17 controlled by the control means 14. Fuel is injected into each opposing combustion chamber. In addition, the code | symbol 181 in FIG. 1 shows the filter in a tank. Further, a reference numeral 19 indicated by a two-point difference line is a pressure regulating valve for adjusting the low pressure fuel pressure in the supply pipe line 4 to be a predetermined value used in the specification with the low pressure fuel pump 18.
A fuel pressure sensor 21 that detects fuel pressure is provided at one end of the common rail 16, and a fuel pressure adjustment valve 20 is provided at the other end. A return pipe that returns excess fuel from the common rail 16 to the fuel tank 2 is provided in the fuel pressure adjustment valve 20. Path 5 is connected. Here, in accordance with the fuel pressure signal of the fuel pressure sensor 21, the control means 14 controls the drive of the high-pressure fuel pump 15, the fuel pressure adjusting valve 20, and the surplus fuel amount so as to maintain the common rail pressure at a predetermined value.

戻し管路5はコモンレール16よりの余剰燃料を燃料タンク2に戻す流路であり、その途中で、各燃料噴射弁17や高圧燃料ポンプ15側の各リーク燃料を流動させる噴射ポンプ側戻し管22と合流し、それらの余剰燃料を下流側の分岐部7側に流動させる。戻し管路5の分岐部7はバイパス管路9の上流側が分岐して延出するように形成され、合流部8はバイパス管路9の下流側が合流するように形成される。戻し管路5の分岐部7と合流部8との間には燃料クーラー6が配設され、この燃料クーラー6と並列に直状のバイパス管路9が配備される。   The return pipe 5 is a flow path for returning surplus fuel from the common rail 16 to the fuel tank 2, and in the middle thereof, the injection pump-side return pipe 22 that causes the leak fuels on the fuel injection valves 17 and the high-pressure fuel pump 15 to flow. And the surplus fuel flows to the downstream branching portion 7 side. The branch portion 7 of the return pipeline 5 is formed so that the upstream side of the bypass pipeline 9 branches and extends, and the junction 8 is formed so that the downstream side of the bypass pipeline 9 merges. A fuel cooler 6 is disposed between the branching portion 7 and the merging portion 8 of the return pipe 5, and a straight bypass pipe 9 is provided in parallel with the fuel cooler 6.

バイパス管路9の主要部と燃料クーラー6とサーモスタット45とは共に車体下部のフロア板23に締結された収容ボックス24内に収容される。収容ボックス24は強化プラスチック、例えばガラス繊維強化プラスチック(FRP)でよく、鋼板で形成されても良い。このような収容ボックス24の内壁に収容部材の取り付け部を形成しておくことで、容易に車体側に収容部材を取り付け支持できる。しかも、走行時における路面側の異物との接触を防止でき、耐久性を確保できる。   The main part of the bypass line 9, the fuel cooler 6, and the thermostat 45 are all housed in a housing box 24 fastened to the floor plate 23 at the bottom of the vehicle body. The storage box 24 may be a reinforced plastic such as glass fiber reinforced plastic (FRP), and may be formed of a steel plate. By forming the attachment portion of the accommodation member on the inner wall of the accommodation box 24, the accommodation member can be easily attached and supported on the vehicle body side. Moreover, contact with foreign matter on the road surface side during traveling can be prevented, and durability can be ensured.

特に、燃料クーラー6は収容ボックス24の側壁に設けた導風口25と対向配備され、この導風口より不図示の排気口に向かう走行風の流動により、燃料の放熱を容易に行なえるように形成される。一方、バイパス管路9は導風口25より不図示の排気口に向かう走行風と干渉しないような形状部位、例えば、最も収容ボックス24の上壁に近い部位に配備され、場合により、防風壁241で覆うように形成しておき、これによって、バイパス管路9を流動する燃料の放熱を抑制するようにしている。
ここで、戻し管路5は分岐部7と戻し管路5のとの間にバイパス管路9と燃料クーラー6の管路を並列に配備し、特に、合流部8にサーモスタット45を配備した構成を採る。
In particular, the fuel cooler 6 is disposed so as to face the air inlet 25 provided on the side wall of the storage box 24, and is formed so that the fuel can be easily radiated by the flow of traveling air from the air inlet toward the exhaust port (not shown). Is done. On the other hand, the bypass line 9 is provided in a shape part that does not interfere with the traveling wind from the air guide port 25 toward the exhaust port (not shown), for example, a part closest to the upper wall of the storage box 24. In this way, heat dissipation of the fuel flowing through the bypass pipe 9 is suppressed.
Here, the return pipe 5 has a configuration in which a bypass pipe 9 and a fuel cooler 6 pipe are arranged in parallel between the branch portion 7 and the return pipe 5, and in particular, a thermostat 45 is arranged in the junction 8. Take.

流路切換え手段11の要部を成すサーモスタット45は収容ボックス24の内壁に固着されたケーシング46と、ケーシング46内の弁摺動穴47に摺動可能に支持された弁体48と、弁体48の一端と収容ボックス24の上端部との間に配備されたサーモスタット本体を成す感温部49と、弁体48の他端と収容ボックス24の下端部との間に配備された戻しばね51とを備える。
収容ボックス24にはバイパス管路9と連通するバイパスポートh1と、燃料クーラー6の管路と連通するクーラーポートh2と、これらと対向する位置に配備された流入ポートh3が形成され、更に、流入ポートh3は連絡路rhを介して弁摺動穴47の燃料流動室471に連通する。更に、燃料流動室471は連絡路rh側と離れた部位より下流側戻し管路501に連通している。
The thermostat 45 constituting the main part of the flow path switching means 11 includes a casing 46 fixed to the inner wall of the storage box 24, a valve body 48 slidably supported in a valve sliding hole 47 in the casing 46, and a valve body A temperature sensing portion 49 forming a thermostat main body disposed between one end of 48 and the upper end portion of the storage box 24; and a return spring 51 disposed between the other end of the valve body 48 and the lower end portion of the storage box 24. With.
The storage box 24 is formed with a bypass port h1 that communicates with the bypass conduit 9, a cooler port h2 that communicates with the conduit of the fuel cooler 6, and an inflow port h3 that is disposed at a position facing these. The port h3 communicates with the fuel flow chamber 471 of the valve sliding hole 47 through the communication path rh. Further, the fuel flow chamber 471 communicates with the downstream return pipe 501 from a portion away from the communication path rh.

弁摺動穴47は収容ボックス24の上下方向に長く形成され、そこに嵌合された弁体48は上下弁部481、482の2区分に区分され、上端には感温部49の外筒部材491が一体結合され、外筒部材491の中央に嵌合された内筒部材492が弁摺動穴47の内壁に一体結合される。
この感温部49は燃料流動室471を流動する燃料の温度に応じて内筒部材492に対し外筒部材491が伸縮変位し、これに応じて外筒部材491と一体の弁体48が戻しばね51の弾性力に抗して上下に摺動する。ここで、内筒部材492に対し外筒部材491が縮小変位し、上端の第1位置d1に保持されると下弁部482がバイパスポートh1を流入ポートh3に連通させ、クーラーポートh2を閉じる状態を保持する。一方、内筒部材492に対し外筒部材491が伸長変位し、下端の第2位置d2に保持されると上弁部481によりクーラーポートh2が流入ポートh3に連通され、バイパスポートh1を閉じる状態を保持する。
The valve sliding hole 47 is formed long in the vertical direction of the storage box 24, and the valve body 48 fitted therein is divided into two sections, upper and lower valve parts 481 and 482, and the outer cylinder of the temperature sensing part 49 is formed at the upper end. The member 491 is integrally coupled, and the inner cylinder member 492 fitted in the center of the outer cylinder member 491 is integrally coupled to the inner wall of the valve sliding hole 47.
In the temperature sensing portion 49, the outer cylinder member 491 expands and contracts with respect to the inner cylinder member 492 in accordance with the temperature of the fuel flowing in the fuel flow chamber 471, and the valve body 48 integrated with the outer cylinder member 491 returns accordingly. It slides up and down against the elastic force of the spring 51. Here, when the outer cylinder member 491 is reduced and displaced with respect to the inner cylinder member 492 and is held at the first position d1 at the upper end, the lower valve portion 482 communicates the bypass port h1 with the inflow port h3 and closes the cooler port h2. Keep state. On the other hand, when the outer cylinder member 491 is extended and displaced with respect to the inner cylinder member 492 and is held at the second position d2 at the lower end, the cooler port h2 is communicated with the inflow port h3 by the upper valve portion 481, and the bypass port h1 is closed. Hold.

次に、このようなサーモスタット45を合流部8に配し流路切換え手段11を構成する第1実施形態としての内燃機関の燃料供給装置M1の作動を説明する。
ここで、車両の走行初期にエンジン1の暖気前には、燃料温度の比較的低温(低温側第一温度Tfc)以下であり、サーモスタット45はその感温部が燃料流動室471の燃料温度が低いので、収縮し、上端の第1位置d1に保持され、下弁部482がバイパスポートh1と流入ポートh3を連通し、保温状態を保持するバイパス管路9より燃料を燃料タンク2側に導く。
Next, the operation of the fuel supply device M1 for the internal combustion engine as the first embodiment in which such a thermostat 45 is arranged in the junction 8 to constitute the flow path switching means 11 will be described.
Here, before the engine 1 warms up in the early stage of traveling of the vehicle, the temperature of the fuel is relatively low (low temperature side first temperature Tfc), and the thermostat 45 has a temperature sensing portion whose fuel temperature in the fuel flow chamber 471 is high. Since it is low, it contracts and is held at the first position d1 at the upper end, and the lower valve part 482 communicates the bypass port h1 and the inflow port h3, and guides fuel to the fuel tank 2 side from the bypass line 9 that maintains the heat-retaining state. .

この状態では、燃料の低温化を抑制し、燃料タンク2に流入する燃料温度の過度の低下を抑えるようにし、例え寒冷地走行時でも図3に符号Lb1で示す燃料温度の状態より、符号L1で示す昇温側の温度状態に早期に変位するように出来る。これにより、燃料タンク2に流入した燃料の温度が低温側第二温度(過冷却温度)Tcより比較的高温に保持され、ワックス等の析出物を抑制し、析出物を溶融させることができ、各フィルタ181、30の目詰まりや低圧燃料ポンプ18の作動不良を防止でき、エンジンの燃料供給不足が発生することを確実に防止できる。   In this state, the temperature of the fuel is suppressed from being lowered, and an excessive decrease in the temperature of the fuel flowing into the fuel tank 2 is suppressed. For example, even when the vehicle is traveling in a cold region, the reference symbol L1 indicates the fuel temperature indicated by the symbol Lb1 in FIG. It can be displaced early to the temperature state on the temperature raising side indicated by. Thereby, the temperature of the fuel flowing into the fuel tank 2 is maintained at a relatively high temperature than the low temperature side second temperature (supercooling temperature) Tc, and precipitates such as wax can be suppressed and the precipitates can be melted. The clogging of the filters 181 and 30 and the malfunction of the low-pressure fuel pump 18 can be prevented, and the occurrence of insufficient fuel supply to the engine can be reliably prevented.

一方、車両が走行初期に高温側第一温度Tf2を下回る環境域にあるとし(例えばLnの温度域)、サーモスタット45が第1位置d1に保持され、下弁部482がバイパスポートh1と流入ポートh3を連通し、バイパス管路9より燃料を燃料タンク2側に導く状態にあると仮定する。この状態より、車両が高温地域に入り、高温側第一温度Tf2を上回る環境域を走行するとする。この場合、燃料温度の上昇により、感温部49の内筒部材492に対し外筒部材491が伸長変位し、モスタット45が第1位置d1より第2位置d2に切り換わる。これにより、上弁部481によりクーラーポートh2が流入ポートh3に連通し、バイパスポートh1を閉じる状態を保持する。   On the other hand, assuming that the vehicle is in an environment range lower than the high temperature side first temperature Tf2 at the beginning of travel (for example, the temperature range of Ln), the thermostat 45 is held at the first position d1, and the lower valve portion 482 is connected to the bypass port h1 and the inflow port. It is assumed that h3 is communicated and the fuel is led from the bypass pipe 9 to the fuel tank 2 side. From this state, it is assumed that the vehicle enters a high temperature region and travels in an environmental region that exceeds the high temperature side first temperature Tf2. In this case, as the fuel temperature rises, the outer cylinder member 491 extends and displaces with respect to the inner cylinder member 492 of the temperature sensing section 49, and the mostat 45 switches from the first position d1 to the second position d2. Thereby, the cooler port h2 communicates with the inflow port h3 by the upper valve part 481, and the state which closes the bypass port h1 is hold | maintained.

この状態では、燃料を燃料クーラー6で冷却して燃料の高温化を抑制し、燃料タンク2に流入させる。この場合、例えば、図3に符号Lhで示す高温走行域側での温度変動が本来なされるとしても、燃料を燃料クーラー6で確実に冷却して、燃料タンク2側に導くので、燃料タンク2の燃料温度の昇温が抑制され、図3に符号Lmで示す温度変位側に変動する。
これにより、たとえ高温地域走行でも、燃料クーラー6の冷却作用により、高圧燃料ポンプ30の入口での燃料温度が高圧燃料ポンプ側要求燃料温度Tk、例えば、80℃を上回り過度に高温化することを防止するという制御目標を達成できエンジン出力低下を防止できる。
In this state, the fuel is cooled by the fuel cooler 6 to suppress the temperature rise of the fuel and flow into the fuel tank 2. In this case, for example, even if the temperature fluctuation on the high temperature traveling region side indicated by the symbol Lh in FIG. 3 is originally performed, the fuel is reliably cooled by the fuel cooler 6 and guided to the fuel tank 2 side. The fuel temperature rise is suppressed, and the fuel temperature fluctuates to the temperature displacement side indicated by Lm in FIG.
As a result, even when traveling in a high-temperature region, the fuel temperature at the inlet of the high-pressure fuel pump 30 exceeds the required fuel temperature Tk of the high-pressure fuel pump, for example, 80 ° C. The control target of preventing can be achieved and the engine output can be prevented from lowering.

次に、本発明の第2実施形態としての内燃機関の燃料供給装置M2を説明する。
この第2実施形態は、第1実施形態と対比し、流路切換え手段11aが合流部8に設けられた三方切換え弁12である点、及びこの制御部を付加した点以外は同一構成部が多く、ここでは同一部材には同一符号を付し、重複説明を略す。
図4に示すように、ここでの合流部8に設けた流路切換え手段11aは収容ボックス24a内に配備される。この収容ボックス24aはその側壁に常開の導風口25が設けられ、導風口25の奥側に燃料クーラー6画配備される。
合流部8に配備された三方切換え弁12は第1流入ポートp1が燃料クーラー6に連通し、第2流入ポートp2がバイパス管路9に連通し、流出ポートp3が燃料タンク2に達する下流側戻し管路501に連通している。
Next, a fuel supply device M2 for an internal combustion engine as a second embodiment of the present invention will be described.
In contrast to the first embodiment, the second embodiment has the same components except that the flow path switching means 11a is a three-way switching valve 12 provided in the merging section 8 and that this control section is added. In many cases, the same members are denoted by the same reference numerals, and redundant description is omitted.
As shown in FIG. 4, the flow path switching means 11a provided at the junction 8 here is arranged in the storage box 24a. The accommodation box 24 a is provided with a normally open air inlet 25 on the side wall thereof, and a fuel cooler 6 image is arranged on the inner side of the air inlet 25.
The three-way switching valve 12 disposed in the junction 8 has a first inflow port p1 that communicates with the fuel cooler 6, a second inflow port p2 that communicates with the bypass line 9, and an outflow port p3 that reaches the fuel tank 2 downstream. It communicates with the return line 501.

ここでは合流部8の流出ポートp3の近傍に温度センサ13が配備され、これにより合流部8を通過する、即ち、バイパス管路9で温度低下を抑制された燃料、あるいは、燃料クーラー6で冷却された燃料の各温度を検知し、制御手段14に出力するようにしている。   Here, a temperature sensor 13 is provided in the vicinity of the outflow port p3 of the merging portion 8 so as to pass through the merging portion 8, that is, the fuel whose temperature drop is suppressed by the bypass pipe 9, or cooled by the fuel cooler 6. Each temperature of the detected fuel is detected and output to the control means 14.

ここでの三方切換え弁12は電磁切換え弁であり、高温所定温度(高温側第一温度Tf2)を上回る出力を受ける燃料温度状態(Lhの状態)では第1流入ポートp1が流出ポートp3に連通して燃料クーラー6の燃料を燃料タンク2に流動でき、低温所定温度(低温側第一温度Tf1)以下の出力を受ける燃料温度状態では第2流入ポートp2が流出ポートp3に連通して、バイパス管路9の燃料を燃料タンク2に流動できる。   The three-way switching valve 12 here is an electromagnetic switching valve, and the first inflow port p1 communicates with the outflow port p3 in a fuel temperature state (Lh state) that receives an output exceeding a high temperature predetermined temperature (high temperature side first temperature Tf2). In the fuel temperature state in which the fuel in the fuel cooler 6 can flow to the fuel tank 2 and receives an output lower than the low temperature predetermined temperature (low temperature side first temperature Tf1), the second inflow port p2 communicates with the outflow port p3 to bypass The fuel in the conduit 9 can flow to the fuel tank 2.

制御手段14は、デジタルコンピュータから構成され、双方向性バス141を介して相互に接続されたROM142、RAM143、CPU144、入力ポート145および出力ポート146を備え、後述する切換え制御機能を発揮する。ここで、入力ポート145には車両の運転情報であるエンジン回転数Neや吸気量Qaや水温Twがそれぞれ不図示のセンサより入力され、更に、燃圧センサ21より燃料圧Pfが、温度センサ13より合流部8の流出ポートp3の近傍の燃料温度Tfnが入力される。
このような第2実施形態の内燃機関の燃料供給装置M2の作動を、図3の温度変動特性線図及び図5の燃料供給制御ルーチンのフローチャートを用いて説明する。
The control means 14 is composed of a digital computer, and includes a ROM 142, a RAM 143, a CPU 144, an input port 145, and an output port 146 connected to each other via a bidirectional bus 141, and exhibits a switching control function described later. Here, the engine speed Ne, the intake air amount Qa, and the water temperature Tw, which are vehicle operation information, are input to the input port 145 from sensors (not shown), and further, the fuel pressure Pf from the fuel pressure sensor 21 and the temperature sensor 13 The fuel temperature Tfn in the vicinity of the outflow port p3 of the junction 8 is input.
The operation of the fuel supply device M2 for the internal combustion engine according to the second embodiment will be described with reference to the temperature fluctuation characteristic diagram of FIG. 3 and the flowchart of the fuel supply control routine of FIG.

制御手段14は、車両の走行時に不図示のメインルーチンにおいて車両の運転情報に応じたエンジン1の駆動制御を行い、特に、燃料噴射装置3と燃料供給装置M2の制御をそれぞれの制御タイミングで順次行う。ここで燃料噴射制御では運転情報に応じてコモンレール圧と噴射量と噴射時期を演算し、その演算結果に応じて高圧燃料ポンプ15と各気筒の燃料噴射弁17を駆動し、所望の出力を発するよう制御している。
一方、燃料供給制御が図4の燃料供給制御ルーチンに沿って行われる。
ここで、ステップs1に達すると、最新の合流部8(図3には燃料クーラー出口と同一位置として概略的に示した)の燃料温度を温度センサ13により余剰燃料温度であるリターン燃料温度Tfnとして検知し、記憶処理する。
The control means 14 performs drive control of the engine 1 in accordance with vehicle operation information in a main routine (not shown) when the vehicle is running, and in particular, controls the fuel injection device 3 and the fuel supply device M2 sequentially at respective control timings. Do. Here, in the fuel injection control, the common rail pressure, the injection amount, and the injection timing are calculated according to the operation information, and the high-pressure fuel pump 15 and the fuel injection valve 17 of each cylinder are driven according to the calculation result to generate a desired output. It is controlled as follows.
On the other hand, fuel supply control is performed according to the fuel supply control routine of FIG.
Here, when step s1 is reached, the fuel temperature of the latest junction 8 (shown schematically as the same position as the fuel cooler outlet in FIG. 3) is set as a return fuel temperature Tfn, which is an excess fuel temperature, by the temperature sensor 13. Detect and store.

ステップs2では、車両が常温域、例えば、予め、適宜設定された低温側第一温度である低温判定値Tf1(20℃)以上の地域を走行か、それ以下の低温域を走行か判断し、常温域走行と判断するとステップs3に進み、低温域を走行と判断するとステップs4に進む。
ステップs4に達すると、オン出力を三方切換え弁12に発して、燃料クーラー6と燃料タンク2を遮断し、バイパス路9と燃料タンク2を連通させる。
In step s2, it is determined whether the vehicle is traveling in a normal temperature range, for example, a region where the first low temperature side temperature set in advance is a low temperature determination value Tf1 (20 ° C.) or higher, or a low temperature region lower than that. If it is determined that the vehicle is traveling in the normal temperature range, the process proceeds to step s3. If it is determined that the vehicle is traveling in the low temperature range, the process proceeds to step s4.
When step s4 is reached, an ON output is issued to the three-way switching valve 12, the fuel cooler 6 and the fuel tank 2 are shut off, and the bypass passage 9 and the fuel tank 2 are communicated.

この寒冷地走行を継続した場合、本来、寒冷地走行のため、リターン燃料温度Tfnが外気で過度に冷却され、低温側第二温度(過冷却温度)Tc以下の低温側に変動する。例えば、図3に符号Lb1で示す2点差線のように、燃料温度が低温化し、符号c1より変動し、噴射ポンプ15で加圧、加熱され温度上昇するが、噴射ポンプ15、燃料噴射弁17及びコモンレール16から余剰燃料として排出されると、再度、外気により冷却される。特に、この状態のままで燃料クーラー6を燃料が通過すると過度に冷却され、過冷却温度Tc以下に下がって燃料タンク2に流入し、その場合、過冷却によりワックス等の析出物を生じているタンク内の燃料中の析出物を溶融できない場合がある。このようにワックスが混入する燃料が再度低圧燃料ポンプ18より吐出され燃料供給路R1を流動すると、ポンプ18自体や、低圧燃料ポンプ側フィルタ181、フィルタ30で目詰まりが進み、流路抵抗が増加し、所定の燃料供給量を確保する上で問題となる。   When traveling in the cold region is continued, the return fuel temperature Tfn is inherently excessively cooled by the outside air because of traveling in the cold region, and fluctuates to a low temperature side lower than the low temperature side second temperature (supercooling temperature) Tc. For example, as indicated by a two-point difference line indicated by a symbol Lb1 in FIG. 3, the fuel temperature is lowered and fluctuates from the symbol c1, and is pressurized and heated by the injection pump 15 to rise in temperature, but the injection pump 15 and the fuel injection valve 17 When the fuel is discharged from the common rail 16 as surplus fuel, it is cooled again by outside air. In particular, when the fuel passes through the fuel cooler 6 in this state, the fuel is excessively cooled, falls below the supercooling temperature Tc and flows into the fuel tank 2, and in this case, precipitates such as wax are generated due to the supercooling. In some cases, deposits in the fuel in the tank cannot be melted. When the fuel mixed with the wax is discharged again from the low-pressure fuel pump 18 and flows through the fuel supply path R1, the clogging of the pump 18 itself, the low-pressure fuel pump side filter 181 and the filter 30 proceeds, and the flow path resistance increases. However, there is a problem in securing a predetermined fuel supply amount.

しかし、このような事態の発生を防止するため、この燃料供給制御装置M2では、ステップs4において、三方切換え弁12をオンし、燃料をバイパス路9に迂回させ、燃料タンク2に戻すように切換え制御している。
このため、バイパス路9を通過して過度の低温化が防止され、本来、図3に示す符号Lb1(燃料タンク入口での温度c1がTcを下回る状態)に沿って温度変動していた燃料は燃料クーラー6の影響を受けない状態に保持でき、図3に示す細い2点鎖線La1に沿って変位し、燃料タンク2入口に達する位置での温度はc2を保持し、過冷却温度Tcを下回ることを防止される。
However, in order to prevent the occurrence of such a situation, in the fuel supply control device M2, in step s4, the three-way switching valve 12 is turned on to switch the fuel to the bypass path 9 and return to the fuel tank 2. I have control.
For this reason, excessively low temperature is prevented by passing through the bypass 9, and the fuel whose temperature fluctuated originally along the symbol Lb <b> 1 (the state where the temperature c <b> 1 at the fuel tank inlet is lower than Tc) shown in FIG. 3 is The fuel cooler 6 can be held without being affected, and is displaced along the thin two-dot chain line La1 shown in FIG. 3 so that the temperature at the position reaching the fuel tank 2 inlet holds c2 and is lower than the supercooling temperature Tc. To be prevented.

さらに、この状態での燃料が2点鎖線Lb2に沿って温度上昇して循環することで、燃料タンク2の入口に再度達する位置での温度はc3を保持し、過冷却温度Tcを更に上回ることなる。やがて、図3に実線で示す符号L1の変動状態に達し、外気への放熱とエンジン1側からの加熱との間でのバランスが保たれる。このような走行状態では、たとえ寒冷地走行でも、燃料温度が過冷却温度Tcより十分高めに保持され、燃料タンク2に流入した燃料中にワックス等の析出物を生じることが防止される。
更に、たとえ、燃料タンク2にワックス等の析出物が生じていても、燃料タンク2中に流入した燃料温度の上昇によりタンク内でワックスを溶融させることができる。このため、再度、タンク内の燃料が供給管路4に流動するとしても、各フィルタ181、30の目詰まりや低圧燃料ポンプ18の作動不良を防止でき、エンジンの燃料供給不足が発生することを確実に防止できる。
Further, the fuel in this state rises in temperature along the two-dot chain line Lb2 and circulates, so that the temperature at the position where it reaches the inlet of the fuel tank 2 again maintains c3 and further exceeds the supercooling temperature Tc. Become. Eventually, the state of fluctuation L1 indicated by a solid line in FIG. 3 is reached, and a balance is maintained between heat radiation to the outside air and heating from the engine 1 side. In such a traveling state, even in a cold region, the fuel temperature is kept sufficiently higher than the supercooling temperature Tc, and precipitates such as wax are prevented from being generated in the fuel flowing into the fuel tank 2.
Furthermore, even if deposits such as wax are generated in the fuel tank 2, the wax can be melted in the tank by the rise in the temperature of the fuel flowing into the fuel tank 2. For this reason, even if the fuel in the tank again flows into the supply line 4, clogging of the filters 181 and 30 and malfunction of the low-pressure fuel pump 18 can be prevented, and an insufficient fuel supply of the engine occurs. It can be surely prevented.

更に、ステップs5、s6に進むと、ここでは燃料噴射装置3からの余剰燃料の温度である最新のリターン燃料温度Tfnを読み取り、これが過冷却温度Tc以下か判断する。燃料が過冷却温度Tcを上回るとこの周期の制御をリターンさせ、外気温が比較的低くいとステップs8に進む。
低温域を走行でステップs8に達すると、走行中の燃料のリターン燃料温度Tfnが過冷却状態を判定する低温側第二温度(過冷却温度)Tc以下の低温であるか否か判断する。
なお、燃料タンク2内の燃料が過冷却によりワックス等の析出物を生じる温度、例えば、−2℃に基づき設定され、ここでは、低温判定値Tf1は燃料タンク内のワックス等の析出物を溶融するに足る燃料温度およびばらつき修正のため、補正値を付けて20℃として予め設定される。
Further, when proceeding to steps s5 and s6, here, the latest return fuel temperature Tfn which is the temperature of the surplus fuel from the fuel injection device 3 is read, and it is determined whether this is below the supercooling temperature Tc. If the fuel exceeds the supercooling temperature Tc, the control of this cycle is returned. If the outside air temperature is relatively low, the process proceeds to step s8.
When step s8 is reached by traveling in the low temperature range, it is determined whether or not the return fuel temperature Tfn of the traveling fuel is a low temperature equal to or lower than the low temperature side second temperature (supercooling temperature) Tc for determining the supercooling state.
The temperature at which the fuel in the fuel tank 2 generates precipitates such as wax due to supercooling is set based on, for example, −2 ° C., where the low temperature judgment value Tf1 melts the precipitates such as wax in the fuel tank. In order to correct the fuel temperature and the variation, it is preset as 20 ° C. with a correction value.

ステップs8でYesであると、燃料の昇温が進まない場合、低温化しているとしてステップs9に進む。ステップs9では余剰燃料であるリターン燃料を増量修正するための余剰燃料増量指令信号S1を制御手段14の不図示のメインルーチン側に出力し、メインルーチンにリターンする。
なお、ステップs8で、この過冷却温度Tcより高温であるとNo側に進み、この回の制御を終了し、メインルーチンにリターンする。
If Yes in step s8, if the temperature of the fuel does not increase, the process proceeds to step s9 because the temperature is lowered. In step s9, the surplus fuel increase command signal S1 for increasing and correcting the return fuel, which is surplus fuel, is output to the main routine (not shown) of the control means 14, and the process returns to the main routine.
In step s8, if the temperature is higher than the supercooling temperature Tc, the process proceeds to the No side, the control of this time is terminated, and the process returns to the main routine.

燃料供給制御ルーチンからステップs9において余剰燃料増量指令信号S1を受けたメインルーチン側では、高圧燃料ポンプ15の吐出量を所定量増量修正する。この増量修正制御により、コモンレール16から戻し管路5を経て燃料タンク2へ戻す加熱された余剰燃料が増え、燃料タンク2の燃料温度の昇温が進み、図3に符号Lb1で示す温度変位より符号L1で示す昇温側に接近する温度変位を早めることができる。これにより、比較的高温化された燃料が徐々に増加し、燃料タンク2に先に流入していたワックス等の析出物を溶融させることができ、各フィルタ181、30の目詰まりや低圧燃料ポンプ18の作動不良を防止でき、エンジンの燃料供給不足が発生することを確実に防止できる。   On the main routine side that has received the surplus fuel increase command signal S1 in step s9 from the fuel supply control routine, the discharge amount of the high-pressure fuel pump 15 is increased by a predetermined amount. Due to this increase correction control, the amount of heated surplus fuel that is returned from the common rail 16 to the fuel tank 2 via the return line 5 increases, and the fuel temperature in the fuel tank 2 rises. From the temperature displacement indicated by the symbol Lb1 in FIG. It is possible to accelerate the temperature displacement approaching the temperature rising side indicated by the symbol L1. As a result, the fuel at a relatively high temperature gradually increases, and precipitates such as wax previously flowing into the fuel tank 2 can be melted, and the filters 181 and 30 are clogged and the low-pressure fuel pump Therefore, it is possible to reliably prevent the engine from being insufficiently supplied with fuel.

一方、ステップs2で燃料温度Tfnが低温判定値Tf1(20℃)以上として、ステップs3に達すると、ここでは、燃料温度Tfnが所定の高温判定値Tf2(60℃)以上か否か判断し、以下では、現状保持し、この回の制御を終了し、メインルーチンにリターンする。
なお、高温所定温度(高温側第一温度Tf2:60℃)は、高圧燃料ポンプ側要求燃料温度Tk、例えば、80℃を上回ることを防止する制御を確実に行うことで、ここでは制御でのゆとり幅を持たせて高温所定温度(高温側第一温度Tf260℃)を適宜設定したが、これに代えて当該要求燃料温度Tk以下の他の温度を設定してもよい。
On the other hand, when the fuel temperature Tfn reaches the low temperature determination value Tf1 (20 ° C.) or higher in step s2 and reaches step s3, it is determined whether or not the fuel temperature Tfn is equal to or higher than the predetermined high temperature determination value Tf2 (60 ° C.). In the following, the current state is maintained, this control is terminated, and the process returns to the main routine.
Note that the high temperature predetermined temperature (high temperature side first temperature Tf2: 60 ° C.) is controlled by reliably performing control to prevent the high pressure fuel pump side required fuel temperature Tk, for example, 80 ° C. from being exceeded. The predetermined high temperature (high temperature side first temperature Tf260 ° C.) is appropriately set with a margin, but instead, another temperature equal to or lower than the required fuel temperature Tk may be set.

このように燃料温度Tfnが低温判定値Tf1(20℃)以上で高温判定値Tf2(60℃)以下の通常燃料温度領域にある場合、例えば、図3に符号Lnで示す定常常温走行域にあると、ここでは外気温が過度に高くないため、燃料クーラー6の冷却作用を受け、燃料タンク2での温度は実線で示す符号Lnの変動状態を保ち、即ち、外気への放熱作用とエンジン1側からの加熱作用とのバランスが保たれる。
一方、合流部8での燃料温度が高温判定値Tf2を上回るとステップs10に達し、切換え燃料温度出力を三方切換え弁12に発して、バイパス路9と燃料タンク2を遮断し、燃料クーラー6と燃料タンク2を連通させる。
In this way, when the fuel temperature Tfn is in the normal fuel temperature region not lower than the low temperature determination value Tf1 (20 ° C.) and not higher than the high temperature determination value Tf2 (60 ° C.), for example, it is in the steady normal temperature traveling region indicated by the symbol Ln in FIG. Here, since the outside air temperature is not excessively high, the fuel cooler 6 is cooled, and the temperature in the fuel tank 2 maintains the fluctuation state of the symbol Ln shown by the solid line, that is, the heat radiation action to the outside air and the engine 1. A balance with the heating action from the side is maintained.
On the other hand, when the fuel temperature at the junction 8 exceeds the high temperature judgment value Tf2, the routine reaches step s10, and a switching fuel temperature output is issued to the three-way switching valve 12, the bypass passage 9 and the fuel tank 2 are shut off, and the fuel cooler 6 The fuel tank 2 is connected.

この場合、例えば、図3に符号Lhで示す高温走行域であることより、燃料温度が特に、エンジン側の加熱や、噴射ポンプの加圧、加熱作用で昇温する傾向にある上、外気温度により燃料供給系の各部材の温度が上昇し、燃料タンク2側で例えば、燃料温度Tfnが60℃を上回る。
このような高温走行域でステップs10より、ステップs11、s12に達すると、ここでは、再度、最新のリターン燃料温度Tfnを読み取り、これが高温判定値Tf2(60℃)を上回るか否か判断し、それより低いとこの制御周期の制御をリターンさせ、外気温が比較的高く、燃料の昇温が更に進む傾向にあり、高圧燃料ポンプ側要求燃料温度Tkに到達する場合、ステップs13に進む。
In this case, for example, the fuel temperature particularly tends to be raised by heating on the engine side, pressurization of the injection pump, or heating action due to the high temperature traveling region indicated by the symbol Lh in FIG. As a result, the temperature of each member of the fuel supply system rises and, for example, the fuel temperature Tfn exceeds 60 ° C. on the fuel tank 2 side.
When reaching step s11, s12 from step s10 in such a high temperature traveling region, here, the latest return fuel temperature Tfn is read again, and it is determined whether this exceeds the high temperature determination value Tf2 (60 ° C.), If it is lower than this, the control in this control cycle is returned, the outside air temperature is relatively high, and the temperature of the fuel tends to further increase. When the high-pressure fuel pump side required fuel temperature Tk is reached, the process proceeds to step s13.

ステップs13では余剰燃料であるリターン燃料を減量修正するための余剰燃料減量指令信号S2を制御手段14の不図示のメインルーチン側に出力し、更に、ステップs14では、最新のリターン燃料温度Tfnが高圧燃料ポンプ側要求燃料温度Tk(80℃)を上回るか否か判断し、以下ではこの会の制御を終了し、上回ると、ステップs15に進む。
ステップs15に達すると、エンジンの一定値以上の高出力発生を制限する出力制御指令信号S3を不図示のメインルーチン側に出力し、この回の制御を終了してメインルーチンにリターンする。
In step s13, the surplus fuel reduction command signal S2 for correcting the reduction of the return fuel as surplus fuel is output to the main routine (not shown) of the control means 14, and in step s14, the latest return fuel temperature Tfn is high. It is determined whether or not the fuel pump side required fuel temperature Tk (80 ° C.) is exceeded. In the following, the control of this association is terminated, and if it exceeds, the process proceeds to step s15.
When step s15 is reached, an output control command signal S3 for restricting the generation of a high output exceeding a certain value of the engine is output to the main routine (not shown), this control is terminated, and the process returns to the main routine.

燃料供給制御ルーチンのステップs13において、余剰燃料減量指令信号S2を受けたメインルーチン側では、高圧燃料ポンプ15の吐出量を所定量減量し、これによりコモンレール16側から戻し管路5を経て燃料タンク2へ戻す加熱された余剰燃料が減量され、燃料タンク2の燃料温度の昇温が抑制され、図3に符号Lhで示す温度変位より低温側の符号Lmで示す温度変位側に変動する。   In step s13 of the fuel supply control routine, on the main routine side that has received the surplus fuel reduction command signal S2, the discharge amount of the high-pressure fuel pump 15 is reduced by a predetermined amount, whereby the fuel tank passes through the return line 5 from the common rail 16 side. The heated surplus fuel returned to 2 is reduced, the temperature rise of the fuel temperature in the fuel tank 2 is suppressed, and the temperature is changed from the temperature displacement indicated by Lh in FIG. 3 to the temperature displacement side indicated by Lm on the low temperature side.

更に、燃料供給制御ルーチンのステップs15において、出力制御指令信号S3を受けたメインルーチン側でエンジンの一定値以上の高出力発生を制限する制御に入ることで、エンジンの高出力発生が抑制され、低温変位が確実に進み、やがて図3に符号Lmで示す温度変位側に達し、外気への放熱作用とエンジン1側の加熱作用とのバランスが保たれ、たとえ高温地域走行でも、燃料クーラー6の冷却作用も加わり、燃料タンク2での温度は実線で示す符号Lmの変動状態が保たれる。この場合、過度の高温化に伴う高圧燃料ポンプ側要求燃料温度Tk、例えば、80℃を上回ることは無く、エンジン出力低下を防止できる。   Further, in step s15 of the fuel supply control routine, the main routine that receives the output control command signal S3 enters control for restricting the generation of a high output exceeding a predetermined value of the engine, thereby suppressing the high output of the engine. The low temperature displacement surely progresses and eventually reaches the temperature displacement side indicated by the symbol Lm in FIG. 3, and the balance between the heat radiation action to the outside air and the heating action on the engine 1 side is maintained. A cooling action is also added, and the temperature in the fuel tank 2 is maintained in the fluctuation state of the symbol Lm shown by the solid line. In this case, the high-pressure fuel pump side required fuel temperature Tk, for example, 80 ° C. accompanying excessively high temperature is not exceeded, and a decrease in engine output can be prevented.

上述のところで、収容ボックス24、24aの側壁に設けた導風口25は常開であったが、場合により導風口25を開閉する燃料クーラーシャッター33を設けた収容ボックス24bを用いた第3の実施形態を構成しても良い。この場合、燃料クーラー6の冷却、バイパス管路9の保温機能を高めることが可能となる。
この第3実施形態は、第2実施形態と対比し、燃料クーラーシャッター33及びラジエーターシャッター37を設け、これらの制御を付加した点で相違し、それ以外、例えば、第3実施形態の流路切換え手段は第2実施形態で用いた流路切換え手段11aと同一の構成のものを採用しており、ここでは同一部材には同一符号を付し、重複説明を略す。
As described above, the air inlet 25 provided on the side walls of the storage boxes 24 and 24a is normally open. However, in some cases, the third embodiment using the storage box 24b provided with the fuel cooler shutter 33 for opening and closing the air inlet 25 is used. A form may be configured. In this case, the cooling function of the fuel cooler 6 and the heat retaining function of the bypass pipe 9 can be enhanced.
This third embodiment is different from the second embodiment in that a fuel cooler shutter 33 and a radiator shutter 37 are provided, and these controls are added. Otherwise, for example, the flow path switching of the third embodiment is performed. The means adopts the same configuration as the flow path switching means 11a used in the second embodiment. Here, the same members are denoted by the same reference numerals, and redundant description is omitted.

図6に示すように、車体下部のフロア板23に締結された収容ボックス24bはその内部に燃料クーラー6とバイパス管路9を収容支持し、燃料クーラー6と接近する側壁には導風口25が形成される。この導風口25は燃料クーラーシャッター33により開閉可能に形成される。
燃料クーラーシャッター33は矩形枠部材331と、その矩形枠部材331に支持され上下方向に複数並列配備のシャッター板34と各シャッター板34をその回転軸回りに開閉作動させるリンク部材35と、リンク部材35を介して複数並列配備のシャッター板34を開閉駆動するモータ36とで構成され、モータ36の開閉駆動制御が制御手段14により行われる。
As shown in FIG. 6, the storage box 24 b fastened to the floor plate 23 at the lower part of the vehicle body accommodates and supports the fuel cooler 6 and the bypass pipe 9 therein, and the air inlet 25 is provided on the side wall approaching the fuel cooler 6. It is formed. The air inlet 25 is formed to be openable and closable by a fuel cooler shutter 33.
The fuel cooler shutter 33 includes a rectangular frame member 331, a shutter plate 34 that is supported by the rectangular frame member 331 and arranged in parallel in the vertical direction, a link member 35 that opens and closes each shutter plate 34 about its rotation axis, and a link member And a motor 36 that opens and closes a plurality of shutter plates 34 arranged in parallel via 35, and the opening and closing drive control of the motor 36 is performed by the control means 14.

一方、エンジン1の前部にはファン42の駆動により冷却風をラジエータ40側に導き、エンジン冷却を行うラジエータ40が配備される。このラジエータ40の前部にはラジエータ40に向かう冷却風の流動を許容し、遮断可能なラジエーターシャッター37が配設される。
ラジエーターシャッター37は矩形枠部材371と、その矩形枠部材371に支持され上下方向に複数並列配備のシャッター板38と各シャッター板38をその回転軸回りに開閉作動させるリンク部材39と、リンク部材39を介して複数並列配備のシャッター板38を開閉駆動するモータ41とで構成され、モータ41の開閉駆動制御が制御手段14により行われる。
On the other hand, a radiator 40 for cooling the engine by guiding the cooling air to the radiator 40 side by driving the fan 42 is disposed at the front of the engine 1. A radiator shutter 37 that allows and blocks the flow of cooling air toward the radiator 40 is disposed at the front of the radiator 40.
The radiator shutter 37 includes a rectangular frame member 371, a shutter plate 38 that is supported by the rectangular frame member 371 and arranged in parallel in the vertical direction, a link member 39 that opens and closes each shutter plate 38 around its rotation axis, and a link member 39. And a motor 41 that opens and closes a plurality of shutter plates 38 arranged in parallel, and the opening and closing drive control of the motor 41 is performed by the control means 14.

このような第3実施形態の内燃機関の燃料供給装置M3の作動を、図7の燃料供給制御ルーチンのフローチャートを用いて説明する。
ここで、図7の燃料供給制御ルーチンの各制御ステップは図5の燃料供給制御ルーチンと比較し、同一ステップ構成が多く、ここでは重複ステップ説明を簡略化する。
図7の燃料供給制御ルーチンでは、ステップa1、a2で最新の合流部8のリターン燃料温度Tfnを検知し、これが低温判定値Tf1(20℃)以上であるとステップa3に進み、低温域を走行と判断するとステップa4に進む。
ステップa4に達すると、寒冷地走行でオン出力を三方切換え弁12に発して、バイパス路9と燃料タンク2を連通させ、次いで、ステップa5に進んでリターン燃料温度Tfnを検知する。
The operation of the fuel supply device M3 for the internal combustion engine of the third embodiment will be described using the flowchart of the fuel supply control routine of FIG.
Here, each control step of the fuel supply control routine of FIG. 7 has many identical step configurations as compared with the fuel supply control routine of FIG.
In the fuel supply control routine of FIG. 7, the latest return fuel temperature Tfn of the junction 8 is detected in steps a1 and a2, and if this is equal to or higher than the low temperature determination value Tf1 (20 ° C.), the process proceeds to step a3 and travels in the low temperature range. If it judges, it will progress to step a4.
When step a4 is reached, an ON output is issued to the three-way switching valve 12 in cold districts to connect the bypass passage 9 and the fuel tank 2, and then the routine proceeds to step a5 where the return fuel temperature Tfn is detected.

次いで、ステップa6では再度、リターン燃料温度Tfnが低温判定値Tf1(20℃)以上であるか否か判断し、低温判定値Tf1より高温であるとこの回の制御を終了し、低温判定値Tf1を下回ると、ステップa7に進む。ここでは、燃料の昇温が進まない場合であり、リターン燃料を増量修正するための余剰燃料増量指令信号S1を出力する。
ステップa7において余剰燃料増量指令信号S1を受けたメインルーチン側では高圧燃料ポンプ15の吐出量を所定量増量修正し、加熱された余剰燃料が増えて燃料タンク2の燃料温度の昇温が進み、例えば、図3に符号Lb1で示す温度変位より符号L1で示す昇温側に接近する。更に、燃料タンク2内の燃料中のワックス等の析出物を溶融させることができ、各フィルタ181、30の目詰まりや低圧燃料ポンプ18の作動不良を防止でき、エンジンの燃料供給不足が発生することを確実に防止できる。
Next, at step a6, it is determined again whether or not the return fuel temperature Tfn is equal to or higher than the low temperature determination value Tf1 (20 ° C.). If the return fuel temperature Tfn is higher than the low temperature determination value Tf1, the control at this time is terminated. If it falls below, the process proceeds to step a7. Here, it is a case where the temperature rise of the fuel does not advance, and the surplus fuel increase command signal S1 for correcting the increase of the return fuel is output.
On the main routine side that has received the surplus fuel increase command signal S1 in step a7, the discharge amount of the high-pressure fuel pump 15 is corrected by a predetermined amount, the heated surplus fuel is increased, and the temperature of the fuel tank 2 is increased. For example, the temperature is closer to the temperature rising side indicated by the symbol L1 than the temperature displacement indicated by the symbol Lb1 in FIG. Further, precipitates such as wax in the fuel in the fuel tank 2 can be melted, clogging of the filters 181 and 30 and malfunction of the low-pressure fuel pump 18 can be prevented, resulting in insufficient fuel supply to the engine. Can be surely prevented.

次いで、ステップa8に進み、最新の合流部8のリターン燃料温度Tfnを検知し、次いで、ステップa9、ステップa10に達すると、最新のリターン燃料温度Tfnが低温側第二温度(過冷却温度)Tc以下の低温であるか否か判断し、過冷却温度Tcより高温であるとこの回の制御を終了する。一方、寒冷地走行で低温化が継続していると、ラジエーターシャッター37のモータ41にシャッター閉出力を発し、燃料クーラーシャッター33のモータ36にシャッター閉出力を発する。
これにより、各シャッター板38を閉じてラジエータ37の冷却風を遮断してエンジン1の水温上昇を図り、エンジン本体に接近する燃料の昇温化を図る。更に、収容ボックス24bの導風口25の各シャッター板34を閉じてその内部の燃料クーラー6とバイパス管路9への走行風の流動を遮断してバイパス管路9より燃料タンク2に向かう燃料の冷却を防止し、保温を図る。
Next, the process proceeds to step a8, where the latest return fuel temperature Tfn of the junction 8 is detected. Then, when the process reaches step a9 and step a10, the latest return fuel temperature Tfn becomes the low temperature side second temperature (supercooling temperature) Tc. It is determined whether or not the temperature is the following, and if the temperature is higher than the supercooling temperature Tc, the control of this time is finished. On the other hand, when the temperature is kept low in the cold region, a shutter closing output is issued to the motor 41 of the radiator shutter 37 and a shutter closing output is issued to the motor 36 of the fuel cooler shutter 33.
As a result, the shutter plates 38 are closed to block the cooling air from the radiator 37 to increase the water temperature of the engine 1, thereby increasing the temperature of the fuel approaching the engine body. Further, each shutter plate 34 of the air guide port 25 of the storage box 24b is closed to block the flow of the traveling wind to the fuel cooler 6 and the bypass pipe 9 therein, and the fuel flowing from the bypass pipe 9 to the fuel tank 2 is blocked. Prevent cooling and keep warm.

一方、上述のステップa2よりステップa3に達すると、ここでは、燃料温度Tfnが所定の高温判定値Tf2(60℃)以下であると、現状保持のため、この回の制御を終了し、メインルーチンにリターンする。
一方、合流部8での燃料温度が高温判定値Tf2を上回りステップa11に達すると、切換え燃料温度出力を三方切換え弁12に発して、燃料クーラー6と燃料タンク2を連通させ、例えば、図3に符号Lhで示す高温走行域であるとすると、燃料クーラー6での冷却を図る。更に、このような高温走行域で、ステップa12、a13に達すると、最新のリターン燃料温度Tfnが高温判定値Tf2(60℃)を上回るか否か判断し、それより低いとこの制御周期の制御をリターンさせ、燃料の昇温が更に進む傾向にあると、ステップa14に進む。
On the other hand, when step a3 is reached from step a2 described above, here, if the fuel temperature Tfn is equal to or lower than a predetermined high temperature determination value Tf2 (60 ° C.), the current control is terminated to maintain the current state, and the main routine Return to
On the other hand, when the fuel temperature at the junction 8 exceeds the high temperature determination value Tf2 and reaches step a11, a switching fuel temperature output is issued to the three-way switching valve 12 so that the fuel cooler 6 and the fuel tank 2 communicate with each other. If it is a high-temperature traveling region indicated by reference numeral Lh, cooling by the fuel cooler 6 is attempted. Further, when the steps a12 and a13 are reached in such a high temperature traveling region, it is determined whether or not the latest return fuel temperature Tfn exceeds the high temperature judgment value Tf2 (60 ° C.). If the fuel temperature rises further, the process proceeds to step a14.

ステップa14に進むと、ここでは、燃料の冷却が進まない場合であり、リターン燃料を減量修正するため、余剰燃料減量指令信号S2を出力する。
余剰燃料減量指令信号S2を受けたメインルーチン側では、高圧燃料ポンプ15の吐出量を所定量減量し、これにより加熱された余剰燃料が減量され、燃料タンク2の燃料温度の昇温が抑制される。
ステップa14において余剰燃料減量指令信号S2が出力され、エンジンの高出力発生が抑制されることで、低温化が進むと、やがて図3に符号Lhの温度変位より符号Lmで示す温度変位側に達する。
When the process proceeds to step a14, here, the cooling of the fuel does not proceed, and the surplus fuel reduction command signal S2 is output in order to correct the return fuel to be reduced.
On the main routine side that has received the surplus fuel reduction command signal S2, the discharge amount of the high-pressure fuel pump 15 is reduced by a predetermined amount, whereby the heated surplus fuel is reduced, and the increase in the fuel temperature of the fuel tank 2 is suppressed. The
In step a14, the surplus fuel reduction command signal S2 is output and the generation of a high output of the engine is suppressed, and as the temperature decreases, the temperature displacement eventually reaches the temperature displacement side indicated by the symbol Lm in FIG. .

これにより、たとえ高温地域走行でも、燃料クーラー6の冷却作用も加わり、燃料タンク2での温度は実線で示す符号Lmの変動状態が保たれる。この場合、過度の高温化に伴う高圧燃料ポンプ側要求燃料温度Tk、例えば、80℃を上回ることは無く、エンジン出力低下を防止できる。
次いで、ステップa15、a16に進む。ここでは最新のリターン燃料温度Tfnを取り込み、これが過度の高温化に伴う高圧燃料ポンプ側要求燃料温度Tk(80℃)を上回るか,否か判定し、それより低いとこの制御周期の制御をリターンさせ、燃料の昇温が更に進む傾向にあると、ステップa17、a18に進む。
As a result, even when traveling in a high-temperature region, the cooling action of the fuel cooler 6 is also added, and the temperature in the fuel tank 2 is maintained in the fluctuation state of the symbol Lm indicated by the solid line. In this case, the high-pressure fuel pump side required fuel temperature Tk, for example, 80 ° C. accompanying excessively high temperature is not exceeded, and a decrease in engine output can be prevented.
Next, the process proceeds to steps a15 and a16. Here, the latest return fuel temperature Tfn is taken, and it is determined whether or not it exceeds the required fuel temperature Tk (80 ° C) on the high-pressure fuel pump side due to excessive temperature rise, and if it is lower, control of this control cycle is returned. If the fuel temperature tends to further increase, the process proceeds to steps a17 and a18.

ステップa17では、燃料の昇温が進む傾向にあり、ここでは、ラジエーターシャッター37及び燃料クーラーシャッター33の各開状態が不図示のリミットスイッチにより検出され、開状態ではステップa19に進み、閉状態ではステップa18に進む。ここでは、ラジエーターシャッター37のモータ41にシャッター開出力を発し、燃料クーラーシャッター33のモータ36にシャッター開出力を発する。
これにより、各シャッター板38を開いてラジエータ37に冷却風を通してエンジン1の冷却を図り、エンジン本体に接近する燃料の昇温を阻止する。更に、収容ボックス24bの導風口25の各シャッター板34を開いてその内部の燃料クーラー6へ走行風を導入して燃料タンク2に向かう燃料の冷却を促進する。
In step a17, the temperature of the fuel tends to increase. Here, each open state of the radiator shutter 37 and the fuel cooler shutter 33 is detected by a limit switch (not shown). In the open state, the process proceeds to step a19, and in the closed state. Proceed to step a18. Here, a shutter opening output is issued to the motor 41 of the radiator shutter 37, and a shutter opening output is issued to the motor 36 of the fuel cooler shutter 33.
As a result, the shutter plates 38 are opened and the cooling air is passed through the radiator 37 to cool the engine 1, thereby preventing the temperature of the fuel approaching the engine body from rising. Furthermore, each shutter plate 34 of the air guide port 25 of the storage box 24b is opened to introduce the traveling air to the fuel cooler 6 inside the shutter plate 34 to promote the cooling of the fuel toward the fuel tank 2.

次いで、ステップa19に進むと、最新のリターン燃料温度Tfnが高圧燃料ポンプ側要求燃料温度Tkを上回るか判断し、以下であり、低温化しているとこの周期の制御をリターンさせ、燃料の冷却が進まない場合、ステップa20に進む。
ステップa20に達すると、エンジンの一定値以上の高出力発生を制限する出力制御指令信号S3を不図示のメインルーチン側に出力し、この回の制御を終了してメインルーチンにリターンする。
Next, when proceeding to step a19, it is determined whether or not the latest return fuel temperature Tfn is higher than the high-pressure fuel pump side required fuel temperature Tk. When not progressing, it progresses to step a20.
When step a20 is reached, an output control command signal S3 for restricting the generation of a high output exceeding a certain value of the engine is output to the main routine (not shown), this control is terminated, and the process returns to the main routine.

上述のように、燃料供給制御ルーチンのステップa14において、余剰燃料減量指令信号S2を受けたメインルーチン側では、高圧燃料ポンプ15の吐出量を所定量減量し、これによりコモンレール16側から戻し管路5を経て燃料タンク2へ戻す加熱された余剰燃料が減量され、燃料タンク2の燃料温度の昇温が抑制され、図3に符号Lhで示す温度変位より低温側の符号Lmで示す温度変位側に変動する。   As described above, in step a14 of the fuel supply control routine, on the main routine side that has received the surplus fuel reduction command signal S2, the discharge amount of the high-pressure fuel pump 15 is reduced by a predetermined amount, and thereby the return line from the common rail 16 side. The amount of the heated surplus fuel that is returned to the fuel tank 2 through 5 is reduced, the temperature rise of the fuel temperature in the fuel tank 2 is suppressed, and the temperature displacement side indicated by reference numeral Lm on the lower temperature side than the temperature displacement indicated by reference numeral Lh in FIG. Fluctuates.

更に、燃料供給制御ルーチンのステップa20において、出力制御指令信号S3を受けたメインルーチン側でエンジンの一定値以上の高出力発生を制限する制御に入ることで、エンジンの高出力発生が抑制され、低温変位が確実に進み、やがて図3に符号Lmで示す温度変位側に達し、外気への放熱作用とエンジン1側の加熱作用とのバランスが保たれ、たとえ高温地域走行でも、燃料クーラー6の冷却作用も加わり、燃料タンク2での温度は実線で示す符号Lmの変動状態が保たれる。この場合、過度の高温化に伴う高圧燃料ポンプ側要求燃料温度Tk(80℃)を上回ることは無く、エンジン出力低下を防止できる。
なお、本発明は上述の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。
Furthermore, in step a20 of the fuel supply control routine, on the main routine side that has received the output control command signal S3, the control for restricting the generation of high output exceeding a certain value of the engine is entered, so that the high output generation of the engine is suppressed, The low temperature displacement surely progresses and eventually reaches the temperature displacement side indicated by the symbol Lm in FIG. 3, and the balance between the heat radiation action to the outside air and the heating action on the engine 1 side is maintained. A cooling action is also added, and the temperature in the fuel tank 2 is maintained in the fluctuation state of the symbol Lm shown by the solid line. In this case, the high-pressure fuel pump side required fuel temperature Tk (80 ° C.) due to excessive temperature rise is not exceeded, and engine output reduction can be prevented.
The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

1 エンジン
2 燃料タンク
3 燃料噴射装置
4 供給管路
5 戻し管路
6 燃料クーラー
7 分岐部
8 合流部
9 バイパス路
11 流路切換え手段
12 三方切換え弁
13 温度センサ
14 制御手段
45 サーモスタット
Tf1 低温判定値
Tf2 高温判定値
Tfn 燃料温度
Tk 高圧燃料ポンプ側要求燃料温度(高温側第二温度)
Tc 過冷却温度(低温側第二温度)
M1,M2,M3 内燃機関の燃料供給装置
DESCRIPTION OF SYMBOLS 1 Engine 2 Fuel tank 3 Fuel injection apparatus 4 Supply line 5 Return line 6 Fuel cooler 7 Branch part 8 Merge part 9 Bypass path 11 Flow path switching means 12 Three-way switching valve 13 Temperature sensor 14 Control means 45 Thermostat Tf1 Low temperature judgment value Tf2 High temperature judgment value Tfn Fuel temperature Tk High pressure fuel pump side required fuel temperature (high temperature side second temperature)
Tc Supercooling temperature (second temperature on the low temperature side)
M1, M2, M3 Fuel supply device for internal combustion engine

Claims (5)

燃料タンクからの燃料をエンジンの燃料噴射装置に供給する供給管路と、前記燃料噴射装置からの余剰燃料を燃料クーラーで冷却して前記燃料タンクへ戻す戻し管路と、該戻し管路を流動する燃料を前記燃料クーラーの上流側の分岐部より下流側の合流部に燃料クーラーを迂回して流動させるバイパス路と、前記合流部を通過する燃料の温度に応じて前記戻し管路又は前記バイパス路のどちらか一方と前記燃料タンクとを連通させる流路切換え手段を備え、
前記流路切換え手段は、前記合流部を通過する燃料温度が高温側第一温度より高温であると前記燃料クーラーと燃料タンクを連通させ、該燃料温度が低温側第一温度以下の低温であると前記バイパス路と燃料タンクを連通させるように切換えるサーモスタットであり、
前記燃料噴射装置からの余剰燃料量を制御する余剰燃料制御手段を備え、
前記余剰燃料制御手段は、前記燃料温度が前記低温側第一温度より低温の低温側第二温度を下回ると前記余剰燃料量を増量することを特徴とする内燃機関の燃料供給装置。
A supply line for supplying fuel from the fuel tank to the fuel injection device of the engine, a return line for cooling surplus fuel from the fuel injection device to the fuel tank by cooling with a fuel cooler, and a flow through the return line A bypass path for flowing the fuel to bypass the fuel cooler to the downstream junction from the upstream branch of the fuel cooler, and the return pipe or the bypass depending on the temperature of the fuel passing through the junction Comprising flow path switching means for communicating either one of the paths and the fuel tank;
The flow path switching unit causes the fuel cooler and the fuel tank to communicate with each other when the temperature of the fuel passing through the junction is higher than the first temperature on the high temperature side, and the fuel temperature is a low temperature lower than the first temperature on the low temperature side. And a thermostat that switches the bypass path and the fuel tank to communicate with each other,
Comprising surplus fuel control means for controlling the surplus fuel amount from the fuel injection device;
The fuel supply device for an internal combustion engine, wherein the surplus fuel control means increases the surplus fuel amount when the fuel temperature falls below a low temperature side second temperature lower than the low temperature side first temperature .
前記バイパス路は車体下部に支持された収容ボックス内に保持されたことを特徴とする請求項1に記載の内燃機関の燃料供給装置。 2. The fuel supply device for an internal combustion engine according to claim 1 , wherein the bypass passage is held in a storage box supported at a lower portion of a vehicle body . 前記バイパス路は前記燃料クーラーと共に車体下部に支持された収容ボックス内に保持されたことを特徴とする請求項2に記載の内燃機関の燃料供給装置。 The fuel supply device for an internal combustion engine according to claim 2 , wherein the bypass path is held in a storage box supported at a lower part of a vehicle body together with the fuel cooler . 前記収容ボックスは前記燃料クーラーに外気を導くシャッターを備え、前記制御手段は該シャッターを前記燃料温度が前記高温側第一温度を上回ると開放状態に切換え、前記低温側第二温度を下回ると閉鎖状態に切換えることを特徴とする請求項3記載の内燃機関の燃料供給装置。 The storage box includes a shutter that guides outside air to the fuel cooler, and the control means switches the shutter to an open state when the fuel temperature exceeds the first temperature on the high temperature side, and closes when the temperature falls below the second temperature on the low temperature side. 4. The fuel supply device for an internal combustion engine according to claim 3 , wherein the fuel supply device is switched to a state . 前記内燃機関が発生する出力を制御する出力制御手段を備え、
前記出力制御手段は、前記燃料温度が前記高温側第一温度より高温の高温側第二温度を上回ると前期内燃機関からの所値以上の高出力発生を制限することを特徴とする請求項1〜4のいずれか1つに記載の内燃機関の燃料供給装置。
Comprising output control means for controlling the output generated by the internal combustion engine;
2. The output control means limits the generation of a high output exceeding a predetermined value from the internal combustion engine in the previous period when the fuel temperature exceeds a high temperature side second temperature higher than the high temperature side first temperature. the fuel supply apparatus for an internal combustion engine according to any one of to 4.
JP2010273984A 2010-12-08 2010-12-08 Fuel supply device for internal combustion engine Active JP5333424B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010273984A JP5333424B2 (en) 2010-12-08 2010-12-08 Fuel supply device for internal combustion engine
RU2011149784/06A RU2490510C1 (en) 2010-12-08 2011-12-07 Fuel feed system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273984A JP5333424B2 (en) 2010-12-08 2010-12-08 Fuel supply device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012122416A JP2012122416A (en) 2012-06-28
JP5333424B2 true JP5333424B2 (en) 2013-11-06

Family

ID=46504110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273984A Active JP5333424B2 (en) 2010-12-08 2010-12-08 Fuel supply device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5333424B2 (en)
RU (1) RU2490510C1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140052532A (en) 2012-10-24 2014-05-07 현대자동차주식회사 Return fuel cooling system for lpi vehicle
JP6036580B2 (en) * 2013-07-04 2016-11-30 株式会社デンソー Fuel supply device
JP6098481B2 (en) 2013-11-12 2017-03-22 株式会社デンソー High pressure pump
JP6579202B2 (en) * 2016-02-12 2019-10-02 日産自動車株式会社 Control method and control apparatus for direct injection internal combustion engine
CN105986910A (en) * 2016-02-26 2016-10-05 马鞍山市常立发机械制造有限公司 Cylinder shutdown oil saving control device of non-supercharging multi-cylinder diesel engine
KR20210012207A (en) * 2019-07-24 2021-02-03 현대자동차주식회사 Mesh filter for fuel supply system of vehicle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343653A (en) * 1989-07-08 1991-02-25 Nippondenso Co Ltd Fuel cooling device
RU2030621C1 (en) * 1989-11-24 1995-03-10 Казахский научно-исследовательский технологический институт эксплуатации и ремонта сельскохозяйственной техники Fuel heater
JPH0519552U (en) * 1991-08-23 1993-03-12 三桜工業株式会社 Gasoline cooling system for automobiles
JP2001065412A (en) * 1999-08-26 2001-03-16 Sanshin Ind Co Ltd Engine
RU2176029C2 (en) * 2000-02-07 2001-11-20 Пензенская государственная сельскохозяйственная академия Thermocompensation fuel system of diesel engine
JP2004162538A (en) * 2002-11-11 2004-06-10 Hitachi Constr Mach Co Ltd Engine fuel cooling system
RU2313000C2 (en) * 2003-11-06 2007-12-20 Военный автомобильный институт Mixer of diesel fuel
JP4479547B2 (en) * 2005-03-10 2010-06-09 三菱自動車工業株式会社 Fuel cooler mounting structure
JP2006266103A (en) * 2005-03-22 2006-10-05 Toyota Motor Corp Warming-up device for internal combustion engine
JP4347271B2 (en) * 2005-07-06 2009-10-21 京三電機株式会社 Return recirculation valve
JP2008162334A (en) * 2006-12-27 2008-07-17 Toyota Motor Corp Protector structure for fuel cooler
JP2009013969A (en) * 2007-07-09 2009-01-22 Toyota Motor Corp Diesel engine and fuel temperature operation device
JP5355177B2 (en) * 2009-03-30 2013-11-27 ヤンマー株式会社 Combine

Also Published As

Publication number Publication date
JP2012122416A (en) 2012-06-28
RU2490510C1 (en) 2013-08-20
RU2011149784A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5333424B2 (en) Fuel supply device for internal combustion engine
US8739745B2 (en) Cooling system and method
US8205443B2 (en) Heat exchanging systems for motor vehicles
JP5754503B2 (en) Fluid control system
US20060162676A1 (en) Engine cooling system
US8973537B2 (en) Engine having thermostat and system thereof
US20130167784A1 (en) Method for operating a coolant circuit
JP2012002094A (en) Internal combustion engine
JP5623474B2 (en) Cooling water control device
GB2473437A (en) Cooling system for an internal combustion engine
JP5780299B2 (en) Cooling water temperature control device for internal combustion engine
JP2016065514A (en) Cooling system of engine
JP5204609B2 (en) Engine control device
JP4145506B2 (en) Cooling water passage layout structure in the engine
US9163551B2 (en) Cooling system for internal combustion engine
JP4983560B2 (en) Engine cooling system
JP2016211461A (en) Vehicle cooling device
WO2013011768A1 (en) Engine cooling circuit
JP2008095694A (en) Cooling device for engine
US20110265740A1 (en) Engine cooling device
JP2012197729A (en) Engine
JP2016205178A (en) Cooling device for internal combustion engine
JP2011220156A (en) Control device of cooling system
CN110307073B (en) Cooling apparatus for engine
CN115341986A (en) Cooling system of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5333424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350