Nothing Special   »   [go: up one dir, main page]

JP5327647B2 - Damping structure - Google Patents

Damping structure Download PDF

Info

Publication number
JP5327647B2
JP5327647B2 JP2010020242A JP2010020242A JP5327647B2 JP 5327647 B2 JP5327647 B2 JP 5327647B2 JP 2010020242 A JP2010020242 A JP 2010020242A JP 2010020242 A JP2010020242 A JP 2010020242A JP 5327647 B2 JP5327647 B2 JP 5327647B2
Authority
JP
Japan
Prior art keywords
truss frame
floor
additional
main truss
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010020242A
Other languages
Japanese (ja)
Other versions
JP2011157724A (en
Inventor
幹夫 柳沢
徹也 半澤
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2010020242A priority Critical patent/JP5327647B2/en
Publication of JP2011157724A publication Critical patent/JP2011157724A/en
Application granted granted Critical
Publication of JP5327647B2 publication Critical patent/JP5327647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は建物の制震技術に関わり、特に高度の耐震性能が要求される電算センターを対象とする制震構造に関する。   The present invention relates to seismic control technology for buildings, and more particularly to a seismic control structure for a computer center that requires high seismic performance.

周知のように、電算センターは地震により高額な電算機が損傷を受けたり保有データが破損してしまうような被害を確実に防止する必要性から、巨大地震に対する高度の耐震性能が要求されるものである。
そのため、建物全体を積層ゴム等の免震装置で免震支持する免震構造が有効とされているが、従来一般の免震構造は地震時の水平動には対処し得るが上下動には充分に対処し得えないので、必ずしも万全とはいえない。
As is well known, a computer center is required to have a high level of seismic performance against a huge earthquake because it is necessary to reliably prevent damages such as damage to expensive computers or damage to stored data due to an earthquake. It is.
For this reason, the seismic isolation structure that supports seismic isolation of the entire building with seismic isolation devices such as laminated rubber is effective, but conventional seismic isolation structures can cope with horizontal movement during an earthquake, but are not suitable for vertical movement. It is not always perfect because it cannot be dealt with sufficiently.

また、建物内に各種の制震ダンパーを設置する制震構造も有効と考えられ、たとえば特許文献1に示される振動低減機構によって上下動に対する制震効果を得ることが検討されている。これは、制震対象の梁に対して付加梁と回転慣性質量ダンパーとによる付加振動系を付加してチューンド・マス・ダンパー(TMD:Tuned Mass damper)として機能させることにより、小質量の錘で制震対象の梁の上下動を制御するようにしたものであり、今後の普及が有望視されている。   In addition, a vibration control structure in which various vibration control dampers are installed in the building is also considered to be effective. For example, it has been studied to obtain a vibration control effect for vertical movement by a vibration reduction mechanism disclosed in Patent Document 1. This is achieved by adding an additional vibration system consisting of an additional beam and a rotary inertia mass damper to the beam to be damped and functioning as a tuned mass damper (TMD). It is designed to control the vertical movement of the beam to be controlled, and is expected to be popular in the future.

特開2008−115552号公報JP 2008-115552 A

しかし、特許文献1に示される振動低減機構は一般的な形態の一般的な構造の建物に適用することを想定したものであり、そのような振動低減機構を電算センターのような特殊な建物にそのまま適用することは現実的ではない。
つまり、一般的な建物とはその機能や要求性能はもとより基本的な構造も大きく異なることが通常である電算センターに対して、特許文献1に示されるような振動低減機構を支障なく適用して有効に機能させるためには、電算センターとしての特殊性を考慮してその形態や基本的な構造形式も含めた総合的な計画と格別の設計手法の開発が不可欠である。
However, it is assumed that the vibration reduction mechanism disclosed in Patent Document 1 is applied to a general structure of a general structure, and such a vibration reduction mechanism is applied to a special building such as a computer center. It is not realistic to apply it as it is.
In other words, the vibration reduction mechanism as shown in Patent Document 1 is applied without difficulty to a computer center that is usually different from a general building in its basic structure as well as its functions and required performance. In order to function effectively, it is indispensable to develop a comprehensive plan and a special design method including its form and basic structural form in consideration of the special characteristics of a computer center.

上記事情に鑑み、本発明は特許文献1に示されるような振動低減機構を電算センターに適用するための有効適切な制震構造を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an effective and appropriate vibration control structure for applying a vibration reduction mechanism as disclosed in Patent Document 1 to a computer center.

本発明は電算センターを主用途とする建物に適用する制震構造であって、電算室を設置するための基準階の直下階に関連諸設備を設置するための設備階を設け、前記設備階に、当該設備階の床梁を下弦材とするとともにその直上階の基準階の床梁を上弦材としてそれら下弦材と上弦材どうしの間に束材および斜材を設けることによって、当該設備階の階高寸法に相当する成寸法の主トラス架構を設け、前記主トラス架構の側方に該主トラス架構と独立に挙動する付加トラス架構を並設して、それら主トラス架構と付加トラス架構との間に制震機構を介装してなり、前記制震機構を、地震時に前記主トラス架構と前記付加トラス架構との間で生じる上下方向の相対振動により作動する回転慣性質量ダンパーと、該回転慣性質量ダンパーに直列に接続された同調ばねとにより構成して、該制震機構および前記付加トラス架構とにより構成される付加振動系の固有振動数を、主振動系としての主トラス架構の上下方向の固有振動数に同調させてなることを特徴とする。   The present invention is a seismic control structure applied to a building whose main use is a computer center, and is provided with an equipment floor for installing related facilities on a floor immediately below a reference floor for installing a computer room, the equipment floor In addition, the floor beam of the equipment floor is used as the lower chord material, and the floor beam of the reference floor directly above is used as the upper chord material, and a bundle material and a diagonal material are provided between the lower chord material and the upper chord material. A main truss frame having a size equivalent to the height of the floor is provided, and an additional truss frame that behaves independently of the main truss frame is provided side by side on the main truss frame. A rotary inertia mass damper that is operated by a vertical relative vibration generated between the main truss frame and the additional truss frame at the time of the earthquake, In series with the rotary inertia mass damper The natural frequency of the additional vibration system constituted by the vibration control mechanism and the additional truss frame is changed to the natural frequency in the vertical direction of the main truss frame as the main vibration system. It is characterized by being synchronized.

本発明の制震構造によれば、電算室を設置する基準階の直下階に設備階を設定し、その設備階に階高に相当する高剛性の主トラス架構を構成するので、地震時における電算室の振動、特に上下振動を自ずと低減できるものであることに加えて、主トラス架構に対して付加トラス架構と制震機構によるTMDとして機能する付加振動系を設けたので、巨大地震時における優れた制震効果が得られて主トラス架構の応答加速度および応答変位を充分に低減することができ、電算センターに要求される高度の耐震性能を確保することができる。
特に、制震機構を回転慣性質量ダンパーを利用してTMDとして機能させるので、小質量の錘のみで大きな慣性質量が得られ、したがって従来一般のTMDのように大きな付加質量を必要とせずに充分な制震効果が得られる。
また、回転慣性質量ダンパーによる制震機構をTMDとして機能させるための同調は、制震対象の主トラス架構の鉛直剛性に応じて、回転慣性質量ダンパーにより得られる慣性質量と、付加トラス架構および同調ばねによる総合的な鉛直剛性を適正に設定することにより容易にかつ精度良く行うことが可能であるし、想定される地震動に応じて幅広い領域の振動数成分にも有効に対処することが可能である。
According to the seismic control structure of the present invention, a facility floor is set immediately below the standard floor where the computer room is installed, and a high-rigidity main truss frame corresponding to the floor height is configured on the facility floor. In addition to being able to reduce vibrations in the computer room, especially vertical vibrations, an additional vibration system that functions as a TMD with an additional truss frame and a vibration control mechanism is provided for the main truss frame. An excellent seismic control effect can be obtained, the response acceleration and response displacement of the main truss frame can be sufficiently reduced, and the high level of seismic performance required for the computer center can be ensured.
In particular, since the damping mechanism functions as a TMD using a rotary inertia mass damper, a large inertia mass can be obtained with only a small mass weight, and thus sufficient without requiring a large additional mass like a conventional general TMD. A great vibration control effect can be obtained.
In addition, the tuning for functioning the damping mechanism by the rotary inertia mass damper as a TMD is based on the inertial mass obtained by the rotary inertia mass damper, the additional truss frame and the tuning according to the vertical rigidity of the main truss frame to be controlled. By setting the overall vertical stiffness by the spring appropriately, it can be performed easily and accurately, and it can effectively deal with a wide range of frequency components according to the assumed earthquake motion. is there.

本発明の制震構造の実施形態を示すもので、建物全体の架構の概略構成を示す図である。The embodiment of the damping structure of the present invention is shown and is a figure showing the schematic structure of the frame of the whole building. 同、要部拡大図である。FIG. 同、架構の基本構成を説明するための図である。It is a figure for demonstrating the basic composition of a frame same as the above. 同、解析のための振動モデルを示す図である。It is a figure which shows the vibration model for an analysis similarly. 同、主トラス架構の諸元を示す図である。It is a figure which shows the item of the main truss frame. 同、制震機構の諸元を示す図である。It is a figure which shows the item of a damping mechanism same as the above. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly.

本発明の制震構造の実施形態を図1〜図3を参照して説明する。
図1は本実施形態の制震構造を適用した電算センターの架構の概略構成を示すものである。この電算センターは、電算室を設置するための基準階1(いわゆるCPUフロア)の直下階に、その電算室に関連する機械室を設置するための設備階2を確保したことを基本としている。
すなわち、本実施形態の電算センターは、基本的には図3(a)に示すように通常の建物と同様に柱3間に各階の梁4を架設した多層建物であるが、電算室を設置するための基準階1の直下階にそれよりもやや階高の小さい設備階2を設定してそれら基準階1と設備階2にそれぞれ電算室と機械室を集約して上下に配置することにより、それらを機能的に一体化させるような計画とされている。
なお、以下の説明では、この建物の各階の梁4のうち、基準階1の床の位置に設けられるものを床梁4aとし、設備階2の床に設けられるものを床梁4bという。
An embodiment of the vibration control structure of the present invention will be described with reference to FIGS.
FIG. 1 shows a schematic structure of a frame of a computer center to which the vibration control structure of this embodiment is applied. This computer center is based on the fact that an equipment floor 2 for installing a machine room related to the computer room is secured immediately below the reference floor 1 (so-called CPU floor) for installing the computer room.
That is, the computer center of the present embodiment is basically a multi-layered building in which beams 4 on each floor are installed between pillars 3 as in a normal building as shown in FIG. 3A, but a computer room is installed. By setting up a facility floor 2 with a slightly lower floor height on the floor directly below the standard floor 1 and arranging the computer room and the machine room on the standard floor 1 and the facility floor 2 respectively, and arranging them vertically The plan is to integrate them functionally.
In the following description, among the beams 4 on each floor of the building, the one provided on the floor of the reference floor 1 is referred to as a floor beam 4a, and the one provided on the floor of the equipment floor 2 is referred to as a floor beam 4b.

そして、この電算センター全体の構造躯体としての架構の形態は、この架構全体の耐震性能を充分に確保するべく、図1に示すように設備階2に主トラス架構10と付加トラス架構20を設置するとともに、それら主トラス架構10と付加トラス架構20との間に制震機構30を介装することを主眼とする。   And as for the form of the frame as the structural frame of the entire computer center, the main truss frame 10 and the additional truss frame 20 are installed on the equipment floor 2 as shown in FIG. 1 in order to ensure sufficient seismic performance of the entire frame. At the same time, the main purpose is to install a vibration control mechanism 30 between the main truss frame 10 and the additional truss frame 20.

具体的には、図3(b)に示すように、上記の設備階2には基準階の床梁4aと設備階の床梁4bとの間に所定間隔で間柱11が設けられているとともに要所にブレース12が設けられていて、それらの全体で設備階2の階高寸法に相当する成寸法の主トラス架構10が構成されている。
つまり、その主トラス架構10は、基準階1の床梁4aを上弦材とし、設備階の床梁4bを下弦材として、それらの間に束材としての間柱11と、斜材としてのブレース12を設けることで構成されたものであって、この主トラス架構10はいわゆるメガ梁と称される大梁成の構造要素として機能してそれ自体で充分な剛性と耐震性能を有するものである。
なお、主トラス架構10において上弦材および下弦材として機能する上下の床梁4a、4bとしては通常の鉄骨梁と同様にH形鋼を用いれば良いが、本実施形態では束材として機能する間柱11としては鋼管が好適に採用可能であり、斜材として機能するブレース12としては鋼棒ないし適宜断面の鋼材が好適に採用可能である。
また、本実施形態では設備階2の中央部に保守用の通路を確保するようにしていて、その通路の位置では間柱11やブレース12を省略してそこに開口を確保している。
さらに、図2に示すように、設備階2の床には通常のようにスラブ5を設ければ良いが、基準階1の床には設備階2との連絡のためにフリーアクセスフロアを設けると良い。
Specifically, as shown in FIG. 3 (b), the above-mentioned facility floor 2 is provided with studs 11 at a predetermined interval between the floor beam 4a on the reference floor and the floor beam 4b on the facility floor. Braces 12 are provided at important points, and a main truss frame 10 having a size corresponding to the height of the equipment floor 2 is formed as a whole.
In other words, the main truss frame 10 has the floor beam 4a on the reference floor 1 as the upper chord material, the floor beam 4b on the equipment floor as the lower chord material, the middle column 11 as the bundle material therebetween, and the brace 12 as the diagonal material. The main truss frame 10 functions as a structural element of a large beam called a so-called mega beam and has sufficient rigidity and seismic performance by itself.
The upper and lower floor beams 4a and 4b that function as the upper chord member and the lower chord member in the main truss frame 10 may be H-shaped steel as in the case of a normal steel beam, but in this embodiment, the studs that function as bundle members. A steel pipe can be suitably used as 11, and a steel rod or a steel material having an appropriate cross section can be suitably used as the brace 12 functioning as a diagonal member.
In the present embodiment, a maintenance passage is secured in the center of the facility floor 2, and the pillars 11 and braces 12 are omitted from the passage to secure an opening there.
Furthermore, as shown in FIG. 2, a slab 5 may be provided as usual on the floor of the equipment floor 2, but a free access floor is provided on the floor of the reference floor 1 for communication with the equipment floor 2. And good.

また、同じく上記の設備階2には、上記の主トラス架構10の両側に、その主トラス架構10とは構造的に絶縁されて独立に挙動する付加トラス架構20が設けられている。
すなわち、図3(c)に示すように、付加トラス架構20は基準階1の床梁4aのやや下方において柱1間に架設された上弦材21と、上弦材21の中間部から間隔をおいて垂設された2本の束材23と、それら束材23の間に架設された下弦材22と、上弦材21の両端と束材23の下端との間に架設された斜材24とにより構成されている。
この付加トラス架構20における束材23は、主トラス架構10における束材(間柱11)と同様に通路を避けてその両側の位置に設けられており、また束材23の下端に架設された下弦材22と設備階2のスラブ5との間には若干のクリアランスが確保されていて、下弦材22は床面上に浮いた状態で設けられたものとなっている。
Similarly, the above-mentioned equipment floor 2 is provided with an additional truss frame 20 that is structurally insulated from the main truss frame 10 and behaves independently on both sides of the main truss frame 10.
That is, as shown in FIG. 3C, the additional truss frame 20 is spaced from the upper chord member 21 laid between the columns 1 slightly below the floor beam 4a of the reference floor 1 and the intermediate portion of the upper chord member 21. Two bundle members 23 suspended from each other, a lower chord member 22 laid between the bundle members 23, an oblique member 24 laid between both ends of the upper chord member 21 and the lower end of the bundle member 23, It is comprised by.
The bundle members 23 in the additional truss frame 20 are provided at positions on both sides of the bundle member (intermediate column 11) in the main truss frame 10 so as to avoid the passage, and the lower chord is constructed at the lower end of the bundle member 23. A slight clearance is secured between the material 22 and the slab 5 of the equipment floor 2, and the lower chord material 22 is provided in a state of floating on the floor surface.

この付加トラス架構20は、図2(a)に示すように上記の主トラス架構10の両側にそれぞれ若干の間隔をおいて配置され、両側の付加トラス架構20どうしは図2(b)に示すように繋ぎ材25により要所で連結されて構造的に一体化されているが、主トラス架構10に対しては構造的に絶縁されていて地震時には主トラス架構10に対して独立に挙動するものである。
なお、本実施形態では、付加トラス架構20を構成している上弦材21、束材23、斜材24、繋ぎ材25としてはいずれも溝形鋼を用いているが、設備階2の中央部に保守用の通路を確保する関係上、図2に示すように通路を横断する位置に設けられる下弦材22としては両側の付加トラス架構20に兼用の平鋼が用いられ、それを跨ぐように渡り板6が設けられて通路での通行に支障をきたさないようにされている。
As shown in FIG. 2A, the additional truss frame 20 is disposed on both sides of the main truss frame 10 with a slight space between them, and the additional truss frames 20 on both sides are illustrated in FIG. 2B. In this way, the connecting members 25 are connected at important points and are structurally integrated, but are structurally insulated from the main truss frame 10 and behave independently of the main truss frame 10 during an earthquake. Is.
In this embodiment, the upper chord member 21, the bundle member 23, the diagonal member 24, and the connecting member 25 constituting the additional truss frame 20 are all made of grooved steel. As shown in FIG. 2, as the lower chord member 22 provided at a position crossing the passage as shown in FIG. 2, double-use flat steel is used for the additional truss frame 20 on both sides so as to straddle it. A crossover plate 6 is provided so as not to hinder traffic in the passage.

そして、図2および図3(b)に示すように、主トラス架構10の束材(間柱11)の上端部には、通路に面してそれぞれ回転慣性質量ダンパー31が下向きに設置され、各回転慣性質量ダンパー31の両側に位置している付加トラス架構20の上弦材21の間には同調ばね32としての板ばねが設けられて、その同調ばね32に回転慣性質量ダンパー31が接続されており、これら回転慣性質量ダンパー31と同調ばね32とによって本実施形態の制震機構30が構成されている。
本実施形態における回転慣性質量ダンパー31は、特許文献1に示されているもののように、ボールネジ機構を介して小質量の錘(フライホイール)を回転させることで大きな回転慣性質量を得る形式のものであり、回転慣性質量ダンパー31を主トラス架構10に対して固定してそのボールネジ機構を同調ばね32を介して付加トラス架構20に対して接続することによって、地震時に主トラス架構10と付加トラス架構20の間に生じる相対振動によってこの制震機構30が作動するようになっている。
Then, as shown in FIG. 2 and FIG. 3 (b), rotary inertia mass dampers 31 are respectively installed downward at the upper ends of the bundle members (intermediate columns 11) of the main truss frame 10 so as to face the passage. A leaf spring as a tuning spring 32 is provided between the upper chord members 21 of the additional truss frame 20 located on both sides of the rotary inertia mass damper 31, and the rotary inertia mass damper 31 is connected to the tuning spring 32. The rotary inertia mass damper 31 and the tuning spring 32 constitute the vibration control mechanism 30 of this embodiment.
The rotary inertia mass damper 31 in this embodiment is of a type that obtains a large rotary inertia mass by rotating a small mass weight (flywheel) via a ball screw mechanism, as shown in Patent Document 1. The rotary inertia mass damper 31 is fixed to the main truss frame 10 and the ball screw mechanism is connected to the additional truss frame 20 via the tuning spring 32, so that the main truss frame 10 and the additional truss can be connected in the event of an earthquake. The vibration control mechanism 30 is activated by relative vibration generated between the frames 20.

本実施形態の制震構造は、上記の制震機構30および付加トラス架構20とによって付加振動系を構成してその付加振動系を主振動系としての主トラス架構10に対して付加するとともに、付加振動系の上下方向の固有振動数を主トラス架構10の上下方向の固有振動数に同調させることによって、付加振動系の全体が主振動系に対してTMDとして機能して優れた制震効果が得られるものである。   The vibration control structure of the present embodiment constitutes an additional vibration system with the above-described vibration control mechanism 30 and the additional truss frame 20, and adds the additional vibration system to the main truss frame 10 as the main vibration system. By synchronizing the natural frequency in the vertical direction of the additional vibration system with the natural frequency in the vertical direction of the main truss frame 10, the entire additional vibration system functions as a TMD for the main vibration system and has excellent damping effect. Is obtained.

以上のように、本実施形態の制震構造によれば、電算室を設置するための基準階1の直下階に設備階2を設定し、その設備階2に階高に相当する高剛性の主トラス架構10を構成するので、地震時における電算室の振動、特に上下振動を自ずと低減できるものであることに加えて、主トラス架構10に対して付加トラス架構20と制震機構30によるTMDとして機能する付加振動系を設けたので、巨大地震時においても優れた制震効果が得られて主トラス架構10の応答加速度および応答変位を充分に低減することができ、電算センターに要求される高度の耐震性能を確保することができる。
特に、制震機構30は回転慣性質量ダンパー31を利用してTMDとして機能させるので、小質量の錘のみで大きな慣性質量が得られ、したがって従来一般のTMDのように大きな付加質量を必要とせずに充分な制震効果が得られる。
また、回転慣性質量ダンパー31による制震機構30をTMDとして機能させるための同調は、主トラス架構10の鉛直剛性に応じて、回転慣性質量ダンパー31により得られる慣性質量と、付加トラス架構20および同調ばね32による総合的な鉛直剛性を適正に設定することにより容易にかつ精度良く行うことが可能であるし、想定される地震動に応じて幅広い領域の振動数成分にも有効に対処することができる。
As described above, according to the vibration control structure of the present embodiment, the equipment floor 2 is set immediately below the reference floor 1 for installing the computer room, and the equipment floor 2 has a high rigidity equivalent to the floor height. Since the main truss frame 10 is configured, vibrations in the computer room during an earthquake, in particular, vertical vibrations can be reduced naturally, and in addition to the main truss frame 10, TMD by the additional truss frame 20 and the vibration control mechanism 30 is provided. As an additional vibration system that functions as a large-scale earthquake is provided, an excellent vibration control effect can be obtained even in a large earthquake, and the response acceleration and response displacement of the main truss frame 10 can be sufficiently reduced, which is required for a computer center. High seismic performance can be secured.
In particular, since the damping mechanism 30 functions as a TMD using the rotary inertia mass damper 31, a large inertia mass can be obtained with only a small mass, and thus a large additional mass is not required as in the conventional general TMD. A sufficient vibration control effect can be obtained.
Further, the tuning for causing the damping mechanism 30 to function as the TMD by the rotary inertia mass damper 31 is performed according to the vertical rigidity of the main truss frame 10, the inertia mass obtained by the rotary inertia mass damper 31, the additional truss frame 20, and By appropriately setting the overall vertical rigidity by the tuning spring 32, it is possible to carry out easily and accurately, and it is possible to effectively deal with a wide range of frequency components according to the assumed earthquake motion. it can.

以下、本発明の制震構造の効果を時刻歴応答解析により例証する。
本発明の制震構造を図4に示すようにモデル化し、主トラス架構10の上弦材に等分布荷重261kN/mが作用する場合を想定する。
主トラス架構10の諸元として図5に示すAタイプとBタイプを設定する。AタイプはI=7825500cm4、一次固有振動数6.217Hzとし、BタイプはI=5391000cm4、一次固有振動数5.16Hzとした(その他の諸元は図5参照)。
なお、基準階1および設備階2の床荷重はそれぞれ12kN/m2、16kN/m2とし、その場合における主トラス架構10の中央部の常時撓みは8mm程度である。
Hereinafter, the effect of the vibration control structure of the present invention is illustrated by time history response analysis.
The seismic damping structure of the present invention is modeled as shown in FIG. 4 and a case is assumed where an evenly distributed load 261 kN / m acts on the upper chord member of the main truss frame 10.
As the specifications of the main truss frame 10, the A type and the B type shown in FIG. The A type was I = 7825500 cm 4 and the primary natural frequency was 6.217 Hz, and the B type was I = 5391000 cm 4 and the primary natural frequency was 5.16 Hz (see FIG. 5 for other specifications).
Incidentally, each floor loading of standard floor 1 and equipment floor 2 and 12kN / m 2, 16kN / m 2, the deflection constant of the central portion of the main truss Frame 10 in that case is approximately 8 mm.

制震機構30の諸元は、図6に示すようにAタイプ、Bタイプのいずれにおいても回転慣性質量9320kgとし、付加トラス架構20の鉛直剛性(トラスばね)を1個所あたり3.44×107N/mに固定したうえで、同調ばね32としての板ばねの板厚と形状寸法を調節することによりその鉛直剛性をAタイプでは4.02×107N/m、Bタイプでは2.03×107N/mとして、それぞれの場合の一次固有振動数に同調させた。減衰係数はAタイプで1.82×105N/m/sとし、Bタイプで1.52×105N/m/sとした。 As shown in Fig. 6, the specifications of the vibration control mechanism 30 have a rotary inertia mass of 9320kg for both the A type and B type, and the vertical rigidity (truss spring) of the additional truss frame 20 is 3.44 x 10 7 N per location. The vertical stiffness is adjusted to 4.02 × 10 7 N / m for the A type and 2.03 × 10 7 N / for the B type by adjusting the plate thickness and shape dimensions of the leaf spring as the tuning spring 32. m was tuned to the primary natural frequency in each case. The attenuation coefficient was 1.82 × 10 5 N / m / s for the A type and 1.52 × 10 5 N / m / s for the B type.

上記のモデルに対して、上下地震動による地震応答解析を行う。構造減衰は一次固有周期に対して2%の初期剛性比例型とした。刻み時間は0.0025秒とした。
入力地震動は、El Centro UD(水平動に対して50kineに基準化した倍率を掛ける)、Taft UD(同)、告示波UD(位相は1995年JMA神戸UDを用いる)とした。
Seismic response analysis by vertical motion is performed for the above model. The structural damping was the initial stiffness proportional type of 2% with respect to the primary natural period. The ticking time was 0.0025 seconds.
The input seismic motion was El Centro UD (multiplying the horizontal motion by 50kine standardized magnification), Taft UD (same as above), and notification wave UD (1995 uses JMA Kobe UD).

最大応答加速度および最大応答変位についての応答解析結果を図7および図8に示す。また、Aタイプの場合について、El Centro UDを入力地震動とした場合の加速度および変位の応答波形を図9に示す。
これらの結果から、本発明の制震構造によれば非制震の場合に対して加速度、変位ともに充分な応答低減効果が得られることが分かる。
The response analysis results for the maximum response acceleration and the maximum response displacement are shown in FIGS. FIG. 9 shows acceleration and displacement response waveforms when the A type is El Centro UD as the input ground motion.
From these results, it can be seen that according to the damping structure of the present invention, a sufficient response reduction effect can be obtained for both acceleration and displacement in the case of non-seismic control.

以上で本発明の実施形態を説明したが、上記実施形態はあくまで好適な一例であって本発明は上記実施形態に限定されるものでは勿論なく、設備階2に設置した主トラス架構10と付加トラス架構20との間に回転慣性質量ダンパー31を利用した制震機構30を介装してTMDとして機能させるという本発明の要旨を逸脱しない範囲内であれば、たとえば以下に列挙するような適宜の設計的変更や応用が可能である。   The embodiment of the present invention has been described above. However, the above embodiment is merely a preferred example, and the present invention is not limited to the above embodiment, and the main truss frame 10 installed on the equipment floor 2 is added. As long as it does not deviate from the gist of the present invention to intervene the vibration control mechanism 30 using the rotary inertia mass damper 31 between the truss frame 20 and function as TMD, for example, the following suitable as listed below It is possible to make design changes and applications.

主トラス架構10や付加トラス架構20の具体的な構成は任意であって、電算センター全体の規模や形態、平面計画、その他の諸条件に応じて最適設計すれば良い。
特に、上記実施形態では設備階2の中央部に通路を設ける関係上、主トラス架構10および付加トラス架構20はいずれも通路の位置を遮断しないような形態とし、また付加トラス架構20の下弦材22は平鋼により構成するようにしたが、そのような必要がなければ、主トラス架構10における束材(間柱11)や斜材(ブレース12)の位置はもとより、付加トラス架構20の全体の形態も任意である。
但し、設備階2には多数のダクト類やケーブル類が縦横に設置されるから、主トラス架構10および付加トラス架構20によって機械室が分断されることは好ましくなく、主トラス架構10および付加トラス架構20の双方にダクト類やケーブル類を通すための充分なスペースを確保すべきである。この点に関し、仮に主トラス架構10および付加トラス架構20として充腹の大断面の梁を設けた場合にはそれらに大径の梁貫通孔を多数設ける必要もあるが、本発明ではいずれもメガ梁の形態のトラス架構としているのでそのような貫通孔を考慮する必要はなく、極めて合理的である。
また、上記実施形態では主トラス架構10の両側に付加トラス架構20を設置するようにしたので自ずと良好なバランスが得られるが、必ずしもそうすることはなく、側方バランスを確保するうえで支障がなければ単一の付加トラス架構20を主トラス架構10の片側に並設することでも良い。
Specific configurations of the main truss frame 10 and the additional truss frame 20 are arbitrary, and may be optimally designed according to the scale and form of the entire computer center, the plan plan, and other various conditions.
In particular, in the above embodiment, the main truss frame 10 and the additional truss frame 20 are configured so as not to block the position of the channel because the passage is provided in the center of the equipment floor 2, and the lower truss material of the additional truss frame 20 22 is made of flat steel, but if there is no such need, the position of the bundle material (intermediate column 11) and the diagonal material (brace 12) in the main truss frame 10 as well as the whole of the additional truss frame 20 The form is also arbitrary.
However, since a large number of ducts and cables are installed vertically and horizontally on the facility floor 2, it is not preferable that the machine room is divided by the main truss frame 10 and the additional truss frame 20, and the main truss frame 10 and the additional truss Sufficient space for passing ducts and cables through both frames 20 should be secured. In this regard, if a full-sized beam having a large cross section is provided as the main truss frame 10 and the additional truss frame 20, it is necessary to provide a large number of large-diameter beam through-holes. Since the truss frame is in the form of a beam, there is no need to consider such a through hole, which is extremely reasonable.
In the above embodiment, the additional truss frame 20 is installed on both sides of the main truss frame 10 so that a good balance is naturally obtained. However, this is not necessarily the case and there is a problem in securing the lateral balance. Otherwise, a single additional truss frame 20 may be arranged on one side of the main truss frame 10.

制震機構30を構成する回転慣性質量ダンパー31は上記実施形態のようにボールネジ機構により小質量の錘を回転させる形式のものが好適であり、その場合には上記実施形態のように同調ばね32としての板ばねをボールネジ機構に接続することが現実的ではあるが、本発明における制震機構30は慣性質量効果を利用して所望の付加質量が得られてTMDとして機能するものであれば良く、その限りにおいて制震機構30の具体的な構成は限定されることなく任意である。
勿論、制震機構30の容量や設置位置、設置数は、主トラス架構10や付加トラス架構20の形態も考慮して所望の制震効果が得られるように最適設計すれば良い。たとえば、上記実施形態では、2組の制震機構30を主トラス架構10の上弦材(基準階1の床梁4a)の直下において通路の両側において設置したが、制震機構30の設置数は必要に応じて適宜増減すれば良いし、その設置位置も任意であってたとえば設備階2の床面付近に設置することも考えられ、その場合には主トラス架構10の束材(間柱11)の下端部や下弦材(設備階2の床梁4b)と、付加トラス架構20の下弦材22や束材23もしくは斜材24との間に制震機構30を介装すれば良い。
さらに、主トラス架構10と付加トラス架構20との間への制震機構の設置の形態も任意であり、たとえば上記実施形態とは逆に、回転慣性質量ダンパー31を付加トラス架構20に対して固定し、同調ばね32を主トラス架構10に対して接続することでも同様に機能する。
The rotary inertia mass damper 31 constituting the vibration control mechanism 30 is preferably of the type in which a small mass weight is rotated by a ball screw mechanism as in the above embodiment, and in that case, a tuning spring 32 is used as in the above embodiment. Although it is realistic to connect the leaf spring as a ball screw mechanism, the vibration control mechanism 30 in the present invention may be any mechanism that can function as a TMD by using the inertial mass effect to obtain a desired additional mass. As long as that is the case, the specific configuration of the vibration control mechanism 30 is not limited and is arbitrary.
Of course, the capacity, installation position, and number of installations of the vibration control mechanism 30 may be optimally designed so as to obtain a desired vibration control effect in consideration of the forms of the main truss frame 10 and the additional truss frame 20. For example, in the above embodiment, two sets of vibration control mechanisms 30 are installed on both sides of the passage just below the upper chord material (floor beam 4a of the reference floor 1) of the main truss frame 10, but the number of vibration control mechanisms 30 is installed. It may be appropriately increased or decreased as necessary, and the installation position is also arbitrary, for example, it may be installed near the floor surface of the equipment floor 2, and in that case, the bundle of the main truss frame 10 (intermediate column 11) The vibration control mechanism 30 may be interposed between the lower chord member and the lower chord member (the floor beam 4b of the equipment floor 2) and the lower chord member 22, the bundle member 23 or the diagonal member 24 of the additional truss frame 20.
Furthermore, the form of installation of the vibration control mechanism between the main truss frame 10 and the additional truss frame 20 is also arbitrary. For example, contrary to the above embodiment, the rotary inertia mass damper 31 is attached to the additional truss frame 20. Fixing and connecting the tuning spring 32 to the main truss frame 10 works similarly.

1 基準階
2 設備階
3 柱
4 梁
4a 基準階の床梁(主トラス架構の上弦材)
4b 設備階の床梁(主トラス架構の下弦材)
5 スラブ
6 渡り板
10 主トラス架構
11 間柱(束材)
12 ブレース(斜材)
20 付加トラス架構
21 上弦材
22 下弦材
23 束材
24 斜材
25 繋ぎ材
30 制震機構
31 回転慣性質量ダンパー
32 同調ばね
1 Standard floor 2 Equipment floor 3 Column 4 Beam 4a Floor beam on the standard floor (upper chord material of main truss frame)
4b Floor beams on equipment floor (lower truss material of main truss frame)
5 Slab 6 Crossing board 10 Main truss frame 11 Space pillar (bundle)
12 Braces (diagonal)
20 Additional truss frame 21 Upper chord material 22 Lower chord material 23 Bundling material 24 Diagonal material 25 Connecting material 30 Damping mechanism 31 Rotating inertia mass damper 32 Tuning spring

Claims (1)

電算センターを主用途とする建物に適用する制震構造であって、
電算室を設置するための基準階の直下階に関連諸設備を設置するための設備階を設け、
前記設備階に、当該設備階の床梁を下弦材とするとともにその直上階の基準階の床梁を上弦材としてそれら下弦材と上弦材どうしの間に束材および斜材を設けることによって、当該設備階の階高寸法に相当する成寸法の主トラス架構を設け、
前記主トラス架構の側方に該主トラス架構と独立に挙動する付加トラス架構を並設して、それら主トラス架構と付加トラス架構との間に制震機構を介装してなり、
前記制震機構を、地震時に前記主トラス架構と前記付加トラス架構との間で生じる上下方向の相対振動により作動する回転慣性質量ダンパーと、該回転慣性質量ダンパーに直列に接続された同調ばねとにより構成して、該制震機構および前記付加トラス架構とにより構成される付加振動系の固有振動数を、主振動系としての主トラス架構の上下方向の固有振動数に同調させてなることを特徴とする制震構造。
It is a seismic control structure that is applied to buildings that mainly use computer centers,
There is an equipment floor for installing related equipment on the floor directly below the standard floor for installing the computer room.
In the equipment floor, by using the floor beam of the equipment floor as a lower chord material and by setting the floor beam of the reference floor directly above the upper chord material as a bundle material and a diagonal material between the lower chord material and the upper chord material, Establish a main truss frame with the same dimensions as the floor height of the equipment floor,
An additional truss frame that behaves independently of the main truss frame is provided side by side with the main truss frame, and a vibration control mechanism is interposed between the main truss frame and the additional truss frame,
The damping mechanism includes a rotary inertia mass damper that is operated by a vertical relative vibration generated between the main truss frame and the additional truss frame during an earthquake, and a tuning spring connected in series to the rotary inertia mass damper. The natural frequency of the additional vibration system composed of the vibration control mechanism and the additional truss frame is synchronized with the natural frequency in the vertical direction of the main truss frame as the main vibration system. Characteristic damping structure.
JP2010020242A 2010-02-01 2010-02-01 Damping structure Active JP5327647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020242A JP5327647B2 (en) 2010-02-01 2010-02-01 Damping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020242A JP5327647B2 (en) 2010-02-01 2010-02-01 Damping structure

Publications (2)

Publication Number Publication Date
JP2011157724A JP2011157724A (en) 2011-08-18
JP5327647B2 true JP5327647B2 (en) 2013-10-30

Family

ID=44589901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020242A Active JP5327647B2 (en) 2010-02-01 2010-02-01 Damping structure

Country Status (1)

Country Link
JP (1) JP5327647B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627901B2 (en) * 2010-02-24 2014-11-19 株式会社竹中工務店 Building structure, building and base-isolated building
CN113530054B (en) * 2021-07-05 2022-06-03 湖南中天杭萧钢构科技股份有限公司 Steel bar truss floor support plate and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160754A (en) * 1998-11-25 2000-06-13 Ohbayashi Corp Damping beam
JP5218805B2 (en) * 2006-11-01 2013-06-26 清水建設株式会社 Vibration reduction mechanism and specification method thereof
JP5190652B2 (en) * 2006-12-04 2013-04-24 清水建設株式会社 Vibration reduction mechanism and specification method thereof
JP5458374B2 (en) * 2009-07-08 2014-04-02 清水建設株式会社 Vibration control system

Also Published As

Publication number Publication date
JP2011157724A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
Xiang et al. Seismic vibration control of building structures with multiple tuned mass damper floors integrated
US6233884B1 (en) Method and apparatus to control seismic forces, accelerations, and displacements of structures
Ali et al. Seismic energy dissipation for cable‐stayed bridges using passive devices
JP2020101081A (en) Vibration control device and architectural structure having this
JP5403372B2 (en) Truss beam structure
EP3749809B1 (en) Anti-seismic device
Chang et al. Multiaxial active isolation for seismic protection of buildings
Xiang et al. Seismic vibration and damage control of high‐rise structures with the implementation of a pendulum‐type nontraditional tuned mass damper
JP2009007916A (en) Vibration damping structure and its specification setting method
Zhang et al. Seismic isolation research on a double-layer lattice structure using shaking table tests
Liu et al. Seismic performance and storey-based stability of suspended buildings
JP5961057B2 (en) Seismic isolation structure, seismic isolation floor structure and clean room equipped with the same
JP5327647B2 (en) Damping structure
Mualla et al. Enhanced response through supplementary friction damper devices
Pourali et al. Fully-floating suspended ceiling system: experimental evaluation of the effect of mass and elastic isolation
JP2013177744A (en) Seismically isolated structure
JP6662514B2 (en) Seismic isolation free access floor
Mottier et al. Shake table test of a half-scale 2-storey steel building seismically retrofitted using rocking braced frame system
Keerthana et al. Seismic response control using base isolation strategy
JP2011017167A (en) Vibration control system
Davidson Development of testing facilities and procedures for seismic performance of suspended ceilings
JP6123014B1 (en) Energy absorption type bearing
Rogers et al. Impact of diaphragm behavior on the seismic design of low-rise steel buildings
Awchat et al. Seismic Response of Tall Building with Underground Storey Using Dampers
Kenarangi et al. Application of tuned mass dampers in controlling the nonlinear behavior of 3-D structural models, considering the soil-structure interaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5327647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150