Nothing Special   »   [go: up one dir, main page]

JP5320483B2 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP5320483B2
JP5320483B2 JP2012103491A JP2012103491A JP5320483B2 JP 5320483 B2 JP5320483 B2 JP 5320483B2 JP 2012103491 A JP2012103491 A JP 2012103491A JP 2012103491 A JP2012103491 A JP 2012103491A JP 5320483 B2 JP5320483 B2 JP 5320483B2
Authority
JP
Japan
Prior art keywords
solid
imaging device
state imaging
semiconductor substrate
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012103491A
Other languages
Japanese (ja)
Other versions
JP2012142638A (en
Inventor
康隆 中柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2012103491A priority Critical patent/JP5320483B2/en
Publication of JP2012142638A publication Critical patent/JP2012142638A/en
Application granted granted Critical
Publication of JP5320483B2 publication Critical patent/JP5320483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、固体撮像装置に関し、特に裏面入射型の固体撮像装置に関する。   The present invention relates to a solid-state imaging device, and more particularly to a back-illuminated solid-state imaging device.

特許文献1には、裏面入射型の固体撮像装置が開示されている。この固体撮像装置は、半導体基板と、その表層に形成された受光部とを備えている。半導体基板の裏面(受光部が設けられた側と反対側の面)に入射した被撮像体からの光は、半導体基板の内部で光電変換される。そして、それにより発生した信号電荷を受光部が受けることで、被撮像体の撮像が行われる。   Patent Document 1 discloses a back-illuminated solid-state imaging device. This solid-state imaging device includes a semiconductor substrate and a light receiving portion formed on the surface layer thereof. The light from the imaging target that has entered the back surface of the semiconductor substrate (the surface opposite to the side where the light receiving portion is provided) is photoelectrically converted inside the semiconductor substrate. And a to-be-photographed body is imaged because a light-receiving part receives the signal charge which generate | occur | produced by it.

なお、本発明に関連する先行技術文献としては、上記文献の他に、特許文献2〜4が挙げられる。   In addition, as a prior art document relevant to this invention, patent documents 2-4 are mentioned other than the said document.

特開2002−33469号公報JP 2002-33469 A 特開2003−338615号公報JP 2003-338615 A 特開2004−153175号公報JP 2004-153175 A 特開2005−110896号公報JP 2005-110896 A

しかしながら、特許文献1に記載の固体撮像装置においては、感度の面で向上の余地がある。かかる固体撮像装置の感度が低下する一因としては、半導体基板の内部で発生した信号電荷の一部が、半導体基板の表層に形成された受光部に達する前に再結合によって消滅してしまうことが挙げられる。   However, the solid-state imaging device described in Patent Document 1 has room for improvement in terms of sensitivity. One reason for the decrease in the sensitivity of such a solid-state imaging device is that a part of the signal charge generated inside the semiconductor substrate disappears due to recombination before reaching the light receiving portion formed on the surface layer of the semiconductor substrate. Is mentioned.

この点に関し、信号電荷が受光部に達し易くなるようにすべく、半導体基板を薄化することも考えられる。ところが、半導体基板を薄くすることは、当該半導体基板ひいては固体撮像装置の機械的強度の低下につながってしまう。   In this regard, it is also conceivable to thin the semiconductor substrate so that the signal charge can easily reach the light receiving portion. However, reducing the thickness of the semiconductor substrate leads to a decrease in mechanical strength of the semiconductor substrate and thus the solid-state imaging device.

本発明による固体撮像装置は、第1の比抵抗をもつ半導体基板と、上記半導体基板の第1面上に設けられ、上記第1の比抵抗よりも小さな第2の比抵抗をもつ半導体層と、上記半導体層中に設けられた受光部と、を備え、上記半導体基板の上記第1面と反対側の第2面に入射した被撮像体からの光を当該半導体基板の内部または上記半導体層の内部で光電変換し、当該光電変換により発生した電荷を上記受光部で受けて上記被撮像体を撮像し、前記受光部は、連続した一の前記半導体層中に複数設けられており、前記半導体基板および前記半導体層は、シリコンにより構成されており、前記受光部の少なくとも前記半導体基板側の表面の全領域が、前記半導体層と接していることを特徴とする。 A solid-state imaging device according to the present invention includes a semiconductor substrate having a first specific resistance, and a semiconductor layer provided on the first surface of the semiconductor substrate and having a second specific resistance smaller than the first specific resistance. A light receiving portion provided in the semiconductor layer, and transmits light from an imaging target incident on a second surface opposite to the first surface of the semiconductor substrate to the inside of the semiconductor substrate or the semiconductor layer. The photoelectric conversion is performed inside, the charge generated by the photoelectric conversion is received by the light receiving unit, the image pickup object is imaged, and a plurality of the light receiving units are provided in one continuous semiconductor layer, The semiconductor substrate and the semiconductor layer are made of silicon, and at least the entire region of the surface of the light receiving portion on the semiconductor substrate side is in contact with the semiconductor layer .

この固体撮像装置においては、受光部が設けられた半導体層よりも大きな比抵抗をもつ半導体基板を用いている。このため、光電変換により生成された正孔−電子対のうち、信号として寄与する電子(信号電荷)の拡散長(デバイ長)を大きくすることができる。これにより、信号電荷が受光部に達し易くなる。したがって、半導体基板の厚みを充分に確保しつつ、固体撮像装置の感度向上を図ることができる。   In this solid-state imaging device, a semiconductor substrate having a specific resistance larger than that of the semiconductor layer provided with the light receiving portion is used. For this reason, among the hole-electron pairs generated by photoelectric conversion, the diffusion length (Debye length) of electrons (signal charges) contributing as signals can be increased. Thereby, the signal charge easily reaches the light receiving portion. Therefore, it is possible to improve the sensitivity of the solid-state imaging device while ensuring a sufficient thickness of the semiconductor substrate.

本発明によれば、感度の優れた固体撮像装置が実現される。   According to the present invention, a solid-state imaging device with excellent sensitivity is realized.

本発明による固体撮像装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the solid-state imaging device by this invention. 図1の固体撮像装置の動作の一例を説明するための断面図である。It is sectional drawing for demonstrating an example of operation | movement of the solid-state imaging device of FIG. 実施形態の一変形例に係る固体撮像装置を示す断面図である。It is sectional drawing which shows the solid-state imaging device which concerns on the modification of embodiment. 実施形態の他の変形例を説明するための断面図である。It is sectional drawing for demonstrating the other modification of embodiment.

以下、図面を参照しつつ、本発明による固体撮像装置の好適な実施形態について詳細に説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of a solid-state imaging device according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same reference numerals are assigned to the same elements, and duplicate descriptions are omitted.

図1は、本発明による固体撮像装置の一実施形態を示す断面図である。固体撮像装置1は、半導体基板10、半導体層20、および受光部30を備える裏面入射型の固体撮像装置である。本実施形態において半導体基板10は、P型シリコン基板である。この半導体基板10は、比抵抗ρ(第1の比抵抗)をもっている。ρは、例えば1000Ωcmである。好ましくはρ≧200Ωcm、より好ましくはρ≧500Ωcmである。 FIG. 1 is a cross-sectional view showing an embodiment of a solid-state imaging device according to the present invention. The solid-state imaging device 1 is a back-illuminated solid-state imaging device including a semiconductor substrate 10, a semiconductor layer 20, and a light receiving unit 30. In the present embodiment, the semiconductor substrate 10 is a P-type silicon substrate. The semiconductor substrate 10 has a specific resistance ρ 1 (first specific resistance). ρ 1 is, for example, 1000 Ωcm. Preferably ρ 1 ≧ 200 Ωcm, more preferably ρ 1 ≧ 500 Ωcm.

半導体基板10の表面S1(第1面)上には、半導体層20が設けられている。本実施形態において半導体層20は、P型シリコン層である。この半導体層20は、比抵抗ρ(第2の比抵抗)をもっている。ここで、ρである。ρは、例えば10Ωcmである。好ましくは、5Ωcm≦ρ≦100Ωcmである。半導体層20は、例えば、エピタキシャル成長法により形成される。 A semiconductor layer 20 is provided on the surface S <b> 1 (first surface) of the semiconductor substrate 10. In the present embodiment, the semiconductor layer 20 is a P-type silicon layer. The semiconductor layer 20 has a specific resistance ρ 2 (second specific resistance). Here, ρ 21 . [rho 2 is, for example, 10 .OMEGA.cm. Preferably, 5 Ωcm ≦ ρ 2 ≦ 100 Ωcm. The semiconductor layer 20 is formed by, for example, an epitaxial growth method.

半導体層20中には、受光部30が設けられている。具体的には、受光部30は、半導体層20の半導体基板10と反対側の表層中に設けられている。本実施形態において受光部30は、N型不純物拡散層である。この受光部30は、隣接する半導体層20と共にフォトダイオードを構成している。   A light receiving unit 30 is provided in the semiconductor layer 20. Specifically, the light receiving unit 30 is provided in the surface layer of the semiconductor layer 20 on the side opposite to the semiconductor substrate 10. In the present embodiment, the light receiving unit 30 is an N-type impurity diffusion layer. The light receiving unit 30 constitutes a photodiode together with the adjacent semiconductor layer 20.

固体撮像装置1は、半導体基板10の裏面S2(第2面)に入射した被撮像体からの光を半導体基板10の内部または半導体層20の内部で光電変換し、その光電変換により発生した信号電荷を受光部30で受けて上記被撮像体を撮像するものである。   The solid-state imaging device 1 photoelectrically converts light from the imaging target incident on the back surface S2 (second surface) of the semiconductor substrate 10 inside the semiconductor substrate 10 or inside the semiconductor layer 20, and a signal generated by the photoelectric conversion. The charge is received by the light receiving unit 30 to image the object to be imaged.

半導体基板10の裏面S2上には、絶縁膜40が設けられている。なお、絶縁膜40は必要に応じて設けられるものであり、絶縁膜40はなくてもよい。絶縁膜40としては、例えば、SiN膜、SiON膜もしくはSiO膜、またはそれらの積層膜、或いは樹脂が挙げられる。絶縁膜40を設けることによって、不純物や汚染物質が裏面S2から侵入することを防ぐことができる。この裏面S2は、グランド(GND)に接続される。すなわち、固体撮像装置1の動作時、裏面S2には、固定電位としてGND電位が与えられる。 An insulating film 40 is provided on the back surface S <b> 2 of the semiconductor substrate 10. The insulating film 40 is provided as necessary, and the insulating film 40 may not be provided. Examples of the insulating film 40 include a SiN film, a SiON film, a SiO 2 film, a laminated film thereof, and a resin. By providing the insulating film 40, impurities and contaminants can be prevented from entering from the back surface S2. This back surface S2 is connected to the ground (GND). That is, during the operation of the solid-state imaging device 1, the back surface S2 is supplied with the GND potential as a fixed potential.

半導体層20中には、MOSFET50も形成されている。すなわち、固体撮像装置1には、受光部30等により構成されるMOSイメージセンサ部と、MOSFET50等により構成されるロジック回路部とが混載されている。MOSFET50は、ソース・ドレイン領域として機能するN型不純物拡散層52、およびゲート電極54を含んでいる。   A MOSFET 50 is also formed in the semiconductor layer 20. That is, in the solid-state imaging device 1, a MOS image sensor unit configured by the light receiving unit 30 and the like and a logic circuit unit configured by the MOSFET 50 and the like are mounted together. The MOSFET 50 includes an N-type impurity diffusion layer 52 that functions as a source / drain region, and a gate electrode 54.

半導体層20の表面(半導体基板10と反対側の面)上には、配線層(絶縁層中に配線が設けられている層)60が設けられている。この配線層60中には、図示しない配線が形成されている。   On the surface of the semiconductor layer 20 (surface opposite to the semiconductor substrate 10), a wiring layer (layer in which wiring is provided in an insulating layer) 60 is provided. In the wiring layer 60, wiring (not shown) is formed.

図2を参照しつつ、固体撮像装置1の動作の一例を説明する。同図においては、固体撮像装置1の裏面(半導体基板10の裏面S2)に、被撮像体である指90を接触させている。蛍光灯やLED等の光源からの光L1を指90に入射させると、その透過光L2が上記裏面に入射する。このとき、透過光L2は、指90の指紋92の形状についての情報を含んだものとなる。すると、透過光L2は、半導体基板10の内部または半導体層20の内部で光電変換される。その光電変換により発生した信号電荷を受光部30が受けることにより、指紋92の像が撮像される。なお、光L1は、可視光、近赤外光または赤外光の何れであってもよい。   An example of the operation of the solid-state imaging device 1 will be described with reference to FIG. In the figure, a finger 90 as an object to be imaged is brought into contact with the back surface of the solid-state imaging device 1 (the back surface S2 of the semiconductor substrate 10). When light L1 from a light source such as a fluorescent lamp or LED enters the finger 90, the transmitted light L2 enters the back surface. At this time, the transmitted light L <b> 2 includes information about the shape of the fingerprint 92 of the finger 90. Then, the transmitted light L <b> 2 is photoelectrically converted inside the semiconductor substrate 10 or inside the semiconductor layer 20. When the light receiving unit 30 receives signal charges generated by the photoelectric conversion, an image of the fingerprint 92 is captured. The light L1 may be any of visible light, near infrared light, or infrared light.

本実施形態の効果を説明する。固体撮像装置1においては、受光部30が設けられた半導体層20よりも大きな比抵抗をもつ半導体基板10を用いている。このため、光電変換により生成された正孔−電子対のうち、信号として寄与する電子(信号電荷)の拡散長を大きくすることができる。これにより、信号電荷が受光部に達し易くなる。したがって、半導体基板10の厚みを充分に確保しつつ、固体撮像装置1の感度向上を図ることができる。
なお、上記拡散長(デバイ長)Lは、下記(1)式で表される。この式からわかるように、媒質(固体撮像装置1の場合、半導体基板10または半導体層20)の比抵抗が大きいほど、C(不純物濃度)が小さくなり、それによりL(デバイ長)が大きくなる。したがって、半導体基板10の比抵抗ρを半導体層20の比抵抗ρよりも大きくすることにより、ρがρに等しい場合あるいはρよりも小さい場合よりも、Lを大きくすることができるのである。特にρ≧200ΩcmであればLを顕著に大きくすることができる。さらにρ≧500ΩcmであればLを一層顕著に大きくすることができる。
The effect of this embodiment will be described. In the solid-state imaging device 1, the semiconductor substrate 10 having a larger specific resistance than the semiconductor layer 20 provided with the light receiving unit 30 is used. For this reason, among the hole-electron pairs generated by photoelectric conversion, the diffusion length of electrons (signal charges) contributing as signals can be increased. Thereby, the signal charge easily reaches the light receiving portion. Therefore, it is possible to improve the sensitivity of the solid-state imaging device 1 while ensuring a sufficient thickness of the semiconductor substrate 10.
Incidentally, the diffusion length (Debye length) L d is expressed by the following equation (1). As can be seen from this equation, C B (impurity concentration) decreases as the specific resistance of the medium (in the case of the solid-state imaging device 1, the semiconductor substrate 10 or the semiconductor layer 20) decreases, and thus L d (Debye length) decreases. growing. Therefore, to be larger than the specific resistance [rho 2 of the semiconductor layer 20 the resistivity [rho 1 of the semiconductor substrate 10, than if [rho 1 is less than or [rho 2 equal to [rho 2, increasing the L d Can do it. In particular, L d can be remarkably increased if ρ 1 ≧ 200 Ωcm. Furthermore, if ρ 1 ≧ 500 Ωcm, L d can be further significantly increased.

Figure 0005320483
ここで、ε:媒質の誘電率、ε:真空の誘電率、k:ボルツマン定数、T:電子温度、q:電子素量、C:媒質の不純物濃度である。
Figure 0005320483
Here, ε: dielectric constant of the medium, ε 0 : dielectric constant of vacuum, k: Boltzmann constant, T: electron temperature, q: elementary electron quantity, C B : impurity concentration of the medium.

半導体基板10の裏面S2上に絶縁膜40が設けられている。これにより、汚染物質が裏面S2から固体撮像装置1の内部に侵入するのを防ぐことができる。かかる汚染物質としては、例えばナトリウムが挙げられる。この点に関し、指から放出される汗の中には、ナトリウムが含有される。したがって、上述した例の如く、固体撮像装置1に指を接触させた状態で撮像を行う場合には、ナトリウムの浸入を防止できる絶縁膜40の存在が特に重要となる。なお、絶縁膜40がSiN等の窒化膜を含む場合、絶縁膜40による上述の効果が特に顕著となる。   An insulating film 40 is provided on the back surface S <b> 2 of the semiconductor substrate 10. Thereby, it is possible to prevent contaminants from entering the solid-state imaging device 1 from the back surface S2. An example of such a contaminant is sodium. In this regard, the sweat released from the finger contains sodium. Therefore, when imaging is performed with the finger in contact with the solid-state imaging device 1 as in the above-described example, the presence of the insulating film 40 that can prevent the entry of sodium is particularly important. Note that, when the insulating film 40 includes a nitride film such as SiN, the above-described effects due to the insulating film 40 are particularly remarkable.

半導体基板10の裏面S2がGNDに接続されるように構成されている。これにより、当該裏面S2を静電シールドとして機能させることができる。   The back surface S2 of the semiconductor substrate 10 is configured to be connected to GND. Thereby, the said back surface S2 can be functioned as an electrostatic shield.

半導体層20がエピタキシャル成長法により形成される場合、すなわち半導体層20がエピタキシャル層である場合には、半導体基板10よりも小さな比抵抗をもつ半導体層20を容易に形成することができる。また、エピタキシャル層である場合には、半導体基板10の比抵抗ρから半導体層20の比抵抗ρへと急峻に比抵抗を変化させることができる。 When the semiconductor layer 20 is formed by an epitaxial growth method, that is, when the semiconductor layer 20 is an epitaxial layer, the semiconductor layer 20 having a specific resistance smaller than that of the semiconductor substrate 10 can be easily formed. Further, when an epitaxial layer may be varied abruptly resistivity from the resistivity [rho 1 of the semiconductor substrate 10 to the resistivity [rho 2 of the semiconductor layer 20.

5Ωcm≦ρ≦100Ωcmである場合、受光部30およびMOSFET50等の製造が容易となる。既存のデバイス・プロセスをそのまま用いて製造することが可能だからである。 When 5 Ωcm ≦ ρ 2 ≦ 100 Ωcm, the light receiving unit 30, the MOSFET 50, and the like can be easily manufactured. This is because it is possible to manufacture using existing device processes.

固体撮像装置1は、裏面入射型である。このため、固体撮像装置1の表面側(配線層60側)に、被撮像体を接触させる必要がない。これにより、固体撮像装置1の破損、特性劣化および静電破壊等の発生を抑えることができる。このことは、固体撮像装置1の信頼性の向上に寄与する。例えば、被撮像体が指である場合、帯電した指とは反対側に配線が位置することになるため、指による過大な静電気が半導体層20中に設けられた素子(受光部30やMOSFET50等)に印加されるのを防ぐことができる。   The solid-state imaging device 1 is a back-illuminated type. For this reason, it is not necessary to contact the to-be-photographed object with the surface side (wiring layer 60 side) of the solid-state imaging device 1. Thereby, generation | occurrence | production of the damage of the solid-state imaging device 1, a characteristic deterioration, an electrostatic breakdown, etc. can be suppressed. This contributes to improving the reliability of the solid-state imaging device 1. For example, when the object to be imaged is a finger, the wiring is located on the side opposite to the charged finger, so that an excessive static electricity due to the finger is provided in the semiconductor layer 20 (such as the light receiving unit 30 and the MOSFET 50). ) Can be prevented.

また、固体撮像装置1が裏面入射型であるため、被撮像体を接触させるために固体撮像装置1の表面を露出させる必要がない。これにより、種々の不純物が固体撮像装置1の表面に直接付着するのを防ぐことができる。かかる不純物の付着は、固体撮像装置1の電気的特性の劣化につながってしまう。   Moreover, since the solid-state imaging device 1 is a back-illuminated type, it is not necessary to expose the surface of the solid-state imaging device 1 in order to contact the imaging target. Thereby, various impurities can be prevented from directly attaching to the surface of the solid-state imaging device 1. Such adhesion of impurities leads to deterioration of the electrical characteristics of the solid-state imaging device 1.

光L1(図2参照)として近赤外光または赤外光を用いた場合、可視光を用いた場合よりも、裏面S2から深い位置まで透過光L2を到達させることができる。それにより、透過光L2が光電変換されて生じた信号電荷が、受光部30に達し易くなる。   When near infrared light or infrared light is used as the light L1 (see FIG. 2), the transmitted light L2 can reach the deeper position from the back surface S2 than when visible light is used. As a result, signal charges generated by photoelectric conversion of the transmitted light L <b> 2 easily reach the light receiving unit 30.

本発明による固体撮像装置は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、上記実施形態においては、半導体層20は、イオン注入により形成されてもよい。すなわち、半導体基板の表層に不純物イオンを注入し、それにより比抵抗が小さくなった上記表層を半導体層20としてもよい。あるいは、比抵抗の相異なる2枚の半導体基板を互いに貼り合わせて、比較的小さな比抵抗をもつ半導体基板を半導体層20としてもよい。また、半導体基板10上に直接に半導体層20が設けられた例を示した。しかし、図3に示すように、半導体基板10と半導体層20との間に、半導体層70(第2の半導体層)が介在していてもよい。半導体層70は、半導体基板10と同じ導電型を有している。この半導体層70は、比抵抗ρ(第3の比抵抗)をもっている。ここで、ρ、もしくはρである。なお、半導体層70は、半導体層20と同様に、エピタキシャル成長法により形成されていてもよいし、イオン注入により形成されてもよいし、比抵抗の相異なる半導体基板を互いに貼り合わせて形成してもよい。さらに、実施形態の説明において、固体撮像装置1にNチャネルMOSFET(図1のMOSFET50)が形成されていることを示したが、さらにPチャネルMOSFETが形成されていてもよい。また、実施形態の説明において、P型の半導体基板、P型の半導体層、N型の受光部を例示したが、N型の半導体基板、N型の半導体層、P型の受光部であってもよい。 The solid-state imaging device according to the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, the semiconductor layer 20 may be formed by ion implantation. That is, impurity ions may be implanted into the surface layer of the semiconductor substrate, and the surface layer having a reduced specific resistance may be used as the semiconductor layer 20. Alternatively, two semiconductor substrates having different specific resistances may be bonded to each other, and a semiconductor substrate having a relatively small specific resistance may be used as the semiconductor layer 20. Further, an example in which the semiconductor layer 20 is provided directly on the semiconductor substrate 10 has been shown. However, as shown in FIG. 3, a semiconductor layer 70 (second semiconductor layer) may be interposed between the semiconductor substrate 10 and the semiconductor layer 20. The semiconductor layer 70 has the same conductivity type as that of the semiconductor substrate 10. The semiconductor layer 70 has a specific resistance ρ 3 (third specific resistance). Here, ρ 231 , or ρ 213 . The semiconductor layer 70 may be formed by an epitaxial growth method, may be formed by ion implantation, similarly to the semiconductor layer 20, or may be formed by bonding semiconductor substrates having different specific resistances to each other. Also good. Further, in the description of the embodiment, it is shown that the N-channel MOSFET (MOSFET 50 in FIG. 1) is formed in the solid-state imaging device 1, but a P-channel MOSFET may be further formed. In the description of the embodiment, the P-type semiconductor substrate, the P-type semiconductor layer, and the N-type light receiving unit are illustrated. However, the N-type semiconductor substrate, the N-type semiconductor layer, and the P-type light receiving unit Also good.

また、上記実施形態においては、半導体層20の表層に受光部30が設けられた例を示した。しかし、図4に示すように、受光部30は、半導体層20の内部に設けられていてもよい。同図においては、半導体層20の表層にP+型不純物拡散層80が設けられており、P+型不純物拡散層80上に受光部30が設けられている。すなわち、P+型不純物拡散層80、受光部30および半導体層20により、埋込型フォトダイオードが構成されている。P+型不純物拡散層80はシールド層として機能し、それにより半導体層20の表面からのノイズが受光部30に与える影響を小さく抑えることができる。   Moreover, in the said embodiment, the example in which the light-receiving part 30 was provided in the surface layer of the semiconductor layer 20 was shown. However, as shown in FIG. 4, the light receiving unit 30 may be provided inside the semiconductor layer 20. In the figure, a P + -type impurity diffusion layer 80 is provided on the surface layer of the semiconductor layer 20, and the light receiving portion 30 is provided on the P + -type impurity diffusion layer 80. That is, the P + type impurity diffusion layer 80, the light receiving unit 30, and the semiconductor layer 20 constitute an embedded photodiode. The P + type impurity diffusion layer 80 functions as a shield layer, whereby the influence of noise from the surface of the semiconductor layer 20 on the light receiving unit 30 can be suppressed.

また、本発明は、CCD(Charge Coupled Device)型の固体撮像装置に適用してもよい。   The present invention may also be applied to a CCD (Charge Coupled Device) type solid-state imaging device.

1 固体撮像装置
10 半導体基板
20 半導体層
30 受光部
40 絶縁膜
50 MOSFET
52 N型不純物拡散層
54 ゲート電極
60 配線層
70 半導体層
80 P+型不純物拡散層
90 指
92 指紋
S1 表面
S2 裏面
L1 光源からの光
L2 透過光
DESCRIPTION OF SYMBOLS 1 Solid-state imaging device 10 Semiconductor substrate 20 Semiconductor layer 30 Light-receiving part 40 Insulating film 50 MOSFET
52 N-type impurity diffusion layer 54 Gate electrode 60 Wiring layer 70 Semiconductor layer 80 P + -type impurity diffusion layer 90 Finger 92 Fingerprint S1 Front surface S2 Back surface L1 Light L2 from light source Transmitted light

Claims (8)

第1の比抵抗をもつ半導体基板と、
前記半導体基板の第1面上に設けられ、前記第1の比抵抗よりも小さな第2の比抵抗をもつ第1導電型の半導体層と、
前記半導体層中に設けられた受光部と、を備え、
前記半導体基板の前記第1面と反対側の第2面に入射した被撮像体からの光を当該半導体基板の内部または前記半導体層の内部で光電変換し、当該光電変換により発生した電荷を前記受光部で受けて前記被撮像体を撮像し、
前記受光部は、連続した一の前記半導体層中に複数設けられており、
前記半導体基板および前記半導体層は、シリコンにより構成されており、
前記受光部の少なくとも前記半導体基板側の表面の全領域が、前記半導体層と接していることを特徴とする固体撮像装置。
A semiconductor substrate having a first specific resistance;
A semiconductor layer of a first conductivity type provided on the first surface of the semiconductor substrate and having a second specific resistance smaller than the first specific resistance;
A light receiving portion provided in the semiconductor layer,
The light from the imaging target incident on the second surface opposite to the first surface of the semiconductor substrate is photoelectrically converted inside the semiconductor substrate or the semiconductor layer, and the charge generated by the photoelectric conversion is Receiving at the light receiving part to image the imaged object ,
A plurality of the light receiving portions are provided in one continuous semiconductor layer,
The semiconductor substrate and the semiconductor layer are made of silicon,
A solid-state imaging device , wherein at least the entire region of the surface of the light receiving unit on the semiconductor substrate side is in contact with the semiconductor layer .
請求項1に記載の固体撮像装置において、
前記半導体基板の前記第2面上に設けられた絶縁膜を備える固体撮像装置。
The solid-state imaging device according to claim 1,
A solid-state imaging device comprising an insulating film provided on the second surface of the semiconductor substrate.
請求項1または2に記載の固体撮像装置において、
前記半導体基板の前記第2面は、グランドに接続される固体撮像装置。
The solid-state imaging device according to claim 1 or 2,
The second surface of the semiconductor substrate is a solid-state imaging device connected to a ground.
請求項1乃至3いずれかに記載の固体撮像装置において、
前記半導体層は、エピタキシャル層である固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 3,
The solid-state imaging device, wherein the semiconductor layer is an epitaxial layer.
請求項1乃至4いずれかに記載の固体撮像装置において、
前記半導体基板と前記半導体層との間に設けられ、前記第1の比抵抗よりも小さく且つ前記第2の比抵抗よりも大きな第3の比抵抗をもつ第2の半導体層を備える固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 4,
A solid-state imaging device including a second semiconductor layer provided between the semiconductor substrate and the semiconductor layer and having a third specific resistance smaller than the first specific resistance and larger than the second specific resistance .
請求項1乃至5いずれかに記載の固体撮像装置において、
前記第1の比抵抗は、200Ωcm以上である固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 5,
The solid-state imaging device in which the first specific resistance is 200 Ωcm or more.
請求項6に記載の固体撮像装置において、
前記第1の比抵抗は、500Ωcm以上である固体撮像装置。
The solid-state imaging device according to claim 6,
The solid-state imaging device having the first specific resistance of 500 Ωcm or more.
請求項1乃至7いずれかに記載の固体撮像装置において、
前記第2の比抵抗は、5Ωcm以上100Ωcm以下である固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 7,
The solid-state imaging device having the second specific resistance of 5 Ωcm or more and 100 Ωcm or less.
JP2012103491A 2012-04-27 2012-04-27 Solid-state imaging device Expired - Fee Related JP5320483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012103491A JP5320483B2 (en) 2012-04-27 2012-04-27 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012103491A JP5320483B2 (en) 2012-04-27 2012-04-27 Solid-state imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006018084A Division JP5006547B2 (en) 2006-01-26 2006-01-26 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2012142638A JP2012142638A (en) 2012-07-26
JP5320483B2 true JP5320483B2 (en) 2013-10-23

Family

ID=46678517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012103491A Expired - Fee Related JP5320483B2 (en) 2012-04-27 2012-04-27 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP5320483B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159761A (en) * 1988-12-13 1990-06-19 Fujitsu Ltd Infrared detector
JP3530466B2 (en) * 2000-07-17 2004-05-24 Necエレクトロニクス株式会社 Solid-state imaging device

Also Published As

Publication number Publication date
JP2012142638A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
US8896734B2 (en) Solid-state image sensor, method of manufacturing the same, and camera
JP5459357B2 (en) Solid-state imaging device
US8368164B2 (en) Phototransistor having a buried collector
JP2006261638A (en) Solid-state imaging device and driving method of solid-state imaging device
JP3530466B2 (en) Solid-state imaging device
US9117724B2 (en) Solid-state image sensing device
CN102446938A (en) Semiconductor device
JP2010278303A (en) Solid-state imaging device
JP5006547B2 (en) Solid-state imaging device
JP2010182789A (en) Solid-state imaging element, imaging device, and manufacturing method of solid-state imaging element
JP5006581B2 (en) Solid-state imaging device
JP5320483B2 (en) Solid-state imaging device
TWI648847B (en) Radiographic image sensor
US20130241017A1 (en) Solid-state image pickup device
JP3621273B2 (en) Solid-state imaging device and manufacturing method thereof
US9159759B2 (en) Solid-state image pickup device
CN206574714U (en) Isolation structure and the imaging sensor comprising the isolation structure
JP2003507902A (en) Image cell, image sensor and method of manufacturing the same
JP5711323B2 (en) Solid-state imaging device
JP7285351B2 (en) Photodetectors and electronic devices
JP2011171764A (en) Solid-state imaging device
JP5432979B2 (en) Solid-state imaging device
JP2023107794A (en) Photodetector and electronic equipment
JP2012142602A (en) Solid-state imaging device
JP4957776B2 (en) Back-illuminated solid-state imaging device, electronic device module, and camera module

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R150 Certificate of patent or registration of utility model

Ref document number: 5320483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees