Nothing Special   »   [go: up one dir, main page]

JP5305928B2 - How to create a periodic structure - Google Patents

How to create a periodic structure Download PDF

Info

Publication number
JP5305928B2
JP5305928B2 JP2009004170A JP2009004170A JP5305928B2 JP 5305928 B2 JP5305928 B2 JP 5305928B2 JP 2009004170 A JP2009004170 A JP 2009004170A JP 2009004170 A JP2009004170 A JP 2009004170A JP 5305928 B2 JP5305928 B2 JP 5305928B2
Authority
JP
Japan
Prior art keywords
periodic structure
laser
workpiece
laser scanning
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009004170A
Other languages
Japanese (ja)
Other versions
JP2010162545A (en
Inventor
紀彦 和田
幸男 西川
正行 高橋
英俊 宇津呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009004170A priority Critical patent/JP5305928B2/en
Publication of JP2010162545A publication Critical patent/JP2010162545A/en
Application granted granted Critical
Publication of JP5305928B2 publication Critical patent/JP5305928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、光学的な反射および回折を利用して発色する周期構造の作成方法に関するものである。   The present invention relates to a method for creating a periodic structure that develops color using optical reflection and diffraction.

近年、固体の表面に微細構造を形成することで、光学機能や濡れ性の制御など様々な機能を発生させる研究が進められている。その中で、固体からなる被加工物の表面に周期的な微細構造を形成することにより、光の反射および回折光の干渉を利用して被加工物の表面を特定の色で発色させることができる発色構造技術がある。本技術の適用例としては、外装部品の装飾用として、外装部品の表面に微細構造を形成して発色させることなどがある。   In recent years, studies have been made to generate various functions such as optical functions and wettability control by forming a fine structure on a solid surface. Among them, by forming a periodic fine structure on the surface of a workpiece made of solid, the surface of the workpiece can be colored with a specific color by utilizing reflection of light and interference of diffracted light. There is a coloring structure technology that can. As an application example of the present technology, there is a case where a fine structure is formed on the surface of the exterior part to develop a color for decoration of the exterior part.

本技術は、例えばV溝のような構造を波長程度の周期間隔で、被加工物の表面を加工することにより実現される。微細形状の加工方法としては、機械加工、電子線描画加工、レーザ加工等がある。機械加工は、加工形状の自由度が高いという特徴を有する一方で、加工形状の微細化には限界があり、また、各形状を単一の工具により順次加工していくために加工時間が膨大になるという問題がある。また、電子線描画加工は、μmオーダー以下の微細な形状を加工することができるが、加工速度が小さいために加工できる範囲が限定されるという問題がある。   The present technology is realized by processing a surface of a workpiece with a structure such as a V-groove, for example, at a periodic interval of about a wavelength. Examples of the fine shape processing method include machining, electron beam drawing, and laser processing. Machining has the feature that the machining shape has a high degree of freedom, but there is a limit to the miniaturization of the machining shape, and the machining time is enormous because each shape is processed sequentially with a single tool. There is a problem of becoming. In addition, although electron beam drawing processing can process a fine shape of the order of μm or less, there is a problem that the processing range is limited because the processing speed is low.

一方で、加工閾値近傍のフルエンス(エネルギー密度)で直線偏光のレーザを被加工物の表面に照射すると、微細周期構造を形成できることが知られている(非特許文献1、2参照)。この方法では金属、半導体、ポリマー等の材料からなる被加工物に対して、レーザの波長オーダーの周期構造を自己組織的に形成させることができる。周期構造が形成される範囲は照射範囲内に限定されるが、図6に示すように、加工ステージ上に設置された被加工物2に対して、フェムト秒レーザのレーザ照射部1をレーザ走査境界部3上でオーバーラップさせながら走査することにより、被加工物2の表面に周期構造5を広範囲に形成できることが知られている(特許文献1参照)。この加工方法(周期構造の作成方法)は、一定の照射範囲に拡大したレーザを被加工物2上で走査させて加工できるために、大面積の加工が可能であり、加工速度も他の工法と比較して大きいという利点がある。なお、図6では、このような形成状況を理解し易くするために、周期構造5の山(或いは谷)の部分を実線で示している。
A.E. Siegman, P.M. Fauchet: Stimulated Wood's anomalies on laser-illuminated surfaces, IEEE J.Quantum Electron., QE-20、8(1986)P.1384 南志昌,豊田浩一:レーザー誘起表面電磁波による金属・半導体のリップル形成入射角依存性,レーザー研究,28,12(2000) P.824. 国際公開 WO 2004/035255号公報
On the other hand, it is known that a fine periodic structure can be formed by irradiating the surface of a workpiece with a linearly polarized laser beam at a fluence (energy density) near the processing threshold (see Non-Patent Documents 1 and 2). In this method, a periodic structure of the wavelength order of the laser can be formed in a self-organized manner on a workpiece made of a material such as a metal, a semiconductor, or a polymer. The range in which the periodic structure is formed is limited to the irradiation range, but as shown in FIG. 6, the laser irradiation unit 1 of the femtosecond laser is scanned with the workpiece 2 placed on the processing stage. It is known that the periodic structure 5 can be formed over a wide range on the surface of the workpiece 2 by scanning while overlapping the boundary portion 3 (see Patent Document 1). This processing method (periodic structure creation method) is capable of processing by scanning a workpiece 2 with a laser expanded to a certain irradiation range, so that processing of a large area is possible and processing speed is another method. There is an advantage that it is large compared to. In FIG. 6, in order to facilitate understanding of such a formation state, a peak (or valley) portion of the periodic structure 5 is indicated by a solid line.
AE Siegman, PM Fauchet: Stimulated Wood's anomalies on laser-illuminated surfaces, IEEE J. Quantum Electron., QE-20, 8 (1986) P.1384 Minamishimasa, Toyoda Koichi: Dependence of Ripple Formation Angle of Incidence on Metals and Semiconductors by Laser-Induced Surface Electromagnetic Waves, Laser Research, 28, 12 (2000) P.824. International Publication WO 2004/035255

しかしながら、前記従来の周期構造の作成方法を用いて、レーザ照射部を重ね合わせながら広範囲に周期構造を形成する際に、それぞれのレーザ走査において形成させる周期構造の基点が異なるため、図6に示すように、レーザ走査境界部3において周期構造5が不連続となるという問題が発生していた。この周期構造5の不連続部分(レーザ走査境界部3)では、周囲と比較して回折波長が異なるので、レーザ走査の連続部(レーザ走査境界部3以外の部分)と比較して発色が変化してレーザ走査境界部3が目立ってしまい、外装部品等の加飾用途としては問題があった。   However, when the periodic structure is formed over a wide range while overlapping the laser irradiation parts using the conventional method for creating a periodic structure, the base point of the periodic structure formed in each laser scanning is different, and therefore, as shown in FIG. Thus, the problem that the periodic structure 5 becomes discontinuous at the laser scanning boundary 3 has occurred. In the discontinuous portion of the periodic structure 5 (laser scanning boundary portion 3), since the diffraction wavelength is different from the surroundings, the color development changes compared to the continuous portion of laser scanning (portion other than the laser scanning boundary portion 3). As a result, the laser scanning boundary 3 becomes conspicuous, and there is a problem as a decoration application for exterior parts and the like.

また、フェムト秒レーザを用いて周期構造5を作成する際、形成される周期構造5の周期は、レーザの波長および入射角により決定される。したがって、レーザの波長および入射角が一定であると、形成される周期構造5の周期は、同じ被加工物2の加工面内においては同一となってしまう。よって、従来の加工方法により作成される周期構造5を構造発色用途に用いた場合に、発色する波長が単一であるために、色具合を変化させることができないという問題があった。   Further, when the periodic structure 5 is created using a femtosecond laser, the period of the periodic structure 5 to be formed is determined by the laser wavelength and the incident angle. Therefore, when the laser wavelength and the incident angle are constant, the period of the periodic structure 5 to be formed is the same in the processing surface of the same workpiece 2. Therefore, when the periodic structure 5 created by the conventional processing method is used for structural color development, there is a problem that the color condition cannot be changed because the color to be colored is single.

本発明は、前記従来の課題を解決するもので、被加工物の表面にレーザ照射部を走査させて広範囲に周期構造を作成してもレーザ走査境界部が目立つことのない周期構造の作成方法と、淡い中間色を発色させることが可能な周期構造の作成方法とを提供することを目的とする。   The present invention solves the above-described conventional problems, and a method for creating a periodic structure in which a laser scanning boundary is not noticeable even if a periodic structure is created over a wide range by scanning a laser irradiation portion on the surface of a workpiece. Another object of the present invention is to provide a method for producing a periodic structure capable of producing a light intermediate color.

上記目的を達成するために、本発明の請求項1に記載の周期構造の作成方法は、レーザを照射するレーザ照射部を、被加工物の表面に、レーザ走査境界部で重ね合わせながら走査させることにより、前記被加工物の表面を加工して周期構造を作成する周期構造の作成方法であって、レーザ走査境界部の結晶粒径を、レーザ走査境界部以外の箇所の結晶粒径よりも微細化し、前記レーザ走査境界部の微細化を行った被加工物に対して、前記レーザ走査境界部がレーザ走査経路の境界となるようにフェムト秒レーザを加工閾値近傍のフルエンスで走査させる第1のレーザ加工を行い、この第1のレーザ加工後、前記被加工物に、前記レーザ走査境界部で重なり合うように、フェムト秒レーザを加工閾値近傍のフルエンスで走査させる第2のレーザ加工を行って、前記レーザ走査境界部に形成される周期構造の周期および高さが、前記レーザ走査境界部以外に形成される周期構造の周期および高さよりも、小さくなった状態で分布した周期構造を形成することを特徴とする。つまり、予め、被加工物のレーザ走査境界部における結晶粒径を局所的に微細化し、このレーザ走査境界部が境界となるようにフェムト秒レーザを加工閾値近傍のフルエンスで走査させながら加工することを特徴とするものである。   In order to achieve the above object, a method for producing a periodic structure according to claim 1 of the present invention is configured to scan a laser irradiation portion for irradiating a laser while superimposing the laser irradiation portion on the surface of a workpiece at a laser scanning boundary portion. A periodic structure creation method for creating a periodic structure by processing the surface of the workpiece, wherein the crystal grain size of the laser scanning boundary portion is larger than the crystal grain size of the portion other than the laser scanning boundary portion. First, a femtosecond laser is scanned at a fluence near the processing threshold so that the laser scanning boundary portion becomes a boundary of a laser scanning path with respect to the workpiece that has been miniaturized and the laser scanning boundary portion has been miniaturized. After the first laser processing, a second laser that scans the workpiece with a fluence near the processing threshold so as to overlap the workpiece at the laser scanning boundary portion. The period and the height of the periodic structure formed at the laser scanning boundary portion are distributed in a state in which the period and the height of the periodic structure formed other than the laser scanning boundary portion are smaller. It is characterized by forming a structure. In other words, the crystal grain size at the laser scanning boundary of the workpiece is locally refined in advance, and processing is performed while scanning the femtosecond laser at a fluence near the processing threshold so that this laser scanning boundary becomes the boundary. It is characterized by.

ここで、直線偏光のフェムト秒レーザを被加工物に照射すると、p偏光成分の入射光と表面散乱光との干渉により波長間隔で周期構造が自己組織的に形成されていく。この時、被加工物の表面に結晶粒界が存在する場合、粒界部分での表面段差により入射光と散乱光との干渉する間隔が変化するために、結晶粒界においては周期構造の周期および高さが不連続となる。   Here, when a workpiece is irradiated with a linearly polarized femtosecond laser, a periodic structure is formed in a self-organized manner at wavelength intervals due to interference between incident light of p-polarized components and surface scattered light. At this time, when a grain boundary exists on the surface of the workpiece, the interval between the incident light and the scattered light changes due to the surface step at the grain boundary part. And the height becomes discontinuous.

したがって、本方法によれば、レーザ走査境界部における結晶粒径を微細化して結晶粒界を数多く形成することで、レーザ照射時に形成させる周期構造の周期および高さの不連続部を多く形成することができる。結晶粒界はあらゆる方位で存在するため、その結果、レーザ走査境界部における周期構造の周期および高さが、マクロ的には結晶粒界部以外に形成される周期構造と比較して、小さい範囲となるように変動しながら分布することになり、これにより、レーザ走査境界部においては明確な周期構造の境界が形成されることがない。このように、周期構造に明確な境界がなくなることにより、目視上境界線を認識することができないような表面状態となって、従来発生していたような外観品質上の問題を解消することができる。   Therefore, according to the present method, by forming a large number of crystal grain boundaries by refining the crystal grain size at the laser scanning boundary part, many discontinuous parts of the period and height of the periodic structure formed at the time of laser irradiation are formed. be able to. Since grain boundaries exist in all orientations, as a result, the period and height of the periodic structure at the laser scanning boundary are in a small range compared to the periodic structure formed outside the grain boundary on a macro scale. Therefore, the boundary of the laser scanning boundary portion does not form a clear periodic structure boundary. In this way, since there is no clear boundary in the periodic structure, it becomes a surface state in which the boundary line cannot be visually recognized, and it is possible to solve the appearance quality problem that has occurred conventionally. it can.

本発明の請求項2に記載の周期構造の作成方法は、レーザ走査境界部に対して、予めレーザを照射することでレーザ走査境界部の結晶粒径を微細化させることを特徴とする。本方法によれば、レーザ照射により被加工物のレーザ走査境界部の表面を局所的に再結晶温度まで加熱して照射部分を再結晶化させることにより、結晶粒径を微細化させることができる。なお、レーザはCOレーザ、YAGレーザ等を、被加工物の波長に対する吸収率に応じて適宜選択すればよい。また、照射スポット径についても、結晶粒径を微細化する領域およびレーザ出力に応じて適宜選択すればよい。 The method for creating a periodic structure according to claim 2 of the present invention is characterized in that the crystal grain size at the laser scanning boundary portion is made finer by irradiating the laser scanning boundary portion with a laser in advance. According to this method, the crystal grain size can be refined by locally heating the surface of the laser scanning boundary portion of the workpiece to the recrystallization temperature by laser irradiation to recrystallize the irradiated portion. . Note that a CO 2 laser, a YAG laser, or the like may be appropriately selected according to the absorption rate with respect to the wavelength of the workpiece. Further, the irradiation spot diameter may be selected as appropriate according to the region in which the crystal grain size is made fine and the laser output.

本発明の請求項に記載の外装部品は、請求項1または2に記載の周期構造の作成方法にて作成した外装部品であって、所定値を中心値として分布した周期および深さを有した周期構造を有することにより、所定値の波長を中心として一定の範囲内の波長の光を回折するように構成したことを特徴とする。このように、外装部品の表面に形成する周期構造の周期および高さを一定範囲で小さくなるように分布させることにより、発色する色合いを、中心範囲で既定される特定の色ではなくて、淡い中間色を発色させることが可能となる。 The exterior component according to claim 3 of the present invention is an exterior component created by the periodic structure creation method according to claim 1 or 2, and has a period and a depth distributed with a predetermined value as a center value. By having such a periodic structure, it is characterized in that light having a wavelength within a certain range is diffracted around a predetermined wavelength. In this way, by distributing the period and height of the periodic structure formed on the surface of the exterior part so as to be small within a certain range, the color to be developed is not a specific color defined in the central range, but a light color. An intermediate color can be developed.

また、本発明の請求項のように、電子機器の表面を、発色する外装部品で構成することにより、塗装工程が不要となり、製造コストの低減および環境負荷の低減が可能となる。 Further, as described in claim 4 of the present invention, when the surface of the electronic device is constituted by an exterior part that develops color, a painting process is not required, and the manufacturing cost and the environmental load can be reduced.

以上のように、本発明の周期構造の作成方法によれば、被加工材料表面における結晶粒径を制御することにより、レーザ照射部を走査させて広範囲に周期構造を作成しても、走査境界部が目立たず外観品質上問題のない周期構造を広範囲に形成することができる。また、淡い中間色を発色させることが可能な周期構造を形成することができる。   As described above, according to the method for creating a periodic structure of the present invention, even if the periodic structure is created over a wide range by scanning the laser irradiation part by controlling the crystal grain size on the surface of the work material, the scanning boundary It is possible to form a periodic structure over a wide range with no conspicuous portion and no problem in appearance quality. In addition, it is possible to form a periodic structure that can develop a light intermediate color.

以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
本発明の実施の形態1に係る周期構造の作成方法は、レーザを照射するレーザ照射部を、被加工物の表面に、レーザ走査境界部で重ね合わせながら走査させることにより前記被加工物の表面を広範囲に加工して周期構造を作成する周期構造の作成方法であって、予め、レーザ走査境界部の結晶粒径を、レーザ走査境界部以外の箇所の結晶粒径よりも微細化し、前記レーザ走査境界部の微細化を行った被加工物に対して、前記レーザ走査境界部の一部がレーザ走査経路の境界部となるようにフェムト秒レーザを加工閾値近傍のフルエンスで走査させる第1のレーザ加工を行い、この第1のレーザ加工後、前記レーザ走査境界部の未加工部分を含む被加工物に、前記レーザ走査境界部で重なり合うように、フェムト秒レーザを加工閾値近傍のフルエンスで走査させる第2のレーザ加工を行って、前記レーザ走査境界部に形成される周期構造の周期および高さが、前記レーザ走査境界部以外に形成される周期構造の周期および高さよりも、小さくなった状態で分布した周期構造を形成することを特徴とする。つまり、予め、被加工物におけるレーザ走査境界部における結晶粒径を局所的に微細化し、このレーザ走査境界部が境界となるようにフェムト秒レーザを加工閾値近傍のフルエンスで走査させながら加工することを特徴とするものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
In the method for creating a periodic structure according to Embodiment 1 of the present invention, the surface of the workpiece is scanned by causing a laser irradiation unit that irradiates a laser to scan the surface of the workpiece while overlapping the laser scanning boundary. A method for creating a periodic structure in which a periodic structure is formed by processing a wide area of the laser, wherein the crystal grain size at the laser scanning boundary is made finer in advance than the crystal grain size at locations other than the laser scanning boundary. First, the femtosecond laser is scanned at a fluence near the processing threshold so that a part of the laser scanning boundary portion becomes a boundary portion of the laser scanning path with respect to the workpiece whose scanning boundary portion has been miniaturized. Laser processing is performed, and after this first laser processing, a femtosecond laser is applied near the processing threshold so as to overlap the workpiece including the unprocessed portion of the laser scanning boundary portion at the laser scanning boundary portion. The period and height of the periodic structure formed at the laser scanning boundary portion is higher than the period and height of the periodic structure formed at other than the laser scanning boundary portion. A periodic structure distributed in a reduced state is formed. In other words, the crystal grain size at the laser scanning boundary in the workpiece is locally refined and processed while scanning the femtosecond laser at a fluence near the processing threshold so that this laser scanning boundary becomes the boundary. It is characterized by.

図1は、本発明の実施の形態1に係る周期構造の作成方法により周期構造を形成した被加工物の要部を示したものである。
図1に示すように、楕円形状に成形された直線偏光のフェムト秒レーザ照射部1を被加工物2の表面上を走査させると、入射光のp偏光成分と表面散乱光のp偏光成分との干渉が起こり、レーザの波長間隔の周期構造5が形成される。本発明の実施の形態では、レーザ照射を行う前に、予め、後述するレーザ走査境界部3の結晶粒径を、レーザ走査境界部以外の箇所の結晶粒径よりも微細化している。被加工物2の材料が単結晶あるいはアモルファス、または結晶粒の大きさが波長に対して十分大きい場合には、形成される周期構造5Aは一定間隔の周期および高さで形成されるが、被加工物2の表面に結晶粒を微細化した結晶粒微細化領域4が存在する場合、結晶粒界における段差のために入射光と散乱光との干渉が起こる間隔が変化して、結晶粒毎に周期構造5Bが形成される起点が異なることとなる。このため、前記結晶粒微細化領域4においては起点の異なる周期構造5Bが多数形成され、この結晶粒微細化領域4においては、マクロ的には周期構造5Bの周期および高さは、所定値(結晶粒微細化領域4ではない箇所の周期構造5Aの周期および高さ以下となる所定値)を中心とした一定の範囲に分布することになる。レーザ照射部1を被加工物2の表面上で予め決められた走査経路により重ね合わせながら走査させることにより被加工物上2を広範囲に加工する場合に、レーザ走査境界部3の周辺に結晶粒微細化領域4を形成することにより、レーザ走査境界部3において明確な周期構造のずれのない周期構造5を形成することができる。本周期構造5を発色および装飾等への外観が重視される用途への適用を考えると、走査経路のレーザ走査境界部3における周期構造のずれは目視上問題となるが、本実施の形態のようにレーザ走査境界部3周辺の周期構造5Bの周期および高さを一定の範囲で分布させることにより、境界部が目視上認識できなくなるため外観上の問題を解消することができる。
FIG. 1 shows a main part of a workpiece in which a periodic structure is formed by the method for creating a periodic structure according to Embodiment 1 of the present invention.
As shown in FIG. 1, when the surface of the workpiece 2 is scanned with a linearly polarized femtosecond laser irradiation unit 1 formed into an elliptical shape, a p-polarized component of incident light and a p-polarized component of surface scattered light are obtained. Interference occurs, and the periodic structure 5 having the laser wavelength interval is formed. In the embodiment of the present invention, before performing laser irradiation, the crystal grain size of a laser scanning boundary portion 3 to be described later is made finer in advance than the crystal grain size of portions other than the laser scanning boundary portion. When the material of the workpiece 2 is single crystal or amorphous, or when the size of the crystal grains is sufficiently large with respect to the wavelength, the periodic structure 5A to be formed is formed with a periodic interval and height. When there is a crystal grain refinement region 4 in which crystal grains are refined on the surface of the workpiece 2, the interval at which the interference between the incident light and the scattered light changes due to a step in the crystal grain boundary. The starting point at which the periodic structure 5B is formed is different. For this reason, a large number of periodic structures 5B having different starting points are formed in the crystal grain refinement region 4, and in the crystal grain refinement region 4, the period and height of the periodic structure 5B are predetermined values ( It is distributed in a certain range centered on a predetermined value that is equal to or less than the period and height of the periodic structure 5A at a portion that is not the crystal grain refinement region 4. When the laser irradiation unit 1 is scanned over the surface of the workpiece 2 while being overlapped by a predetermined scanning path, a crystal grain is formed around the laser scanning boundary 3 when the workpiece 2 is processed over a wide range. By forming the miniaturized region 4, it is possible to form the periodic structure 5 having no clear periodic structure shift at the laser scanning boundary portion 3. Considering the application of the periodic structure 5 to a use in which the appearance of coloring and decoration is important, the shift of the periodic structure at the laser scanning boundary 3 of the scanning path is a visual problem. As described above, by distributing the period and height of the periodic structure 5B around the laser scanning boundary 3 within a certain range, the boundary cannot be visually recognized, so that the appearance problem can be solved.

なお、図1においては、理解し易いように、周期構造5(5A、5B)の山(或いは谷)の部分を実線で示しており、また、結晶粒界を点線で示している。図1に示すように、結晶粒微細化領域4における、すなわちレーザ走査境界部3およびその周辺における、被加工物2の表面の各結晶粒に対応する箇所の面積は、結晶粒微細化領域4以外の領域での各結晶粒に対応する箇所の面積よりも小さくなっており、各結晶粒に対応する領域毎に周期構造5が形成されている。   In FIG. 1, the crest (or valley) of the periodic structure 5 (5A, 5B) is indicated by a solid line, and the crystal grain boundary is indicated by a dotted line for easy understanding. As shown in FIG. 1, the area of the crystal grain refinement region 4, that is, the area corresponding to each crystal grain on the surface of the workpiece 2 in and around the laser scanning boundary 3 is the crystal grain refinement region 4. The area is smaller than the area corresponding to each crystal grain in the other region, and the periodic structure 5 is formed for each region corresponding to each crystal grain.

次に、本周期構造5の作成方法の具体的な加工例について、詳細に述べる。図2は周期構造を作成する周期構造作成装置を模式的に示した図である。周期構造作成装置は、フェムト秒レーザ発生装置6(波長800nm、繰り返し周波数1kHz、エネルギー284mW、パルス幅200fs)6と、複数の折り返しミラー7と、集光レンズ8と、被加工物2を支持する加工ステージとしてのXYステージ9とを備えている。そして、フェムト秒レーザ発生装置6は、折り返しミラー7と集光レンズ8とを通して、XYステージ9上に設置された被加工物2上へレーザを照射することができるよう構成されている。   Next, a specific processing example of the method for creating the periodic structure 5 will be described in detail. FIG. 2 is a diagram schematically showing a periodic structure creating apparatus for creating a periodic structure. The periodic structure creation device supports a femtosecond laser generator 6 (wavelength 800 nm, repetition frequency 1 kHz, energy 284 mW, pulse width 200 fs) 6, a plurality of folding mirrors 7, a condenser lens 8, and a workpiece 2. An XY stage 9 as a processing stage is provided. The femtosecond laser generator 6 is configured to irradiate the laser beam onto the workpiece 2 placed on the XY stage 9 through the folding mirror 7 and the condenser lens 8.

ここで、被加工物2の材料としては、平均粒径40μmで、レーザ走査経路の重ねあわせ部(レーザ走査境界部3)上で幅1mm程度の領域を平均粒径5μmに熱処理を施したSUS304を用いた。なお、本実施の形態における被加工物2は、最終的にレーザ走査境界部3に対応する箇所に対して、予め微細化の処理を施したものを用いてもよいし、XYステージ9上において照射エネルギーを調整したレーザを照射することにより急速加熱することで微細化処理をしたものを用いてもよい。また、結晶粒径の微細化はレーザ走査境界部3で急激に変化させるのではなく、レーザ走査境界部3の周辺で徐々に微細化させることが重要である。   Here, the material of the workpiece 2 is SUS304 having an average particle diameter of 40 μm and a region of about 1 mm in width on the overlapping part (laser scanning boundary part 3) of the laser scanning path subjected to heat treatment to an average particle diameter of 5 μm. Was used. Note that the workpiece 2 in the present embodiment may be a workpiece that has been subjected to a refinement process in advance at a location corresponding to the laser scanning boundary portion 3 on the XY stage 9. You may use what was refined | miniaturized by rapid heating by irradiating the laser which adjusted irradiation energy. In addition, it is important that the crystal grain size is not reduced rapidly at the laser scanning boundary 3 but gradually reduced around the laser scanning boundary 3.

より具体的な例としては、集光レンズ8により幅4mmの楕円形状に集光したレーザを、被加工物2上でレーザ同士がオーバーラップするように、XYステージ9を用いて走査速度3.0mm/sec、走査経路ライン間ピッチ3.8mmとして加工した。作成された周期構造5の形状を4μm角の領域で測定した結果、重ね合わせ部(レーザ走査境界部3に対応する)外の領域では周期580nm、高さ220nmの均一な周期構造5Aとなったのに対して、重ね合わせ部においては、周期495〜580nm、高さ130〜217nmに分布した周期構造5Bが形成されていた。また、本加工方法により形成した加工範囲において、重ね合わせ部分の境界線は外観上確認することができなかった。   As a more specific example, a laser focused at an elliptical shape with a width of 4 mm by the condenser lens 8 is used to scan the workpiece 2 so that the lasers overlap with each other. / sec, the scanning path line pitch was 3.8mm. As a result of measuring the shape of the created periodic structure 5 in a 4 μm square region, a uniform periodic structure 5A having a period of 580 nm and a height of 220 nm was obtained in the region outside the overlapping portion (corresponding to the laser scanning boundary portion 3). On the other hand, the periodic structure 5B distributed in a period of 495 to 580 nm and a height of 130 to 217 nm was formed in the overlapping portion. Further, in the processing range formed by this processing method, the boundary line of the overlapped portion could not be confirmed in appearance.

(実施の形態2)
本発明の実施の形態2に係る周期構造の作成方法は、レーザを照射するレーザ照射部を、被加工物の表面に対して走査させることにより前記被加工物の表面を加工して周期構造を作成する周期構造の作成方法であって、被加工物の表面に、レーザ照射領域内部に結晶粒径の平均値が大きい粗大結晶粒領域と、結晶粒径の平均値が小さい微細結晶粒領域とを設け、これらの粗大結晶粒領域と微細結晶粒領域とを設けた被加工物の表面に対して、フェムト秒レーザを加工閾値近傍のフルエンスで走査させながら加工することで、前記微細結晶粒領域に形成される周期構造の周期および高さが、前記粗大結晶粒領域に形成される周期構造の周期および高さよりも、小さくなった状態で分布した周期構造を形成することを特徴とする。
(Embodiment 2)
In the method for creating a periodic structure according to the second embodiment of the present invention, the periodic structure is formed by processing the surface of the workpiece by scanning the surface of the workpiece with a laser irradiation unit that irradiates a laser. A method for creating a periodic structure, wherein a coarse crystal grain region having a large average value of crystal grain size within a laser irradiation region and a fine crystal grain region having a small mean value of crystal grain size are formed on a surface of a workpiece. And processing the surface of the workpiece provided with these coarse crystal grain regions and fine crystal grain regions while scanning the femtosecond laser with a fluence near the processing threshold, thereby obtaining the fine crystal grain regions. A periodic structure distributed in a state where the period and the height of the periodic structure formed in the above are smaller than the period and the height of the periodic structure formed in the coarse crystal grain region is formed.

図3は、本発明の実施の形態2に係る周期構造の作成方法により周期構造を形成した被加工物の要部を示したものである。図3において、図1、図2と同じ構成要素については同じ符号を用い、説明を省略する。   FIG. 3 shows a main part of a workpiece in which a periodic structure is formed by the method for creating a periodic structure according to Embodiment 2 of the present invention. 3, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.

図3において、フェムト秒レーザ照射部1を被加工物2上に、予め熱処理を加えることにより、被加工物2の表面上に、粗大な結晶粒を有する領域(粗大結晶粒領域)10と微細な結晶粒を有する領域(微細結晶粒領域:図3において、P字形状に示す部分)11とを形成しておき、これらの領域全体を照射するようにフェムト秒レーザを照射する。これにより、粗大結晶粒領域10では、ほぼ波長程度の規則的な周期構造5Cが形成されるのに対して、微細結晶粒領域11においては、結晶粒界における段差の影響および加工閾値の変化により起点の異なる周期構造5Dが多数形成される。したがって、微細結晶粒領域11においては、マクロ的には、周期構造5Dの周期および高さは、所定値(粗大結晶粒領域10の周期構造5Cの周期および高さ以下となる所定値)を中心とした一定の範囲に分布することになる。本周期構造の作成方法において、粗大な結晶粒の大きさと微細な結晶粒の大きさとの比を十分大きくすることにより、規則的な周期構造5Cの領域(粗大結晶粒領域10に対応する領域)と不規則な周期構造5Dの領域(微細結晶粒領域11に対応する領域)との境界が、人間の目視上で認識できるほどに明確になり、また規則的な周期構造5Cの領域(粗大結晶粒領域10に対応する領域)と不規則な周期構造5Dの領域(微細結晶粒領域11に対応する領域)とでは、入射光に対して回折する光の波長の帯域が異なるため、不規則な周期構造5Dの領域(微細結晶粒領域11に対応する領域)の色合いを変化させることができる。   In FIG. 3, the femtosecond laser irradiation unit 1 is preliminarily subjected to heat treatment on the work piece 2, whereby a region (coarse crystal grain region) 10 having coarse crystal grains on the surface of the work piece 2 is fine. A region having fine crystal grains (fine crystal grain region: a portion indicated by a P-shape in FIG. 3) 11 is formed, and a femtosecond laser is irradiated so as to irradiate the entire region. Thereby, in the coarse crystal grain region 10, a regular periodic structure 5 </ b> C of about the wavelength is formed, whereas in the fine crystal grain region 11, due to the influence of the step at the crystal grain boundary and the change of the processing threshold value. Many periodic structures 5D having different starting points are formed. Therefore, in the fine crystal grain region 11, macroscopically, the period and height of the periodic structure 5 </ b> D are centered on a predetermined value (predetermined value equal to or less than the period and height of the periodic structure 5 </ b> C of the coarse crystal grain region 10). It will be distributed in a certain range. In the method for creating the periodic structure, the ratio of the size of the coarse crystal grains to the size of the fine crystal grains is sufficiently increased, whereby the region of the regular periodic structure 5C (the region corresponding to the coarse crystal grain region 10). And the region of the irregular periodic structure 5D (region corresponding to the fine crystal grain region 11) become clear enough to be recognized by human eyes, and the region of the regular periodic structure 5C (coarse crystal) The region corresponding to the grain region 10) and the region of the irregular periodic structure 5D (the region corresponding to the fine crystal grain region 11) have different wavelength bands of light diffracted with respect to the incident light. The hue of the region of the periodic structure 5D (the region corresponding to the fine crystal grain region 11) can be changed.

なお、本実施の形態における被加工物2は、微細結晶粒領域11に対応する箇所に対して、予め微細化の処理を施したものを用いてもよいし、XYステージ9上において照射エネルギーを調整したレーザを照射することにより急速加熱することで微細化処理をしたものを用いてもよい。   Note that the workpiece 2 in the present embodiment may be a workpiece corresponding to the fine crystal grain region 11 that has been subjected to a refinement process in advance, or irradiation energy may be applied on the XY stage 9. You may use what was refined | miniaturized by rapid heating by irradiating the adjusted laser.

本周期構造5の作成方法の具体的な加工例を以下に説明する。なお、周期構造を作成する周期構造作成装置の構成については、実施の形態1と同様である。結晶粒径が110μmである粗大結晶粒領域10の中に、結晶粒径5μmの微細結晶粒領域11を3mm角で形成した被加工材料がSUS304からなる被加工物2に対して、フェムト秒レーザ照射部1を、微細結晶粒領域11を含む粗大結晶粒領域10全体を照射するように走査した。この結果、粗大結晶粒領域10では、周期600nm、高さ200nm程度の周期構造5Cが形成され、外観上青色の回折光を発した。これに対して、微細結晶粒領域11では周期495〜600nm、高さ100〜200nmに分布した周期構造5Dが形成され、回折光は淡い青色となり、目視上3mmの領域を認識することができた。   A specific processing example of the method for creating the periodic structure 5 will be described below. The configuration of the periodic structure creation device that creates the periodic structure is the same as that of the first embodiment. A femtosecond laser is applied to a workpiece 2 made of SUS304 in which a workpiece material in which a fine crystal grain region 11 having a crystal grain size of 5 μm is formed in a 3 mm square in a coarse crystal grain region 10 having a crystal grain size of 110 μm. The irradiation unit 1 was scanned so as to irradiate the entire coarse crystal grain region 10 including the fine crystal grain region 11. As a result, a periodic structure 5C having a period of about 600 nm and a height of about 200 nm was formed in the coarse crystal grain region 10, and blue diffracted light was emitted in appearance. On the other hand, in the fine crystal grain region 11, a periodic structure 5D having a period of 495 to 600 nm and a height of 100 to 200 nm is formed, and the diffracted light becomes a light blue color. .

(実施の形態3)
本発明の実施の形態3に係る周期構造の作成方法は、レーザを照射するレーザ照射部を、被加工物の表面に対して走査させることにより前記被加工物の表面を加工して周期構造を作成する周期構造の作成方法であって、所定の範囲内の結晶粒径を有する材料の被加工物に対してフェムト秒レーザを加工閾値近傍のフルエンスで走査させながら加工することにより、形成される周期構造の周期および高さが、単結晶材料に対して形成される周期および高さよりも小さい周期構造を作成することを特徴とする。
(Embodiment 3)
In the method for creating a periodic structure according to the third embodiment of the present invention, the surface of the workpiece is processed by causing a laser irradiation unit that irradiates a laser to scan the surface of the workpiece, thereby forming the periodic structure. A method for creating a periodic structure, which is formed by processing a workpiece having a crystal grain size within a predetermined range while scanning a femtosecond laser with a fluence near a processing threshold. A periodic structure having a period and a height smaller than a period and a height formed for a single crystal material is produced.

図4は、本発明の実施の形態3に係る周期構造の作成方法により周期構造を形成した被加工物の要部を示したものである。図3において、図1、図2と同じ構成要素については同じ符号を用い、説明を省略する。また、図5は、前記周期構造の作成方法により形成される周期構造の模式図である。レーザを照射する被加工物2の表面全面に対して、結晶粒を微細化する処理を施して微細な結晶粒を有する領域(微細結晶粒領域)11を設けた後、全面にフェムト秒レーザ1を照射することにより、被加工物2の表面部全面に渡って図5に示すような周期pおよび高さhが、所定値を中心とした一定の範囲に分布された周期構造5(単結晶材料に対して形成される周期および高さよりも小さい周期構造)を形成することができる。   FIG. 4 shows a main part of a workpiece in which a periodic structure is formed by the periodic structure creating method according to Embodiment 3 of the present invention. 3, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted. FIG. 5 is a schematic diagram of a periodic structure formed by the method for creating a periodic structure. The entire surface of the workpiece 2 to be irradiated with laser is subjected to a process of refining crystal grains to provide a region 11 (fine crystal grain region) having fine crystal grains, and then the femtosecond laser 1 is applied to the entire surface. , The periodic structure 5 (single crystal) in which the period p and the height h as shown in FIG. 5 are distributed over a predetermined range around a predetermined value over the entire surface of the workpiece 2. Periodic structures smaller than the period and height formed for the material can be formed.

本加工方法により形成される周期構造5の周期pおよび高さhは、微細結晶粒領域11内における結晶粒界の数と相関があるが、例えば、結晶粒径として5〜10μmの被加工物に対して、実施の形態1と同じ条件でフェムト秒レーザを照射した場合、周期495〜600nm、高さ100〜200nmに分布した周期構造が形成された。一般に周期構造の反射および回折を利用して発色させる場合、均一な周期の周期構造では単一の波長のみが回折するため、発色する色も限定されるが、本実施の形態のように、周期構造5の周期pおよび高さhを一定範囲(単結晶材料に対して形成される周期および高さよりも小さい範囲)に分布させることにより、回折光の波長および強度が一定範囲に分布するため発色する色が淡くなるため、外装部品としてはより好ましい周期構造が得られた。   The period p and the height h of the periodic structure 5 formed by this processing method have a correlation with the number of crystal grain boundaries in the fine crystal grain region 11, but for example, a workpiece having a crystal grain size of 5 to 10 μm On the other hand, when the femtosecond laser was irradiated under the same conditions as in the first embodiment, a periodic structure having a period of 495 to 600 nm and a height of 100 to 200 nm was formed. In general, when color is generated using reflection and diffraction of a periodic structure, only a single wavelength is diffracted in a periodic structure with a uniform period, so the color to be colored is limited, but as in this embodiment, the period is By distributing the period p and height h of the structure 5 in a certain range (a range smaller than the period and height formed for a single crystal material), the wavelength and intensity of the diffracted light are distributed in a certain range, so that color development Since the color to be lightened, a more preferable periodic structure was obtained as an exterior part.

一例として、テレビ、パーソナルコンピュータ等の電子機器の外装部品へ用いると青色系の中間色を発色する外装部品となり、複雑な塗装工程を省略することが可能となる。
このように、本発明の周期構造の作成方法によれば、レーザ照射部を走査させて広範囲に周期構造を作成してもレーザ走査境界部が目立つことのない周期構造および淡い色で発色する周期構造を作成することが可能となる。
As an example, when used for an exterior part of an electronic device such as a television or a personal computer, the exterior part emits a blue intermediate color, and a complicated painting process can be omitted.
As described above, according to the method for creating a periodic structure of the present invention, a periodic structure in which a laser scanning boundary portion does not stand out even when a laser irradiation portion is scanned to create a periodic structure in a wide range and a period in which light is colored with a light color. A structure can be created.

さらに、本発明の周期構造の作成方法によって、金属製の金型の表面に周期構造を加工することが可能である。このように表面に周期構造を有する金型を用いて樹脂を射出成形することにより、表面が構造発色する樹脂製の部品(外装を装飾した外装部品等)を製作することができる。また、この外装部品で表面を構成した電子機器を作成することも可能であり、これによれば、外装部品や電子機器の塗装工程が不要となり、製造コストの低減および環境負荷の低減が可能となる。   Furthermore, the periodic structure can be processed on the surface of a metal mold by the method for creating a periodic structure of the present invention. In this way, by resin injection molding using a mold having a periodic structure on the surface, it is possible to produce a resin part (such as an exterior part that decorates the exterior) whose surface is structurally colored. In addition, it is possible to create an electronic device whose surface is composed of this exterior component, which eliminates the need for a coating process for the exterior component and the electronic device, thereby reducing manufacturing costs and environmental impact. Become.

本発明の周期構造の作成方法は、構造発色するいろいろな種類の外装装飾部品等の加工に適用できる。   The method for creating a periodic structure according to the present invention can be applied to processing various types of exterior decorative parts and the like that generate structural colors.

本発明の実施の形態1に係る周期構造の作成方法により周期構造を形成した被加工物の要部を示す図The figure which shows the principal part of the workpiece which formed the periodic structure with the preparation method of the periodic structure which concerns on Embodiment 1 of this invention. 周期構造を作成する周期構造作成装置を模式的に示した図The figure which showed the periodic structure creation device which creates the periodic structure typically 本発明の実施の形態2に係る周期構造の作成方法により周期構造を形成した被加工物の要部を示す図The figure which shows the principal part of the to-be-processed object which formed the periodic structure with the preparation method of the periodic structure which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る周期構造の作成方法により周期構造を形成した被加工物の要部を示す図The figure which shows the principal part of the to-be-processed object which formed the periodic structure with the preparation method of the periodic structure which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る周期構造の作成方法により形成される周期構造の模式図Schematic diagram of a periodic structure formed by the method for creating a periodic structure according to Embodiment 3 of the present invention 従来方法において形成される周期構造の模式図Schematic diagram of the periodic structure formed in the conventional method

1 レーザ照射部(フェムト秒レーザ照射部)
2 被加工物
3 レーザ走査境界部
4 結晶粒微細化領域
5、5A〜5D 周期構造
6 フェムト秒レーザ発生装置
7 ミラー
8 集光レンズ
9 XYステージ(加工ステージ)
10 粗大結晶粒領域
11 微細結晶粒領域
p 形成される周期構造のピッチ
h 形成される周期構造の高さ
1 Laser irradiation part (femtosecond laser irradiation part)
2 Workpiece 3 Laser scanning boundary 4 Crystal grain refinement region 5, 5A to 5D Periodic structure 6 Femtosecond laser generator 7 Mirror 8 Condensing lens 9 XY stage (processing stage)
10 Coarse crystal grain region 11 Fine crystal grain region p Pitch of periodic structure to be formed h Height of periodic structure to be formed

Claims (4)

レーザを照射するレーザ照射部を、被加工物の表面に、レーザ走査境界部で重ね合わせながら走査させることにより、前記被加工物の表面を加工して周期構造を作成する周期構造の作成方法であって、
レーザ走査境界部の結晶粒径を、レーザ走査境界部以外の箇所の結晶粒径よりも微細化し、
前記レーザ走査境界部の微細化を行った被加工物に対して、前記レーザ走査境界部がレーザ走査経路の境界となるようにフェムト秒レーザを加工閾値近傍のフルエンスで走査させる第1のレーザ加工を行い、
この第1のレーザ加工後、前記被加工物に、前記レーザ走査境界部で重なり合うように、フェムト秒レーザを加工閾値近傍のフルエンスで走査させる第2のレーザ加工を行って、前記レーザ走査境界部に形成される周期構造の周期および高さが、前記レーザ走査境界部以外に形成される周期構造の周期および高さよりも、小さくなった状態で分布した周期構造を形成する
ことを特徴とする周期構造の作成方法。
A periodic structure creation method for creating a periodic structure by processing a surface of the workpiece by scanning a laser irradiation portion for irradiating a laser while overlapping the surface of the workpiece at a laser scanning boundary portion. There,
The crystal grain size at the laser scanning boundary is made finer than the crystal grain size at locations other than the laser scanning boundary,
First laser processing for scanning a femtosecond laser with a fluence near the processing threshold so that the laser scanning boundary portion becomes a boundary of a laser scanning path with respect to the workpiece on which the laser scanning boundary portion is miniaturized. And
After the first laser processing, the laser scanning boundary portion is subjected to second laser processing for scanning the workpiece with a fluence near the processing threshold so as to overlap the workpiece at the laser scanning boundary portion. Forming a periodic structure distributed in a state in which the period and height of the periodic structure formed in the region are smaller than the period and height of the periodic structure formed outside the laser scanning boundary portion How to create a structure.
レーザ走査境界部に対して、予めレーザを照射することでレーザ走査境界部の結晶粒径を微細化させることを特徴とする請求項1に記載の周期構造の作成方法。   2. The method for creating a periodic structure according to claim 1, wherein the crystal grain size of the laser scanning boundary portion is made finer by irradiating the laser scanning boundary portion in advance. 請求項1または2に記載の周期構造の作成方法にて作成した外装部品であって、所定値を中心値として分布した周期および深さを有した周期構造を有することにより、所定値の波長を中心として一定の範囲内の波長の光を回折するように構成したことを特徴とする外装部品。 The exterior part created by the method for creating a periodic structure according to claim 1 or 2 , wherein a periodic structure having a period and a depth distributed with a predetermined value as a center value has a wavelength of a predetermined value. An exterior part configured to diffract light having a wavelength within a certain range as a center. 請求項に記載の外装部品で表面を構成したことを特徴とする電子機器。 An electronic apparatus comprising a surface made of the exterior component according to claim 3 .
JP2009004170A 2009-01-13 2009-01-13 How to create a periodic structure Expired - Fee Related JP5305928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009004170A JP5305928B2 (en) 2009-01-13 2009-01-13 How to create a periodic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009004170A JP5305928B2 (en) 2009-01-13 2009-01-13 How to create a periodic structure

Publications (2)

Publication Number Publication Date
JP2010162545A JP2010162545A (en) 2010-07-29
JP5305928B2 true JP5305928B2 (en) 2013-10-02

Family

ID=42579166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004170A Expired - Fee Related JP5305928B2 (en) 2009-01-13 2009-01-13 How to create a periodic structure

Country Status (1)

Country Link
JP (1) JP5305928B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012006B2 (en) * 2010-02-05 2016-10-25 株式会社フジクラ Method for forming surface microstructure
JP7592425B2 (en) 2020-08-04 2024-12-02 キヤノン株式会社 Processing method, processing device, mold manufacturing method, resin molded product manufacturing method, program, and recording medium
JP7586149B2 (en) 2022-08-09 2024-11-19 カシオ計算機株式会社 Case member, electronic watch, and method of manufacturing case member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054330B2 (en) * 2002-09-27 2008-02-27 キヤノンマシナリー株式会社 Periodic structure creation method and surface treatment method
JP2005270992A (en) * 2004-03-23 2005-10-06 Toppan Printing Co Ltd Surface processing method of material by pulse laser, manufacturing method of duplicate plate, processing method of surface processing data, information carrier, optical element and image
JP2006212646A (en) * 2005-02-01 2006-08-17 Canon Machinery Inc Method for preparing periodic structure
JP2007229778A (en) * 2006-03-02 2007-09-13 Toppan Printing Co Ltd Marking method and apparatus
JP5040152B2 (en) * 2006-04-12 2012-10-03 東洋製罐株式会社 Structure, structure forming method and structure forming apparatus
JP2008044807A (en) * 2006-08-11 2008-02-28 Kyoto Univ Method and apparatus for producing induction structure formed inside single crystal, and optical element having induction structure formed inside single crystal
JP4781941B2 (en) * 2006-08-25 2011-09-28 キヤノンマシナリー株式会社 Surface fine structure forming method by laser
JP2008296269A (en) * 2007-06-02 2008-12-11 Enshu Ltd Multi-function machining control method for laser beam machine and multi-function machining control device for laser beam machine

Also Published As

Publication number Publication date
JP2010162545A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
TW498007B (en) Method and apparatus using ultrashort laser pulses to make an array of microcavity holes
JP6220775B2 (en) Laser direct ablation at high pulse repetition frequency using picosecond laser pulses
JP2021152215A (en) Plural beam additional production
EP2871042B1 (en) Powder shaping method and apparatus thereof
JP6318171B2 (en) Method for forming an image by laser micromachining
EP1187698B1 (en) Beam shaping and projection imaging with solid state uv gaussian beam to form vias
US7807944B2 (en) Laser processing device, processing method, and method of producing circuit substrate using the method
JP5146948B2 (en) Metal surface processing method
JP2010142862A (en) Method for producing nano-periodic structure on surface of dielectric material
JP2021514853A (en) Use of lasers to reduce reflections of clear solids, coatings, and devices that use clear solids
CA3002315A1 (en) Method of, and apparatus for, laser blackening of a surface, wherein the laser has a specific power density and/or a specific pulse duration
US9649727B2 (en) High speed laser cutting of amorphous metals
JP5305928B2 (en) How to create a periodic structure
Lim et al. Contour offset algorithm for precise patterning in two-photon polymerization
JP2004268104A5 (en)
JP2002517315A (en) Apparatus and method for drilling micro via holes in electrical circuit wiring package
JP4781941B2 (en) Surface fine structure forming method by laser
Žemaitis et al. Efficient ablation, further GHz burst polishing, and surface texturing by ultrafast laser
KR101335688B1 (en) Laser processing method for formation of microspike
JP2007029952A (en) Laser beam machining apparatus, and laser beam machining method
JP2004306127A (en) Thin film patterning method
WO2015136948A1 (en) Laser processing method
JP2012066265A (en) Laser processing method
JP3186706B2 (en) Method and apparatus for laser marking of semiconductor wafer
JP6348051B2 (en) Laser processing method, laser processing apparatus, and laser processed product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R151 Written notification of patent or utility model registration

Ref document number: 5305928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees