Nothing Special   »   [go: up one dir, main page]

JP5391011B2 - Nitrogen-containing wastewater treatment method - Google Patents

Nitrogen-containing wastewater treatment method Download PDF

Info

Publication number
JP5391011B2
JP5391011B2 JP2009216480A JP2009216480A JP5391011B2 JP 5391011 B2 JP5391011 B2 JP 5391011B2 JP 2009216480 A JP2009216480 A JP 2009216480A JP 2009216480 A JP2009216480 A JP 2009216480A JP 5391011 B2 JP5391011 B2 JP 5391011B2
Authority
JP
Japan
Prior art keywords
nitrogen
denitrification
nitrate
tank
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009216480A
Other languages
Japanese (ja)
Other versions
JP2011062656A (en
Inventor
英樹 盛崎
賢治 徳政
隆司 山口
克治 西川
明代 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009216480A priority Critical patent/JP5391011B2/en
Publication of JP2011062656A publication Critical patent/JP2011062656A/en
Application granted granted Critical
Publication of JP5391011B2 publication Critical patent/JP5391011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、生物学的硝化脱窒処理装置を用いた窒素含有排水処理方法に関し、特に硝化処理後、水素供与体を添加し脱窒処理を行う生物学的硝化脱窒処理装置を用いた窒素含有排水処理方法に関する。   TECHNICAL FIELD The present invention relates to a nitrogen-containing wastewater treatment method using a biological nitrification denitrification treatment apparatus, and in particular, nitrogen using a biological nitrification denitrification treatment apparatus that performs denitrification treatment by adding a hydrogen donor after nitrification treatment. It relates to a wastewater treatment method.

排水中に含まれる窒素は、富栄養化現象の原因とされ、排水中の窒素を除去する技術が多く開発されている。この一つである微生物を利用して排水中の窒素を除去する生物学的窒素処理方法も、従来からよく使用されており、順送法、AO(Anaerobic−Oxic)法、A2O(Anaerobic−Anoxic−Oxic)及びUASB(Upflow Anaerobic Sludge Blanket)−DHS(Downflow Hanging Sponge Cube)法などの循環法を含め多くのプロセスが提案さている。生物学的窒素処理方法は、好気性細菌である硝化細菌により排水中のアンモニア体窒素を、亜硝酸体又は硝酸体窒素にまで酸化する硝化工程と、嫌気性細菌である脱窒細菌を用いて硝酸体、亜硝酸体窒素を窒素に還元する脱窒工程とからなり、ここで使用するリアクタも種々の形態のものが開発されている。   Nitrogen contained in wastewater is a cause of eutrophication, and many techniques for removing nitrogen in wastewater have been developed. Biological nitrogen treatment methods that remove nitrogen in wastewater using microorganisms, which are one of these, have also been widely used in the past. Progressive feeding methods, AO (anaerobic-oxic) methods, A2O (anaerobic-anoxic) methods. Many processes have been proposed, including cyclic methods such as -Oxic) and UASB (Upflow Analytic Sliding Blanket) -DHS (Downflow Hanging Sponge Cube) method. The biological nitrogen treatment method uses a nitrification process in which ammonia nitrogen in wastewater is oxidized to nitrite or nitrate nitrogen by nitrifying bacteria, which are aerobic bacteria, and denitrifying bacteria, which are anaerobic bacteria. It consists of a denitrification process in which nitrate and nitrite nitrogen are reduced to nitrogen, and various types of reactors have been developed.

窒素含有排水は、下水のように有機物を多く含む排水から、工場から排出される排水で有機物を殆ど含まない排水まで幅広い。一般的に比較的有機物を多く含む窒素含有排水を生物学的窒素処理方法で処理する場合には、上流側に脱窒槽を下流側に硝化槽を配置する場合が多く、例えば、循環法の一つである循環UASB−DHS法は、前段のUASBリアクタで脱窒反応、後段のDHSリアクタで硝化反応を行い、後段の硝化反応の進んだ処理水の一部を前段の脱窒塔であるUASBリアクタへ循環させ、処理水中の有機物を脱窒反応の水素供与体として利用する(例えば特許文献1参照)。一方、有機物を殆ど含まない窒素含有排水を生物学的窒素処理方法で処理する場合には、上流側に硝化槽を下流側に脱窒槽を配置するのが一般的である。このような処理方法において、硝化反応に必要な無機炭酸の新たな供給方法も提案されている。(例えば特許文献2参照)。   Nitrogen-containing wastewater ranges from wastewater containing a large amount of organic matter, such as sewage, to wastewater discharged from factories and containing little organic matter. In general, when nitrogen-containing wastewater containing a relatively large amount of organic substances is treated by a biological nitrogen treatment method, a denitrification tank is often disposed upstream and a nitrification tank is disposed downstream. In the circulating UASB-DHS method, the denitrification reaction is performed in the preceding UASB reactor, the nitrification reaction is performed in the subsequent DHS reactor, and a part of the treated water in which the subsequent nitrification reaction has progressed is the UASB in the preceding denitrification tower The organic substance in the treated water is used as a hydrogen donor for the denitrification reaction (see, for example, Patent Document 1). On the other hand, when nitrogen-containing wastewater containing almost no organic matter is treated by a biological nitrogen treatment method, a nitrification tank is generally disposed upstream and a denitrification tank is disposed downstream. In such a treatment method, a new supply method of inorganic carbonic acid necessary for the nitrification reaction has also been proposed. (For example, refer to Patent Document 2).

特開平11−285696号公報JP-A-11-285696 特開2006−320844号公報JP 2006-320844 A

有機物を殆ど含まない窒素含有排水を生物学的窒素処理方法で処理する場合には、上記の通り、硝化細菌により排水中のアンモニア体窒素を、亜硝酸体又は硝酸体窒素とし、嫌気性細菌である脱窒細菌を用いて窒素に還元するのが一般的である。このとき脱窒反応に水素供与体が必要であり、この水素供与体はメタノール等を注入することで行われる。このような生物学的窒素処理方法を用いた排水処理装置において、脱窒槽内のメタノールが過剰となると脱窒槽内のCOD濃度が高くなる。本来、COD濃度の低い排水を対象とする脱窒槽の消化能力は低く、脱窒槽内のCOD濃度を低下させるためには長い時間が必要となる。このため脱窒槽内のCOD濃度が高くなると処理水中のCOD濃度も高くなり、この結果、処理水を放流することができなくなる。従来、このような状況が発生すると脱窒槽の排水及び処理水貯槽の処理水を回収し、別途処理していたが、多くの時間と労力を必要とし、これら排水及び処理水を回収することなく短時間で処理することができる処理方法の開発が待たれていた。   When nitrogen-containing wastewater containing almost no organic matter is treated by the biological nitrogen treatment method, as described above, ammonia nitrogen in the wastewater is changed to nitrite or nitrate nitrogen by nitrifying bacteria, and anaerobic bacteria are used. It is common to reduce to nitrogen using some denitrifying bacteria. At this time, a hydrogen donor is required for the denitrification reaction, and this hydrogen donor is performed by injecting methanol or the like. In the wastewater treatment apparatus using such a biological nitrogen treatment method, when the methanol in the denitrification tank becomes excessive, the COD concentration in the denitrification tank increases. Originally, the denitrification tank that targets wastewater with low COD concentration has a low digestion capacity, and it takes a long time to reduce the COD concentration in the denitrification tank. For this reason, if the COD concentration in the denitrification tank increases, the COD concentration in the treated water also increases, and as a result, the treated water cannot be discharged. Conventionally, when such a situation occurs, the drainage of the denitrification tank and the treated water of the treated water storage tank are collected and treated separately, but it requires a lot of time and labor, and without collecting the drainage and treated water. Development of a processing method capable of processing in a short time has been awaited.

本発明の目的は、硝化処理後、水素供与体を添加し脱窒処理を行う生物学的硝化脱窒処理装置を用いた窒素含有排水処理方法において、脱窒槽内のCOD濃度が設定値を超えたとき、CODを短時間で低下させる窒素含有排水処理方法を提供することである。   An object of the present invention is to provide a nitrogen-containing wastewater treatment method using a biological nitrification denitrification treatment apparatus that performs a denitrification treatment by adding a hydrogen donor after nitrification treatment, and the COD concentration in the denitrification tank exceeds the set value. Is to provide a nitrogen-containing wastewater treatment method for reducing COD in a short time.

請求項1に記載の本発明は、排水中のアンモニア体窒素を硝化槽で硝化細菌により硝化処理した後、水素供与体を添加し脱窒槽で脱窒処理し窒素を除去する生物学的硝化脱窒装置を用い、前記脱窒槽で処理した処理水の一部を硝化槽に返送しながら窒素含有排水処理する方法において、前記窒素含有排水が低有機物含有排水又は無機排水であり、脱窒槽内のCOD濃度が設定値を超えたとき、硝化細菌の活性低下を防止すべく処理水の硝化槽への返送を停止し、脱窒槽に硝酸塩を注入しCOD成分を分解させることを特徴とする窒素含有排水処理方法である。 The present invention according to claim 1 is a biological nitrification denitrification method in which ammonia body nitrogen in waste water is nitrified with nitrifying bacteria in a nitrification tank, then a hydrogen donor is added and denitrification treatment is performed in a denitrification tank to remove nitrogen. using nitrogen device, wherein the method of treating a nitrogen-containing waste water while returning a portion of the treated water treated with denitrification tank to the nitrification tank, the nitrogen-containing waste water is a low organic matter containing wastewater or inorganic waste water, the denitrification tank When the COD concentration of water exceeds the set value , the return of the treated water to the nitrification tank is stopped to prevent a decrease in the activity of nitrifying bacteria, and nitrate is injected into the denitrification tank to decompose the COD component. It is a contained wastewater treatment method.

請求項2に記載の本発明は、請求項1に記載の窒素含有排水処理方法において、前記生物学的硝化脱窒装置は、脱窒槽の下流側に処理水貯槽を有し、脱窒槽内のCOD濃度が設定値を超えたとき、脱窒槽と処理水貯槽とで排水を循環させながら該循環水中、前記脱窒槽内、又は前記処理水貯槽内に硝酸塩を注入し、COD成分を分解させることを特徴とする。 According to a second aspect of the present invention, in the nitrogen-containing wastewater treatment method according to the first aspect, the biological nitrification denitrification apparatus has a treated water storage tank on the downstream side of the denitrification tank, When the COD concentration exceeds a set value, nitrate is injected into the circulating water, the denitrification tank, or the treated water storage tank while circulating the wastewater between the denitrification tank and the treated water storage tank, and the COD components are decomposed. It is characterized by.

請求項3に記載の本発明は、請求項1又は2に記載の窒素含有排水処理方法において、前記窒素含有排水は、石炭火力発電所から排出される窒素含有排水であることを特徴とする。   The present invention according to claim 3 is the nitrogen-containing wastewater treatment method according to claim 1 or 2, wherein the nitrogen-containing wastewater is nitrogen-containing wastewater discharged from a coal-fired power plant.

請求項4に記載の本発明は、請求項1から3のいずれか1項に記載の窒素含有排水処理方法において、前記水素供与体がメタノール又は酢酸であり、脱窒槽内のメタノール又は酢酸が過剰となり脱窒槽内のCOD濃度が設定値を超えたことを特徴とする。   The present invention according to claim 4 is the nitrogen-containing wastewater treatment method according to any one of claims 1 to 3, wherein the hydrogen donor is methanol or acetic acid, and methanol or acetic acid in the denitrification tank is excessive. The COD concentration in the denitrification tank exceeds the set value.

請求項5に記載の本発明は、請求項1から4のいずれか1項に記載の窒素含有排水処理方法において、前記硝酸塩は、脱窒槽内の硝酸イオン濃度が5,000mg/L未満となるように注入することを特徴とする。   The present invention described in claim 5 is the nitrogen-containing wastewater treatment method according to any one of claims 1 to 4, wherein the nitrate has a nitrate ion concentration in the denitrification tank of less than 5,000 mg / L. It is characterized by injecting as follows.

請求項6に記載の本発明は、請求項1から5のいずれか1項に記載の窒素含有排水処理方法において、前記硝酸塩は、硝酸カリウム、硝酸ナトリウム、硝酸カルシウム、硝酸マグネシウムのいずれか1以上であることを特徴とする。   The present invention according to claim 6 is the nitrogen-containing wastewater treatment method according to any one of claims 1 to 5, wherein the nitrate is any one or more of potassium nitrate, sodium nitrate, calcium nitrate, and magnesium nitrate. It is characterized by being.

本発明に係る窒素含有排水処理方法は、循環法を採用する場合において脱窒槽内のCOD濃度が設定値を超えたとき、処理水の硝化槽への返送を停止し、脱窒槽に硝酸塩を注入する。これによりCOD成分と硝酸イオンとで脱窒反応を生じさせ、COD成分を分解させるので、脱窒槽が高濃度のCODで汚染された場合であっても脱窒槽内のCODを短時間に低下させることができる。脱窒槽の消化反応の反応速度は遅いけれども、脱窒反応は反応速度が速いため、短時間のうちにCOD成分を分解させることができる。また排水を抜出して、別途処理する必要がないので手間がかからない。また処理水の硝化槽への返送を停止し、脱窒槽に硝酸塩を注入しCOD成分を分解させるので、高濃度のCOD排水による硝化細菌の活性低下を防止することができ、脱窒槽内のCOD濃度が低下した後、直ちに通常運転に復帰できる。このような窒素含有排水処理方法は、低有機物含有排水又は無機排水に好適に適用可能であり、石炭火力発電所から排出される窒素含有排水に好適に使用することができる。 The nitrogen-containing wastewater treatment method according to the present invention stops the return of treated water to the nitrification tank and injects nitrate into the denitrification tank when the COD concentration in the denitrification tank exceeds the set value when the circulation method is adopted. To do. As a result, a denitrification reaction is caused by the COD component and nitrate ions, and the COD component is decomposed. Therefore, even when the denitrification tank is contaminated with high-concentration COD, the COD in the denitrification tank is reduced in a short time. be able to. Although the reaction rate of the digestion reaction in the denitrification tank is slow, the denitrification reaction has a fast reaction rate, so that the COD component can be decomposed in a short time. Also, it is not necessary to take out the waste water and treat it separately. In addition, the return of the treated water to the nitrification tank is stopped, and nitrate is injected into the denitrification tank to decompose the COD components, so it is possible to prevent nitrifying bacteria from being reduced in activity due to high-concentration COD drainage, and the COD in the denitrification tank Immediately after the concentration has dropped, normal operation can be resumed. Such a nitrogen-containing wastewater treatment method can be suitably applied to low organic matter-containing wastewater or inorganic wastewater, and can be suitably used for nitrogen-containing wastewater discharged from a coal-fired power plant.

また本発明によれば、脱窒槽の下流側に処理水貯槽を有するときは、脱窒槽内のCOD濃度が設定値を超えたとき、脱窒槽と処理水貯槽とで排水を循環させながら循環水中、脱窒槽内、又は処理水貯槽内に硝酸塩を注入するので、脱窒槽と処理水貯槽内の水を一度に処理することが可能となり好ましい。また脱窒槽が、グラニュールを保有するUASB脱窒槽のような場合、脱窒槽と処理水貯槽とで排水を循環させることでUASB脱窒槽内のグラニュールの流動化及びCOD成分と硝酸イオンとの混合性を高め、脱窒反応を促進させ、短時間のうちにCOD成分を分解させることができる。Further, according to the present invention, when the treated water storage tank is provided on the downstream side of the denitrification tank, when the COD concentration in the denitrification tank exceeds the set value, the circulating water is circulated while circulating the wastewater between the denitrification tank and the treated water storage tank. Since nitrate is injected into the denitrification tank or the treated water storage tank, the water in the denitrification tank and the treated water storage tank can be treated at a time, which is preferable. In addition, when the denitrification tank is a UASB denitrification tank that holds granules, the drainage is circulated between the denitrification tank and the treated water storage tank, thereby fluidizing the granules in the UASB denitrification tank and the COD components and nitrate ions. Mixability can be improved, denitrification reaction can be promoted, and COD components can be decomposed in a short time.

また本発明に係る窒素含有排水処理方法は、脱窒槽内において水素供与体であるメタノール又は酢酸が過剰となり脱窒槽内のCOD濃度が設定値を超えたような場合に好適に適用することができる。   Moreover, the nitrogen-containing wastewater treatment method according to the present invention can be suitably applied when the hydrogen donor methanol or acetic acid is excessive in the denitrification tank and the COD concentration in the denitrification tank exceeds the set value. .

また本発明によれば、硝酸塩は、脱窒槽内の硝酸イオン濃度が5,000mg/L未満となるように注入するので、脱窒細菌の活性を高く維持することができる。また、硝酸塩が硝酸カリウム、硝酸ナトリウム、硝酸カルシウム、硝酸マグネシウムのいずれか1以上であるので、水中に溶解させたときほぼ中性であり、pH調整剤が不要か少量で済む。   Further, according to the present invention, nitrate is injected so that the nitrate ion concentration in the denitrification tank is less than 5,000 mg / L, so that the activity of the denitrifying bacteria can be kept high. Moreover, since nitrate is any one or more of potassium nitrate, sodium nitrate, calcium nitrate, and magnesium nitrate, it is almost neutral when dissolved in water, and a pH adjuster is unnecessary or a small amount is sufficient.

本発明の窒素含有排水処理方法を説明するための図であって、代表的な生物学的硝化脱窒装置1のプロセスフロー図である。It is a figure for demonstrating the nitrogen-containing waste water treatment method of this invention, Comprising: It is a process flow figure of the typical biological nitrification denitrification apparatus 1. FIG. 本発明の窒素含有排水処理方法を説明するための図であって、代表的な生物学的硝化脱窒装置1に、本発明の窒素含有排水処理方法を適用した例を示すプロセスフロー図である。It is a figure for demonstrating the nitrogen-containing wastewater treatment method of this invention, Comprising: It is a process flow figure which shows the example which applied the nitrogen-containing wastewater treatment method of this invention to the typical biological nitrification denitrification apparatus 1. .

本発明に係る窒素含有排水処理方法は、排水中のアンモニア体窒素を硝化槽で硝化処理した後、水素供与体を添加し脱窒槽で脱窒処理し窒素を除去する生物学的硝化脱窒装置を用いた窒素含有排水処理方法において、脱窒槽内のCOD濃度が設定値を超えたとき、脱窒槽にCOD成分を分解させるに必要な量の硝酸塩を注入し、COD成分と硝酸イオンとで脱窒反応を生じせCOD成分を分解し、脱窒槽内のCODを短時間内に低下させる方法である。脱窒槽内のCOD濃度の設定値は、任意に設定すればよく、例えば設定値として、河川等に放流可能な規制値を採用してもよい。   The nitrogen-containing wastewater treatment method according to the present invention is a biological nitrification / denitrification device in which ammonia body nitrogen in wastewater is nitrified in a nitrification tank, and then a hydrogen donor is added and denitrification treatment is performed in a denitrification tank to remove nitrogen. When the COD concentration in the denitrification tank exceeds the set value in the nitrogen-containing wastewater treatment method using nitrile, an amount of nitrate necessary for decomposing the COD component is injected into the denitrification tank, and the COD component and nitrate ions are desorbed. In this method, a nitrogen reaction is caused to decompose the COD component, and the COD in the denitrification tank is reduced within a short time. The set value of the COD concentration in the denitrification tank may be set arbitrarily. For example, a regulated value that can be discharged into a river or the like may be adopted as the set value.

以下、有機物を殆ど含まない窒素含有排水を生物学的硝化脱窒装置1で処理する場合を例として、本発明に係る窒素含有排水処理方法を説明する。ここでは脱窒槽内のCOD濃度の設定値を、河川等に放流可能な30mg/Lとする。図1は有機物を殆ど含まない窒素含有排水を処理する生物学的硝化脱窒装置1の代表的なプロセスフロー図である。   Hereinafter, the nitrogen-containing wastewater treatment method according to the present invention will be described by taking as an example a case where nitrogen-containing wastewater containing almost no organic matter is treated by the biological nitrification denitrification apparatus 1. Here, the set value of the COD concentration in the denitrification tank is set to 30 mg / L that can be discharged into a river or the like. FIG. 1 is a typical process flow diagram of a biological nitrification denitrification apparatus 1 for treating nitrogen-containing wastewater containing almost no organic matter.

排水貯槽内の窒素含有排水(以下単に排水と記す場合もある)は、排水供給ライン3を通じて混合槽5へ送られる。排水中の全窒素濃度は、供給ライン3に設けられたサンプリングポイト7で測定される。混合槽5へ送られた排水は、排水中の全窒素濃度が500mg/L以下となるように、処理水貯槽23から送られる処理水と混合される。さらに混合槽5には栄養塩供給装置9から無機炭素源である二酸化炭素を供給することを主目的とし、表1に示す栄養塩が供給され、さらにpH調整剤供給装置11から塩酸、硫酸などのpH調整剤が供給される。   The nitrogen-containing wastewater in the wastewater storage tank (hereinafter sometimes simply referred to as wastewater) is sent to the mixing tank 5 through the wastewater supply line 3. The total nitrogen concentration in the waste water is measured by a sampling dropper 7 provided in the supply line 3. The waste water sent to the mixing tank 5 is mixed with the treated water sent from the treated water storage tank 23 so that the total nitrogen concentration in the waste water is 500 mg / L or less. Further, the main purpose is to supply carbon dioxide, which is an inorganic carbon source, from the nutrient salt supply device 9 to the mixing tank 5, and the nutrient salts shown in Table 1 are supplied. Further, hydrochloric acid, sulfuric acid, etc. from the pH adjuster supply device 11 PH adjuster is supplied.

Figure 0005391011
Figure 0005391011

混合槽5で調整された排水は、DHS硝化塔13へ送られる。DHS硝化塔13内には、複数の微生物固定化担体(図示省略)が充填されており、DHS硝化塔13には下方から空気が供給される。排水は、DHS硝化塔13の上部から散水され、微生物固定化担体を通過するとき、微生物固定化担体に付着する硝化細菌の作用により空気中の酸素で酸化され、排水中のアンモニア体窒素は、硝酸体窒素又は亜硝酸体窒素となる。硝化反応の反応式は下記の式(1)で示される。
NH +0.103CO+1.86O→0.0182CNO+0.00245CNO+0.979NO +1.98H+0.938HO・・・(1)
The waste water adjusted in the mixing tank 5 is sent to the DHS nitrification tower 13. The DHS nitrification tower 13 is filled with a plurality of microorganism immobilization carriers (not shown), and air is supplied to the DHS nitrification tower 13 from below. The waste water is sprinkled from the upper part of the DHS nitrification tower 13, and when passing through the microorganism-immobilized support, it is oxidized by oxygen in the air by the action of nitrifying bacteria adhering to the microorganism-immobilized support. It becomes nitrate nitrogen or nitrite nitrogen. The reaction formula of the nitrification reaction is shown by the following formula (1).
NH 4 + + 0.103CO 2 + 1.86O 2 → 0.0182C 2 H 5 NO 2 + 0.00245C 5 H 7 NO 2 + 0.979NO 3 - + 1.98H + + 0.938H 2 O ··· (1)

硝化された排水は、ライン15を通じてUASB脱窒塔17へ送られる。ライン15途中には、メタノール供給装置19が接続し、所定量のメタノールが供給され、排水はメタノールと共にUASB脱窒塔17へ送られる。メタノールは脱窒反応に必要な水素供与体として与えられるものであり、メタノールに代え、酢酸であってもよい。   The nitrified waste water is sent to the UASB denitrification tower 17 through the line 15. In the middle of the line 15, a methanol supply device 19 is connected to supply a predetermined amount of methanol, and the waste water is sent to the UASB denitrification tower 17 together with methanol. Methanol is provided as a hydrogen donor necessary for the denitrification reaction, and acetic acid may be used instead of methanol.

UASB脱窒塔17は、内部にグラニュールを保持し、UASB脱窒塔17に送られた排水中の硝酸体窒素又は亜硝酸体窒素は、グラニュール中の脱窒細菌の作用により、メタノールと反応し窒素ガスと炭酸ガスに分解される。脱窒反応は式(2)で示される。これらの工程により排水中のアンモニア体窒素が窒素ガスに分解される。
6NO +5CHOH→3N+5CO+7HO+6OH・・・(2)
The UASB denitrification tower 17 holds granules therein, and nitrate nitrogen or nitrite nitrogen in the wastewater sent to the UASB denitrification tower 17 is separated from methanol by the action of denitrifying bacteria in the granules. Reacts and decomposes into nitrogen gas and carbon dioxide gas. The denitrification reaction is represented by the formula (2). Through these steps, ammonia nitrogen in the waste water is decomposed into nitrogen gas.
6NO 3 - + 5CH 3 OH → 3N 2 + 5CO 2 + 7H 2 O + 6OH - ··· (2)

処理水は、ライン21を通り処理水貯槽23に送られる。ライン21の途中には、処理水中の全窒素濃度及びCOD濃度を測定するためのサンプリングポイト25が設けられている。処理水中の全窒素濃度及びCOD濃度が共に規制値である30mg/L以下であることが確認された後、処理水貯槽23の処理水は、処理水排出ライン27を通じて河川又は海域へ排出される。処理水の一部は、循環ライン29を通り混合槽5に戻される。   The treated water passes through the line 21 and is sent to the treated water storage tank 23. A sampling point 25 for measuring the total nitrogen concentration and the COD concentration in the treated water is provided in the middle of the line 21. After confirming that the total nitrogen concentration and COD concentration in the treated water are both below the regulated value of 30 mg / L, the treated water in the treated water storage tank 23 is discharged to the river or sea through the treated water discharge line 27. . A part of the treated water is returned to the mixing tank 5 through the circulation line 29.

図1に示す生物学的硝化脱窒装置1において、通常、メタノールは、DHS硝化塔13の入口の全窒素量に対応した量が供給されており、生物学的硝化脱窒装置1が正常である場合には、UASB脱窒塔17内において過剰のメタノールは存在せず、UASB脱窒塔17内のCOD濃度は規制値を越えることはない。しかしながら、UASB脱窒塔17内のメタノールが過剰となると、処理水中のCOD濃度が規制値を超え、放流できなくなる。メタノールが過剰となるケースとしては、原水中の全窒素濃度が大きく変化した場合、メタノール供給装置19の故障、誤操作等が考えられる。メタノールは、DHS硝化塔13の滞留時間を考慮し、数時間前のDHS硝化塔13の入口の全窒素量に対応した量が供給されるため、DHS硝化塔13の入口の全窒素量が大きく変化するとUASB脱窒塔17でメタノールが過剰となる。   In the biological nitrification denitrification apparatus 1 shown in FIG. 1, normally, methanol is supplied in an amount corresponding to the total nitrogen amount at the inlet of the DHS nitrification tower 13, and the biological nitrification denitrification apparatus 1 is normal. In some cases, there is no excess methanol in the UASB denitrification tower 17, and the COD concentration in the UASB denitrification tower 17 does not exceed the regulation value. However, if the methanol in the UASB denitrification tower 17 becomes excessive, the COD concentration in the treated water exceeds the regulation value and cannot be discharged. As a case where methanol becomes excessive, when the total nitrogen concentration in the raw water changes greatly, a failure of the methanol supply device 19 or an erroneous operation can be considered. Considering the residence time of the DHS nitrification tower 13, methanol is supplied in an amount corresponding to the total nitrogen quantity at the inlet of the DHS nitrification tower 13 several hours ago, so the total nitrogen quantity at the inlet of the DHS nitrification tower 13 is large. If changed, the methanol becomes excessive in the UASB denitrification tower 17.

以下、図1に示す生物学的硝化脱窒装置1において、UASB脱窒塔17内のCODが規制値を超えたときの処置方法を図2を用いて説明する。図2は、図1に示す生物学的硝化脱窒装置1に本発明を適用したプロセスフロー図である。図1と同一の構成には、同一の符号を付して説明を省略する。   Hereinafter, the treatment method when the COD in the UASB denitrification tower 17 exceeds the regulation value in the biological nitrification denitrification apparatus 1 shown in FIG. 1 will be described with reference to FIG. FIG. 2 is a process flow diagram in which the present invention is applied to the biological nitrification denitrification apparatus 1 shown in FIG. The same components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.

処理水のCODが規制値を超えた場合には、最初に処理水排出ライン27を閉じて処理水が外部へ排出されるのを止める。又同時に循環ライン29を閉じて混合槽5に送る処理水を止め、代わりに水道水等を別系統から導き混合槽5に供給する。CODが高い処理水を混合槽5に戻すと、CODの高い排水がDHS硝化塔13に送られ、硝化細菌の活性が低下してしまう。CODが非常に低い状態で生育していた硝化細菌に対して、高COD成分が加わると、硝化細菌以外の細菌が増殖し、DHS硝化塔13の活性が低下してしまう。   When the COD of the treated water exceeds the regulation value, the treated water discharge line 27 is first closed to stop the treated water from being discharged to the outside. At the same time, the circulation line 29 is closed and the treated water sent to the mixing tank 5 is stopped. Instead, tap water or the like is led from another system and supplied to the mixing tank 5. When treated water with high COD is returned to the mixing tank 5, wastewater with high COD is sent to the DHS nitrification tower 13, and the activity of nitrifying bacteria is reduced. When a high COD component is added to a nitrifying bacterium that has grown in a state where the COD is very low, bacteria other than the nitrifying bacterium grow and the activity of the DHS nitrifying tower 13 decreases.

UASB脱窒塔17中の排水及び処理水貯槽23中の処理水は、次の要領でCODを低下させる。UASB脱窒塔17と処理水貯槽23との間で水を循環させるために、処理水貯槽23からUASB脱窒塔17に水を戻すための戻りライン31を設ける。さらにこの戻りライン31に硝酸塩を供給する硝酸塩供給装置33を接続する。UASB脱窒塔17と処理水貯槽23との間で水を循環させながら、硝酸塩供給装置33から所定量の硝酸塩を供給し、COD成分であるメタノールを分解させる。なお、硝酸塩は、必ずしも戻りライン31に供給する必要はなく、基本的には脱窒反応が起こるUASB脱窒塔17に供給できれば良く、UASB脱窒塔17又は処理水貯槽23に供給してもよい。   The waste water in the UASB denitrification tower 17 and the treated water in the treated water storage tank 23 lower the COD in the following manner. In order to circulate water between the UASB denitrification tower 17 and the treated water storage tank 23, a return line 31 for returning water from the treated water storage tank 23 to the UASB denitrification tower 17 is provided. Further, a nitrate supply device 33 for supplying nitrate is connected to the return line 31. While circulating water between the UASB denitrification tower 17 and the treated water storage tank 23, a predetermined amount of nitrate is supplied from the nitrate supply device 33 to decompose methanol which is a COD component. The nitrate does not necessarily need to be supplied to the return line 31, and basically only needs to be supplied to the UASB denitrification tower 17 in which denitrification occurs, and may be supplied to the UASB denitrification tower 17 or the treated water storage tank 23. Good.

本来、メタノールは、DHS硝化塔13から送られる排水に含まれる硝酸体窒素、亜硝酸体窒素と脱窒反応を起し消失する。ところがUASB脱窒塔17内の排水に含まれるメタノールが過剰となった状態では、脱窒反応を生じさせるに必要な硝酸体窒素、亜硝酸体窒素がいないため、脱窒反応は起こらずメタノールも消失しない。そこでUASB脱窒塔17と処理水貯槽23との間を循環する水に含まれるメタノールに対応した量の硝酸塩を添加し、メタノールと硝酸イオンとで脱窒反応を生じさせメタノールを分解させる。   Originally, methanol disappears due to a denitrification reaction with nitrate nitrogen and nitrite nitrogen contained in waste water sent from the DHS nitrification tower 13. However, in the state where the methanol contained in the waste water in the UASB denitrification tower 17 is excessive, there is no nitrate nitrogen and nitrite nitrogen necessary for causing the denitrification reaction. Does not disappear. Therefore, an amount of nitrate corresponding to methanol contained in the water circulating between the UASB denitrification tower 17 and the treated water storage tank 23 is added, and methanol and nitrate ions cause a denitrification reaction to decompose the methanol.

UASB脱窒塔17と処理水貯槽23との間で水を循環させながら、硝酸塩供給装置33から所定量の硝酸塩を供給し、COD成分であるメタノールを分解させるのは、UASB脱窒塔17と処理水貯槽23との水を同時に処理すると共に、UASB脱窒塔17内のグラニュールの流動化及びメタノールと硝酸イオンとの混合性を高め、脱窒反応を促進することが主目的である。   While circulating water between the UASB denitrification tower 17 and the treated water storage tank 23, a predetermined amount of nitrate is supplied from the nitrate supply device 33 to decompose methanol, which is a COD component, with the UASB denitrification tower 17. The main purpose is to simultaneously treat the water in the treated water storage tank 23 and to improve the fluidization of granules in the UASB denitrification tower 17 and the mixing of methanol and nitrate ions to promote the denitrification reaction.

硝酸塩は、固体のまま供給してもよいけれども、予め水に溶解させ水溶液として供給する方法が定量供給、制御性の点から容易である。硝酸塩の添加量は、メタノールと脱窒反応しメタノールを消失させるに必要な量である。このときUASB脱窒塔17と処理水貯槽23とを循環する水中の硝酸塩濃度が5000mg/L以上とならないように硝酸塩を制御しながら供給する。硝酸塩の供給量が多く、水中の硝酸イオン濃度が5,000mg/Lを越えると、脱窒細菌の活性が低下するので好ましくない。   Although nitrate may be supplied as a solid, a method of dissolving it in water and supplying it as an aqueous solution is easy in terms of quantitative supply and controllability. The amount of nitrate added is an amount necessary for denitrifying reaction with methanol to eliminate methanol. At this time, the nitrate is supplied in a controlled manner so that the nitrate concentration in the water circulating through the UASB denitrification tower 17 and the treated water storage tank 23 does not exceed 5000 mg / L. If the supply amount of nitrate is large and the nitrate ion concentration in water exceeds 5,000 mg / L, the activity of denitrifying bacteria is lowered, which is not preferable.

供給する硝酸塩は、水中で溶解し硝酸イオンを生じるものであればよく、さらに水に溶解したときほぼ中性を示すものが好ましい。水に溶解したときほぼ中性を示す硝酸塩を使用することで、pH調整剤の使用が不要になるか又は使用量が少量となるため経済的である。このような硝酸塩としては、硝酸カリウム、硝酸ナトリウム、硝酸カルシウム、硝酸マグネシウムが例示される。これらは一種を単独で使用可能なことはもちろん、二種以上を使用してもよい。   The nitrate to be supplied is not particularly limited as long as it is dissolved in water to generate nitrate ions, and is preferably one that exhibits almost neutrality when dissolved in water. By using a nitrate which is almost neutral when dissolved in water, it is economical because the use of a pH adjuster is unnecessary or the amount used is small. Examples of such nitrates include potassium nitrate, sodium nitrate, calcium nitrate, and magnesium nitrate. These can be used alone or in combination of two or more.

UASB脱窒塔17内のメタノールは、硝酸塩を供給することなく、UASB脱窒塔17内の脱窒細菌の消化作用により分解せることも可能であるが、脱窒細菌の消化速度は非常に遅く、1週間程度は必要となる。これに対して、脱窒細菌の脱窒速度は速いため数時間内にCODは正常値に戻る。処理水中の全窒素濃度及びCOD濃度が規制値以下であることをサンプリングポイト25で確認した後、戻りライン31及び硝酸塩供給装置33を取りはずし、処理水排出ライン27及び循環ライン29を開け通常運転に復帰させる。上記に通り、本発明の窒素含有排水処理方法を使用すればUASB脱窒塔17内の排水又は処理水貯槽の処理水を抜出し、別途処理する必要がないので手間がかからず、さらに短時間内に生物学的硝化脱窒装置1を正常復帰させることができる。   The methanol in the UASB denitrification tower 17 can be decomposed by the digestion action of the denitrification bacteria in the UASB denitrification tower 17 without supplying nitrate, but the digestion rate of the denitrification bacteria is very slow. About one week is required. In contrast, since the denitrification rate of the denitrifying bacteria is fast, the COD returns to a normal value within a few hours. After confirming that the total nitrogen concentration and COD concentration in the treated water are below the regulation values, the return line 31 and the nitrate supply device 33 are removed, and the treated water discharge line 27 and the circulation line 29 are opened for normal operation. Return. As described above, if the nitrogen-containing wastewater treatment method of the present invention is used, the wastewater in the UASB denitrification tower 17 or the treated water in the treated water storage tank is drawn out, and there is no need for separate treatment. The biological nitrification denitrification apparatus 1 can be returned to normal.

次に、処理水のCODが規制値を超える他のケースについて説明する。DHS硝化塔13の硝化菌の活性が低下した場合においても、UASB脱窒塔17内のCODが規制値を超えて高くなる危険性がある。DHS硝化塔13の硝化細菌の活性が低下すると、DHS硝化塔13内でのアンモニア体窒素の硝化割合が低下し、硝酸イオンの生成が少なくなる。そのためUASB脱窒塔17に送られる排水中の硝酸体窒素、亜硝酸体窒素も低下する。一方、メタノールは、DHS脱窒塔13入口の全窒素量に対応した量のメタノール量が供給されるため、硝酸体窒素、亜硝酸体窒素濃度が低下するとUASB脱窒塔17内のメタノール量が過剰になる。このケースでは、処理水中にアンモニア体窒素が含まれるので、処理水はCODのみならず、全窒素濃度が共に高くなる。   Next, another case where the COD of treated water exceeds the regulation value will be described. Even when the activity of nitrifying bacteria in the DHS nitrification tower 13 is lowered, there is a risk that the COD in the UASB denitrification tower 17 exceeds the regulation value and becomes high. When the activity of nitrifying bacteria in the DHS nitrification tower 13 decreases, the nitrification ratio of ammonia nitrogen in the DHS nitrification tower 13 decreases, and the production of nitrate ions decreases. Therefore, nitrate nitrogen and nitrite nitrogen in the waste water sent to the UASB denitrification tower 17 are also lowered. On the other hand, since methanol is supplied in an amount corresponding to the total amount of nitrogen at the inlet of the DHS denitrification tower 13, when the concentration of nitrate nitrogen and nitrite nitrogen decreases, the amount of methanol in the UASB denitrification tower 17 decreases. Become excessive. In this case, since ammonia body nitrogen is contained in the treated water, not only the COD but also the total nitrogen concentration is high in the treated water.

このケースにおいても、前記と同様に、処理水排出ライン27及び循環ライン29を閉じた後、UASB脱窒塔17と処理水貯槽23との間で水を循環させるために、処理水貯槽23からUASB脱窒塔17に処理水を戻すための戻りライン31を設け、この戻りライン31に硝酸塩を供給する硝酸塩供給装置33を装着し、UASB脱窒塔17と処理水貯槽23との間で水を循環させながら、硝酸塩を供給し、COD成分であるメタノールを分解させる。この間にDHS硝化塔13を健全化させ回復させることで、アンモニア体窒素が硝化され定常運転に復帰させることができる。   In this case as well, after the treated water discharge line 27 and the circulation line 29 are closed, the treated water storage tank 23 is used to circulate water between the UASB denitrification tower 17 and the treated water storage tank 23. A return line 31 for returning treated water to the UASB denitrification tower 17 is provided, and a nitrate supply device 33 for supplying nitrate is attached to the return line 31, and water is supplied between the UASB denitrification tower 17 and the treated water storage tank 23. While circulating the water, nitrate is supplied to decompose the COD component methanol. During this time, the DHS nitrification tower 13 is sounded and recovered, whereby the ammonia nitrogen is nitrified and can be returned to the steady operation.

上記実施形態に示すように、本発明の窒素含有排水処理方法は、脱窒槽内のCOD濃度が設定値以上になったとき、簡単にCODを低下させることができる。このような窒素含有排水処理方法は、排水に含まれる有機物の量が少ない排水又は無機排水に好適に使用可能である。このような排水としては、石炭火力発電所から排出される復水脱塩装置から排出される排水、電気集じん機の洗浄排水、脱硫排水又はこれらが混合した排水などが例示される。なお、上記実施形態では、硝化塔にDHS硝化塔を脱窒塔にUASB脱窒塔を用いた例を示したけれども硝化塔及び脱窒塔がこれらリアクタに限定されないことは言うまでもない。   As shown in the above embodiment, the nitrogen-containing wastewater treatment method of the present invention can easily reduce the COD when the COD concentration in the denitrification tank exceeds a set value. Such a nitrogen-containing wastewater treatment method can be suitably used for wastewater or inorganic wastewater with a small amount of organic matter contained in the wastewater. Examples of such wastewater include wastewater discharged from a condensate demineralizer discharged from a coal-fired power plant, washing wastewater from an electric dust collector, desulfurization wastewater, or wastewater mixed with these. In the above embodiment, the DHS nitrification tower is used as the nitrification tower and the UASB denitrification tower is used as the denitrification tower, but it goes without saying that the nitrification tower and the denitrification tower are not limited to these reactors.

1 生物学的硝化脱窒装置
3 排水供給ライン
5 混合槽
7 サンプリングポイント
9 栄養塩供給装置
11 pH調整剤供給装置
13 DHS硝化塔
15 ライン
17 UASB脱窒塔
19 メタノール供給装置
21 ライン
23 処理水貯槽
25 サンプリングポイント
27 処理水排出ライン
29 循環ライン
31 戻りライン
33 硝酸塩供給装置
DESCRIPTION OF SYMBOLS 1 Biological nitrification denitrification apparatus 3 Drain supply line 5 Mixing tank 7 Sampling point 9 Nutrient supply apparatus 11 pH adjuster supply apparatus 13 DHS nitrification tower 15 Line 17 UASB denitrification tower 19 Methanol supply apparatus 21 Line 23 Treated water storage tank 25 Sampling point 27 Treated water discharge line 29 Circulation line 31 Return line 33 Nitrate feeder

Claims (6)

排水中のアンモニア体窒素を硝化槽で硝化細菌により硝化処理した後、水素供与体を添加し脱窒槽で脱窒処理し窒素を除去する生物学的硝化脱窒装置を用い、前記脱窒槽で処理した処理水の一部を硝化槽に返送しながら窒素含有排水処理する方法において、
前記窒素含有排水が低有機物含有排水又は無機排水であり、
脱窒槽内のCOD濃度が設定値を超えたとき、硝化細菌の活性低下を防止すべく処理水の硝化槽への返送を停止し、脱窒槽に硝酸塩を注入しCOD成分を分解させることを特徴とする窒素含有排水処理方法。
After nitrification treatment by nitrification bacteria ammonia body nitrogen in waste water in a nitrification tank, using a biological nitrification and denitrification device for removing the added denitrification and nitrogen denitrification tank hydrogen donor, treated with the denitrification tank a method of treating a nitrogen-containing waste water while returning a portion of the treated water in the nitrification tank,
The nitrogen-containing wastewater is low organic matter-containing wastewater or inorganic wastewater,
When the COD concentration in the denitrification tank exceeds the set value , the return of treated water to the nitrification tank is stopped to prevent the activity of nitrifying bacteria from decreasing, and nitrate is injected into the denitrification tank to decompose the COD components. Nitrogen-containing wastewater treatment method.
前記生物学的硝化脱窒装置は、脱窒槽の下流側に処理水貯槽を有し、
脱窒槽内のCOD濃度が設定値を超えたとき、脱窒槽と処理水貯槽とで排水を循環させながら該循環水中、前記脱窒槽内、又は前記処理水貯槽内に硝酸塩を注入し、COD成分を分解させることを特徴とする請求項1に記載の窒素含有排水処理方法。
The biological nitrification denitrification apparatus has a treated water storage tank on the downstream side of the denitrification tank,
When COD concentration in the denitrification tank exceeds a set value, the circulating water in while circulating wastewater in the denitrification tank and the treated water storage tank, nitrate is injected into said denitrification tank or the treated water storage tank, COD The nitrogen-containing wastewater treatment method according to claim 1, wherein components are decomposed.
前記窒素含有排水は、石炭火力発電所から排出される窒素含有排水であることを特徴とする請求項1又は2に記載の窒素含有排水処理方法。   The nitrogen-containing wastewater treatment method according to claim 1 or 2, wherein the nitrogen-containing wastewater is nitrogen-containing wastewater discharged from a coal-fired power plant. 前記水素供与体がメタノール又は酢酸であり、脱窒槽内のメタノール又は酢酸が過剰となり脱窒槽内のCOD濃度が設定値を超えたことを特徴とする請求項1から3のいずれか1項に記載の窒素含有排水処理方法。   The said hydrogen donor is methanol or acetic acid, methanol or acetic acid in a denitrification tank becomes excess, and the COD density | concentration in a denitrification tank exceeded the preset value, The any one of Claim 1 to 3 characterized by the above-mentioned. Nitrogen-containing wastewater treatment method. 前記硝酸塩は、脱窒槽内の硝酸イオン濃度が5,000mg/L未満となるように注入することを特徴とする請求項1から4のいずれか1項に記載の窒素含有排水処理方法。   The nitrogen-containing wastewater treatment method according to any one of claims 1 to 4, wherein the nitrate is injected so that a nitrate ion concentration in the denitrification tank is less than 5,000 mg / L. 前記硝酸塩は、硝酸カリウム、硝酸ナトリウム、硝酸カルシウム、硝酸マグネシウムのいずれか1以上であることを特徴とする請求項1から5のいずれか1項に記載の窒素含有排水処理方法。   The nitrogen-containing wastewater treatment method according to any one of claims 1 to 5, wherein the nitrate is at least one of potassium nitrate, sodium nitrate, calcium nitrate, and magnesium nitrate.
JP2009216480A 2009-09-18 2009-09-18 Nitrogen-containing wastewater treatment method Expired - Fee Related JP5391011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216480A JP5391011B2 (en) 2009-09-18 2009-09-18 Nitrogen-containing wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216480A JP5391011B2 (en) 2009-09-18 2009-09-18 Nitrogen-containing wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2011062656A JP2011062656A (en) 2011-03-31
JP5391011B2 true JP5391011B2 (en) 2014-01-15

Family

ID=43949499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216480A Expired - Fee Related JP5391011B2 (en) 2009-09-18 2009-09-18 Nitrogen-containing wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5391011B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102774984A (en) * 2012-07-18 2012-11-14 常州大学 Method for treating high-concentration ammonia nitrogen in chemical industrial wastewater
CN102774986A (en) * 2012-07-18 2012-11-14 常州大学 Method for treating high-concentration ammonia-nitrogen in circuit board etching wastewater
CN103570140B (en) * 2013-11-21 2016-09-28 张列宇 A kind of quick improve the black smelly method of small rivers
JP6435108B2 (en) * 2014-03-26 2018-12-05 パナソニック株式会社 Denitrification device and method of operating denitrification device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122943A (en) * 1975-04-18 1976-10-27 Ebara Infilco Co Ltd Process for treating sewage water
JP3134145B2 (en) * 1994-03-23 2001-02-13 新日本製鐵株式会社 Wastewater biological denitrification method
JP2001276851A (en) * 2000-03-29 2001-10-09 Japan Organo Co Ltd Drain treatment equipment
JP4040028B2 (en) * 2003-04-16 2008-01-30 三洋電機株式会社 Method and system for treating water to be treated containing organic matter and nitrogen compound

Also Published As

Publication number Publication date
JP2011062656A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
KR101875024B1 (en) Apparatus and Method for Parial Nitrification of Ammonia from Ammonia Containing Sewage and Wastewater
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
KR100719434B1 (en) Method for removing high concentration of nitrogen from anaerobict-treated wastewater and apparatus for implementing the method
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP5814392B2 (en) Waste liquid treatment method and waste liquid treatment apparatus
JPWO2004074191A1 (en) Ammonia nitrogen-containing water treatment method
JP2010063987A (en) Waste water treatment device and treatment method
JP2011056383A (en) Treatment method of nitrogen containing water and treatment apparatus of nitrogen containing water
JP2010207785A (en) Wastewater treatment method and wastewater treatment apparatus
JP5391011B2 (en) Nitrogen-containing wastewater treatment method
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP2007125484A (en) Nitrogen-containing wastewater treatment method
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
JP2006082053A (en) Method and apparatus for treating nitrogen-containing drainage
TWI689470B (en) Integrated processing system and method for biogas desulfurization and bio-slurry denitrification
JP5391010B2 (en) Operation method of denitrification reactor
KR100970576B1 (en) The apparatus and method of removing BOD, N, and P removal from an animal wastewater
JP2007196095A (en) Organic waste treatment method and apparatus
JP2006272252A (en) Method for treating nitrogen-containing organic drainage
CN110255812B (en) Biochemical and advanced oxidation combined method for retaining ammonia nitrogen and removing antibiotics in livestock and poultry breeding sewage treatment process
JP5812277B2 (en) Nitrogen removal method
KR20100046936A (en) Combined sulfur autotrophic denitrification and bioelectrochemical denitrification system
JP2005329399A (en) Method and apparatus for removing nitrogen
KR101333042B1 (en) Method for Manufacturing the Activator of Autotrophic Denitrification Using Sulfur
JPH06178995A (en) Anaerobic digestion treatment of organic waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5391011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees