JP5389525B2 - Ammonia decomposition cylinder - Google Patents
Ammonia decomposition cylinder Download PDFInfo
- Publication number
- JP5389525B2 JP5389525B2 JP2009119169A JP2009119169A JP5389525B2 JP 5389525 B2 JP5389525 B2 JP 5389525B2 JP 2009119169 A JP2009119169 A JP 2009119169A JP 2009119169 A JP2009119169 A JP 2009119169A JP 5389525 B2 JP5389525 B2 JP 5389525B2
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- cylinder
- ammonia decomposition
- catalyst
- decomposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims description 302
- 229910021529 ammonia Inorganic materials 0.000 title claims description 151
- 238000000354 decomposition reaction Methods 0.000 title claims description 121
- 239000003054 catalyst Substances 0.000 claims description 65
- 238000011049 filling Methods 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 32
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 238000005336 cracking Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 229910002601 GaN Inorganic materials 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- -1 gallium nitride (GaN) compound Chemical class 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明はアンモニア分解筒に関する。さらに詳細には、アンモニアを含む排ガスを、加熱下でアンモニア分解触媒と接触させて、アンモニアを窒素と水素に分解するアンモニア分解筒に関する。 The present invention relates to an ammonia decomposition cylinder. More specifically, the present invention relates to an ammonia decomposition cylinder that decomposes ammonia into nitrogen and hydrogen by bringing an exhaust gas containing ammonia into contact with an ammonia decomposition catalyst under heating.
半導体製造工場をはじめ、各種化学製品の製造工場においては、多種の有害成分が使用されている。これらの工場から各種の有害成分を含んだ排ガスを大気中に放出するに先立って、これらの有害成分毎に定められたTLV−TWA(時間荷重平均の暴露限界濃度)以下の濃度になるように、排ガスから有害成分を除去し浄化する必要がある。 Various harmful components are used in manufacturing plants for various chemical products including semiconductor manufacturing plants. Prior to releasing exhaust gas containing various harmful components from these factories into the atmosphere, the concentration should be less than the TLV-TWA (time-weighted average exposure limit concentration) defined for each harmful component. It is necessary to remove and purify harmful components from the exhaust gas.
例えば、窒化ガリウム(GaN)系化合物半導体製造工程の下流からは、アンモニアを10〜40体積%含む排ガスが、毎分数十リットルから数百リットルの流量で排出される。アンモニアのTLV−TWAは25ppmであり、特異な刺激臭を有するため、排ガスを大気中へ放出する際にはアンモニアの濃度を前記のTLV−TWA以下まで除去する必要がある。 For example, exhaust gas containing 10 to 40% by volume of ammonia is discharged from the downstream of the gallium nitride (GaN) compound semiconductor manufacturing process at a flow rate of several tens to several hundreds of liters per minute. Since ammonia has a TLV-TWA of 25 ppm and has a unique irritating odor, it is necessary to remove the ammonia concentration below the TLV-TWA when the exhaust gas is released into the atmosphere.
このような多量のアンモニアを効率よく処理する方法としては、特許文献1〜3に示すように、アンモニアを含む排ガスを、加熱下でアンモニア分解触媒と接触させて、アンモニアを窒素と水素に分解する方法がある。アンモニア分解触媒としては、例えば、無機質担体にニッケル、鉄、パラジウム、白金、ルテニウムを担持した触媒が用いられている。 As a method for efficiently treating such a large amount of ammonia, as shown in Patent Documents 1 to 3, an exhaust gas containing ammonia is brought into contact with an ammonia decomposition catalyst under heating to decompose the ammonia into nitrogen and hydrogen. There is a way. As the ammonia decomposition catalyst, for example, a catalyst in which nickel, iron, palladium, platinum, or ruthenium is supported on an inorganic carrier is used.
前記のアンモニア分解処理を行なうための装置としては、排ガスの導入口、アンモニア分解触媒の充填部、処理されたガスの排出口、及び外壁にヒーターを備えた円筒形状を有するアンモニア分解筒がある。
近年、GaN系化合物半導体の増産に伴い、半導体製造工場からのアンモニアの排出量が増加した結果、アンモニア分解筒の大型化が必要となっている。
しかしながら、前述のアンモニア分解反応は吸熱反応であり、ヒーターから触媒に加えた熱の一部が分解反応に消費され、ヒーターから離れた部分の触媒には熱が伝わりにくい。そのため、外壁部のヒーターのみで分解筒内を加熱し、該分解筒にアンモニアを含む排ガスを流通した場合、筒中心部の触媒は、筒壁周辺部の触媒ほどは温度が上昇せず、内径の大きいアンモニア分解筒になるほど、筒中心部と筒壁周辺部との触媒の温度差が大きくなる。
In recent years, with the increase in production of GaN-based compound semiconductors, the amount of ammonia discharged from semiconductor manufacturing plants has increased, and as a result, the ammonia decomposition cylinder has to be enlarged.
However, the above-mentioned ammonia decomposition reaction is an endothermic reaction, and a part of the heat applied from the heater to the catalyst is consumed in the decomposition reaction, and it is difficult for heat to be transmitted to the catalyst at a part away from the heater. Therefore, when the inside of the cracking cylinder is heated only by the heater on the outer wall, and the exhaust gas containing ammonia is circulated through the cracking cylinder, the temperature of the catalyst at the center of the cylinder does not rise as much as the catalyst at the periphery of the cylinder wall. The larger the ammonia decomposition cylinder, the greater the temperature difference of the catalyst between the cylinder center and the cylinder wall periphery.
ここで、外壁周辺の触媒を適温にするように加熱すれば、分解筒中心部の触媒は温度が充分に上昇せず、触媒本来のアンモニアを分解する能力が充分に発揮されなくなる。逆に、分解筒中心部の触媒を適温にするように加熱すれば、ヒーターの設定温度を前記の場合よりも大幅に高くする必要が発生するため、ヒーターでの消費電力が増大し、しかもヒーターの寿命が短くなるという不都合を生じる。 Here, if the catalyst around the outer wall is heated to an appropriate temperature, the temperature of the catalyst in the center of the cracking cylinder does not rise sufficiently, and the ability to decompose the original ammonia of the catalyst is not fully exhibited. Conversely, if the catalyst in the center of the cracking cylinder is heated to an appropriate temperature, the heater set temperature needs to be significantly higher than in the above case, resulting in increased power consumption in the heater and moreover the heater. Inconvenience that the life of the battery becomes shorter.
従って、本発明が解決しようとする課題は、例えばGaN系化合物半導体製造工程から排出されるような高濃度のアンモニアを含む排ガスの処理であっても、内径の大きいアンモニア分解筒を使用する場合であっても、分解筒内の触媒が充分に加熱され、アンモニアを分解する能力を充分に発揮できるような装置を提供することである。 Therefore, the problem to be solved by the present invention is, for example, in the case of using an ammonia decomposition cylinder having a large inner diameter even in the treatment of exhaust gas containing a high concentration of ammonia discharged from the GaN compound semiconductor manufacturing process. Even if it exists, it is providing the apparatus which the catalyst in a cracking cylinder is fully heated and can fully exhibit the capability to decompose | disassemble ammonia.
本発明者らは、これらの課題を解決すべく鋭意検討した結果、アンモニア分解筒内全体の触媒が充分かつ均一に加熱されるように、従来通り分解筒外壁に設置したヒーターに加えて、分解筒内部に別のヒーターを設置することにより、分解筒内の少なくとも出口側の触媒が、目標とする温度に概ね均一に到達し、触媒がアンモニアを分解する能力を充分に発揮できることを見出し、本発明のアンモニア分解筒に到達した。 As a result of intensive studies to solve these problems, the present inventors have made a decomposition in addition to the heater installed on the outer wall of the decomposition cylinder as usual so that the catalyst in the entire ammonia decomposition cylinder is heated sufficiently and uniformly. By installing another heater inside the cylinder, it was found that at least the catalyst on the outlet side in the decomposition cylinder reaches the target temperature almost uniformly, and the catalyst can fully exhibit the ability to decompose ammonia. The ammonia decomposition cylinder of the invention was reached.
すなわち本発明は、アンモニアを含む排ガスの導入口、アンモニア分解触媒の充填部、処理されたガスの排出口、及び外壁にヒーターを備えた円筒形状を有するアンモニア分解筒であって、さらに該分解筒の内部に、該分解筒と中心軸が同一となるように円筒形状のヒーターを内蔵した容器を設置してなることを特徴とするアンモニア分解筒である。 That is, the present invention relates to an ammonia decomposition cylinder having a cylindrical shape having an inlet for exhaust gas containing ammonia, a filling portion for an ammonia decomposition catalyst, an outlet for treated gas, and a heater on the outer wall, and further comprising the decomposition cylinder The ammonia decomposition cylinder is characterized in that a container containing a cylindrical heater is installed inside the cylinder so that the central axis of the decomposition cylinder is the same.
本発明により、GaN系化合物半導体製造工程から排出される高濃度のアンモニアを分解する場合であっても、内径の大きいアンモニア分解筒によりアンモニアを分解する場合であっても、分解筒内の少なくとも出口側に充填されたアンモニア分解触媒が、目標とする温度に概ね均一に到達するため、ヒーターによる消費電力を無駄にすることなく、アンモニア分解触媒がアンモニアを分解する能力を充分に発揮できるようになった。 According to the present invention, even when decomposing high-concentration ammonia discharged from a GaN-based compound semiconductor manufacturing process or when decomposing ammonia with an ammonia decomposing cylinder having a large inner diameter, at least an outlet in the decomposing cylinder Since the ammonia decomposition catalyst packed on the side reaches the target temperature almost uniformly, the ammonia decomposition catalyst can fully demonstrate its ability to decompose ammonia without wasting power consumption by the heater. It was.
本発明は、アンモニアを含む排ガスを、加熱下でアンモニア分解触媒と接触させて、アンモニアを窒素と水素に分解するアンモニア分解筒、特に内径が150mm以上であるアンモニア分解筒に適用される。
以下、本発明のアンモニア分解筒を、図1〜図3に基づいて説明するが、本発明がこれらにより限定されるものではない。
尚、図1、図2は、各々本発明のアンモニア分解筒の一例を示す垂直断面図である。また、図3は、図2のa−a’断面における水平断面図である。
The present invention is applied to an ammonia decomposition cylinder, particularly an ammonia decomposition cylinder having an inner diameter of 150 mm or more, in which exhaust gas containing ammonia is brought into contact with an ammonia decomposition catalyst under heating to decompose ammonia into nitrogen and hydrogen.
Hereinafter, although the ammonia decomposition cylinder of this invention is demonstrated based on FIGS. 1-3 , this invention is not limited by these.
FIGS. 1 and 2 are vertical sectional views showing examples of the ammonia decomposition cylinder of the present invention. FIG. 3 is a horizontal sectional view taken along the line aa ′ of FIG.
本発明のアンモニア分解筒は、図1、図2に示すように、アンモニアを含む排ガスの導入口1、アンモニア分解触媒の充填部2、処理されたガスの排出口3、及び外壁にヒーター4を備えた円筒形状を有するアンモニア分解筒であって、さらに該分解筒の内部に、該分解筒と中心軸が同一となるように円筒形状のヒーター4’を内蔵した容器5を設置してなるアンモニア分解筒である。本発明において、容器5は、アンモニア分解触媒を充分に加熱できるように、アンモニア分解触媒の充填部2と接触面積が大きくなるように設置される。
As shown in FIGS. 1 and 2 , the ammonia decomposing cylinder of the present invention includes an introduction port 1 for exhaust gas containing ammonia, a
本発明のアンモニア分解筒における容器は、図1に示すように、外形が円柱形であることが好ましい。 Containers in the ammonia decomposition column of the present invention, as shown in FIG. 1, not preferable that the outer shape is cylindrical.
尚、分解筒の外壁6と容器5の間隙は、150mm以下であることが好ましく、さらに120mm以下であることがより好ましい。分解筒の外壁6と容器5の間隙が150mmを越える場合は、ヒーターから最も離れた部分のアンモニア分解触媒とヒーター周辺部のアンモニア分解触媒との温度差が大きくなり、アンモニアの分解に不都合を生じる虞がある。
The gap between the
また、容器5の外径は、分解筒の内径の1/4倍以上かつ3/4倍以下であることが好ましい。容器の外径が分解筒の内径の1/4倍よりも小さい場合は、容器の壁面の面積が小さすぎるので、容器内のヒーターからのアンモニア分解触媒に対する加熱の効果が小さく、アンモニア分解触媒の温度が充分に上昇しない虞がある。容器の外径が分解筒の内径の3/4倍よりも大きい場合は、アンモニア分解触媒の充填部が狭くなり、効率よくアンモニアを分解できなくなる虞がある。
The outer diameter of the
また、容器5はヒーターを被覆し、腐食性ガスであるアンモニアがヒーターと接触することを防止する構成であることが好ましい。このような構成としては、例えば、図1、図2に示すように、容器を一端が閉じられた袋状としてこの中にヒーターを設置することができる。
Moreover, it is preferable that the
本発明において、容器及び前記の周辺部材(容器を分解筒に固定するための部材)の構成材料は、耐腐食性材料であることが好ましく、例えば、SUS316、SUS316L、インコネル、ハステロイ等、分解筒の外壁の構成材料と同一のものも用いることができる。容器の厚みは、通常は1〜5mmである。さらに容器は、アンモニア分解触媒を効率よく加熱するために、アンモニア分解触媒の充填部の最上部から最下部までを貫通している構成とすることが好ましい。 In the present invention, the constituent material of the container and the peripheral member (member for fixing the container to the disassembly cylinder) is preferably a corrosion-resistant material, such as SUS316, SUS316L, Inconel, Hastelloy, etc. The same material as that of the outer wall can be used. The thickness of the container is usually 1 to 5 mm. Furthermore, in order to heat the ammonia decomposition catalyst efficiently, the container preferably has a structure that penetrates from the uppermost part to the lowermost part of the filling part of the ammonia decomposition catalyst.
本発明のアンモニア分解筒においては、さらに、分解筒内部の所定箇所における温度を測定できるようにしてもよい。例えば、図2に示すように、アンモニア分解筒の上蓋に、直径3〜7mm程度の穴を開け、穴の部分に片側の先端が閉じられたステンレス鋼製などの細管7を、閉じられた端が分解筒内部に入る向きに溶接し、熱電対8をその先端が温度を測定したい箇所に達するまで挿入することができる。
In the ammonia decomposition cylinder of the present invention, the temperature at a predetermined location inside the decomposition cylinder may be further measured. For example, as shown in FIG. 2, a
本発明のアンモニア分解筒に充填されるアンモニア分解触媒は、例えば、無機質担体にニッケル、鉄、パラジウム、白金、ルテニウムを担持した触媒である。
これらの形状および大きさについては、アンモニア分解筒の仕様や排ガスの流通条件等により一概に限定されない。しかし、通常は、球形、円柱形などであり、球形であれば直径が2〜12mm、円柱形(ペレット)では直径が1〜10mm、高さが2〜10mm程度の範囲とされる。
The ammonia decomposition catalyst filled in the ammonia decomposition cylinder of the present invention is, for example, a catalyst in which nickel, iron, palladium, platinum, and ruthenium are supported on an inorganic carrier.
These shapes and sizes are not generally limited by the specifications of the ammonia decomposition cylinder, the distribution conditions of the exhaust gas, and the like. However, it is usually a spherical shape, a cylindrical shape, or the like, and in the case of a spherical shape, the diameter ranges from 2 to 12 mm, and in the cylindrical shape (pellet), the diameter ranges from 1 to 10 mm and the height ranges from about 2 to 10 mm.
本発明のアンモニア分解筒により、排ガスに含まれるアンモニアを窒素と水素に分解する際は、本発明のアンモニア分解筒の外壁のヒーター及び容器内のヒーターを昇温し、アンモニア分解触媒を加熱した後、アンモニアを含む排ガスを、アンモニア分解筒の導入口から導入することによりアンモニアの分解が行なわれる。排ガス中のアンモニアをアンモニア分解触媒に接触させて分解する際の温度は、触媒の種類や排ガスの流通条件などにより異なり、通常は300℃〜800℃である。しかし、例えば限定されたアンモニア分解触媒の種類等の条件下では、上記よりも狭い範囲に限定される。 When the ammonia contained in the exhaust gas is decomposed into nitrogen and hydrogen by the ammonia decomposition cylinder of the present invention, the temperature of the heater on the outer wall of the ammonia decomposition cylinder of the present invention and the heater in the container is increased, and the ammonia decomposition catalyst is heated. The ammonia is decomposed by introducing exhaust gas containing ammonia from the inlet of the ammonia decomposition cylinder. The temperature at which ammonia in the exhaust gas is decomposed by bringing it into contact with the ammonia decomposition catalyst varies depending on the type of catalyst and the flow conditions of the exhaust gas, and is usually from 300 ° C to 800 ° C. However, it is limited to a range narrower than the above, for example, under conditions such as the type of ammonia decomposition catalyst that is limited.
例えば、窒化ガリウム系化合物半導体製造工程から排出されるアンモニア(10〜40体積%)を含む排ガスを、無機質担体にルテニウムを担持した触媒を用いて分解する場合は、排ガスと触媒の接触温度が540〜700℃、好ましくは550〜650℃となるように設定される。排ガスと触媒の接触温度が540℃未満の場合は、アンモニアの分解率が低下する不都合がある。また、700℃を超える場合は、ヒーターが早く劣化して寿命が短くなり、アンモニアの分解率の向上は小さく、ヒーターの消費電力が増大するだけで、エネルギーの無駄になり、さらに有害な窒素酸化物の発生が懸念される。 For example, when an exhaust gas containing ammonia (10 to 40% by volume) discharged from a gallium nitride compound semiconductor manufacturing process is decomposed using a catalyst in which ruthenium is supported on an inorganic carrier, the contact temperature between the exhaust gas and the catalyst is 540. It is set so that it may become -700 degreeC, Preferably it is 550-650 degreeC. When the contact temperature between the exhaust gas and the catalyst is less than 540 ° C., there is a disadvantage that the decomposition rate of ammonia decreases. When the temperature exceeds 700 ° C., the heater deteriorates quickly and the life is shortened, the improvement of the decomposition rate of ammonia is small, the power consumption of the heater is increased, energy is wasted, and harmful nitrogen oxidation There is concern about the generation of things.
本発明のアンモニア分解筒は、前述のような構成なので、窒化ガリウム系化合物半導体製造工程から排出される高濃度のアンモニアの分解処理においても、アンモニア分解反応による吸熱反応の悪影響を大幅に緩和することができ、少なくとも充填部出口側のアンモニア分解触媒の温度を比較的に均一に保持することが可能である。その結果、アンモニアの分解触媒が、アンモニアを分解する能力を充分に発揮することができ、効率よくアンモニアを分解することができる。
尚、本発明においては、アンモニア分解筒の前に、排ガスを加熱するための予熱器を設けたり、アンモニア分解筒の後に、活性炭、ゼオライト等の吸着剤が充填された浄化筒を設けることができる。
Since the ammonia decomposition cylinder of the present invention is configured as described above, the adverse effect of the endothermic reaction due to the ammonia decomposition reaction can be greatly reduced even in the decomposition treatment of high-concentration ammonia discharged from the gallium nitride compound semiconductor manufacturing process. And at least the temperature of the ammonia decomposition catalyst on the outlet side of the filling section can be kept relatively uniform. As a result, the ammonia decomposition catalyst can sufficiently exhibit the ability to decompose ammonia, and can efficiently decompose ammonia.
In the present invention, a preheater for heating exhaust gas can be provided before the ammonia decomposition cylinder, or a purification cylinder filled with an adsorbent such as activated carbon or zeolite can be provided after the ammonia decomposition cylinder. .
次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.
[実施例1]
(アンモニア分解筒の製作)
内径300mm、高さ1840mmのステンレス鋼製の円筒を筒壁とする図1に示すようなアンモニア分解筒を製作した。容器としては、外径150mm、高さ1660mmで、上端が開放、下端が閉止されたステンレス鋼製の容器(外形が円柱形の容器)を製作した。触媒充填部(高さ1400mm)の最下部を、容器最下部から90mm上の位置にしたため、内筒は触媒充填部の最上部から最下部までを貫通する構成となった。また、外筒の外壁及び容器の触媒充填部に面した部分全体に、触媒を加熱するためのマイクロシースヒーターを設置した。また、アンモニア分解筒に導入する前のガスを加熱するための予熱器を設けた。
[Example 1]
(Production of ammonia decomposition cylinder)
An ammonia decomposing cylinder as shown in FIG. 1 having a cylindrical wall made of a stainless steel cylinder having an inner diameter of 300 mm and a height of 1840 mm was manufactured. As the container, a stainless steel container (container having a cylindrical outer shape) having an outer diameter of 150 mm, a height of 1660 mm, an upper end opened, and a lower end closed. Since the lowermost part of the catalyst filling part (height 1400 mm) was positioned 90 mm above the lowermost part of the container, the inner cylinder penetrated from the uppermost part to the lowermost part of the catalyst filling part. Further, a microsheath heater for heating the catalyst was installed on the entire outer wall of the outer cylinder and the part of the container facing the catalyst filling part. Moreover, the preheater for heating the gas before introduce | transducing into an ammonia decomposition cylinder was provided.
(アンモニア分解触媒の調製及び充填)
粒径約3mmの球状のαアルミナの担体に、塩化ルテニウムの水溶液を含浸させた後、水素還元することにより、ルテニウムの担持量が2.0重量%、比表面積20m2/gのアンモニア分解触媒を得た。このアンモニア分解触媒を、前記のアンモニア分解筒の外壁と容器の間隙に充填長が1400mmとなるように充填した。充填密度は1.0g/mlであった。
さらに、図2に示すような構成となるように、外径6.4mm、長さ1670mmのステンレス鋼製の細管を2本準備し、熱電対3本ずつを挿入した。熱電対の先端の挿入位置は、触媒充填部の最上部から下に、100mm、500mm、1300mmの計3箇所ずつとした。
(Preparation and filling of ammonia decomposition catalyst)
An ammonia decomposition catalyst having a ruthenium loading of 2.0 wt% and a specific surface area of 20 m 2 / g by impregnating a spherical α-alumina carrier having a particle diameter of about 3 mm with an aqueous ruthenium chloride solution and then hydrogen reduction. Got. This ammonia decomposition catalyst was filled in the gap between the outer wall of the ammonia decomposition cylinder and the container so that the filling length was 1400 mm. The packing density was 1.0 g / ml.
Further, two stainless steel thin tubes each having an outer diameter of 6.4 mm and a length of 1670 mm were prepared and three thermocouples were inserted so as to obtain the configuration shown in FIG. The insertion position of the tip of the thermocouple was set at a total of three locations of 100 mm, 500 mm, and 1300 mm from the top to the bottom of the catalyst filling portion.
(アンモニア分解試験)
予熱器のヒーター及びアンモニア分解筒のヒーターの設定温度を620℃に設定するとともに、窒素及び水素を各々225L/minの流量で予熱器からアンモニア分解筒に導入した。その結果、アンモニア分解触媒の熱電対の先端部の温度は、いずれも600℃近辺で安定した。次に、導入ガスを変更し、窒素、水素、及びアンモニアを各々150L/minの流量で予熱器からアンモニア分解筒に導入した。
(Ammonia decomposition test)
The set temperature of the heater of the preheater and the heater of the ammonia decomposition cylinder was set to 620 ° C., and nitrogen and hydrogen were introduced from the preheater to the ammonia decomposition cylinder at a flow rate of 225 L / min. As a result, the temperature of the tip portion of the thermocouple of the ammonia decomposition catalyst was stable around 600 ° C. Next, the introduced gas was changed, and nitrogen, hydrogen, and ammonia were each introduced from the preheater into the ammonia decomposition cylinder at a flow rate of 150 L / min.
窒素、水素、及びアンモニアからなるガスを導入した後、一時的に熱電対の先端部の温度は変動したが、最終的にほぼ一定の温度で安定した。また、アンモニア分解筒の排出口において処理後のガスをサンプリングし、アンモニアの濃度を測定した。これらの結果を表1に示す。尚、表1において、触媒充填部の最上部から下に、100mm、500mm、1300mmの箇所の温度を、各々、熱電対温度 上、熱電対温度 中、熱電対温度 下と表示する。また、温度はその箇所の平均値を示す。 After introducing the gas consisting of nitrogen, hydrogen, and ammonia, the temperature at the tip of the thermocouple fluctuated temporarily, but finally stabilized at a substantially constant temperature. The treated gas was sampled at the discharge port of the ammonia decomposition cylinder, and the ammonia concentration was measured. These results are shown in Table 1. In Table 1, the temperatures at the 100 mm, 500 mm, and 1300 mm locations from the top to the bottom of the catalyst filling portion are respectively indicated as the thermocouple temperature, the thermocouple temperature, and the thermocouple temperature. Moreover, temperature shows the average value of the location.
[実施例2]
実施例1のアンモニア分解筒の製作において、アンモニア分解筒の内径を200mm、容器の外径を100mmに変更したほかは実施例1と同様にアンモニア分解筒を製作した。このアンモニア分解筒を用いたほかは実施例1と同様にしてアンモニア分解試験を行なった。その結果を表1に示す。
[Example 2]
In the production of the ammonia decomposition cylinder of Example 1, the ammonia decomposition cylinder was produced in the same manner as in Example 1 except that the inner diameter of the ammonia decomposition cylinder was changed to 200 mm and the outer diameter of the container was changed to 100 mm. An ammonia decomposition test was conducted in the same manner as in Example 1 except that this ammonia decomposition cylinder was used. The results are shown in Table 1.
[実施例3]
実施例1のアンモニア分解試験において、窒素、水素、及びアンモニアからなるガスの流量を各々120L/minに変更したほかは実施例1と同様にしてアンモニア分解試験を行なった。その結果を表1に示す。
[Example 3]
In the ammonia decomposition test of Example 1, the ammonia decomposition test was performed in the same manner as in Example 1 except that the flow rates of the gas composed of nitrogen, hydrogen, and ammonia were each changed to 120 L / min. The results are shown in Table 1.
[比較例1]
実施例1のアンモニア分解筒の製作において、容器を用いなかったほかは実施例1と同様にアンモニア分解筒を製作した。このアンモニア分解筒を用いたほかは実施例1と同様にしてアンモニア分解試験を行なった。(アンモニア分解触媒及びその充填長等は実施例1と同様)その結果を表1に示す。
[Comparative Example 1]
In the production of the ammonia decomposition cylinder of Example 1, an ammonia decomposition cylinder was produced in the same manner as in Example 1 except that no container was used. An ammonia decomposition test was conducted in the same manner as in Example 1 except that this ammonia decomposition cylinder was used. (Ammonia decomposition catalyst and its filling length are the same as in Example 1) The results are shown in Table 1.
[比較例2]
実施例2のアンモニア分解筒の製作において、容器を用いなかったほかは実施例2と同様にアンモニア分解筒を製作した。このアンモニア分解筒を用いたほかは実施例2と同様にしてアンモニア分解試験を行なった。(アンモニア分解触媒及びその充填長等は実施例2と同様)その結果を表1に示す。
[Comparative Example 2]
In the production of the ammonia decomposition cylinder of Example 2, an ammonia decomposition cylinder was produced in the same manner as in Example 2 except that no container was used. An ammonia decomposition test was conducted in the same manner as in Example 2 except that this ammonia decomposition cylinder was used. (Ammonia decomposition catalyst and its filling length are the same as in Example 2). The results are shown in Table 1.
アンモニア分解処理においては、アンモニアとアンモニア分解触媒の接触により吸熱反応が起こり、触媒充填部のヒーターと離れた入口側の箇所で急激な温度低下が起こるが、本発明の実施例では、前述のように、触媒充填部の出口側で温度が上昇し、アンモニアの分解率低下を防止することができる。一方、比較例(従来例)では、触媒充填部の出口側で温度が充分に上昇せず、アンモニアの分解率低下を防止することができない。このような状況は、図4に示す触媒の位置と温度の関係で表される。(図4のX軸方向は、触媒充填部の入口側(上流側)から出口側(下流側)へ向かう変位を示すものである。) In the ammonia decomposition treatment, an endothermic reaction occurs due to the contact between ammonia and the ammonia decomposition catalyst, and a rapid temperature drop occurs at a location on the inlet side away from the heater of the catalyst filling portion. In the embodiment of the present invention, as described above, In addition, the temperature rises at the outlet side of the catalyst filling portion, and the decomposition rate of ammonia can be prevented from decreasing. On the other hand, in the comparative example (conventional example), the temperature does not rise sufficiently on the outlet side of the catalyst filling portion, and it is impossible to prevent a decrease in the decomposition rate of ammonia. This situation is represented by the relationship between the position and the temperature of the catalyst shown in FIG. (The X-axis direction in FIG. 4 indicates the displacement from the inlet side (upstream side) to the outlet side (downstream side) of the catalyst filling portion.
以上のように、本発明のアンモニア分解筒は、GaN系化合物半導体製造工程から排出される高濃度のアンモニアを分解する場合であっても、内径の大きいアンモニア分解筒によりアンモニアを分解する場合であっても、分解筒内の少なくとも出口側に充填されたアンモニア分解触媒が、目標とする温度に概ね均一に到達するため、ヒーターによる消費電力を無駄にすることなく、アンモニアを効率よく分解することができる。 As described above, the ammonia decomposition cylinder of the present invention is a case where ammonia is decomposed by an ammonia decomposition cylinder having a large inner diameter even when high concentration ammonia discharged from the GaN compound semiconductor manufacturing process is decomposed. However, since the ammonia decomposition catalyst charged at least on the outlet side in the decomposition cylinder reaches the target temperature almost uniformly, it is possible to efficiently decompose ammonia without wasting power consumption by the heater. it can.
1 アンモニアを含む排ガスの導入口
2 アンモニア分解触媒の充填部
3 処理されたガスの排出口
4 ヒーター
4’ヒーター
5 円筒形状のヒーターを内蔵した容器
6 分解筒の外壁
7 熱電対を挿入するための細管
8 熱電対
DESCRIPTION OF SYMBOLS 1 Introducing port of exhaust
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009119169A JP5389525B2 (en) | 2009-05-15 | 2009-05-15 | Ammonia decomposition cylinder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009119169A JP5389525B2 (en) | 2009-05-15 | 2009-05-15 | Ammonia decomposition cylinder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010264406A JP2010264406A (en) | 2010-11-25 |
JP5389525B2 true JP5389525B2 (en) | 2014-01-15 |
Family
ID=43361885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009119169A Active JP5389525B2 (en) | 2009-05-15 | 2009-05-15 | Ammonia decomposition cylinder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5389525B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11764381B2 (en) | 2021-08-17 | 2023-09-19 | Amogy Inc. | Systems and methods for processing hydrogen |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101190545B1 (en) | 2011-01-18 | 2012-10-16 | 주식회사 루미스탈 | Method and Apparatus for treatment of by-product in hydride vapor phase epitaxy |
KR101239877B1 (en) * | 2011-07-21 | 2013-03-06 | 윤원도 | Scrubber to dispose waste gas including ammonia |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60158294A (en) * | 1984-01-30 | 1985-08-19 | Mitsubishi Heavy Ind Ltd | Fuel reformer |
JP3688314B2 (en) * | 1994-07-21 | 2005-08-24 | 日本パイオニクス株式会社 | Ammonia decomposition method |
JP3532256B2 (en) * | 1994-08-25 | 2004-05-31 | 日本パイオニクス株式会社 | Ammonia decomposition equipment |
JP2000233117A (en) * | 1998-12-14 | 2000-08-29 | Japan Pionics Co Ltd | Method and apparatus for purification of exhaust gas |
JP2000218130A (en) * | 1999-01-29 | 2000-08-08 | Matsushita Electric Ind Co Ltd | Deodorization device and garbage treatment machine using the device |
IT1319549B1 (en) * | 2000-12-14 | 2003-10-20 | Methanol Casale Sa | REACTOR FOR THE PERFORMANCE OF EXOTHERMAL OR ENDOTHERMAL HETEROGENEOUS REACTIONS |
JP5216190B2 (en) * | 2005-12-28 | 2013-06-19 | Jx日鉱日石エネルギー株式会社 | Indirect internal reforming type solid oxide fuel cell |
-
2009
- 2009-05-15 JP JP2009119169A patent/JP5389525B2/en active Active
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12000333B2 (en) | 2021-05-14 | 2024-06-04 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11994062B2 (en) | 2021-05-14 | 2024-05-28 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US11994061B2 (en) | 2021-05-14 | 2024-05-28 | Amogy Inc. | Methods for reforming ammonia |
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US12097482B2 (en) | 2021-06-11 | 2024-09-24 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11843149B2 (en) | 2021-08-17 | 2023-12-12 | Amogy Inc. | Systems and methods for processing hydrogen |
US11769893B2 (en) | 2021-08-17 | 2023-09-26 | Amogy Inc. | Systems and methods for processing hydrogen |
US11764381B2 (en) | 2021-08-17 | 2023-09-19 | Amogy Inc. | Systems and methods for processing hydrogen |
US11840447B1 (en) | 2022-10-06 | 2023-12-12 | Amogy Inc. | Systems and methods of processing ammonia |
US11912574B1 (en) | 2022-10-06 | 2024-02-27 | Amogy Inc. | Methods for reforming ammonia |
US11975968B2 (en) | 2022-10-06 | 2024-05-07 | AMOGY, Inc. | Systems and methods of processing ammonia |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
Also Published As
Publication number | Publication date |
---|---|
JP2010264406A (en) | 2010-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5389525B2 (en) | Ammonia decomposition cylinder | |
JP2009183950A (en) | Process for purifying exhaust gas | |
JP7226729B2 (en) | Method and production system for producing methane | |
US7323152B2 (en) | Catalyst or sorbent beds | |
JPS6068043A (en) | Method and apparatus for continuously producing gaseous product | |
AU2002310553A1 (en) | Catalyst or sorbent beds | |
JP2022511475A (en) | Methods and equipment for releasing gas from a liquid medium | |
Komova et al. | Improved low-temperature hydrogen generation from NH3BH3 and TiO2 composites pretreated with water | |
EP2511399A1 (en) | Apparatus for generating fluorine gas | |
JP3902670B2 (en) | Method for removing nitrogen oxides in exhaust gas | |
JP5757168B2 (en) | Fluorine gas generator | |
CN110325655A (en) | The method for calcining activated carbon supported PGM catalyst | |
EP2711336B1 (en) | Non-co2 emitting manufacturing method for synthesis gas | |
JP2012115750A (en) | Ultraviolet ray chemical reaction apparatus | |
JP6490952B2 (en) | Reactor and water treatment device | |
JP6045404B2 (en) | Continuous fixed bed catalytic reactor and catalytic reaction method using the same | |
TWI306776B (en) | Method and apparatus for treating exhaust gases containing fluorine-containing compounds | |
ES2394680T3 (en) | DMAPN with low DGN content and a method for the production of DMAPA from DMAPN with low DGN content | |
JP5840020B2 (en) | Granule processing apparatus and granule processing method using the same | |
Choi et al. | Stability of nickel catalyst supported by mesoporous alumina for hydrogen iodide decomposition and hybrid decomposer development in sulfur–iodine hydrogen production cycle | |
JP2005281115A (en) | Gas refining apparatus | |
TWI516652B (en) | Microcoil, manufacturing method and manufacturing device thereof | |
CN109415204B (en) | Device for measuring the position of a moving object | |
JP5854424B2 (en) | Apparatus and method for treating hydrogen-containing gas with alkali particles | |
KR100415328B1 (en) | Canister containing resin for purifying the exhaust gas from semiconductor manufacturing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120424 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130813 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131009 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5389525 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |