Nothing Special   »   [go: up one dir, main page]

JP5378712B2 - Flame retardant resin composition and molded product therefrom - Google Patents

Flame retardant resin composition and molded product therefrom Download PDF

Info

Publication number
JP5378712B2
JP5378712B2 JP2008160513A JP2008160513A JP5378712B2 JP 5378712 B2 JP5378712 B2 JP 5378712B2 JP 2008160513 A JP2008160513 A JP 2008160513A JP 2008160513 A JP2008160513 A JP 2008160513A JP 5378712 B2 JP5378712 B2 JP 5378712B2
Authority
JP
Japan
Prior art keywords
group
component
resin composition
different
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008160513A
Other languages
Japanese (ja)
Other versions
JP2010001362A (en
Inventor
克浩 山中
利往 三宅
瑞穂 齋藤
真美 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2008160513A priority Critical patent/JP5378712B2/en
Publication of JP2010001362A publication Critical patent/JP2010001362A/en
Application granted granted Critical
Publication of JP5378712B2 publication Critical patent/JP5378712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-retardant resin composition using vegetable-origin raw materials, which has high flame retardancy and good physical properties, and a molded article therefrom. <P>SOLUTION: The flame-retardant resin composition contains (B) 1-100 pts.wt. of an organophosphorus compound (component B) represented by formula (1) based on (A) 100 pts.wt. of a resin component (component A) containing at least 50 wt.% of a polycarbonate resin containing a polycarbonate constituent unit represented by formula (A-1), wherein X<SP>1</SP>and X<SP>2</SP>are identical or different aromatic substituted alkyl groups. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、高度な難燃性、および良好な物性を有する植物由来原料を用いた難燃性樹脂組成物およびそれからの成形品に関する。さらに詳しくは特定の有機リン化合物を含有しかつ実質的にハロゲンフリーの難燃性樹脂組成物およびそれからの成形品に関する。   The present invention relates to a flame retardant resin composition using a plant-derived raw material having high flame retardancy and good physical properties, and a molded article therefrom. More particularly, the present invention relates to a flame retardant resin composition containing a specific organophosphorus compound and substantially free of halogen, and a molded article therefrom.

樹脂製の成形品を得るための原料として、一般的にポリプロピレン(PP)、アクリロニトリル―ブタジエン―スチレン(ABS)、ポリアミド(PA6、PA66)、ポリエステル(PET、PBT)、ポリカーボネート(PC)等の樹脂が使用されている。しかしながら、これらの樹脂は石油資源から得られる原料を用いて製造されており、近年、石油資源の枯渇や地球環境等の問題が懸念されており、植物などの生物起源物質から得られる原料を用いた樹脂の製造が求められている。特に地球環境の問題を考えるとき、植物由来原料を用いた樹脂は、使用後に焼却されても植物の生育時に吸収した二酸化炭素量を考慮すると、炭素の収支として中立であるというカーボンニュートラルという考えから、地球環境への負荷の低い樹脂であると考えられる。   Generally, polypropylene (PP), acrylonitrile-butadiene-styrene (ABS), polyamide (PA6, PA66), polyester (PET, PBT), polycarbonate (PC), etc. are used as raw materials for resin molded products. Is used. However, these resins are manufactured using raw materials obtained from petroleum resources. In recent years, there are concerns about problems such as depletion of petroleum resources and the global environment, and raw materials obtained from biological materials such as plants are used. There is a demand for the production of resin. Considering the problem of the global environment in particular, the resin that uses plant-derived materials is considered to be carbon neutral because it is neutral as a carbon balance, considering the amount of carbon dioxide absorbed during plant growth even if incinerated after use. It is considered to be a resin with a low impact on the global environment.

一方、これらの植物由来原料を用いた樹脂を工業材料、特に電気/電子関係用部品、OA関連用部品または自動車部品に利用する場合、安全上の問題から難燃性の付与が必要である。   On the other hand, when resins using these plant-derived raw materials are used for industrial materials, particularly electrical / electronic parts, OA-related parts, or automobile parts, it is necessary to impart flame retardancy for safety reasons.

これまでにも、植物由来原料を用いた樹脂、特にポリ乳酸樹脂の難燃化に関しては種々の試みがなされており、ある程度の難燃化は達成されている。しかしながら、これらの難燃化処方は多量の難燃剤を用いたものであり、樹脂本来の物性を損なうものであった。   Until now, various attempts have been made for flame retarding of resins using plant-derived materials, particularly polylactic acid resins, and a certain degree of flame retarding has been achieved. However, these flame retardant formulations use a large amount of flame retardant, and impair the original physical properties of the resin.

一方、植物由来原料を用いた樹脂としては、ポリ乳酸樹脂の他に、糖質から製造可能なエーテルジオール残基から得られる原料を用いたポリカーボネート樹脂が検討されている。   On the other hand, as a resin using a plant-derived raw material, a polycarbonate resin using a raw material obtained from an ether diol residue that can be produced from a saccharide, in addition to a polylactic acid resin, has been studied.

例えば、下記式(a)

Figure 0005378712
に示したエーテルジオールは、たとえば糖類およびでんぷんなどから容易に作られ、3種の立体異性体が知られているが、具体的には下記式(b)に示す、1,4:3,6−ジアンヒドロ−D−ソルビトール(本明細書では以下「イソソルビド」と呼称する)、
Figure 0005378712
下記式(c)に示す、1,4:3,6−ジアンヒドロ−D−マンニトール(本明細書では以下「イソマンニド」と呼称する)、
Figure 0005378712
下記式(d)に示す、1,4:3,6−ジアンヒドロ−L−イジトール(本明細書では以下「イソイディッド」と呼称する)である。
Figure 0005378712
For example, the following formula (a)
Figure 0005378712
The ether diol shown in Fig. 1 is easily made from sugars and starch, for example, and three stereoisomers are known. Specifically, 1,4: 3,6 shown in the following formula (b) -Dianhydro-D-sorbitol (hereinafter referred to as "isosorbide"),
Figure 0005378712
1,4: 3,6-dianhydro-D-mannitol (hereinafter referred to as “isomannide”) shown in the following formula (c),
Figure 0005378712
1,4: 3,6-dianhydro-L-iditol (hereinafter referred to as “isoidid” in the present specification) represented by the following formula (d).
Figure 0005378712

イソソルビド、イソマンニド、イソイディッドはそれぞれDーグルコース、Dーマンノース、Lーイドースから得られる。たとえばイソソルビドの場合、Dーグルコースを水添した後、酸触媒を用いて脱水することにより得ることができる。   Isosorbide, isomannide, and isoidide are obtained from D-glucose, D-mannose, and L-idose, respectively. For example, isosorbide can be obtained by hydrogenating D-glucose and then dehydrating it using an acid catalyst.

これまで上記のエーテルジオールの中でも、特に、モノマーとしてイソソルビドを中心に用いてポリカーボネートに組み込むことが検討されてきた。この中で、特にイソソルビドのホモポリカーボネートについては特許文献1、2に記載されている。   So far, among the above-mentioned ether diols, in particular, incorporation into polycarbonate using isosorbide as a monomer has been studied. Among them, isosorbide homopolycarbonate is described in Patent Documents 1 and 2.

このうち特許文献1では、溶融エステル交換法を用いて203℃の融点を持つホモポリカーボネート樹脂を報告している。しかしながらこのポリマーは不充分な機械的性質しか有していない。耐熱性が高い例として、特許文献2では昇温速度10℃/分での示差熱量測定によるガラス転移温度が170℃以上であるポリカーボネートを報告しているが、還元粘度が高く成形材料として考えた場合の溶融粘度が高すぎるといった問題がある。一方、特許文献3では、イソソルビドと直鎖脂肪族ジオールとの共重合ポリカーボネートについて記載されている。
これらのイソソルビドからなるポリカーボネートに関して、これらいずれの文献にも、難燃性について一切述べられていない。
Of these, Patent Document 1 reports a homopolycarbonate resin having a melting point of 203 ° C. using a melt transesterification method. However, this polymer has insufficient mechanical properties. As an example of high heat resistance, Patent Document 2 reports a polycarbonate having a glass transition temperature of 170 ° C. or higher as measured by differential calorimetry at a heating rate of 10 ° C./min. In some cases, the melt viscosity is too high. On the other hand, Patent Document 3 describes a copolymerized polycarbonate of isosorbide and a linear aliphatic diol.
Regarding these polycarbonates composed of isosorbide, none of these documents describes any flame retardancy.

英国特許出願公開第1079686号明細書British Patent Application No. 1079686 国際公開第2007/013463号パンフレットInternational Publication No. 2007/013463 Pamphlet 国際公開第2004/111106号パンフレットInternational Publication No. 2004/111106 Pamphlet

本発明の第1の目的は、高度な難燃性、および良好な物性を有する植物由来原料を用いた難燃性樹脂組成物およびそれからの成形品を提供することにある。
本発明の第2の目的は、特定の有機リン化合物を含有しかつ実質的にハロゲンフリーの難燃性樹脂組成物およびそれからの成形品を提供することにある。
The first object of the present invention is to provide a flame retardant resin composition using a plant-derived raw material having high flame retardancy and good physical properties, and a molded product therefrom.
A second object of the present invention is to provide a flame retardant resin composition containing a specific organophosphorus compound and substantially halogen-free, and a molded article therefrom.

本発明者らの研究によれば、前記本発明の目的は、
(A)下記式(A−1)で表されるカーボネート構成単位を含むポリカーボネート樹脂(A−1成分)を少なくとも50重量%含有する樹脂成分(A成分)100重量部に対して、(B)下記式(1)で表される有機リン化合物(B成分)1〜100重量部を含有する難燃性樹脂組成物およびそれからの成形品により達成される。
According to the study by the present inventors, the object of the present invention is as follows.
(A) With respect to 100 parts by weight of a resin component (component A) containing at least 50% by weight of a polycarbonate resin (component A-1) containing a carbonate constituent unit represented by the following formula (A-1), (B) This is achieved by a flame retardant resin composition containing 1 to 100 parts by weight of an organophosphorus compound (component B) represented by the following formula (1) and a molded product therefrom.

Figure 0005378712
Figure 0005378712

Figure 0005378712
(式中、X、Xは同一もしくは異なり、下記式(2)で表される芳香族置換アルキル基である。)
Figure 0005378712
(In formula, X < 1 >, X < 2 > is the same or different, and is an aromatic substituted alkyl group represented by following formula (2).)

Figure 0005378712
(式中、ALは炭素数1〜5の分岐状または直鎖状の脂肪族炭化水素基であり、Arは置換基を有しても良いフェニル基、ナフチル基、またはアントリル基である。nは1〜3の整数を示し、ArはAL中の任意の炭素原子に結合することができる。)
Figure 0005378712
(In the formula, AL is a branched or linear aliphatic hydrocarbon group having 1 to 5 carbon atoms, and Ar is a phenyl group, a naphthyl group, or an anthryl group which may have a substituent. Represents an integer of 1 to 3, and Ar can be bonded to any carbon atom in AL.)

本発明によれば、樹脂本来の特性を損なうことなく、高い難燃性を達成する植物由来原料を用いた難燃性樹脂組成物が得られる。
以下本発明の難燃性樹脂組成物についてさらに詳細に説明する。
According to this invention, the flame-retardant resin composition using the plant-derived raw material which achieves high flame retardance without impairing the original characteristic of resin is obtained.
Hereinafter, the flame retardant resin composition of the present invention will be described in more detail.

本発明においてポリカーボネート樹脂(A−1成分)は、下記式(A−1)で表されるカーボネート構成単位を含むポリカーボネート樹脂であり、全カーボネート構成単位中、下記式(A−1)で表わされる構成単位は50モル%以上が好ましく、60モル%以上がより好ましく、70モル%以上がさらに好ましく、80モル%以上が特に好ましく、90モル%以上がもっとも好ましい。   In the present invention, the polycarbonate resin (component A-1) is a polycarbonate resin containing a carbonate structural unit represented by the following formula (A-1), and is represented by the following formula (A-1) in all carbonate structural units. The structural unit is preferably 50 mol% or more, more preferably 60 mol% or more, further preferably 70 mol% or more, particularly preferably 80 mol% or more, and most preferably 90 mol% or more.

Figure 0005378712
Figure 0005378712

また、本発明において樹脂成分は、上記ポリカーボネート樹脂(A−1成分)が構成樹脂成分(A成分)中主たる成分を占めればよく、ポリカーボネート樹脂(A−1成分)が少なくとも50重量%、好ましくは少なくとも60重量%、より好ましくは少なくとも70重量%、さらに好ましくは少なくとも80重量%、特に好ましくは少なくとも90重量%であればよい。A成分中50重量%以下、好ましくは40重量%以下、より好ましくは30重量%以下、さらに好ましくは20重量%以下、特に好ましくは10重量%以下が他の樹脂(A−2成分)であってもよい。この他の樹脂については後で詳しく説明する。   Further, in the present invention, the resin component is sufficient if the polycarbonate resin (component A-1) occupies the main component in the constituent resin component (component A), and the polycarbonate resin (component A-1) is at least 50% by weight, preferably May be at least 60% by weight, more preferably at least 70% by weight, even more preferably at least 80% by weight, particularly preferably at least 90% by weight. The other resin (component A-2) is 50% by weight or less, preferably 40% by weight or less, more preferably 30% by weight or less, further preferably 20% by weight or less, particularly preferably 10% by weight or less in the component A. May be. Other resins will be described in detail later.

本発明の構成樹脂成分(A成分)中のポリカーボネート樹脂(A−1成分)は、ASTM D6866 05に準拠して測定された生物起源物質含有率が25%以上、好ましくは50%以上、特に好ましくは70%以上である。本発明の性質上、生物起源物質含有率は高いほうが良く、25%より低い場合はバイオマス材料とは言い難い。   The polycarbonate resin (A-1 component) in the constituent resin component (A component) of the present invention has a biogenic substance content of 25% or more, preferably 50% or more, particularly preferably measured according to ASTM D686605. Is 70% or more. Due to the nature of the present invention, it is better that the content of the biogenic substance is high.

該ポリカーボネート樹脂(A−1成分)は、樹脂0.7gを塩化メチレン100mlに溶解した溶液の20℃における比粘度の下限は0.14以上が好ましく、より好ましくは0.20以上であり、特に好ましくは0.22以上である。また上限は0.45以下が好ましく、より好ましくは0.37以下であり、さらに好ましくは0.34以下である。比粘度が0.14より低くなると本発明のポリカーボネート樹脂組成物より得られた成形品に充分な機械強度を持たせることが困難となる。また比粘度が0.45より高くなると溶融流動性が高くなりすぎて、成形に必要な流動性を有する溶融温度が分解温度より高くなってしまう。また、該ポリカーボネート樹脂(A−1成分)は、250℃におけるキャピラリーレオメータで測定した溶融粘度が、シェアレート600sec-1の条件下で0.08×10〜2.4×10Pa・sの範囲にあることが好ましく、0.1×10〜2.0×10Pa・sの範囲にあることがより好ましく、0.1×10〜1.5×10Pa・sの範囲がさらに好ましい。溶融粘度がこの範囲であると機械的強度に優れ、本発明のポリカーボネート樹脂組成物を用いて成形する際に成形時のシルバーの発生等が無く良好である。 In the polycarbonate resin (component A-1), the lower limit of the specific viscosity at 20 ° C. of a solution obtained by dissolving 0.7 g of resin in 100 ml of methylene chloride is preferably 0.14 or more, more preferably 0.20 or more. Preferably it is 0.22 or more. The upper limit is preferably 0.45 or less, more preferably 0.37 or less, and still more preferably 0.34 or less. When the specific viscosity is lower than 0.14, it becomes difficult to give sufficient mechanical strength to the molded product obtained from the polycarbonate resin composition of the present invention. On the other hand, when the specific viscosity is higher than 0.45, the melt fluidity becomes too high, and the melting temperature having the fluidity necessary for molding becomes higher than the decomposition temperature. The polycarbonate resin (component A-1) has a melt viscosity of 0.08 × 10 3 to 2.4 × 10 3 Pa · s measured with a capillary rheometer at 250 ° C. under a shear rate of 600 sec −1. Is preferably in the range of 0.1 × 10 3 to 2.0 × 10 3 Pa · s, more preferably in the range of 0.1 × 10 3 to 1.5 × 10 3 Pa · s. A range is further preferred. When the melt viscosity is within this range, the mechanical strength is excellent, and when molding using the polycarbonate resin composition of the present invention, silver is not generated during molding, which is good.

本発明に用いるポリカーボネート樹脂(A−1成分)は、そのガラス転移温度(Tg)の下限は100℃以上が好ましく、より好ましくは120℃以上であり、また上限は165℃以下が好ましい。Tgが100℃未満だと耐熱性(殊に吸湿による耐熱性)に劣り、165℃を超えると本発明のポリカーボネート樹脂組成物を用いて成形する際の溶融流動性に劣る。TgはTA Instruments社製 DSC (型式 DSC2910)により測定される。   The lower limit of the glass transition temperature (Tg) of the polycarbonate resin (A-1 component) used in the present invention is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and the upper limit is preferably 165 ° C. or lower. When Tg is less than 100 ° C., the heat resistance (particularly heat resistance due to moisture absorption) is poor, and when it exceeds 165 ° C., the melt fluidity at the time of molding using the polycarbonate resin composition of the present invention is poor. Tg is measured by DSC (model DSC2910) manufactured by TA Instruments.

また、本発明に用いるポリカーボネート樹脂(A−1成分)は、その5%重量減少温度の下限は300℃以上が好ましく、より好ましくは320℃以上であり、また上限は400℃以下が好ましく、より好ましくは390℃以下であり、さらに好ましくは380℃以下である。5%重量減少温度が上記範囲内であると、本発明のポリカーボネート樹脂組成物を用いて成形する際の樹脂の分解がほとんど無く好ましい。5%重量減少温度はTA Instruments社製 TGA (型式 TGA2950)により測定される。   The lower limit of the 5% weight reduction temperature of the polycarbonate resin (component A-1) used in the present invention is preferably 300 ° C or higher, more preferably 320 ° C or higher, and the upper limit is preferably 400 ° C or lower. Preferably it is 390 degrees C or less, More preferably, it is 380 degrees C or less. It is preferable that the 5% weight loss temperature is in the above range since there is almost no decomposition of the resin when molding using the polycarbonate resin composition of the present invention. The 5% weight loss temperature is measured by TA Instruments TGA (model TGA2950).

本発明に用いるポリカーボネート樹脂(A−1成分)は、下記式(a)

Figure 0005378712
で表されるエーテルジオールおよび炭酸ジエステルとから溶融重合法により製造することができる。エーテルジオールとしては、具体的には下記式(b)、(c)および(d)で表されるイソソルビド、イソマンニド、イソイディッドなどが挙げられる。 The polycarbonate resin (A-1 component) used in the present invention has the following formula (a):
Figure 0005378712
It can manufacture with the melt polymerization method from the ether diol and carbonic acid diester represented by these. Specific examples of the ether diol include isosorbide, isomannide, and isoidide represented by the following formulas (b), (c), and (d).

Figure 0005378712
Figure 0005378712
Figure 0005378712
Figure 0005378712
Figure 0005378712
Figure 0005378712

これら糖質由来のエーテルジオールは、自然界のバイオマスからも得られる物質で、再生可能資源と呼ばれるものの1つである。イソソルビドは、でんぷんから得られるD−グルコースに水添した後、脱水を受けさせることにより得られる。その他のエーテルジオールについても、出発物質を除いて同様の反応により得られる。   These saccharide-derived ether diols are substances obtained from natural biomass and are one of so-called renewable resources. Isosorbide is obtained by hydrogenating D-glucose obtained from starch and then dehydrating it. Other ether diols can be obtained by the same reaction except for the starting materials.

特に、カーボネート構成単位がイソソルビド(1,4:3,6−ジアンヒドロ−D−ソルビトール)由来のカーボネート構成単位を含んでなるポリカーボネート樹脂が好ましい。イソソルビドはでんぷんなどから簡単に作ることができるエーテルジオールであり資源として豊富に入手することができる上、イソマンニドやイソイディッドと比べても製造の容易さ、性質、用途の幅広さの全てにおいて優れている。   In particular, a polycarbonate resin in which the carbonate structural unit includes a carbonate structural unit derived from isosorbide (1,4: 3,6-dianhydro-D-sorbitol) is preferable. Isosorbide is an ether diol that can be easily made from starch, etc., and can be obtained in abundant resources. In addition, it is superior in terms of ease of manufacture, properties, and versatility compared to isomannide and isoidide. .

また本発明に用いるポリカーボネート樹脂(A−1成分)は、その特性を損なわない範囲で脂肪族ジオール類または芳香族ビスフェノール類との共重合としても良い。かかる脂肪族ジオールとしては、炭素数3〜12の直鎖脂肪族ジオール、炭素数6〜20の脂環式ジオール、が好ましく用いられる。具体的には1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオールなどの直鎖状ジオール類や、シクロヘキサンジオール、シクロヘキサンジメタノールなどの脂環式アルキレン類などが挙げられ、中でも1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、およびシクロヘキサンジメタノールが好ましい。また本発明は植物などの再生可能資源から得られる原料上記式(a)を主成分として持つ事から、植物由来のジオール類も好ましく用いられる。具体的にはテルペン成分を含むジオール類が挙げられる。   Moreover, the polycarbonate resin (A-1 component) used for this invention is good also as copolymerization with aliphatic diols or aromatic bisphenol in the range which does not impair the characteristic. As the aliphatic diol, a linear aliphatic diol having 3 to 12 carbon atoms and an alicyclic diol having 6 to 20 carbon atoms are preferably used. Specific examples include linear diols such as 1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol, and alicyclic alkylenes such as cyclohexanediol and cyclohexanedimethanol. Of these, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and cyclohexanedimethanol are preferred. In addition, since the present invention has as a main component the above-mentioned formula (a) obtained from renewable resources such as plants, plant-derived diols are also preferably used. Specific examples include diols containing a terpene component.

芳香族ビスフェノールとしては、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称“ビスフェノールA”)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)デカン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン等が挙げられる。これら脂肪族ジオール類、芳香族ビスフェノール類は単独または組み合わせて用いることができる。   As aromatic bisphenols, 2,2-bis (4-hydroxyphenyl) propane (commonly known as “bisphenol A”), 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4 '-(m-phenylenediisopropylidene) diphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 2,2-bis (4 -Hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl) decane, 1,3-bis {2- (4 -Hydroxyphenyl) propyl} benzene and the like. These aliphatic diols and aromatic bisphenols can be used alone or in combination.

また本発明に用いるポリカーボネート樹脂(A−1成分)は、その特性を損なわない範囲で末端基を導入することもできる。かかる末端基は、対応するヒドロキシ化合物を重合時に添加することにより導入することができる。末端基としては下記式(i)または(ii)で表される末端基が好ましい。   Moreover, the polycarbonate resin (A-1 component) used for this invention can also introduce | transduce an end group in the range which does not impair the characteristic. Such end groups can be introduced by adding the corresponding hydroxy compound during polymerization. The terminal group is preferably a terminal group represented by the following formula (i) or (ii).

Figure 0005378712
Figure 0005378712
Figure 0005378712
Figure 0005378712

上記式(i)、(ii)中、Rは炭素原子数4〜30のアルキル基、炭素原子数7〜30のアラルキル基、炭素原子数4〜30のパーフルオロアルキル基、または下記式(iii)であり、好ましくは炭素原子数4〜20のアルキル基、炭素原子数4〜20のパーフルオロアルキル基、または下記式(iii)であり、特に炭素原子数8〜20のアルキル基、または下記式(iii)が好ましい。Yは単結合、エーテル結合、チオエーテル結合、エステル結合、アミノ結合およびアミド結合からなる群より選ばれる少なくとも一種の結合が好ましいが、より好ましくは単結合、エーテル結合およびエステル結合からなる群より選ばれる少なくとも一種の結合であり、なかでも単結合、エステル結合が好ましい。aは1〜5の整数であり、好ましくは1〜3の整数であり、特に1が好ましい。 In the above formulas (i) and (ii), R 4 represents an alkyl group having 4 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, a perfluoroalkyl group having 4 to 30 carbon atoms, or the following formula ( iii), preferably an alkyl group having 4 to 20 carbon atoms, a perfluoroalkyl group having 4 to 20 carbon atoms, or the following formula (iii), particularly an alkyl group having 8 to 20 carbon atoms, or The following formula (iii) is preferable. Y is preferably at least one bond selected from the group consisting of a single bond, ether bond, thioether bond, ester bond, amino bond and amide bond, more preferably selected from the group consisting of a single bond, ether bond and ester bond. It is at least one kind of bond, and among them, a single bond and an ester bond are preferable. a is an integer of 1 to 5, preferably an integer of 1 to 3, and 1 is particularly preferable.

Figure 0005378712
Figure 0005378712

また、上記式(iii)中、R,R,R,RおよびRは、夫々独立して炭素原子数1〜10のアルキル基、炭素原子数6〜20のシクロアルキル基、炭素原子数2〜10のアルケニル基、炭素原子数6〜10のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる少なくとも一種の基であり、好ましくは夫々独立して炭素原子数1〜10のアルキル基および炭素原子数6〜10のアリール基からなる群から選ばれる少なくとも一種の基であり、特に夫々独立してメチル基及びフェニル基からなる群から選ばれる少なくとも一種の基が好ましい。bは0〜3の整数であり、1〜3の整数が好ましく、特に2〜3の整数が好ましい。cは4〜100の整数であり、4〜50の整数が好ましく、特に8〜50の整数が好ましい。 In the formula (iii), R 5 , R 6 , R 7 , R 8 and R 9 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, It is at least one group selected from the group consisting of an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms, preferably each independently a carbon atom. And at least one group selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 10 carbon atoms, particularly at least one group independently selected from the group consisting of a methyl group and a phenyl group. Is preferred. b is an integer of 0 to 3, an integer of 1 to 3 is preferable, and an integer of 2 to 3 is particularly preferable. c is an integer of 4 to 100, preferably an integer of 4 to 50, and particularly preferably an integer of 8 to 50.

本発明に用いるポリカーボネート樹脂(A−1成分)は、植物などの再生可能資源から得られる原料を用いたカーボネート構成単位を主鎖構造に持つことから、これらのヒドロキシ化合物もまた植物などの再生可能資源から得られる原料であることが好ましい。植物から得られるヒドロキシ化合物としては、植物油から得られる炭素数14以上の長鎖アルキルアルコール類(セタノール、ステアリルアルコール、ベヘニルアルコール)などが挙げられる。   Since the polycarbonate resin (component A-1) used in the present invention has a carbonate structural unit in the main chain structure using raw materials obtained from renewable resources such as plants, these hydroxy compounds are also recyclable from plants and the like. A raw material obtained from a resource is preferred. Examples of hydroxy compounds obtained from plants include long-chain alkyl alcohols having 14 or more carbon atoms (cetanol, stearyl alcohol, behenyl alcohol) obtained from vegetable oils.

また、本発明に用いるポリカーボネート樹脂(A−1成分)は、前記式(a)で表されるエーテルジオールを含むビスヒドロキシ化合物と炭酸ジエステルとを混合し、エステル交換反応によって生成するアルコールまたはフェノールを高温減圧下にて留出させる溶融重合を行うことによって得ることができる。   Moreover, the polycarbonate resin (A-1 component) used for this invention mixes the bishydroxy compound containing the ether diol represented by the said Formula (a), and carbonic acid diester, The alcohol or phenol produced | generated by a transesterification reaction is mixed. It can be obtained by performing melt polymerization by distillation under high temperature and reduced pressure.

反応温度は、エーテルジオールの分解を抑え、着色が少なく高粘度の樹脂を得るために、できるだけ低温の条件を用いることが好ましいが、重合反応を適切に進める為には重合温度は180℃〜280℃の範囲であることが好ましく、より好ましくは180℃〜270℃の範囲である。   The reaction temperature is preferably as low as possible in order to suppress decomposition of the ether diol and obtain a highly viscous resin with little coloration, but the polymerization temperature is 180 ° C. to 280 ° C. in order to proceed the polymerization reaction appropriately. It is preferably in the range of ° C, more preferably in the range of 180 ° C to 270 ° C.

また、反応初期にはエーテルジオールと炭酸ジエステルとを常圧で加熱し、予備反応させた後、徐々に減圧にして反応後期には系を1.3×10−3〜1.3×10−5MPa程度に減圧して生成するアルコールまたはフェノールの留出を容易にさせる方法が好ましい。反応時間は通常1〜4時間程度である。 In the initial stage of the reaction, ether diol and carbonic acid diester are heated at normal pressure and pre-reacted, and then gradually reduced in pressure, and the system is changed to 1.3 × 10 −3 to 1.3 × 10 − in the late stage of the reaction. A method of facilitating the distillation of alcohol or phenol produced by reducing the pressure to about 5 MPa is preferred. The reaction time is usually about 1 to 4 hours.

また、重合速度を速めるために重合触媒を用いることができる。該重合触媒としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、二価フェノールのナトリウム塩またはカリウム塩等のアルカリ金属化合物、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム等のアルカリ土類金属化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルアミン、トリエチルアミン等の含窒素塩基性化合物、などが挙げられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。なかでも、含窒素塩基性化合物とアルカリ金属化合物とを併用して使用することが好ましい。   A polymerization catalyst can be used to increase the polymerization rate. Examples of the polymerization catalyst include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, alkali metal compounds such as sodium salt or potassium salt of dihydric phenol, calcium hydroxide, barium hydroxide, magnesium hydroxide. And alkaline earth metal compounds such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, nitrogen-containing basic compounds such as trimethylamine and triethylamine. These may be used alone or in combination of two or more. Among these, it is preferable to use a nitrogen-containing basic compound and an alkali metal compound in combination.

これらの重合触媒の使用量は、それぞれ炭酸ジエステル成分1モルに対し、好ましくは1×10−9〜1×10−3当量、より好ましくは1×10−8〜5×10−4当量の範囲で選ばれる。反応系は窒素などの原料、反応混合物、反応生成物に対し不活性なガスの雰囲気に保つことが好ましい。窒素以外の不活性ガスとしては、アルゴンなどを挙げることができる。更に、必要に応じて酸化防止剤等の添加剤を加えてもよい。 The amount of these polymerization catalysts used is preferably in the range of 1 × 10 −9 to 1 × 10 −3 equivalents, more preferably 1 × 10 −8 to 5 × 10 −4 equivalents, relative to 1 mol of the carbonic acid diester component. Chosen by The reaction system is preferably maintained in an atmosphere of a gas inert to the raw materials such as nitrogen, the reaction mixture, and the reaction product. Examples of inert gases other than nitrogen include argon. Furthermore, you may add additives, such as antioxidant, as needed.

本発明に用いるポリカーボネート樹脂(A−1成分)の製造に用いる炭酸ジエステルとしては、置換されていてもよい炭素数6〜20のアリール基、アラルキル基あるいは炭素数1〜18のアルキル基などのエステルが挙げられる。具体的にはジフェニルカーボネート、ビス(クロロフェニル)カーボネート、m−クレジルカーボネート、ジナフチルカーボネート、ビス(p−ブチルフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられ、なかでもジフェニルカーボネートが好ましい。   The carbonic acid diester used for the production of the polycarbonate resin (component A-1) used in the present invention is an optionally substituted ester such as an aryl group having 6 to 20 carbon atoms, an aralkyl group or an alkyl group having 1 to 18 carbon atoms. Is mentioned. Specific examples include diphenyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (p-butylphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. preferable.

炭酸ジエステルは全エーテルジオール化合物に対してモル比で1.02〜0.98となるように混合することが好ましく、より好ましくは1.01〜0.98であり、さらに好ましくは1.01〜0.99である。炭酸ジエステルのモル比が1.02より多くなると、炭酸エステル残基が末端封止として働いてしまい充分な重合度が得られなくなってしまい好ましくない。また炭酸ジエステルのモル比が0.98より少ない場合でも、充分な重合度が得られず好ましくない。   The carbonic acid diester is preferably mixed so as to have a molar ratio of 1.02 to 0.98 with respect to the total ether diol compound, more preferably 1.01 to 0.98, and still more preferably 1.01 to 0.98. 0.99. If the molar ratio of the carbonic acid diester is more than 1.02, the carbonic acid ester residue acts as a terminal block and a sufficient degree of polymerization cannot be obtained, which is not preferable. Even when the molar ratio of carbonic acid diester is less than 0.98, a sufficient degree of polymerization cannot be obtained, which is not preferable.

上記製造法により得られたポリカーボネート樹脂(A−1成分)に触媒失活剤を添加する事もできる。触媒失活剤としては、公知の触媒失活剤が有効に使用されるが、この中でもスルホン酸のアンモニウム塩、ホスホニウム塩が好ましく、更にドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等のドデシルベンゼンスルホン酸の上記塩類やパラトルエンスルホン酸テトラブチルアンモニウム塩等のパラトルエンスルホン酸の上記塩類が好ましい。またスルホン酸のエステルとしてベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸ブチル、ベンゼンスルホン酸オクチル、ベンゼンスルホン酸フェニル、パラトルエンスルホン酸メチル、パラトルエンスルホン酸エチル、パラトルエンスルホン酸ブチル、パラトルエンスルホン酸オクチル、パラトルエンスルホン酸フェニル等が好ましく用いられ、その中でもドデシルベンゼンスルホン酸テトラブチルホスホニウム塩が最も好ましく使用される。これらの触媒失活剤の使用量はアルカリ金属化合物および/またはアルカリ土類金属化合物より選ばれた前記重合触媒1モル当たり0.5〜50モルの割合で、好ましくは0.5〜10モルの割合で、更に好ましくは0.8〜5モルの割合で使用する事ができる。   A catalyst deactivator can also be added to the polycarbonate resin (component A-1) obtained by the above production method. As the catalyst deactivator, known catalyst deactivators are effectively used. Among them, ammonium salts and phosphonium salts of sulfonic acid are preferable, and further, dodecylbenzenesulfonic acid such as tetrabutylphosphonium salt of dodecylbenzenesulfonic acid is preferable. The salts of paratoluenesulfonic acid such as the above-mentioned salts and paratoluenesulfonic acid tetrabutylammonium salt are preferred. As esters of sulfonic acid, methyl benzenesulfonate, ethyl benzenesulfonate, butyl benzenesulfonate, octyl benzenesulfonate, phenyl benzenesulfonate, methyl paratoluenesulfonate, ethyl paratoluenesulfonate, butyl paratoluenesulfonate, para Octyl toluenesulfonate, phenyl p-toluenesulfonate and the like are preferably used, and among them, tetrabutylphosphonium dodecylbenzenesulfonate is most preferably used. These catalyst deactivators are used in an amount of 0.5 to 50 mol, preferably 0.5 to 10 mol, per mol of the polymerization catalyst selected from alkali metal compounds and / or alkaline earth metal compounds. It can be used in a proportion, more preferably in a proportion of 0.8 to 5 mol.

本発明の構成樹脂(A成分)は、前記ポリカーボネート樹脂(A−1成分)の他に他の熱可塑性樹脂(A−2成分)を含有していてもよい。前述したように他の樹脂(A−2成分)はA成分中50重量%以下、好ましくは40重量%以下、より好ましくは30重量%以下、さらに好ましくは20重量%以下、特に好ましくは10重量%以下である。   The constituent resin (component A) of the present invention may contain another thermoplastic resin (component A-2) in addition to the polycarbonate resin (component A-1). As described above, the other resin (component A-2) is 50% by weight or less in the component A, preferably 40% by weight or less, more preferably 30% by weight or less, still more preferably 20% by weight or less, and particularly preferably 10% by weight. % Or less.

このA−2成分としての熱可塑性樹脂としてはポリエステル樹脂(PEst)、ポリフェニレンエーテル樹脂(PPE)、ポリカーボネート樹脂(PC)、ポリアミド樹脂(PA)、ポリオレフィン樹脂(PO)、スチレン系樹脂、ポリフェニレンサルファイド樹脂(PPS)およびポリエーテルイミド樹脂(PEI)からなる群から選ばれる少なくとも1種が挙げられる。これらA−2成分のうち、好ましいのはポリエステル樹脂(PEst)、ポリフェニレンエーテル樹脂(PPE)、ポリカーボネート樹脂(PC)、ポリアミド樹脂(PA)、ポリオレフィン樹脂(PO)およびスチレン系樹脂である。   As the thermoplastic resin as the component A-2, polyester resin (PEst), polyphenylene ether resin (PPE), polycarbonate resin (PC), polyamide resin (PA), polyolefin resin (PO), styrene resin, polyphenylene sulfide resin Examples thereof include at least one selected from the group consisting of (PPS) and polyetherimide resin (PEI). Of these A-2 components, polyester resin (PEst), polyphenylene ether resin (PPE), polycarbonate resin (PC), polyamide resin (PA), polyolefin resin (PO), and styrenic resin are preferable.

次のこのA−2成分としての熱可塑性樹脂について具体的に説明する。
A−2成分としてのポリエステル樹脂(PEst)としては、芳香族ポリエステル樹脂或いは脂肪族ポリエステル樹脂から選択される1種または2種以上の混合物が挙げられる。好ましくは芳香族ポリエステル樹脂であり、芳香族ジカルボン酸を主たるジカルボン酸成分とし、炭素数2〜10の脂肪族ジオールを主たるグリコール成分とするポリエステルである。好ましくはジカルボン酸成分の80モル%以上、より好ましくは90モル%以上が芳香族ジカルボン酸成分からなる。一方、グリコール成分は好ましくは80モル%以上、より好ましくは90モル%以上が炭素数2〜10の脂肪族ジオール成分からなる。
Next, the thermoplastic resin as the component A-2 will be specifically described.
As a polyester resin (PEst) as A-2 component, the 1 type, or 2 or more types of mixture selected from an aromatic polyester resin or an aliphatic polyester resin is mentioned. Preferred is an aromatic polyester resin, which is a polyester having an aromatic dicarboxylic acid as a main dicarboxylic acid component and an aliphatic diol having 2 to 10 carbon atoms as a main glycol component. Preferably 80 mol% or more, more preferably 90 mol% or more of the dicarboxylic acid component is composed of an aromatic dicarboxylic acid component. On the other hand, the glycol component preferably comprises an aliphatic diol component having 2 to 10 carbon atoms, more preferably 80 mol% or more, and more preferably 90 mol% or more.

芳香族ジカルボン酸成分としては、例えばテレフタル酸、イソフタル酸、フタル酸、メチルテレフタル酸、メチルイソフタル酸および2,6−ナフタレンジカルボン酸等を好ましい例として挙げることができる。これらは1種または2種以上を用いることができる。芳香族ジカルボン酸以外の従たるジカルボン酸としては例えばアジピン酸、セバシン酸、デカンジカルボン酸、アゼライン酸、ドデカンジカルボン酸、シクロヘキサンジカルボン酸などの脂肪族ジカルボン酸または脂環族ジカルボン酸などを挙げることができる。   Preferable examples of the aromatic dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, methyl terephthalic acid, methyl isophthalic acid, 2,6-naphthalenedicarboxylic acid, and the like. These can use 1 type (s) or 2 or more types. Examples of secondary dicarboxylic acids other than aromatic dicarboxylic acids include aliphatic dicarboxylic acids such as adipic acid, sebacic acid, decanedicarboxylic acid, azelaic acid, dodecanedicarboxylic acid, cyclohexanedicarboxylic acid, and alicyclic dicarboxylic acids. it can.

炭素数2〜10の脂肪族ジオールとしては、例えばエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール等の脂肪族ジオールおよび1,4−シクロヘキサンジメタノール等の脂環族ジオールを挙げることができる。炭素数2〜10の脂肪族ジオール以外のグリコールとしては例えばp,p’−ジヒドロキシエトキシビスフェノールA、ポリオキシエチレングリコール等を挙げることができる。   Examples of the aliphatic diol having 2 to 10 carbon atoms include aliphatic diols such as ethylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol and neopentyl glycol, and alicyclic diols such as 1,4-cyclohexanedimethanol. Can be mentioned. Examples of glycols other than aliphatic diols having 2 to 10 carbon atoms include p, p'-dihydroxyethoxybisphenol A and polyoxyethylene glycol.

芳香族ポリエステル樹脂の好ましい例としては、主たるジカルボン酸成分がテレフタル酸および2,6−ナフタレンジカルボン酸から選ばれる少なくとも1種のジカルボン酸と、主たるジオール成分がエチレングリコール、トリメチレングリコール、およびテトラメチレングリコールから選ばれる少なくとも1種のジオールからなるエステル単位を有するポリエステルである。   Preferred examples of the aromatic polyester resin include at least one dicarboxylic acid selected from terephthalic acid and 2,6-naphthalenedicarboxylic acid as the main dicarboxylic acid component, and ethylene glycol, trimethylene glycol, and tetramethylene as the main diol component. A polyester having an ester unit composed of at least one diol selected from glycols.

具体的な芳香族ポリエステル樹脂は、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂、ポリシクロヘキサンジメチルテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂およびポリトリメチレンナフタレート樹脂からなる群から選ばれる少なくとも1種であるのが好ましい。   Specific aromatic polyester resins include polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin, polycyclohexanedimethyl terephthalate resin, polytrimethylene terephthalate resin, and polytrimethylene naphthalate resin. It is preferably at least one selected from the group consisting of

特に好ましくは、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂およびポリエチレンナフタレート樹脂からなる群から選ばれる少なくとも1種である。とりわけポリブチレンテレフタレート樹脂が特に好ましい。   Particularly preferred is at least one selected from the group consisting of a polyethylene terephthalate resin, a polybutylene terephthalate resin and a polyethylene naphthalate resin. In particular, polybutylene terephthalate resin is particularly preferable.

また、本発明の芳香族ポリエステル樹脂として、上記繰り返し単位をハードセグメントの主たる繰り返し単位とするポリエステルエラストマーを用いることもできる。   Moreover, the polyester elastomer which uses the said repeating unit as the main repeating unit of a hard segment can also be used as aromatic polyester resin of this invention.

テトラメチレンテレフタレートまたはテトラメチレン−2,6−ナフタレンジカルボキシレートをハードセグメントの主たる繰り返し単位とするポリエステルエラストマーのソフトセグメントとしては、例えばジカルボン酸がテレフタル酸、イソフタル酸、セバシン酸およびアジピン酸より選ばれる少なくとも1種のジカルボン酸からなり、ジオール成分が炭素数5〜10の長鎖ジオールおよびH(OCHCHOH(i=2〜5)よりなる群から選ばれる少なくとも1種のジオールからなり、さらに融点が100℃以下または非晶性であるポリエステルまたはポリカプロラクトンからなるものを用いることができる。 As the soft segment of the polyester elastomer having tetramethylene terephthalate or tetramethylene-2,6-naphthalenedicarboxylate as the main repeating unit of the hard segment, for example, dicarboxylic acid is selected from terephthalic acid, isophthalic acid, sebacic acid and adipic acid From at least one dicarboxylic acid consisting of at least one dicarboxylic acid and having a diol component selected from the group consisting of a long-chain diol having 5 to 10 carbon atoms and H (OCH 2 CH 2 ) i OH (i = 2 to 5) Further, a polyester or polycaprolactone having a melting point of 100 ° C. or lower or amorphous can be used.

なお、主たる成分とは、全ジカルボン酸成分または全グリコール成分の80モル%以上、好ましくは90モル%以上の成分であり、主たる繰り返し単位とは、全繰り返し単位の80モル%以上、好ましくは90モル%以上の繰り返し単位である。   The main component is a component of 80 mol% or more, preferably 90 mol% or more of the total dicarboxylic acid component or the total glycol component, and the main repeating unit is 80 mol% or more of the total repeating unit, preferably 90 mol%. It is a repeating unit of mol% or more.

本発明における芳香族ポリエステル樹脂の分子量は、通常成形品として使用しうる固有粘度を有していればよく、35℃、オルトクロロフェノール中で測定した固有粘度が好ましくは0.5〜1.6dl/g、さらに好ましくは0.6〜1.5dl/gである。   The molecular weight of the aromatic polyester resin in the present invention may be any intrinsic viscosity that can be used as a normal molded article, and the intrinsic viscosity measured in orthochlorophenol at 35 ° C. is preferably 0.5 to 1.6 dl. / G, more preferably 0.6 to 1.5 dl / g.

また芳香族ポリエステル樹脂は、末端カルボキシル基(−COOH)量が1〜60当量/T(ポリマー1トン)であるのが有利である。この末端カルボキシル基量は、例えばm−クレゾール溶液をアルカリ溶液で電位差滴定法により求めることができる。   Moreover, it is advantageous that the aromatic polyester resin has a terminal carboxyl group (—COOH) amount of 1 to 60 equivalents / T (1 ton of polymer). The amount of the terminal carboxyl group can be determined, for example, by potentiometric titration of an m-cresol solution with an alkaline solution.

A−2成分としてのポリフェニレンエーテル樹脂としては、通常PPE樹脂として知られたものが使用できる。かかるPPEの具体例としては、(2,6−ジメチル−1,4−フェニレン)エーテル、(2,6−ジエチル−1,4−フェニレン)エーテル、(2,6−ジプロピル−1,4−フェニレン)エーテル、(2−メチル−6−エチル−1,4−フェニレン)エーテル、(2−メチル−6−プロピル−1,4−フェニレン)エーテル、(2,3,6−トリメチル−1,4−フェニレン)エーテル等の単独重合体および/あるいは共重合体が挙げられ、特に好ましくはポリ(2,6−ジメチル−1,4−フェニレン)エーテルが挙げられる。また、これらのPPEにスチレン化合物がグラフト重合した共重合体であっても良い。かかるPPEの製造法は特に限定されるものではなく、例えば、米国特許第3,306,874号記載の方法による第一銅塩とアミン類の錯体を触媒として用い、2,6−キシレノールを酸化重合することにより容易に製造できる。   As polyphenylene ether resin as A-2 component, what is generally known as PPE resin can be used. Specific examples of such PPE include (2,6-dimethyl-1,4-phenylene) ether, (2,6-diethyl-1,4-phenylene) ether, (2,6-dipropyl-1,4-phenylene). ) Ether, (2-methyl-6-ethyl-1,4-phenylene) ether, (2-methyl-6-propyl-1,4-phenylene) ether, (2,3,6-trimethyl-1,4- Homopolymers and / or copolymers such as (phenylene) ether are mentioned, and poly (2,6-dimethyl-1,4-phenylene) ether is particularly preferred. Moreover, the copolymer which the styrene compound graft-polymerized to these PPE may be sufficient. The method for producing such PPE is not particularly limited. For example, 2,6-xylenol is oxidized using a complex of cuprous salt and amines as a catalyst according to the method described in US Pat. No. 3,306,874. It can be easily produced by polymerization.

PPE樹脂の分子量の尺度である還元粘度ηsp/C(0.5g/dl、トルエン溶液、30℃測定)は、0.2〜0.7dl/gであり、好ましくは0.3〜0.6dl/gである。還元粘度がこの範囲のPPE樹脂は成形加工性、機械物性のバランスがよく、PPE製造時の触媒量等を調整する事により、容易に還元粘度を調整することが可能である。   The reduced viscosity ηsp / C (0.5 g / dl, toluene solution, measured at 30 ° C.), which is a measure of the molecular weight of the PPE resin, is 0.2 to 0.7 dl / g, preferably 0.3 to 0.6 dl. / G. A PPE resin having a reduced viscosity in this range has a good balance between molding processability and mechanical properties, and the reduced viscosity can be easily adjusted by adjusting the amount of catalyst during the production of PPE.

A−2成分としてのポリカーボネート系樹脂(PC)とは、塩化メチレン等の溶媒を用いて種々のジヒドロキシアリール化合物とホスゲンとの界面重合反応によって得られるもの、またはジヒドロキシアリール化合物とジフェニルカーボネートとのエステル交換反応により得られるものが挙げられる。代表的なものとしては、2,2’−ビス(4−ヒドロキシフェニル)プロパンとホスゲンの反応で得られるポリカーボネートである。   The polycarbonate resin (PC) as the component A-2 is obtained by an interfacial polymerization reaction of various dihydroxyaryl compounds and phosgene using a solvent such as methylene chloride, or an ester of a dihydroxyaryl compound and diphenyl carbonate. What is obtained by an exchange reaction is mentioned. A typical example is a polycarbonate obtained by the reaction of 2,2'-bis (4-hydroxyphenyl) propane and phosgene.

ポリカーボネートの原料となるジヒドロキシアリール化合物としては、ビス(4−ヒドロキシフェニル)メタン、1,1’−ビス(4−ヒドロキシフェニル)エタン、2,2’−ビス(4−ヒドロキシフェニル)プロパン、2,2’−ビス(4−ヒドロキシフェニル)ブタン、2,2’−ビス(4−ヒドロキシフェニル)オクタン、2,2’−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2’−ビス(4−ヒドロキシ−3−t−ブチルフェニル)プロパン、2,2’−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2’−ビス(4−ヒドロキシ−3−シクロヘキシルフェニル)プロパン、2,2’−ビス(4−ヒドロキシ−3−メトキシフェニル)プロパン、1,1’−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1’−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1’−ビス(4−ヒドロキシフェニル)シクロドデカン、4,4’−ジヒドロキシフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルフェニルエーテル、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)ケトンなどがある。これらのジヒドロキシアリール化合物は単独でまたは2種以上組み合わせて使用できる。   Examples of the dihydroxyaryl compound used as a raw material for polycarbonate include bis (4-hydroxyphenyl) methane, 1,1′-bis (4-hydroxyphenyl) ethane, 2,2′-bis (4-hydroxyphenyl) propane, 2, 2'-bis (4-hydroxyphenyl) butane, 2,2'-bis (4-hydroxyphenyl) octane, 2,2'-bis (4-hydroxy-3-methylphenyl) propane, 2,2'-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2′-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2′-bis (4-hydroxy-3-cyclohexylphenyl) Propane, 2,2′-bis (4-hydroxy-3-methoxyphenyl) propane, 1,1′-bis (4-hydroxyphenyl) Cyclopentane, 1,1′-bis (4-hydroxyphenyl) cyclohexane, 1,1′-bis (4-hydroxyphenyl) cyclododecane, 4,4′-dihydroxyphenyl ether, 4,4′-dihydroxy-3, 3'-dimethylphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfone, Examples include bis (4-hydroxyphenyl) ketone. These dihydroxyaryl compounds can be used alone or in combination of two or more.

好ましいジヒドロキシアリール化合物には、耐熱性の高い芳香族ポリカーボネートを形成するビスフェノール類、2,2’−ビス(4−ヒドロキシフェニル)プロパンなどのビス(ヒドロキシフェニル)アルカン、ビス(4−ヒドロキシフェニル)シクロヘキサンなどのビス(ヒドロキシフェニル)シクロアルカン、ジヒドロキシジフェニルスルフィド、ジヒドロキシジフェニルスルホン、ジヒドロキシジフェニルケトンなどである。特に好ましいジヒドロキシアリール化合物には、ビスフェノールA型芳香族ポリカーボネートを形成する2,2’−ビス(4−ヒドロキシフェニル)プロパンである。   Preferred dihydroxyaryl compounds include bisphenols that form highly heat-resistant aromatic polycarbonates, bis (hydroxyphenyl) alkanes such as 2,2′-bis (4-hydroxyphenyl) propane, and bis (4-hydroxyphenyl) cyclohexane. Bis (hydroxyphenyl) cycloalkane, dihydroxydiphenyl sulfide, dihydroxydiphenyl sulfone, dihydroxydiphenyl ketone and the like. A particularly preferred dihydroxyaryl compound is 2,2'-bis (4-hydroxyphenyl) propane which forms a bisphenol A type aromatic polycarbonate.

なお、耐熱性、機械的強度などを損なわない範囲であれば、ビスフェノールA型芳香族ポリカーボネートを製造する際、ビスフェノールAの一部を、他のジヒドロキシアリール化合物で置換してもよい。   In addition, if it is a range which does not impair heat resistance, mechanical strength, etc., when manufacturing bisphenol A type aromatic polycarbonate, you may substitute a part of bisphenol A with another dihydroxyaryl compound.

ポリカーボネート樹脂の分子量は特に制限する必要はないが、あまりに低いと強度が十分でなく、あまりに高いと溶融粘度が高くなり成形し難くなるので、粘度平均分子量で表して通常10,000〜50,000、好ましくは、15,000〜30,000である。ここでいう粘度平均分子量(M)は塩化メチレン100mlにポリカーボネート樹脂0.7gを20℃で溶解した溶液から求めた比粘度(ηsp)を次式に挿入して求めたものである。
ηsp/C=[η]+0.45×[η]
[η]=1.23×10−40.83
(但し[η]は極限粘度、Cはポリマー濃度で0.7)
The molecular weight of the polycarbonate resin is not particularly limited, but if it is too low, the strength is not sufficient, and if it is too high, the melt viscosity becomes high and it becomes difficult to mold, so it is usually 10,000 to 50,000 in terms of viscosity average molecular weight. It is preferably 15,000 to 30,000. The viscosity average molecular weight (M) mentioned here is obtained by inserting the specific viscosity (η sp ) obtained from a solution obtained by dissolving 0.7 g of polycarbonate resin in 100 ml of methylene chloride at 20 ° C. into the following equation.
η sp /C=[η]+0.45×[η] 2 C
[Η] = 1.23 × 10 −4 M 0.83
([Η] is the intrinsic viscosity, C is the polymer concentration of 0.7)

ポリカーボネート樹脂を製造する基本的な手段を簡単に説明する。カーボネート前駆物質としてホスゲンを用いる界面重合法(溶液重合法)では、通常酸結合剤および有機溶媒の存在下に反応を行う。酸結合剤としては例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物、またはピリジン等のアミン化合物が用いられる。有機溶媒としては例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンや第四級アンモニウム塩等の触媒を用いることができ、分子量調節剤として例えばフェノールやp−tert−ブチルフェノールのようなアルキル置換フェノール等の末端停止剤を用いることが望ましい。反応温度は通常0〜40℃、反応時間は数分〜5時間、反応中のpHは10以上に保つのが好ましい。尚結果として得られた分子鎖末端の全てが末端停止剤に由来の構造を有する必要はない。   The basic means for producing the polycarbonate resin will be briefly described. In the interfacial polymerization method (solution polymerization method) using phosgene as a carbonate precursor, the reaction is usually performed in the presence of an acid binder and an organic solvent. Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, or amine compounds such as pyridine. As the organic solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. In addition, a catalyst such as a tertiary amine or a quaternary ammonium salt can be used for promoting the reaction, and a terminal terminator such as an alkyl-substituted phenol such as phenol or p-tert-butylphenol is used as a molecular weight regulator. It is desirable to use it. The reaction temperature is preferably 0 to 40 ° C., the reaction time is several minutes to 5 hours, and the pH during the reaction is preferably maintained at 10 or more. It should be noted that not all of the resulting molecular chain ends need to have a structure derived from a terminal terminator.

カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応(溶融重合法)では、不活性ガスの存在下に所定割合の二価フェノールを炭酸ジエステルと加熱しながら攪拌し、生成するアルコールまたはフェノール類を留出させる方法により行う。反応温度は生成するアルコールまたはフェノール類の沸点等により異なるが、通常120〜350℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。かかる反応の初期段階で二価フェノール等と同時にまたは反応の途中段階で末端停止剤を添加させる。また反応を促進するために現在公知のエステル交換反応に用いられる触媒を用いることができる。このエステル交換反応に用いられる炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート等が挙げられる。これらのうち特にジフェニルカーボネートが好ましい。   In a transesterification reaction (melt polymerization method) using a carbonic acid diester as a carbonate precursor, a predetermined proportion of dihydric phenol is stirred with the carbonic acid diester in the presence of an inert gas, and the resulting alcohol or phenol is distilled. It is done by the method. The reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 350 ° C. The reaction is completed while distilling off the alcohol or phenol produced under reduced pressure from the beginning. An end terminator is added simultaneously with the dihydric phenol or the like in the initial stage of the reaction or in the middle of the reaction. Moreover, in order to accelerate | stimulate reaction, the catalyst used for the transesterification reaction now well-known can be used. Examples of the carbonic acid diester used in the transesterification include diphenyl carbonate, dinaphthyl carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Of these, diphenyl carbonate is particularly preferred.

A−2成分としてのポリアミド樹脂(PA)としては、例えば、環状ラクタムの開環重合物、アミノカルボン酸の重合物、二塩基酸とジアミンとの重縮合物などが挙げられ、具体的にはナイロン6、ナイロン66、ナイロン46、ナイロン610、ナイロン612、ナイロン11、ナイロン12などの脂肪族ポリアミドおよびポリ(メタキシレンアジパミド)、ポリ(ヘキサメチレンテレフタルアミド)、ポリ(ノナメチレンテレフタルアミド)、ポリ(ヘキサメチレンイソフタルアミド)、ポリ(テトラメチレンイソフタルアミド)などの脂肪族−芳香族ポリアミド、およびこれらの共重合体や混合物を挙げることができる。本発明に使用できるポリアミドとしては特に限定されるものではない。   Examples of the polyamide resin (PA) as the component A-2 include ring-opening polymer of cyclic lactam, polymer of aminocarboxylic acid, polycondensate of dibasic acid and diamine, and the like. Nylon 6, Nylon 66, Nylon 46, Nylon 610, Nylon 612, Nylon 11, Nylon 12, and other aliphatic polyamides and poly (metaxylene adipamide), poly (hexamethylene terephthalamide), poly (nonamethylene terephthalamide) And aliphatic-aromatic polyamides such as poly (hexamethylene isophthalamide) and poly (tetramethylene isophthalamide), and copolymers and mixtures thereof. The polyamide that can be used in the present invention is not particularly limited.

このようなポリアミド樹脂の分子量としては特に限定されるものではないが、98%硫酸中、濃度1%、25℃で測定する相対粘度が1.7〜4.5を使用することができ、好ましくは、2.0〜4.0、特に好ましくは2.0〜3.5である。   The molecular weight of such a polyamide resin is not particularly limited, but a relative viscosity of 1.7 to 4.5 measured at 25% in 98% sulfuric acid at a concentration of 1% can be preferably used. Is 2.0 to 4.0, particularly preferably 2.0 to 3.5.

A−2成分としてのポリオレフィン樹脂とは、エチレン、プロピレン、ブテン等のオレフィン類の単重合体もしくは共重合体、あるいはこれらのオレフィン類と共重合可能な単量体成分との共重合体である。具体的には、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−α−オレフィン共重合体、エチレン−プロピレン共重合体、エチレン−ブテン共重合体等が挙げられる。これらポリオレフィン樹脂の分子量に関しては特に限定されるものではないが、高分子量のものほど難燃性が良好となる。   The polyolefin resin as the component A-2 is a homopolymer or copolymer of olefins such as ethylene, propylene and butene, or a copolymer of monomer components copolymerizable with these olefins. . Specifically, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-α-olefin copolymer Examples thereof include a copolymer, an ethylene-propylene copolymer, and an ethylene-butene copolymer. The molecular weight of these polyolefin resins is not particularly limited, but the higher the molecular weight, the better the flame retardancy.

A−2成分としてのスチレン系樹脂とは、スチレン、α−メチルスチレンまたはビニルトルエン等の芳香族ビニル単量体の単独重合体または共重合体、これらの単量体とアクリロニトリル、メチルメタクリレート等のビニル単量体との共重合体、ポリブタジエン等のジエン系ゴム、エチレン・プロピレン系ゴム、アクリル系ゴムなどにスチレンおよび/またはスチレン誘導体、またはスチレンおよび/またはスチレン誘導体と他のビニルモノマーをグラフト重合させたものである。スチレン系樹脂の具体例としては、例えばポリスチレン、耐衝撃性ポリスチレン(HIPS)、アクリロニトリル・スチレン共重合体(AS樹脂)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS樹脂)、メチルメタクリレート・ブタジエン・スチレン共重合体(MBS樹脂)、メチルメタクリレート・アクリロニトリル・ブタジエン・スチレン共重合体(MABS樹脂)、アクリロニトリル・アクリルゴム・スチレン共重合体(AAS樹脂)、アクリロニトリル・エチレンプロピレン系ゴム・スチレン共重合体(AES樹脂)等の樹脂、またはこれらの混合物が挙げられる。耐衝撃性の観点からは、ゴム変性スチレン系樹脂が好ましく、ゴム変性スチレン系樹脂はビニル芳香族系重合体よりなるマトリックス中にゴム状重合体が粒子状に分散してなる重合体をいい、ゴム状重合体の存在下に芳香族ビニル単量体、必要に応じてビニル単量体を加えて単量体混合物を公知の塊状重合、塊状懸濁重合、溶液重合または乳化重合することにより得られる。   The styrene resin as the component A-2 is a homopolymer or copolymer of an aromatic vinyl monomer such as styrene, α-methylstyrene or vinyltoluene, these monomers and acrylonitrile, methyl methacrylate or the like. Styrene and / or styrene derivatives, or styrene and / or styrene derivatives and other vinyl monomers are graft-polymerized onto copolymers with vinyl monomers, diene rubbers such as polybutadiene, ethylene / propylene rubber, acrylic rubber, etc. It has been made. Specific examples of the styrenic resin include, for example, polystyrene, high-impact polystyrene (HIPS), acrylonitrile / styrene copolymer (AS resin), acrylonitrile / butadiene / styrene copolymer (ABS resin), methyl methacrylate / butadiene / styrene. Copolymer (MBS resin), Methyl methacrylate / Acrylonitrile / Butadiene / Styrene copolymer (MABS resin), Acrylonitrile / Acrylic rubber / Styrene copolymer (AAS resin), Acrylonitrile / Ethylene propylene rubber / Styrene copolymer (ABS resin) AES resin) or a mixture thereof. From the viewpoint of impact resistance, a rubber-modified styrene resin is preferable, and the rubber-modified styrene resin refers to a polymer in which a rubber-like polymer is dispersed in a particle form in a matrix made of a vinyl aromatic polymer. Aromatic vinyl monomer in the presence of rubbery polymer, and optionally vinyl monomer are added to obtain a monomer mixture by known block polymerization, block suspension polymerization, solution polymerization or emulsion polymerization. It is done.

前記ゴム状重合体の例としては、ポリブタジエン、ポリ(スチレン−ブタジエン)、ポリ(アクリロニトリル−ブタジエン)等のジエン系ゴムおよび上記ジエンゴムを水素添加した飽和ゴム、イソプレンゴム、クロロプレンゴム、ポリアクリル酸ブチル等のアクリル系ゴム、およびエチレン−プロピレン−ジエンモノマー三元共重合体(EPDM)等を挙げることができ、特にジエン系ゴムが好ましい。   Examples of the rubber-like polymer include diene rubbers such as polybutadiene, poly (styrene-butadiene), poly (acrylonitrile-butadiene), and saturated rubbers obtained by hydrogenation of the diene rubber, isoprene rubber, chloroprene rubber, polybutyl acrylate. Examples thereof include acrylic rubbers such as ethylene-propylene-diene terpolymer (EPDM), and diene rubbers are particularly preferable.

上記のゴム状重合体の存在下に重合させるグラフト共重合可能な単量体混合物中の必須成分の芳香族ビニル単量体は、例えば、スチレン、α−メチルスチレン、パラメチルスチレン等であり、スチレンが最も好ましい。   The aromatic vinyl monomer as an essential component in the graft copolymerizable monomer mixture to be polymerized in the presence of the rubbery polymer is, for example, styrene, α-methylstyrene, paramethylstyrene, and the like. Styrene is most preferred.

必要に応じて添加することが可能な、ビニル単量体としては、アクリロニトリル、メチルメタクリレート等が挙げられる。   Examples of vinyl monomers that can be added as needed include acrylonitrile and methyl methacrylate.

ゴム変性スチレン樹脂におけるゴム状重合体は、1〜50重量%、好ましくは2〜40重量%である。グラフト重合可能な単量体混合物は、99〜50重量%、好ましくは98〜60重量%である。   The rubber-like polymer in the rubber-modified styrene resin is 1 to 50% by weight, preferably 2 to 40% by weight. The monomer mixture capable of graft polymerization is 99 to 50% by weight, preferably 98 to 60% by weight.

A−2成分としてのポリフェニレンサルファイド樹脂(PPS)は下記式で表される繰返し単位を有する。

Figure 0005378712
式中、nは1以上の整数であり、50〜500の整数が好ましく100〜400の整数がより好ましく、直鎖状、架橋状いずれであってもよい。 The polyphenylene sulfide resin (PPS) as the component A-2 has a repeating unit represented by the following formula.
Figure 0005378712
In the formula, n is an integer of 1 or more, preferably an integer of 50 to 500, more preferably an integer of 100 to 400, and may be linear or crosslinked.

ポリフェニレンサルファイド樹脂の製造方法の例としてはジクロロベンゼンと二硫化ナトリウムとを反応させる方法が挙げられる。架橋状のものは低重合度のポリマーを重合ののち、空気の存在下で加熱し、部分架橋を行い高分子量化する方法で製造することができ、直鎖状のものは重合時に高分子量化する方法で製造することができる。   An example of a method for producing a polyphenylene sulfide resin is a method of reacting dichlorobenzene with sodium disulfide. Cross-linked polymers can be manufactured by polymerizing a polymer with a low polymerization degree in the presence of air and then partially crosslinking to increase the molecular weight. It can be manufactured by the method.

A−2成分としてのポリエーテルイミド樹脂(PEI)は、下記式で表される繰返し単位を有する。

Figure 0005378712
The polyetherimide resin (PEI) as the component A-2 has a repeating unit represented by the following formula.
Figure 0005378712

式中のArは芳香族ジヒドロキシ化合物残基を示し、Arは芳香族ジアミン残基を示す。芳香族ジヒドロキシ化合物としては、前述したポリカーボネート樹脂の説明で示した芳香族ジヒドロキシ化合物が挙げられ、特にビスフェノールAが好ましい。芳香族ジアミンとしてはm−フェニレンジアミン、p−フェニレンジアミン、4,4’−ジアミノジフェニル、3,4’−ジアミノジフェニル、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、ジアミノジフェニルメタン、ジアミノジフェニルスルホンおよびジアミノジフェニルスルフィド等が挙げられる。
前記式中のnは5〜1,000の整数を示し、10〜500の整数が好ましい。
Ar 1 in the formula represents an aromatic dihydroxy compound residue, and Ar 2 represents an aromatic diamine residue. As an aromatic dihydroxy compound, the aromatic dihydroxy compound shown by description of polycarbonate resin mentioned above is mentioned, Bisphenol A is especially preferable. As aromatic diamines, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenyl, 3,4′-diaminodiphenyl, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, diaminodiphenylmethane, Examples include diaminodiphenyl sulfone and diaminodiphenyl sulfide.
N in the above formula represents an integer of 5 to 1,000, and an integer of 10 to 500 is preferable.

また、ポリエーテルイミド樹脂の製造方法の例は、米国特許第3,847,867号、米国特許第3,847,869号、米国特許第3,850,885号、米国特許第3,852,242号および米国特許第3,855,178号などに記載されている。   Examples of the method for producing the polyetherimide resin include US Pat. No. 3,847,867, US Pat. No. 3,847,869, US Pat. No. 3,850,885, US Pat. No. 3,852. 242 and U.S. Pat. No. 3,855,178.

前述した種々のA−2成分のうち、ポリエステル樹脂(PEst)、ポリフェニレンエーテル樹脂(PPE)、ポリカーボネート樹脂(PC)、ポリアミド樹脂(PA)またはスチレン系樹脂が好ましい。   Of the various A-2 components described above, polyester resin (PEst), polyphenylene ether resin (PPE), polycarbonate resin (PC), polyamide resin (PA) or styrene resin is preferred.

本発明において、B成分として使用する有機リン化合物は、下記式(1)で表される。

Figure 0005378712
(式中、X、Xは同一もしくは異なり、下記式(2)で表される芳香族置換アルキル基である。) In the present invention, the organophosphorus compound used as the component B is represented by the following formula (1).
Figure 0005378712
(In formula, X < 1 >, X < 2 > is the same or different, and is an aromatic substituted alkyl group represented by following formula (2).)

Figure 0005378712
(式中、ALは炭素数1〜5の分岐状または直鎖状の脂肪族炭化水素基であり、Arは置換基を有しても良いフェニル基、ナフチル基、またはアントリル基である。nは1〜3の整数を示し、ArはAL中の任意の炭素原子に結合することができる。)
Figure 0005378712
(In the formula, AL is a branched or linear aliphatic hydrocarbon group having 1 to 5 carbon atoms, and Ar is a phenyl group, a naphthyl group, or an anthryl group which may have a substituent. Represents an integer of 1 to 3, and Ar can be bonded to any carbon atom in AL.)

好ましくは下記式(3)および(4)で表される有機リン化合物よりなる群から選択される1種または2種以上の混合物である。   Preferably, it is one or a mixture of two or more selected from the group consisting of organic phosphorus compounds represented by the following formulas (3) and (4).

Figure 0005378712
(式中、R、Rは同一または異なっていてもよく、置換基を有しても良いフェニル基、ナフチル基、またはアントリル基である。R、R、R、Rは同一または異なっていてもよく、水素原子、炭素数1〜4の分岐状または直鎖状のアルキル基、置換基を有しても良いフェニル基、ナフチル基、またはアントリル基から選択される置換基である。)
Figure 0005378712
(In the formula, R 2 and R 5 may be the same or different, and may be a phenyl group, a naphthyl group, or an anthryl group that may have a substituent. R 1 , R 3 , R 4 , R 6 are Substituents which may be the same or different and are selected from a hydrogen atom, a branched or straight chain alkyl group having 1 to 4 carbon atoms, an optionally substituted phenyl group, naphthyl group, or anthryl group .)

Figure 0005378712
(式中、ArおよびArは、同一又は異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。R11、R12、R13およびR14は、同一又は異なっていても良く、水素原子、炭素数1〜3の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。ALおよびALは、同一又は異なっていても良く、炭素数1〜4の分岐状または直鎖状の脂肪族炭化水素基である。ArおよびArは、同一又は異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。pおよびqは0〜3の整数を示し、ArおよびArはそれぞれALおよびALの任意の炭素原子に結合することができる。)
Figure 0005378712
(In formula, Ar < 1 > and Ar < 2 > may be the same or different, and are a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent in the aromatic ring. R < 11 >, R < 12 >, R 13 and R 14 may be the same or different, and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and have a substituent in the aromatic ring. AL 1 and AL 2 may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms, Ar 3 and Ar 4 may be the same or It may be different, and may be a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring, p and q each represent an integer of 0 to 3, and Ar 3 and Ar 4 each represent AL 1 Contact It can be attached to any carbon atom of the fine AL 2.)

さらに、好ましくは下記式(5)、(6)、(7)、(8)で表されるリン系化合物である。   Furthermore, it is preferably a phosphorus compound represented by the following formulas (5), (6), (7), (8).

Figure 0005378712
Figure 0005378712

式中、R21、R22は同一もしくは異なり、その芳香環に置換基を有していてもよいフェニル基、ナフチル基またはアントリル基であり、そのうちフェニル基が好ましい。R21およびR22のフェニル基、ナフチル基またはアントリル基は、その芳香環の水素原子が置換されていてもよく、置換基としてはメチル、エチル、プロピル、ブチルもしくはその芳香環の結合基が、酸素原子、イオウ原子または炭素数1〜4の脂肪族炭化水素基を介する炭素数6〜14のアリール基が挙げられる。 In the formula, R 21 and R 22 are the same or different and are a phenyl group, a naphthyl group or an anthryl group which may have a substituent on the aromatic ring, and among them, a phenyl group is preferable. The phenyl group, naphthyl group or anthryl group of R 21 and R 22 may be substituted with a hydrogen atom of the aromatic ring, and as a substituent, methyl, ethyl, propyl, butyl or a bonding group of the aromatic ring is Examples thereof include an aryl group having 6 to 14 carbon atoms via an oxygen atom, a sulfur atom, or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.

Figure 0005378712
Figure 0005378712

上記式(6)において、R31およびR34は、同一又は異なっていても良く、水素原子または炭素数1〜4の脂肪族炭化水素基である。好ましくは、水素原子、メチル基、エチル基であり、特に好ましくは水素原子である。R33およびR36は、同一または異なっていても良く、炭素数1〜4の脂肪族炭化水素基であり、好ましくはメチル基またはエチル基である。R32およびR35は、同一または異なっていてもよく、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。好ましくはフェニル基を表し、芳香族環上の炭素原子を介してリンに結合している部分以外のどの部分に置換基を有していてもよく、メチル、エチル、プロピル(異性体を含む)、ブチル(異性体を含む)もしくはその芳香族環への結合基が、酸素、イオウまたは炭素数1〜4の脂肪族炭化水素基を介する炭素数6〜14のアリール基である。 In the above formula (6), R 31 and R 34 may be the same or different and are a hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. Preferred are a hydrogen atom, a methyl group, and an ethyl group, and particularly preferred is a hydrogen atom. R 33 and R 36 may be the same or different and are each an aliphatic hydrocarbon group having 1 to 4 carbon atoms, preferably a methyl group or an ethyl group. R 32 and R 35 may be the same or different, and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring. Preferably, it represents a phenyl group, and may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring, and includes methyl, ethyl, propyl (including isomers) , Butyl (including isomers) or a group bonded to the aromatic ring thereof is an aryl group having 6 to 14 carbon atoms via oxygen, sulfur or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.

上記式(6)中、R32およびR35の好ましい具体例としては、フェニル基、クレジル基、キシリル基、トリメチルフェニル基、4−フェノキシフェニル基、クミル基、ナフチル基、4−ベンジルフェニル基等を挙げられ、特にフェニル基が好ましい。 In the above formula (6), preferred specific examples of R 32 and R 35 include phenyl group, cresyl group, xylyl group, trimethylphenyl group, 4-phenoxyphenyl group, cumyl group, naphthyl group, 4-benzylphenyl group and the like. In particular, a phenyl group is preferable.

Figure 0005378712
Figure 0005378712

上記式(7)において、ArおよびArは、同一又は異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。R11、R12、R13およびR14は、同一又は異なっていても良く、水素原子、炭素数1〜3の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。好ましくはフェニル基を表し、芳香族環上の炭素原子を介してリンに結合している部分以外のどの部分に置換基を有していてもよく、メチル、エチル、プロピル(異性体を含む)、ブチル(異性体を含む)もしくはその芳香族環への結合基が、酸素、イオウまたは炭素数1〜4の脂肪族炭化水素基を介する炭素数6〜14のアリール基である。 In the above formula (7), Ar 1 and Ar 2 may be the same or different, and are a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent on the aromatic ring. R 11 , R 12 , R 13 and R 14 may be the same or different and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and its aromatic ring May have a substituent. Preferably, it represents a phenyl group, and may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring, and includes methyl, ethyl, propyl (including isomers) , Butyl (including isomers) or a group bonded to the aromatic ring thereof is an aryl group having 6 to 14 carbon atoms via oxygen, sulfur or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.

上記式(7)中、ArおよびArの好ましい具体例としては、フェニル基、クレジル基、キシリル基、トリメチルフェニル基、4−フェノキシフェニル基、クミル基、ナフチル基、4−ベンジルフェニル基等が挙げられ、特にフェニル基が好ましい。 In the above formula (7), preferred specific examples of Ar 1 and Ar 2 include phenyl group, cresyl group, xylyl group, trimethylphenyl group, 4-phenoxyphenyl group, cumyl group, naphthyl group, 4-benzylphenyl group and the like. In particular, a phenyl group is preferable.

上記式(7)中、ALおよびALは、同一又は異なっていても良く、炭素数1〜4の分岐状または直鎖状の脂肪族炭化水素基である。好ましくは炭素数1〜3の分岐状または直鎖状の脂肪族炭化水素基であり、特に好ましくは炭素数1〜2の分岐状または直鎖状の脂肪族炭化水素基である。 In the above formula (7), AL 1 and AL 2 may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms. A branched or straight chain aliphatic hydrocarbon group having 1 to 3 carbon atoms is preferable, and a branched or straight chain aliphatic hydrocarbon group having 1 to 2 carbon atoms is particularly preferable.

上記式(7)中、ALおよびALの好ましい具体例としては、メチレン基、エチレン基、エチリデン基、トリメチレン基、プロピリデン基、イソプロピリデン基等が挙げられ、特にメチレン基、エチレン基、およびエチリデン基が好ましい。 In the above formula (7), preferred specific examples of AL 1 and AL 2 include a methylene group, an ethylene group, an ethylidene group, a trimethylene group, a propylidene group, an isopropylidene group, and the like. In particular, a methylene group, an ethylene group, and Ethylidene groups are preferred.

上記式(7)中、ArおよびArは、同一又は異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。好ましくはフェニル基を表し、芳香族環上の炭素原子を介してリンに結合している部分以外のどの部分に置換基を有していてもよく、メチル、エチル、プロピル(異性体を含む)、ブチル(異性体を含む)もしくはその芳香族環への結合基が、酸素、イオウまたは炭素数1〜4の脂肪族炭化水素基を介する炭素数6〜14のアリール基である。 In the above formula (7), Ar 3 and Ar 4 may be the same or different, and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring. Preferably, it represents a phenyl group, and may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring, and includes methyl, ethyl, propyl (including isomers) , Butyl (including isomers) or a group bonded to the aromatic ring thereof is an aryl group having 6 to 14 carbon atoms via oxygen, sulfur or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.

上記式(7)中、pおよびqは0〜3の整数を示し、ArおよびArはそれぞれALおよびALの任意の炭素原子に結合することができる。pおよびqは、好ましくは0または1であり、特に好ましくは0である。 In the above formula (7), p and q is an integer of 0 to 3, Ar 3 and Ar 4 may be bonded to any carbon atoms of AL 1 and AL 2, respectively. p and q are preferably 0 or 1, particularly preferably 0.

Figure 0005378712
Figure 0005378712

上記式(8)において、R41およびR44は、同一又は異なっていても良く、水素原子、炭素数1〜4の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。好ましくは水素原子、炭素数1〜3の脂肪族炭化水素基、または置換基を有しても良いフェニル基である。R41およびR44がフェニル基の場合、芳香族環上の炭素原子を介してリンに結合している部分以外のどの部分に置換基を有していてもよく、メチル、エチル、プロピル(異性体を含む)、ブチル(異性体を含む)もしくはその芳香族環への結合基が、酸素、イオウまたは炭素数1〜4の脂肪族炭化水素基を介する炭素数6〜14のアリール基である。 In the above formula (8), R 41 and R 44 may be the same or different and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, The ring may have a substituent. Preferably they are a hydrogen atom, a C1-C3 aliphatic hydrocarbon group, or a phenyl group which may have a substituent. When R 41 and R 44 are phenyl groups, they may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring, and methyl, ethyl, propyl (isomer The linking group to the aromatic ring is oxygen, sulfur or an aryl group having 6 to 14 carbon atoms via an aliphatic hydrocarbon group having 1 to 4 carbon atoms. .

上記式(8)中、R41およびR44の好ましい具体例としては、水素原子、メチル基、エチル基、プロピル基(異性体を含む)、フェニル基、クレジル基、キシリル基、トリメチルフェニル基、4−フェノキシフェニル基、クミル基、ナフチル基、4−ベンジルフェニル基等が挙げられ、特に水素原子、メチル基、またはフェニル基が好ましい。 In the above formula (8), preferred examples of R 41 and R 44 include hydrogen atom, methyl group, ethyl group, propyl group (including isomers), phenyl group, cresyl group, xylyl group, trimethylphenyl group, A 4-phenoxyphenyl group, a cumyl group, a naphthyl group, a 4-benzylphenyl group, and the like can be given. A hydrogen atom, a methyl group, or a phenyl group is particularly preferable.

42、R43、R45およびR46は、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。好ましくは、フェニル基を表し、芳香族環上の炭素原子を介してリンに結合している部分以外のどの部分に置換基を有していてもよく、メチル、エチル、プロピル(異性体を含む)、ブチル(異性体を含む)もしくはその芳香族環への結合基が、酸素、イオウまたは炭素数1〜4の脂肪族炭化水素基を介する炭素数6〜14のアリール基である。 R 42 , R 43 , R 45 and R 46 may be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring. Preferably, it represents a phenyl group and may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring, and includes methyl, ethyl, propyl (including isomers) ), Butyl (including isomers) or a group bonded to the aromatic ring thereof is an aryl group having 6 to 14 carbon atoms via oxygen, sulfur or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.

上記式(8)中、R42、R43、R45およびR46の好ましい具体例としては、フェニル基、クレジル基、キシリル基、トリメチルフェニル基、4−フェノキシフェニル基、クミル基、ナフチル基、4−ベンジルフェニル基等が挙げられ、特にフェニル基が好ましい。 In the above formula (8), preferred specific examples of R 42 , R 43 , R 45 and R 46 include phenyl group, cresyl group, xylyl group, trimethylphenyl group, 4-phenoxyphenyl group, cumyl group, naphthyl group, 4-benzylphenyl group etc. are mentioned, A phenyl group is especially preferable.

前記式(1)で表される有機リン化合物(B成分)は、当該樹脂に対して極めて優れた難燃効果を発現する。本発明者らが知る限り、従来当該樹脂のハロゲンフリーによる難燃化において、少量の難燃剤での難燃化は困難であり、実用上多くの問題点があった。   The organophosphorus compound (component B) represented by the formula (1) exhibits a very excellent flame retardant effect for the resin. As far as the present inventors know, in the conventional flame-retarding of the resin by halogen-free, it is difficult to flame-retardant with a small amount of flame retardant, and there are many problems in practical use.

ところが本発明によれば、前記有機リン化合物(B成分)は驚くべきことにそれ自体単独の少量使用により当該樹脂の難燃化が容易に達成され、樹脂本来の特性を損なうことが無い。   However, according to the present invention, surprisingly, the organophosphorus compound (component B) can be easily made flame retardant by itself in a small amount, and does not impair the original properties of the resin.

しかし本発明ではB成分の他に、B成分以外のリン化合物、フッ素含有樹脂または他の添加剤を、B成分の使用割合の低減、成形品の難燃性の改善、成形品の物理的性質の改良、成形品の化学的性質の向上またはその他の目的のために当然配合することができる。これらの他の配合成分については後に具体的に説明する。   However, in the present invention, in addition to the B component, a phosphorus compound other than the B component, a fluorine-containing resin or other additive is used to reduce the use ratio of the B component, improve the flame retardancy of the molded product, and the physical properties of the molded product. Naturally, it can be added for the purpose of improving the chemical properties of molded articles, improving the chemical properties of molded articles, or other purposes. These other blending components will be specifically described later.

本発明の難燃性樹脂組成物における難燃剤としての有機リン化合物(B成分)は、前記式(1)で表されるが、最も好ましい代表的化合物は下記式(1−a)、(1−b)、(1−c)、(1−d)で示される化合物である。   The organophosphorus compound (component B) as a flame retardant in the flame retardant resin composition of the present invention is represented by the above formula (1), but the most preferred representative compounds are the following formulas (1-a), (1 -B), (1-c) and (1-d).

Figure 0005378712
Figure 0005378712

Figure 0005378712
Figure 0005378712

Figure 0005378712
Figure 0005378712

Figure 0005378712
Figure 0005378712

次に本発明における前記有機リン化合物(B成分)の合成法について説明する。B成分は、以下に説明する方法以外の方法によって製造されたものであってもよい。
B成分は例えばペンタエリスリトールに三塩化リンを反応させ、続いて酸化させた反応物を、ナトリウムメトキシド等のアルカリ金属化合物により処理し、次いでアラルキルハライドを反応させることにより得られる。
Next, a method for synthesizing the organophosphorus compound (component B) in the present invention will be described. The component B may be produced by a method other than the method described below.
The component B can be obtained, for example, by reacting pentaerythritol with phosphorus trichloride, subsequently treating the oxidized reaction product with an alkali metal compound such as sodium methoxide, and then reacting with aralkyl halide.

また、ペンタエリスリトールにアラルキルホスホン酸ジクロリドを反応させる方法や、ペンタエリスリトールに三塩化リンを反応させることによって得られた化合物にアラルキルアルコールを反応させ、次いで高温でArbuzov転移を行う方法により得ることもできる。後者の反応は、例えば米国特許第3,141,032号明細書、特開昭54−157156号公報、特開昭53−39698号公報に開示されている。   It can also be obtained by reacting pentaerythritol with aralkyl phosphonic acid dichloride, or reacting pentaerythritol with phosphorus trichloride and reacting aralkyl alcohol with a compound obtained by reacting pentaerythritol with phosphorus trichloride, followed by Arbuzov transfer at high temperature. . The latter reaction is disclosed, for example, in U.S. Pat. No. 3,141,032, JP-A-54-157156, and JP-A-53-39698.

B成分の具体的合成法を以下説明するが、この合成法は単に説明のためであって、本発明において使用されるB成分は、これら合成法のみならず、その改変およびその他の合成法で合成されたものであってもよい。より具体的な合成法は後述する調製例に説明される。
(I)B成分中の前記(1−a)の有機リン化合物;
ペンタエリスリトールに三塩化リンを反応させ、次いでターシャリーブタノールにより酸化させた反応物を、ナトリウムメトキシドにより処理し、ベンジルブロマイドを反応させることにより得ることができる。
(II)B成分中の前記(1−b)の有機リン化合物;
ペンタエリスリトールに三塩化リンを反応させ、次いでターシャリーブタノールにより酸化させた反応物を、ナトリウムメトキシドにより処理し、1−フェニルエチルブロマイドを反応させることにより得ることができる。
(III)B成分中の前記(1−c)の有機リン化合物;
ペンタエリスリトールに三塩化リンを反応させ、次いでターシャリーブタノールにより酸化させた反応物を、ナトリウムメトキシドにより処理し、2−フェニルエチルブロマイドを反応させることにより得ることができる。
(IV)B成分中の前記(1−d)の有機リン化合物;
ペンタエリスリトールにジフェニルメチルホスホン酸ジクロリドを反応させることにより得ることができる。
The specific synthesis method of the B component will be described below. This synthesis method is merely for the purpose of explanation, and the B component used in the present invention is not limited to these synthesis methods, but also its modifications and other synthesis methods. It may be synthesized. A more specific synthesis method will be described in the preparation examples described later.
(I) the organophosphorus compound of (1-a) in component B;
A reaction product obtained by reacting pentaerythritol with phosphorus trichloride and then oxidizing with tertiary butanol can be obtained by treating with sodium methoxide and reacting with benzyl bromide.
(II) the organophosphorus compound of (1-b) in component B;
A reaction product obtained by reacting pentaerythritol with phosphorus trichloride and then oxidizing with tertiary butanol can be obtained by treating with sodium methoxide and reacting with 1-phenylethyl bromide.
(III) the organophosphorus compound of (1-c) in component B;
A reaction product obtained by reacting pentaerythritol with phosphorus trichloride and then oxidizing with tertiary butanol can be obtained by treating with sodium methoxide and reacting with 2-phenylethyl bromide.
(IV) the organophosphorus compound of the above (1-d) in component B;
It can be obtained by reacting pentaerythritol with diphenylmethylphosphonic acid dichloride.

また別法としては、ペンタエリスリトールに三塩化リンを反応させ、得られた生成物とジフェニルメチルアルコールの反応生成物を触媒共存下で加熱処理する事により得られる。   Alternatively, it can be obtained by reacting pentaerythritol with phosphorus trichloride and heat-treating the resulting product and the reaction product of diphenylmethyl alcohol in the presence of a catalyst.

前述したB成分は、その酸価が0.7mgKOH/g以下、好ましくは0.5mgKOH/g以下であるものが使用される。酸価がこの範囲のB成分を使用することにより、難燃性および色相に優れた成形品が得られ、かつ熱安定性の良好な成形品が得られる。B成分は、その酸価が0.4mgKOH/g以下のものが最も好ましい。ここで酸価とは、サンプル(B成分)1g中の酸成分を中和するのに必要なKOHの量(mg)を意味する。   As the above-mentioned B component, those having an acid value of 0.7 mgKOH / g or less, preferably 0.5 mgKOH / g or less are used. By using the component B having an acid value in this range, a molded product having excellent flame retardancy and hue can be obtained, and a molded product having good thermal stability can be obtained. The component B most preferably has an acid value of 0.4 mgKOH / g or less. Here, the acid value means the amount (mg) of KOH necessary for neutralizing the acid component in 1 g of the sample (component B).

さらに、B成分は、そのHPLC純度が、好ましくは少なくとも90%、より好ましくは少なくとも95%であるものが使用される。かかる高純度のものは成形品の難燃性、色相、および熱安定性に優れ好ましい。ここでB成分のHPLC純度の測定は、以下の方法を用いることにより効果的に測定が可能となる。   Furthermore, as the component B, one whose HPLC purity is preferably at least 90%, more preferably at least 95% is used. Such a high-purity product is preferable because of excellent flame retardancy, hue, and thermal stability of the molded product. Here, the HPLC purity of the B component can be measured effectively by using the following method.

カラムは野村化学(株)製Develosil ODS−7 300mm×4mmφを用い、カラム温度は40℃とした。溶媒としてはアセトニトリルと水の6:4(容量比)の混合溶液を用い、5μlを注入した。検出器はUV−260nmを用いた。   As the column, Develosil ODS-7 300 mm × 4 mmφ manufactured by Nomura Chemical Co., Ltd. was used, and the column temperature was 40 ° C. As a solvent, a mixed solution of acetonitrile and water 6: 4 (volume ratio) was used, and 5 μl was injected. The detector used was UV-260 nm.

B成分中の不純物を除去する方法としては、特に限定されるものではないが、水、メタノール等の溶剤でリパルプ洗浄(溶剤で洗浄、ろ過を数回繰り返す)を行う方法が最も効果的で、且つコスト的にも有利である。   The method for removing impurities in component B is not particularly limited, but a method of performing repulp washing with a solvent such as water or methanol (washing with a solvent, repeating filtration several times) is the most effective. It is also advantageous in terms of cost.

前記B成分は、樹脂成分(A成分)100重量部に対して1〜100重量部、好ましくは5〜90重量部、より好ましくは10〜70重量部の範囲で配合される。B成分の配合割合は、所望する難燃性レベル、樹脂成分(A成分)の種類などによりその好適範囲が決定される。これら組成物を構成するA成分およびB成分以外であっても必要に応じて他の成分を本発明の目的を損なわない限り使用することができ、他の難燃剤、難燃助剤、フッ素含有樹脂の使用によってもB成分の配合量を変えることができ、多くの場合、これらの使用によりB成分の配合割合を低減することができる。   The B component is blended in an amount of 1 to 100 parts by weight, preferably 5 to 90 parts by weight, and more preferably 10 to 70 parts by weight with respect to 100 parts by weight of the resin component (component A). The suitable range of the blending ratio of the B component is determined by the desired flame retardancy level, the type of the resin component (A component), and the like. Even if it is other than component A and component B constituting these compositions, other components can be used as necessary as long as they do not impair the purpose of the present invention. Other flame retardants, flame retardant aids, fluorine-containing compounds The blending amount of the B component can be changed also by using the resin, and in many cases, the blending ratio of the B component can be reduced by using these resins.

本発明の難燃性樹脂組成物の調製は、樹脂成分(A成分)、有機リン化合物(B成分)および必要に応じてその他成分を、V型ブレンダー、スーパーミキサー、スーパーフローター、ヘンシェルミキサーなどの混合機を用いて予備混合し、かかる予備混合物は混練機に供給し、溶融混合する方法が好ましく採用される。混練機としては、種々の溶融混合機、例えばニーダー、単軸または二軸押出機などが使用でき、なかでも二軸押出機を用いて樹脂組成物を220〜280℃、好ましくは230〜270℃の温度で溶融して、サイドフィーダーにより液体成分を注入し、押出し、ペレタイザーによりペレット化する方法が好ましく使用される。   The flame-retardant resin composition of the present invention is prepared by adding a resin component (component A), an organophosphorus compound (component B) and other components as necessary, such as a V-type blender, super mixer, super floater, Henschel mixer, etc. A method of premixing using a mixer, supplying the premixture to a kneader, and melt mixing is preferably employed. As the kneader, various melt mixers such as a kneader, a single screw or a twin screw extruder can be used, and among these, the resin composition is 220 to 280 ° C., preferably 230 to 270 ° C. using the twin screw extruder. A method is preferably used in which a liquid component is injected by a side feeder, extruded by a side feeder, extruded, and pelletized by a pelletizer.

本発明の難燃性樹脂組成物は、実質的にハロゲンを含有せず、非常に高い難燃性能を有し、家電製品部品、電気・電子部品、自動車部品、機械・機構部品、化粧品容器などの種々の成形品を成形する材料として有用である。具体的には、ブレーカー部品、スイッチ部品、モーター部品、イグニッションコイルケース、電源プラグ、電源コンセント、コイルボビン、コネクター、リレーケース、ヒューズケース、フライバクトランス部品、フォーカスブロック部品、ディストリビューターキャップ、ハーネスコネクターなどに好適に用いることができる。さらに、薄肉化の進むハウジング、ケーシングまたはシャーシ、例えば、電子・電気製品(例えば電話機、パソコン、プリンター、ファックス、コピー機、テレビ、ビデオデッキ、オーディオ機器などの家電・OA機器またはそれらの部品など)のハウジング、ケーシングまたはシャーシに有用である。特に優れた耐熱性、難燃性が要求されるプリンターの筐体、定着ユニット部品、ファックスなど家電・OA製品の機械・機構部品などとしても有用である。   The flame retardant resin composition of the present invention is substantially free of halogen and has very high flame retardant performance, such as home appliance parts, electrical / electronic parts, automobile parts, mechanical / mechanical parts, cosmetic containers, etc. It is useful as a material for molding various molded articles. Specifically, breaker parts, switch parts, motor parts, ignition coil cases, power plugs, power outlets, coil bobbins, connectors, relay cases, fuse cases, flyback transformer parts, focus block parts, distributor caps, harness connectors, etc. Can be suitably used. Furthermore, thinning housings, casings or chassis, such as electronic and electrical products (such as telephones, personal computers, printers, fax machines, copiers, televisions, VCRs, audio equipment and other home appliances / OA equipment, or parts thereof) Useful for housings, casings or chassis. In particular, it is also useful as a printer casing, fixing unit parts, and other machine / mechanical parts of home appliances and OA products such as fax machines that require particularly excellent heat resistance and flame retardancy.

成形方法としては射出成形、ブロー成形、プレス成形等、特に限定されるものではないが、好ましくはペレット状の樹脂組成物を射出成形機を用いて、射出成形することにより製造される。   The molding method is not particularly limited, such as injection molding, blow molding, press molding, and the like, but it is preferably manufactured by injection molding a pellet-shaped resin composition using an injection molding machine.

本発明の難燃性樹脂組成物およびそれから形成された成形品は、従来の植物由来原料を用いた樹脂組成物に比べて下記の利点が得られる。
(i)実質的にハロゲン含有難燃剤を使用することなく高度な難燃性を有する植物由来原料を用いた樹脂組成物が得られる。
(ii)難燃剤としての有機リン化合物は、植物由来原料を用いた樹脂に対して優れた難燃効果を有するので、比較的少ない使用量でもV−2レベルが達成される。
(iii)難燃剤として使用する有機リン化合物の構造並びに特性に起因して、植物由来原料を用いた樹脂の成形時または成形品の使用時に、植物由来原料を用いた樹脂の熱劣化をほとんど起さず、熱安定性に優れた樹脂組成物が得られる。従って難燃性、機械的強度および熱安定性がいずれもバランスよく優れた組成物が得られる。
(iv)難燃剤としての有機リン化合物は、無色であり植物由来原料を用いた樹脂に対して相溶性であるから、透明性に優れた成形品を得ることができる。
The flame retardant resin composition of the present invention and a molded product formed therefrom have the following advantages compared to conventional resin compositions using plant-derived materials.
(I) A resin composition using a plant-derived raw material having high flame retardancy can be obtained without substantially using a halogen-containing flame retardant.
(Ii) Since the organophosphorus compound as a flame retardant has an excellent flame retardant effect on a resin using a plant-derived raw material, the V-2 level can be achieved even with a relatively small amount of use.
(Iii) Due to the structure and characteristics of the organophosphorus compound used as a flame retardant, the resin using the plant-derived raw material is hardly thermally deteriorated when molding the resin using the plant-derived raw material or when using the molded product. In addition, a resin composition having excellent thermal stability can be obtained. Therefore, a composition having excellent balance in flame retardancy, mechanical strength and thermal stability can be obtained.
(Iv) Since the organophosphorus compound as a flame retardant is colorless and compatible with a resin using a plant-derived raw material, a molded product excellent in transparency can be obtained.

以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。なお、評価は下記の方法で行った。
(1)難燃性(UL−94評価)
難燃性は厚さ1/16インチ(1.6mm)のテストピースを用い、難燃性の評価尺度として、米国UL規格のUL−94に規定されている垂直燃焼試験に準じて評価を行った。どの試験片も炎を取り去った後の燃焼が30秒以内で消火するものがV−2であり、この評価基準以下のものをnotVとした。
(2)酸価
JIS−K−3504に準拠して測定を実施した。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The evaluation was performed by the following method.
(1) Flame retardancy (UL-94 evaluation)
Flame retardancy is evaluated using a test piece with a thickness of 1/16 inch (1.6 mm) according to the vertical flame test defined in UL-94 of the US UL standard as a flame retardant evaluation scale. It was. In all the test pieces, V-2 was extinguished within 30 seconds after the flame was removed, and not more than this evaluation standard was designated as notV.
(2) Acid value It measured based on JIS-K-3504.

調製例1
2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジベンジル−3,9−ジオキサイド(FR−1)の調製
温度計、コンデンサー、滴下ロートを備えた反応容器にペンタエリスリトール816.9g(6.0モル)、ピリジン19.0g(0.24モル)、トルエン2250.4g(24.4モル)を仕込み、攪拌した。該反応容器に三塩化リン1651.8g(12.0モル)を該滴下ロートを用い添加し、添加終了後、60℃にて加熱攪拌を行った。反応後、室温まで冷却し、得られた反応物に塩化メチレン26.50部を添加し、氷冷しながらターシャリーブタノール889.4g(12.0モル)および塩化メチレン150.2g(1.77モル)を滴下した。得られた結晶をトルエンおよび塩化メチレンにて洗浄しろ過した。得られたろ取物を80℃、1.33×10Paで12時間乾燥し、白色の固体1341.1g(5.88モル)を得た。得られた固体は31P、HNMRスペクトルにより2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイドである事を確認した。
Preparation Example 1
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dibenzyl-3,9-dioxide (FR-1) Thermometer, condenser, and dropping funnel The reaction vessel was charged with 816.9 g (6.0 mol) of pentaerythritol, 19.0 g (0.24 mol) of pyridine, and 2250.4 g (24.4 mol) of toluene and stirred. To the reaction vessel, 1651.8 g (12.0 mol) of phosphorus trichloride was added using the dropping funnel, and the mixture was heated and stirred at 60 ° C. after the addition was completed. After the reaction, the reaction mixture was cooled to room temperature, and 26.50 parts of methylene chloride was added to the resulting reaction product, and 889.4 g (12.0 moles) of tertiary butanol and 150.2 g (1.77 moles) of methylene chloride were cooled with ice. Mol) was added dropwise. The obtained crystals were washed with toluene and methylene chloride and filtered. The obtained filtered product was dried at 80 ° C. and 1.33 × 10 2 Pa for 12 hours to obtain 1341.1 g (5.88 mol) of a white solid. The obtained solid was found to be 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide according to 31 P, 1 HNMR spectrum. confirmed.

温度計、コンデンサー、滴下ロートを備えた反応容器に得られた2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイド1341.0g(5.88モル)、DMF6534.2g(89.39モル)を仕込み、攪拌した。該反応容器に氷冷下ナトリウムメトキシド648.7g(12.01モル)を添加した。氷冷にて2時間攪拌した後に、室温にて5時間攪拌を行った。さらにDMFを留去した後に、DMF2613.7g(35.76モル)を添加し、該反応混合物に氷冷にてベンジルブロマイド2037.79g(11.91モル)滴下した。氷冷下3時間攪拌した後、DMFを留去し、水8Lを加え、析出した固体を濾取、水2Lで2回洗浄した。得られた粗精製物とメタノール4Lをコンデンサー、攪拌機を備えた反応容器に入れ、約2時間還流した。室温まで冷却後、結晶をろ過により分離し、メタノール2Lで洗浄した後、得られたろ取物を120℃、1.33×10Paで19時間乾燥し、白色の鱗片状結晶1863.5g(4.56モル)を得た。得られた結晶は31P、HNMRスペクトルおよび元素分析により2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジベンジル−3,9−ジオキサイドである事を確認した。収率は76%、31PNMR純度は99%であった。また、本文記載の方法で測定したHPLC純度は99%であった。酸価は0.06mgKOH/gであった。
H−NMR(DMSO−d,300MHz):δ7.2−7.4(m,10H),4.1−4.5(m,8H),3.5(d,4H)、31P−NMR(DMSO−d,120MHz):δ23.1(S)、融点:255−256℃、元素分析 計算値:C,55.89;H,5.43、測定値:C,56.24;H,5.35
2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide obtained in a reaction vessel equipped with a thermometer, condenser and dropping funnel 1341.0 g (5.88 mol) and DMF6534.2 g (89.39 mol) were charged and stirred. Sodium methoxide 648.7 g (12.01 mol) was added to the reaction vessel under ice cooling. After stirring for 2 hours under ice cooling, the mixture was stirred for 5 hours at room temperature. After further distilling off DMF, 2613.7 g (35.76 mol) of DMF was added, and 2037.79 g (11.91 mol) of benzyl bromide was added dropwise to the reaction mixture under ice cooling. After stirring for 3 hours under ice cooling, DMF was distilled off, 8 L of water was added, and the precipitated solid was collected by filtration and washed twice with 2 L of water. The obtained crude product and 4 L of methanol were put into a reaction vessel equipped with a condenser and a stirrer and refluxed for about 2 hours. After cooling to room temperature, the crystals were separated by filtration, washed with 2 L of methanol, and the obtained filtered product was dried at 120 ° C. and 1.33 × 10 2 Pa for 19 hours to obtain 1863.5 g of white scaly crystals ( 4.56 mol) was obtained. The crystals obtained are 31 P, 1 HNMR spectrum and elemental analysis with 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dibenzyl-3,9-dioxide. I confirmed it. The yield was 76% and 31 PNMR purity was 99%. The HPLC purity measured by the method described in the text was 99%. The acid value was 0.06 mgKOH / g.
1 H-NMR (DMSO-d 6 , 300 MHz): δ 7.2-7.4 (m, 10H), 4.1-4.5 (m, 8H), 3.5 (d, 4H), 31 P -NMR (DMSO-d 6, 120MHz ): δ23.1 (S), melting point: 255-256 ° C., elemental analysis: calculated: C, 55.89; H, 5.43 , measurement values: C, 56.24 H, 5.35

調製例2
2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジベンジル−3,9−ジオキサイド(FR−2)の調製
攪拌機、温度計、コンデンサーを有する反応容器に、3,9−ジベンジロキシ−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン22.55g(0.055モル)、ベンジルブロマイド19.01g(0.11モル)およびキシレン33.54g(0.32モル)を充填し、室温下攪拌しながら、乾燥窒素をフローさせた。次いでオイルバスで加熱を開始し、還流温度(約130℃)で4時間加熱、攪拌した。加熱終了後、室温まで放冷し、キシレン20mLを加え、さらに30分攪拌した。析出した結晶をろ過により分離し、キシレン20mLで2回洗浄した。得られた粗精製物とメタノール40mLをコンデンサー、攪拌機を備えた反応容器に入れ、約2時間還流した。室温まで冷却後、結晶をろ過により分離し、メタノール20mLで洗浄した後、得られたろ取物を120℃、1.33×10Paで19時間乾燥し、白色の鱗片状結晶を得た。生成物は質量スペクトル分析、H、31P核磁気共鳴スペクトル分析および元素分析でビスベンジルペンタエリスリトールジホスホネートであることを確認した。収量は20.60g、収率は91%、31PNMR純度は99%であった。また、本文記載の方法で測定したHPLC純度は99%であった。酸価は0.05mgKOH/gであった。
H−NMR(DMSO−d,300MHz):δ7.2−7.4(m,10H),4.1−4.5(m,8H),3.5(d,4H)、31P−NMR(DMSO−d,120MHz):δ23.1(S)、融点:257℃
Preparation Example 2
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dibenzyl-3,9-dioxide (FR-2) Reaction with stirrer, thermometer, condenser In a container, 22,9-dibenzyloxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane 22.55 g (0.055 mol), benzyl bromide 19.01 g (0.11 mol) ) And 33.54 g (0.32 mol) of xylene, and dry nitrogen was allowed to flow while stirring at room temperature. Next, heating was started in an oil bath, and the mixture was heated and stirred at a reflux temperature (about 130 ° C.) for 4 hours. After heating, the mixture was allowed to cool to room temperature, 20 mL of xylene was added, and the mixture was further stirred for 30 minutes. The precipitated crystals were separated by filtration and washed twice with 20 mL of xylene. The obtained crude product and 40 mL of methanol were placed in a reaction vessel equipped with a condenser and a stirrer and refluxed for about 2 hours. After cooling to room temperature, the crystals were separated by filtration and washed with 20 mL of methanol, and the obtained filtered product was dried at 120 ° C. and 1.33 × 10 2 Pa for 19 hours to obtain white scaly crystals. The product was confirmed to be bisbenzylpentaerythritol diphosphonate by mass spectral analysis, 1 H, 31 P nuclear magnetic resonance spectral analysis and elemental analysis. The yield was 20.60 g, the yield was 91%, and 31 PNMR purity was 99%. The HPLC purity measured by the method described in the text was 99%. The acid value was 0.05 mgKOH / g.
1 H-NMR (DMSO-d 6 , 300 MHz): δ 7.2-7.4 (m, 10H), 4.1-4.5 (m, 8H), 3.5 (d, 4H), 31 P -NMR (DMSO-d 6, 120MHz ): δ23.1 (S), melting point: 257 ° C.

調製例3
2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジα−メチルベンジル−3,9−ジオキサイド(FR−3)の調製
温度計、コンデンサー、滴下ロートを備えた反応容器にペンタエリスリトール816.9g(6.0モル)、ピリジン19.0g(0.24モル)、トルエン2250.4g(24.4モル)を仕込み、攪拌した。該反応容器に三塩化リン1651.8g(12.0モル)を該滴下ロートを用い添加し、添加終了後、60℃にて加熱攪拌を行った。反応後、室温まで冷却し、得られた反応物に塩化メチレン5180.7g(61.0モル)を添加し、氷冷しながらターシャリーブタノール889.4g(12.0モル)および塩化メチレン150.2g(1.77モル)を滴下した。得られた結晶をトルエンおよび塩化メチレンにて洗浄しろ過した。得られたろ取物を80℃、1.33×10Paで12時間乾燥し、白色の固体1341.1g(5.88モル)を得た。得られた固体は31P、HNMRスペクトルにより2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイドである事を確認した。
Preparation Example 3
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-diα-methylbenzyl-3,9-dioxide (FR-3) Thermometer, condenser, A reaction vessel equipped with a dropping funnel was charged with 816.9 g (6.0 mol) of pentaerythritol, 19.0 g (0.24 mol) of pyridine, and 2250.4 g (24.4 mol) of toluene and stirred. To the reaction vessel, 1651.8 g (12.0 mol) of phosphorus trichloride was added using the dropping funnel, and the mixture was heated and stirred at 60 ° C. after the addition was completed. After the reaction, the reaction mixture was cooled to room temperature, and 5180.7 g (61.0 mol) of methylene chloride was added to the obtained reaction product, and 889.4 g (12.0 mol) of tertiary butanol and 150. 2 g (1.77 mol) was added dropwise. The obtained crystals were washed with toluene and methylene chloride and filtered. The obtained filtered product was dried at 80 ° C. and 1.33 × 10 2 Pa for 12 hours to obtain 1341.1 g (5.88 mol) of a white solid. The obtained solid was found to be 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide according to 31 P, 1 HNMR spectrum. confirmed.

温度計、コンデンサー、滴下ロートを備えた反応容器に得られた2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイド1341.0g(5.88モル)、DMF6534.2g(89.39モル)を仕込み、攪拌した。該反応容器に氷冷下ナトリウムメトキシド648.7g(12.01モル)を添加した。氷冷にて2時間攪拌した後に、室温にて5時間攪拌を行った。さらにDMFを留去した後に、DMF2613.7g(35.76モル)を添加し、該反応混合物に氷冷にて1−フェニルエチルブロマイド2204.06g(11.91モル)滴下した。氷冷下3時間攪拌した後、DMFを留去し、水8Lを加え、析出した固体を濾取、水2Lで2回洗浄した。得られた粗精製物とメタノール4Lをコンデンサー、攪拌機を備えた反応容器に入れ、約2時間還流した。室温まで冷却後、結晶をろ過により分離し、メタノール2Lで洗浄した後、得られたろ取物を120℃、1.33×10Paで19時間乾燥し、白色の鱗片状結晶1845.9g(4.23モル)を得た。得られた固体は31PNMR、HNMRスペクトルおよび元素分析により2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ジα−メチルベンジル−3,9−ジオキサイドである事を確認した。31PNMR純度は99%であった。また、本文記載の方法で測定したHPLC純度は99%であった。酸価は0.03mgKOH/gであった。 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide obtained in a reaction vessel equipped with a thermometer, condenser and dropping funnel 1341.0 g (5.88 mol) and DMF6534.2 g (89.39 mol) were charged and stirred. Sodium methoxide 648.7 g (12.01 mol) was added to the reaction vessel under ice cooling. After stirring for 2 hours under ice cooling, the mixture was stirred for 5 hours at room temperature. After further distilling off DMF, 2613.7 g (35.76 mol) of DMF was added, and 2204.06 g (11.91 mol) of 1-phenylethyl bromide was added dropwise to the reaction mixture under ice cooling. After stirring for 3 hours under ice cooling, DMF was distilled off, 8 L of water was added, and the precipitated solid was collected by filtration and washed twice with 2 L of water. The obtained crude product and 4 L of methanol were put into a reaction vessel equipped with a condenser and a stirrer and refluxed for about 2 hours. After cooling to room temperature, the crystals were separated by filtration, washed with 2 L of methanol, and the obtained filtered product was dried at 120 ° C. and 1.33 × 10 2 Pa for 19 hours to obtain 1845.9 g of white scaly crystals ( 4.23 mol) was obtained. The obtained solid was analyzed by 31 PNMR, 1 HNMR spectrum and elemental analysis, 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-diα-methylbenzyl-3,9. -Confirmed that it was a geoxide. 31 PNMR purity was 99%. The HPLC purity measured by the method described in the text was 99%. The acid value was 0.03 mgKOH / g.

H−NMR(CDCl,300MHz):δ7.2−7.4(m,10H),4.0−4.2(m,4H),3.4−3.8(m,4H),3.3(qd,4H),1.6(ddd,6H)、31P−NMR(CDCl,120MHz):δ28.7(S)、融点:190−210℃、元素分析 計算値:C,57.80;H,6.01、測定値:C,57.83;H,5.96 1 H-NMR (CDCl 3 , 300 MHz): δ 7.2-7.4 (m, 10H), 4.0-4.2 (m, 4H), 3.4-3.8 (m, 4H), 3.3 (qd, 4H), 1.6 (ddd, 6H), 31 P-NMR (CDCl 3 , 120 MHz): δ 28.7 (S), melting point: 190-210 ° C., elemental analysis calculated value: C, 57.80; H, 6.01, measured value: C, 57.83; H, 5.96

調製例4
2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジ(2−フェニルエチル)−3,9−ジオキサイド(FR−4)の調製
温度計、コンデンサー、滴下ロートを備えた反応容器にペンタエリスリトール816.9g(6.0モル)、ピリジン19.0g(0.24モル)、トルエン2250.4g(24.4モル)を仕込み、攪拌した。該反応容器に三塩化リン1651.8g(12.0モル)を該滴下ロートを用い添加し、添加終了後、60℃にて加熱攪拌を行った。反応後、室温まで冷却し、得られた反応物に塩化メチレン5180.7g(61.0モル)を添加し、氷冷しながらターシャリーブタノール889.4g(12.0モル)および塩化メチレン150.2g(1.77モル)を滴下した。得られた結晶をトルエンおよび塩化メチレンにて洗浄しろ過した。得られたろ取物を80℃、1.33×10Paで12時間乾燥し、白色の固体1341.1g(5.88モル)を得た。得られた固体は31P、HNMRスペクトルにより2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイドである事を確認した。
Preparation Example 4
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-di (2-phenylethyl) -3,9-dioxide (FR-4) Thermometer A reaction vessel equipped with a condenser and a dropping funnel was charged with 816.9 g (6.0 mol) of pentaerythritol, 19.0 g (0.24 mol) of pyridine, and 2250.4 g (24.4 mol) of toluene and stirred. To the reaction vessel, 1651.8 g (12.0 mol) of phosphorus trichloride was added using the dropping funnel, and the mixture was heated and stirred at 60 ° C. after the addition was completed. After the reaction, the reaction mixture was cooled to room temperature, and 5180.7 g (61.0 mol) of methylene chloride was added to the obtained reaction product, and 889.4 g (12.0 mol) of tertiary butanol and 150. 2 g (1.77 mol) was added dropwise. The obtained crystals were washed with toluene and methylene chloride and filtered. The obtained filtered product was dried at 80 ° C. and 1.33 × 10 2 Pa for 12 hours to obtain 1341.1 g (5.88 mol) of a white solid. The obtained solid was found to be 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide according to 31 P, 1 HNMR spectrum. confirmed.

温度計、コンデンサー、滴下ロートを備えた反応容器に得られた2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイド1341.0g(5.88モル)、DMF6534.2g(89.39モル)を仕込み、攪拌した。該反応容器に氷冷下ナトリウムメトキシド648.7g(12.01モル)を添加した。氷冷にて2時間攪拌した後に、室温にて5時間攪拌を行った。さらにDMFを留去した後に、DMF2613.7g(35.76モル)を添加し、該反応混合物に氷冷にて(2−ブロモエチル)ベンゼン2183.8g(11.8モル)滴下した。氷冷下3時間攪拌した後、DMFを留去し、水8Lを加え、析出した固体を濾取、水2Lで2回洗浄した。得られた粗精製物とメタノール4Lをコンデンサー、攪拌機を備えた反応容器に入れ、約2時間還流した。室温まで冷却後、結晶をろ過により分離し、メタノール2Lで洗浄した後、得られたろ取物を120℃、1.33×10Paで19時間乾燥し、白色の粉末1924.4g(4.41モル)を得た。得られた固体は31PNMR、HNMRスペクトルおよび元素分析により2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ジ(2−フェニルエチル)−3,9−ジオキサイドである事を確認した。31PNMR純度は99%であった。また、本文記載の方法で測定したHPLC純度は99%であった。酸価は0.03mgKOH/gであった。 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide obtained in a reaction vessel equipped with a thermometer, condenser and dropping funnel 1341.0 g (5.88 mol) and DMF6534.2 g (89.39 mol) were charged and stirred. Sodium methoxide 648.7 g (12.01 mol) was added to the reaction vessel under ice cooling. After stirring for 2 hours under ice cooling, the mixture was stirred for 5 hours at room temperature. After further distilling off DMF, 2613.7 g (35.76 mol) of DMF was added, and 2183.8 g (11.8 mol) of (2-bromoethyl) benzene was added dropwise to the reaction mixture under ice cooling. After stirring for 3 hours under ice cooling, DMF was distilled off, 8 L of water was added, and the precipitated solid was collected by filtration and washed twice with 2 L of water. The obtained crude product and 4 L of methanol were put into a reaction vessel equipped with a condenser and a stirrer and refluxed for about 2 hours. After cooling to room temperature, the crystals were separated by filtration and washed with 2 L of methanol, and the resulting filtered product was dried at 120 ° C. and 1.33 × 10 2 Pa for 19 hours to give 1924.4 g (4. 41 mol) was obtained. The obtained solid was found to be 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-di (2-phenylethyl) -3 by 31 PNMR, 1 HNMR spectrum and elemental analysis. , 9-Dioxide was confirmed. 31 PNMR purity was 99%. The HPLC purity measured by the method described in the text was 99%. The acid value was 0.03 mgKOH / g.

H−NMR(CDCl,300MHz):δ7.1−7.4(m,10H),3.85−4.65(m,8H),2.90−3.05(m,4H),2.1−2.3(m,4H)、31P−NMR(CDCl,120MHz):δ31.5(S)、融点:245−246℃、元素分析 計算値:C,57.80;H,6.01、測定値:C,58.00;H,6.07 1 H-NMR (CDCl 3 , 300 MHz): δ 7.1-7.4 (m, 10H), 3.85-4.65 (m, 8H), 2.90-3.05 (m, 4H), 2.1-2.3 (m, 4H), 31 P-NMR (CDCl 3 , 120 MHz): δ 31.5 (S), melting point: 245-246 ° C., elemental analysis calculated: C, 57.80; H , 6.01, measured value: C, 58.00; H, 6.07

調製例5
2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジ(2−フェニルエチル)−3,9−ジオキサイド(FR−5)の調製
攪拌機、温度計、コンデンサーを有する反応容器に、3,9−ジ(2−フェニルエトキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン436.4g(1.0mol)および2−フェニルエチルブロマイド370.1g(2.0mol)を充填し、室温下攪拌しながら、乾燥窒素をフローさせた。次いでオイルバスで加熱を開始し、オイルバス温度180℃で10時間保持した。その後オイルバスを取り除き室温まで冷却した。得られた白色固体状の反応物にメタノール2000mlを加えて攪拌洗浄後、グラスフィルターを用いて白色粉末を濾別した。次いで濾別した白色粉末をとメタノール4000mlをコンデンサー、攪拌機を備えた反応容器に入れ、約2時間還流した。室温まで冷却後、結晶をろ過により分離し、メタノール2000mLで洗浄した。得られた白色粉末を100Pa、120℃で8時間乾燥させて、2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジ(2−フェニルエチル)−3,9−ジオキサイド362.3gを得た。生成物は質量スペクトル分析、H、31P核磁気共鳴スペクトル分析および元素分析でビス2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジ(2−フェニルエチル)−3,9−ジオキサイドであることを確認した。収率83%、HPLC純度99.3%、酸価0.41KOHmg/gであった。
Preparation Example 5
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-di (2-phenylethyl) -3,9-dioxide (FR-5) Stirrer, temperature In a reaction vessel having a total condenser, 3,9-di (2-phenylethoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane 436.4 g (1.0 mol) Then, 370.1 g (2.0 mol) of 2-phenylethyl bromide was charged, and dry nitrogen was allowed to flow while stirring at room temperature. Next, heating was started in an oil bath, and the oil bath temperature was maintained at 180 ° C. for 10 hours. Thereafter, the oil bath was removed and the system was cooled to room temperature. To the obtained white solid reaction product, 2000 ml of methanol was added and washed with stirring, and then the white powder was filtered off using a glass filter. Next, the filtered white powder and 4000 ml of methanol were put into a reaction vessel equipped with a condenser and a stirrer and refluxed for about 2 hours. After cooling to room temperature, the crystals were separated by filtration and washed with 2000 mL of methanol. The obtained white powder was dried at 100 Pa and 120 ° C. for 8 hours to obtain 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-di (2-phenylethyl). 362.3 g of -3,9-dioxide was obtained. The product was bis 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-di (by mass spectral analysis, 1 H, 31 P nuclear magnetic resonance spectral analysis and elemental analysis. 2-phenylethyl) -3,9-dioxide was confirmed. The yield was 83%, HPLC purity was 99.3%, and the acid value was 0.41 KOH mg / g.

H−NMR(CDCl,300MHz):δ7.1−7.4(m,10H),3.85−4.65(m,8H),2.90−3.05(m,4H),2.1−2.3(m,4H)、31P−NMR(CDCl,120MHz):δ31.5(S)、融点:245−246℃ 1 H-NMR (CDCl 3 , 300 MHz): δ 7.1-7.4 (m, 10H), 3.85-4.65 (m, 8H), 2.90-3.05 (m, 4H), 2.1-2.3 (m, 4H), 31 P-NMR (CDCl 3 , 120 MHz): δ 31.5 (S), melting point: 245-246 ° C.

調製例6
2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ビス(ジフェニルメチル)−3,9−ジオキサイド(FR−6)の調製
攪拌装置、攪拌翼、還流冷却管、温度計を備えた10リットル三つ口フラスコに、ジフェニルメチルホスホン酸ジクロリドを2058.5g(7.22モル)とペンタエリスリトール468.3g(3.44モル)、ピリジン1169.4g(14.8モル)、クロロホルム8200gを仕込み、窒素気流下、60℃まで加熱し、6時間攪拌させた。反応終了後、クロロホルムを塩化メチレンで置換し、当該反応混合物にに蒸留水6Lを加え攪拌し、白色粉末を析出させた。これを吸引濾過により濾取し、得られた白色物をメタノールを用いて洗浄した後、100℃、1.33×10Paで10時間乾燥し、白色の固体1156.2gを得た。得られた固体は31P−NMR、H−NMRスペクトルおよび元素分析により2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ビス(ジフェニルメチル)−3,9−ジオキサイドである事を確認した。31P−NMR純度は99%であった。また、本文記載の方法で測定したHPLC純度は99%であった。酸価は0.3mgKOH/gであった。
Preparation Example 6
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-bis (diphenylmethyl) -3,9-dioxide (FR-6) Stirrer, stirrer In a 10-liter three-necked flask equipped with a reflux condenser and a thermometer, 2058.5 g (7.22 mol) of diphenylmethylphosphonic dichloride, 468.3 g (3.44 mol) of pentaerythritol, 1169.4 g of pyridine ( 14.8 mol) and 8200 g of chloroform were charged, heated to 60 ° C. under a nitrogen stream, and stirred for 6 hours. After completion of the reaction, chloroform was replaced with methylene chloride, 6 L of distilled water was added to the reaction mixture and stirred to precipitate a white powder. This was collected by suction filtration, and the obtained white product was washed with methanol and then dried at 100 ° C. and 1.33 × 10 2 Pa for 10 hours to obtain 1156.2 g of a white solid. The obtained solid was found to be 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-bis (diphenylmethyl) by 31 P-NMR, 1 H-NMR spectrum and elemental analysis. It was confirmed that it was −3,9-dioxide. The 31 P-NMR purity was 99%. The HPLC purity measured by the method described in the text was 99%. The acid value was 0.3 mgKOH / g.

H−NMR(DMSO−d6,300MHz):δ7.20−7.60(m,20H),5.25(d,2H),4.15−4.55(m,8H)、31P−NMR(DMSO−d6,120MHz):δ20.9、融点:265℃、元素分析 計算値:C,66.43;H,5.39、測定値:C,66.14;H,5.41 1 H-NMR (DMSO-d6, 300 MHz): δ 7.20-7.60 (m, 20H), 5.25 (d, 2H), 4.15-4.55 (m, 8H), 31 P- NMR (DMSO-d6, 120 MHz): δ 20.9, melting point: 265 ° C., elemental analysis calculated: C, 66.43; H, 5.39, measured: C, 66.14; H, 5.41

調製例7
2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ビス(ジフェニルメチル)−3,9−ジオキサイド(FR−7)の調製
3口フラスコに攪拌機、温度計、およびコンデンサーを取り付け、窒素気流下、このフラスコに3,9−ビス(ジフェニルメトキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン40.4g(0.072モル)、ジフェニルメチルブロマイド35.5g(0.14モル)、キシレン48.0g(0.45モル)を入れ、還流温度(約130℃)で3時間加熱、攪拌した。加熱終了後、室温まで放冷し、キシレン30mLを加え、さらに30分攪拌した。析出した結晶をろ過により分離し、キシレン30mLで2回洗浄した。得られた粗精製物とメタノール100mLをナス型フラスコにいれ、コンデンサーを取り付け、約1時間還流した。室温まで冷却後、結晶をろ過により分離し、メタノール50mLで2回洗浄した後、120℃にて減圧乾燥した。得られた固体は31P−NMR、H−NMRスペクトルおよび元素分析により2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ビス(ジフェニルメチル)−3,9−ジオキサイドである事を確認した。得られた固体は白色の粉末であり、収量は36.8g、収率は91%であった。31PNMR純度は99%であった。また、本文記載の方法で測定したHPLC純度は99%であった。酸価は0.07mgKOH/gであった。
Preparation Example 7
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-bis (diphenylmethyl) -3,9-dioxide (FR-7) , A thermometer, and a condenser, and 40.4 g of 3,9-bis (diphenylmethoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane was added to the flask under a nitrogen stream. (0.072 mol), 35.5 g (0.14 mol) of diphenylmethyl bromide and 48.0 g (0.45 mol) of xylene were added, and the mixture was heated and stirred at a reflux temperature (about 130 ° C.) for 3 hours. After heating, the mixture was allowed to cool to room temperature, 30 mL of xylene was added, and the mixture was further stirred for 30 minutes. The precipitated crystals were separated by filtration and washed twice with 30 mL of xylene. The obtained crude product and 100 mL of methanol were placed in an eggplant type flask, a condenser was attached, and the mixture was refluxed for about 1 hour. After cooling to room temperature, the crystals were separated by filtration, washed twice with 50 mL of methanol, and dried under reduced pressure at 120 ° C. The obtained solid was found to be 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-bis (diphenylmethyl) by 31 P-NMR, 1 H-NMR spectrum and elemental analysis. It was confirmed that it was −3,9-dioxide. The obtained solid was a white powder, the yield was 36.8 g, and the yield was 91%. 31 PNMR purity was 99%. The HPLC purity measured by the method described in the text was 99%. The acid value was 0.07 mg KOH / g.

H−NMR(DMSO−d,300MHz):δ7.2−7.6(m,20H),6.23(d,J=9Hz、2H),3.89−4.36(m,6H),3.38−3.46(m,2H)、31P−NMR(CDCl,120MHz):δ20.9(S)、融点:265℃、元素分析 計算値:C,66.43;H,5.39、測定値:C,66.14;H,5.41 1 H-NMR (DMSO-d 6 , 300 MHz): δ 7.2-7.6 (m, 20H), 6.23 (d, J = 9 Hz, 2H), 3.89-4.36 (m, 6H) ), 3.38-3.46 (m, 2H), 31 P-NMR (CDCl 3 , 120 MHz): δ 20.9 (S), melting point: 265 ° C., elemental analysis calculated: C, 66.43; H , 5.39, found: C, 66.14; H, 5.41

調製例8
ポリカーボネート樹脂(PC−1)の調製
イソソルビド7307重量部(50モル)とジフェニルカーボネート10709重量部(50モル)とを反応器に入れ、重合触媒としてテトラメチルアンモニウムヒドロキシドを4.8重量部(ジフェニルカーボネート成分1モルに対して1×10−4モル)、および水酸化ナトリウムを5.0×10−3重量部(ジフェニルカーボネート成分1モルに対して0.25×10−6モル)仕込んで窒素雰囲気下常圧で180℃に加熱し溶融させた。
Preparation Example 8
Preparation of polycarbonate resin (PC-1) 7307 parts by weight (50 moles) of isosorbide and 10709 parts by weight (50 moles) of diphenyl carbonate were placed in a reactor, and 4.8 parts by weight (diphenyl) of tetramethylammonium hydroxide was used as a polymerization catalyst. 1 × 10 −4 mol per 1 mol of carbonate component) and 5.0 × 10 −3 parts by weight of sodium hydroxide (0.25 × 10 −6 mol per mol of diphenyl carbonate component) It was melted by heating to 180 ° C. under atmospheric pressure and normal pressure.

撹拌下、反応槽内を30分かけて徐々に減圧し、生成するフェノールを留去しながら13.3×10−3MPaまで減圧した。この状態で20分反応させた後に200℃に昇温した後、20分かけて徐々に減圧し、フェノールを留去しながら4.00×10−3MPaで20分間反応させ、さらに、220℃に昇温し、30分間、250℃に昇温し30分間反応させた。 Under stirring, the pressure in the reaction vessel was gradually reduced over 30 minutes, and the pressure was reduced to 13.3 × 10 −3 MPa while the produced phenol was distilled off. After reacting in this state for 20 minutes, the temperature was raised to 200 ° C., then the pressure was gradually reduced over 20 minutes, and the reaction was carried out at 4.00 × 10 −3 MPa for 20 minutes while distilling off the phenol. The mixture was heated to 250 ° C. for 30 minutes and reacted for 30 minutes.

次いで、徐々に減圧し、2.67×10−3MPaで10分間、1.33×10−3MPaで10分間反応を続行し、さらに減圧し、4.00×10−5MPaに到達したら、徐々に260℃まで昇温し、最終的に260℃、6.66×10−5MPaで1時間反応せしめた。反応後のポリマーをペレット化し、比粘度が0.33のペレットを得た。このペレットのガラス転移温度は165℃、5%重量減少温度は355℃であった。 Next, the pressure was gradually reduced, and the reaction was continued at 2.67 × 10 −3 MPa for 10 minutes and 1.33 × 10 −3 MPa for 10 minutes, and further reduced in pressure to reach 4.00 × 10 −5 MPa. The temperature was gradually raised to 260 ° C., and the reaction was finally carried out at 260 ° C. and 6.66 × 10 −5 MPa for 1 hour. The polymer after the reaction was pelletized to obtain a pellet having a specific viscosity of 0.33. The glass transition temperature of this pellet was 165 ° C., and the 5% weight loss temperature was 355 ° C.

調製例9
ポリカーボネート樹脂(PC−2)の調製
最終的に255℃、6.66×10−5MPaで30分反応せしめた以外は参考例8と同様にして、比粘度が0.23のペレットを得た。このペレットのガラス転移温度は158℃、5%重量減少温度は353℃であった。
Preparation Example 9
Preparation of polycarbonate resin (PC-2) Pellets having a specific viscosity of 0.23 were obtained in the same manner as in Reference Example 8 except that the reaction was finally performed at 255 ° C. and 6.66 × 10 −5 MPa for 30 minutes. . The glass transition temperature of this pellet was 158 ° C., and the 5% weight loss temperature was 353 ° C.

調製例10
ポリカーボネート樹脂(PC−3)の調製
イソソルビド6722重量部(46モル)とジフェニルカーボネート10709重量部(50モル)と1,3−プロパンジオール304重量部(4モル)とした以外は参考例8と同様にして比粘度が0.28のペレットを得た。このペレットのガラス転移温度は146℃、5%重量減少温度は342℃であった。
Preparation Example 10
Preparation of polycarbonate resin (PC-3) Same as Reference Example 8 except that 6722 parts by weight (46 moles) of isosorbide, 10709 parts by weight (50 moles) of diphenyl carbonate and 304 parts by weight (4 moles) of 1,3-propanediol Thus, a pellet having a specific viscosity of 0.28 was obtained. The glass transition temperature of this pellet was 146 ° C., and the 5% weight loss temperature was 342 ° C.

実施例、比較例で用いる各成分は以下のものを用いた。
(I)ポリカーボネート樹脂(A成分)
(i)調製例8で合成したポリカーボネート樹脂(以下PC−1と称する)
(ii)調製例9で合成したポリカーボネート樹脂(以下PC−2と称する)
(iii)調製例10で合成したポリカーボネート樹脂(以下PC−3と称する)
(II)有機リン化合物(B成分)
(i)調製例1で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ジベンジル−3,9−ジオキサイド{式(1−a)のリン系化合物(以下FR−1と称する)}
(ii)調製例2で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ジベンジル−3,9−ジオキサイド{式(1−a)のリン系化合物(以下FR−2と称する)}
(iii)調製例3で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ジα−メチルベンジル−3,9−ジオキサイド{式(1−b)のリン系化合物(以下FR−3と称する)}
(iv)調製例4で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ジ(2−フェニルエチル)−3,9−ジオキサイド{式(1−c)のリン系化合物(以下FR−4と称する)}
(v)調製例5で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ジ(2−フェニルエチル)−3,9−ジオキサイド{式(1−c)のリン系化合物(以下FR−5と称する)}
(vi)調製例6で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ビス(ジフェニルメチル)−3,9−ジオキサイド{式(1−d)のリン系化合物(以下FR−6と称する)}
(vii)調製例7で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5,5]ウンデカン,3,9−ビス(ジフェニルメチル)−3,9−ジオキサイド{式(1−d)のリン系化合物(以下FR−7と称する)}
(III)その他の有機リン化合物
(i)トリフェニルホスフェート(大八化学工業(株)製TPP)を用いた(以下TPPと称する)
(ii)1,3−フェニレンビス[ジ(2,6−ジメチルフェニル)フォスフェート](大八化学工業(株)製PX−200)を用いた(以下PX−200と称する)
The following were used for each component used in Examples and Comparative Examples.
(I) Polycarbonate resin (component A)
(I) Polycarbonate resin synthesized in Preparation Example 8 (hereinafter referred to as PC-1)
(Ii) Polycarbonate resin synthesized in Preparation Example 9 (hereinafter referred to as PC-2)
(Iii) Polycarbonate resin synthesized in Preparation Example 10 (hereinafter referred to as PC-3)
(II) Organophosphorus compound (component B)
(I) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-dibenzyl-3,9-dioxide synthesized in Preparation Example 1 {Formula (1-a) Phosphorus compound (hereinafter referred to as FR-1)}
(Ii) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-dibenzyl-3,9-dioxide synthesized in Preparation Example 2 {Formula (1-a) Phosphorus compound (hereinafter referred to as FR-2)}
(Iii) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-diα-methylbenzyl-3,9-dioxide synthesized in Preparation Example 3 {formula ( 1-b) phosphorus compound (hereinafter referred to as FR-3)}
(Iv) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-di (2-phenylethyl) -3,9-dioxide synthesized in Preparation Example 4 Phosphorus compound of formula (1-c) (hereinafter referred to as FR-4)}
(V) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-di (2-phenylethyl) -3,9-dioxide synthesized in Preparation Example 5 Phosphorus compound of formula (1-c) (hereinafter referred to as FR-5)}
(Vi) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-bis (diphenylmethyl) -3,9-dioxide synthesized in Preparation Example 6 {formula ( 1-d) phosphorus compound (hereinafter referred to as FR-6)}
(Vii) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane, 3,9-bis (diphenylmethyl) -3,9-dioxide synthesized in Preparation Example 7 {formula ( 1-d) phosphorus compound (hereinafter referred to as FR-7)}
(III) Other organophosphorus compounds (i) Triphenyl phosphate (TPP manufactured by Daihachi Chemical Industry Co., Ltd.) was used (hereinafter referred to as TPP).
(Ii) 1,3-phenylenebis [di (2,6-dimethylphenyl) phosphate] (PX-200 manufactured by Daihachi Chemical Industry Co., Ltd.) was used (hereinafter referred to as PX-200).

[実施例1〜21および比較例1〜9]
表1〜3記載の各成分を表1〜3記載の量(重量部)でタンブラーにて配合し、15mmφ二軸押出機(テクノベル製、KZW15)にてペレット化した。得られたペレットを130℃の熱風乾燥機にて4時間乾燥を行った。乾燥したペレットを射出成形機((株)日本製鋼所製 J75EIII)にて成形した。成形板を用いて評価した結果を表1〜3に示した。
[Examples 1 to 21 and Comparative Examples 1 to 9]
Each component described in Tables 1 to 3 was blended with a tumbler in the amounts (parts by weight) described in Tables 1 to 3, and pelletized with a 15 mmφ twin screw extruder (manufactured by Technobel, KZW15). The obtained pellets were dried with a hot air dryer at 130 ° C. for 4 hours. The dried pellets were molded with an injection molding machine (J75EIII manufactured by Nippon Steel Works). The result evaluated using the shaping | molding board was shown to Tables 1-3.

Figure 0005378712
Figure 0005378712

Figure 0005378712
Figure 0005378712

Figure 0005378712
Figure 0005378712

Claims (16)

(A)下記式(A−1)で表されるカーボネート構成単位を含むポリカーボネート樹脂(A−1成分)を少なくとも50重量%含有する樹脂成分(A成分)100重量部に対して、(B)下記式(1)で表される有機リン化合物(B成分)1〜100重量部を含有する難燃性樹脂組成物。
Figure 0005378712
Figure 0005378712
(式中、X、Xは同一もしくは異なり、下記式(2)で表される芳香族置換アルキル基である。)
Figure 0005378712
(式中、ALは炭素数1〜5の分岐状または直鎖状の脂肪族炭化水素基であり、Arは置換基を有しても良いフェニル基、ナフチル基、またはアントリル基である。nは1〜3の整数を示し、ArはAL中の任意の炭素原子に結合することができる。)
(A) With respect to 100 parts by weight of a resin component (component A) containing at least 50% by weight of a polycarbonate resin (component A-1) containing a carbonate constituent unit represented by the following formula (A-1), (B) A flame-retardant resin composition containing 1 to 100 parts by weight of an organic phosphorus compound (component B) represented by the following formula (1).
Figure 0005378712
Figure 0005378712
(In formula, X < 1 >, X < 2 > is the same or different, and is an aromatic substituted alkyl group represented by following formula (2).)
Figure 0005378712
(In the formula, AL is a branched or linear aliphatic hydrocarbon group having 1 to 5 carbon atoms, and Ar is a phenyl group, a naphthyl group, or an anthryl group which may have a substituent. Represents an integer of 1 to 3, and Ar can be bonded to any carbon atom in AL.)
ポリカーボネート樹脂(A−1成分)は、ガラス転移温度(Tg)が100℃〜165℃であり、かつ5%重量減少温度(Td)が300℃〜400℃である請求項1記載の難燃性樹脂組成物。   The flame retardancy according to claim 1, wherein the polycarbonate resin (component A-1) has a glass transition temperature (Tg) of 100 ° C to 165 ° C and a 5% weight loss temperature (Td) of 300 ° C to 400 ° C. Resin composition. 式(A−1)で表されるカーボネート構成単位がイソソルビド(1,4:3,6−ジアンヒドロ−D−ソルビトール)由来のカーボネート構成単位である請求項1記載の難燃性樹脂組成物。   The flame retardant resin composition according to claim 1, wherein the carbonate constituent unit represented by the formula (A-1) is a carbonate constituent unit derived from isosorbide (1,4: 3,6-dianhydro-D-sorbitol). 有機リン化合物(B成分)が下記式(3)および(4)で表される有機リン化合物よりなる群から選択される1種または2種以上の混合物であることを特徴とする請求項1記載の難燃性樹脂組成物。
Figure 0005378712
(式中、R、Rは同一または異なっていてもよく、置換基を有しても良いフェニル基、ナフチル基、またはアントリル基である。R、R、R、Rは同一または異なっていてもよく、水素原子、炭素数1〜4の分岐状または直鎖状のアルキル基、置換基を有しても良いフェニル基、ナフチル基、またはアントリル基から選択される置換基である。)
Figure 0005378712
(式中、ArおよびArは、同一又は異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。R11、R12、R13およびR14は、同一又は異なっていても良く、水素原子、炭素数1〜3の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。ALおよびALは、同一又は異なっていても良く、炭素数1〜4の分岐状または直鎖状の脂肪族炭化水素基である。ArおよびArは、同一又は異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。pおよびqは0〜3の整数を示し、ArおよびArはそれぞれALおよびALの任意の炭素原子に結合することができる。)
2. The organophosphorus compound (component B) is one or a mixture of two or more selected from the group consisting of organophosphorus compounds represented by the following formulas (3) and (4). Flame retardant resin composition.
Figure 0005378712
(In the formula, R 2 and R 5 may be the same or different, and may be a phenyl group, a naphthyl group, or an anthryl group that may have a substituent. R 1 , R 3 , R 4 , R 6 are Substituents which may be the same or different and are selected from a hydrogen atom, a branched or straight chain alkyl group having 1 to 4 carbon atoms, an optionally substituted phenyl group, naphthyl group, or anthryl group .)
Figure 0005378712
(In formula, Ar < 1 > and Ar < 2 > may be the same or different, and are a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent in the aromatic ring. R < 11 >, R < 12 >, R 13 and R 14 may be the same or different, and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and have a substituent in the aromatic ring. AL 1 and AL 2 may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms, Ar 3 and Ar 4 may be the same or It may be different, and may be a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring, p and q each represent an integer of 0 to 3, and Ar 3 and Ar 4 each represent AL 1 Contact It can be attached to any carbon atom of the fine AL 2.)
有機リン化合物(B成分)が、下記式(5)で表される請求項1記載の難燃性樹脂組成物。
Figure 0005378712
(式中、R21、R22は同一もしくは異なり、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。)
The flame retardant resin composition according to claim 1, wherein the organophosphorus compound (component B) is represented by the following formula (5).
Figure 0005378712
(Wherein R 21 and R 22 are the same or different and are a phenyl group, a naphthyl group or an anthryl group, and the aromatic ring may have a substituent.)
有機リン化合物(B成分)が、下記式(1−a)で示される化合物である請求項1記載の難燃性樹脂組成物。
Figure 0005378712
The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component B) is a compound represented by the following formula (1-a).
Figure 0005378712
有機リン化合物(B成分)が、下記式(6)で表される請求項1記載の難燃性樹脂組成物。
Figure 0005378712
(式中、R31およびR34は、同一又は異なっていても良く、水素原子または炭素数1〜3の脂肪族炭化水素基である。R33およびR36は、同一または異なっていても良く、炭素数1〜4の脂肪族炭化水素基である。R32およびR35は、同一または異なっていてもよく、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。)
The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component B) is represented by the following formula (6).
Figure 0005378712
(In the formula, R 31 and R 34 may be the same or different, and are a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. R 33 and R 36 may be the same or different. And an aliphatic hydrocarbon group having 1 to 4 carbon atoms, R 32 and R 35 may be the same or different and each is a phenyl group, a naphthyl group or an anthryl group, and has a substituent in the aromatic ring. May be.)
有機リン化合物(B成分)が、下記式(1−b)で示される化合物である請求項1記載の難燃性樹脂組成物。
Figure 0005378712
The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component B) is a compound represented by the following formula (1-b).
Figure 0005378712
有機リン化合物(B成分)が、下記式(7)で表される請求項1記載の難燃性樹脂組成物。
Figure 0005378712
(式中、ArおよびArは、同一又は異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。R11、R12、R13およびR14は、同一又は異なっていても良く、水素原子、炭素数1〜3の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。ALおよびALは、同一又は異なっていても良く、炭素数1〜4の分岐状または直鎖状の脂肪族炭化水素基である。ArおよびArは、同一又は異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。pおよびqは0〜3の整数を示し、ArおよびArはそれぞれALおよびALの任意の炭素原子に結合することができる。)
The flame retardant resin composition according to claim 1, wherein the organophosphorus compound (component B) is represented by the following formula (7).
Figure 0005378712
(In formula, Ar < 1 > and Ar < 2 > may be the same or different, and are a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent in the aromatic ring. R < 11 >, R < 12 >, R 13 and R 14 may be the same or different, and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and have a substituent in the aromatic ring. AL 1 and AL 2 may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms, Ar 3 and Ar 4 may be the same or It may be different, and may be a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring, p and q each represent an integer of 0 to 3, and Ar 3 and Ar 4 each represent AL 1 Contact It can be attached to any carbon atom of the fine AL 2.)
有機リン化合物(B成分)が、下記式(1−c)で示される化合物である請求項1記載の難燃性樹脂組成物。
Figure 0005378712
The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component B) is a compound represented by the following formula (1-c).
Figure 0005378712
有機リン化合物(B成分)が、下記式(8)で表される請求項1記載の難燃性樹脂組成物。
Figure 0005378712
(式中、R41およびR44は、同一又は異なっていても良く、水素原子、炭素数1〜4の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。R42、R43、R45およびR46は、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。)
The flame retardant resin composition according to claim 1, wherein the organophosphorus compound (component B) is represented by the following formula (8).
Figure 0005378712
(In the formula, R 41 and R 44 may be the same or different and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and substituted on the aromatic ring thereof. R 42 , R 43 , R 45 and R 46 may be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and have a substituent on the aromatic ring. May be.)
有機リン化合物(B成分)が、下記式(1−d)で示される化合物である請求項1記載の難燃性樹脂組成物。
Figure 0005378712
The flame retardant resin composition according to claim 1, wherein the organophosphorus compound (component B) is a compound represented by the following formula (1-d).
Figure 0005378712
有機リン化合物(B成分)の酸価が0.7mgKOH/g以下である請求項1記載の難燃性樹脂組成物。   The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component B) has an acid value of 0.7 mg KOH / g or less. UL−94規格の難燃レベルにおいて、少なくともV−2を達成する事ができる請求項1記載の難燃性樹脂組成物。   The flame-retardant resin composition according to claim 1, wherein at least V-2 can be achieved at a flame-retardant level of UL-94 standard. A成分100重量部に対して、B成分が2〜70重量部の割合で含有する請求項1記載の難燃性樹脂組成物。   The flame-retardant resin composition according to claim 1, wherein the B component is contained in a proportion of 2 to 70 parts by weight with respect to 100 parts by weight of the A component. 請求項1記載の難燃性樹脂組成物より形成された成形品。   A molded article formed from the flame retardant resin composition according to claim 1.
JP2008160513A 2008-06-19 2008-06-19 Flame retardant resin composition and molded product therefrom Active JP5378712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008160513A JP5378712B2 (en) 2008-06-19 2008-06-19 Flame retardant resin composition and molded product therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160513A JP5378712B2 (en) 2008-06-19 2008-06-19 Flame retardant resin composition and molded product therefrom

Publications (2)

Publication Number Publication Date
JP2010001362A JP2010001362A (en) 2010-01-07
JP5378712B2 true JP5378712B2 (en) 2013-12-25

Family

ID=41583344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160513A Active JP5378712B2 (en) 2008-06-19 2008-06-19 Flame retardant resin composition and molded product therefrom

Country Status (1)

Country Link
JP (1) JP5378712B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011070689A1 (en) * 2009-12-10 2013-04-22 帝人株式会社 Flame retardant resin composition and molded product therefrom

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6188272B2 (en) * 2010-09-15 2017-08-30 三菱ケミカル株式会社 Polycarbonate resin composition and molded product
JP6179318B2 (en) * 2012-09-26 2017-08-16 三菱ケミカル株式会社 Method for producing polycarbonate resin

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2938464A1 (en) * 1979-09-22 1981-04-09 Bayer Ag, 5090 Leverkusen THERMOPLASTIC POLYCARBONATES, THEIR PRODUCTION AND THEIR USE AS MOLDED BODIES AND FILMS
JP4536993B2 (en) * 2002-06-19 2010-09-01 帝人化成株式会社 Flame retardant resin composition and molded product therefrom
JP2004018766A (en) * 2002-06-19 2004-01-22 Teijin Chem Ltd Flame-retardant resin composition and molding prepared therefrom
JP2004018767A (en) * 2002-06-19 2004-01-22 Teijin Chem Ltd Flame-retardant resin composition and molding prepared therefrom
JP2004018765A (en) * 2002-06-19 2004-01-22 Teijin Chem Ltd Flame-retardant resin composition and molding prepared therefrom
JP2004035469A (en) * 2002-07-03 2004-02-05 Teijin Chem Ltd Method for producing cyclic phosphonate
JP2004035470A (en) * 2002-07-03 2004-02-05 Teijin Chem Ltd Method for producing cyclic phosphonate
JP2004099550A (en) * 2002-09-11 2004-04-02 Teijin Chem Ltd Method for producing pentaerythritol diphosphonate
US7365148B2 (en) * 2003-06-16 2008-04-29 Teijin Limited Polycarbonate and process for producing the same
JP5532531B2 (en) * 2006-06-19 2014-06-25 三菱化学株式会社 Polycarbonate copolymer and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011070689A1 (en) * 2009-12-10 2013-04-22 帝人株式会社 Flame retardant resin composition and molded product therefrom

Also Published As

Publication number Publication date
JP2010001362A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5371974B2 (en) Flame retardant resin composition and molded product therefrom
JP5622717B2 (en) Flame retardant resin composition and molded product therefrom
KR20120029395A (en) Flame-retardant resin composition and articles molded therefrom
WO2012057297A1 (en) Flame-retardant resin composition and molded article produced from same
JP5563249B2 (en) Flame retardant resin composition and molded product therefrom
JP5378712B2 (en) Flame retardant resin composition and molded product therefrom
JP6659590B2 (en) Flame retardant resin composition and molded article therefrom
JP5881285B2 (en) Flame retardant resin composition and molded product therefrom
US8618196B2 (en) Flame retardant resin composition and molded article thereof
JP5346708B2 (en) Flame retardant resin composition and molded product therefrom
TWI448543B (en) A flame retardant resin composition and a molded article derived
JP5420987B2 (en) Flame retardant resin composition and molded product therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Ref document number: 5378712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150