Nothing Special   »   [go: up one dir, main page]

JP5378659B2 - Precious metal loading method - Google Patents

Precious metal loading method Download PDF

Info

Publication number
JP5378659B2
JP5378659B2 JP2007151742A JP2007151742A JP5378659B2 JP 5378659 B2 JP5378659 B2 JP 5378659B2 JP 2007151742 A JP2007151742 A JP 2007151742A JP 2007151742 A JP2007151742 A JP 2007151742A JP 5378659 B2 JP5378659 B2 JP 5378659B2
Authority
JP
Japan
Prior art keywords
noble metal
complex solution
metal complex
solution
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007151742A
Other languages
Japanese (ja)
Other versions
JP2008302304A (en
Inventor
城本武志
松本茂二
渥美健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2007151742A priority Critical patent/JP5378659B2/en
Publication of JP2008302304A publication Critical patent/JP2008302304A/en
Application granted granted Critical
Publication of JP5378659B2 publication Critical patent/JP5378659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Description

本発明は、触媒の製造において基材へ貴金属を担持する貴金属担持方法に関する。 The present invention relates to a noble metal-supported how to support a noble metal to the substrate in the preparation of the catalyst.

排ガス浄化用触媒として、少なくとも一方の端部に開口を有する孔を複数備え、前記孔は他方の端部と連通する基材と、その基材に形成された孔の表面を被覆する無機酸化物等からなるコート層と、コート層に担持される貴金属等の触媒成分と、から構成されるものがある。   As an exhaust gas purifying catalyst, an inorganic oxide is provided with a plurality of holes having an opening at at least one end, the hole communicating with the other end, and a surface of the hole formed in the base And a catalyst component such as a noble metal supported on the coat layer.

従来、上述した排ガス浄化用触媒を製造する際には、貴金属溶液の槽中に、コート層を有する基材(担体)を浸漬することによって、コート層に貴金属を担持させていた(特許文献1参照)。
特開平9−141092号公報
Conventionally, when manufacturing the above-described exhaust gas purifying catalyst, a noble metal is supported on the coat layer by immersing a base material (support) having the coat layer in a tank of the noble metal solution (Patent Document 1). reference).
JP-A-9-141092

しかしながら、上述した基材を浸漬する方法によると、担持される貴金属の量は、貴金属溶液の濃度,浸漬時間などにより定まるが、孔の表面のコート層に対する吸着速度の基材ごとの違いから、コート層に担持される貴金属の量が変化するため、目的とする量の貴金属を担持することが難しく、基材ごとの貴金属担持量のばらつきが大きくなるという問題があった。   However, according to the above-mentioned method of immersing the base material, the amount of the noble metal to be supported is determined by the concentration of the noble metal solution, the immersion time, etc. Since the amount of the noble metal supported on the coating layer changes, there is a problem that it is difficult to support the target amount of the noble metal, and the variation in the amount of the noble metal supported by the base material becomes large.

本発明は、このような問題に鑑みてなされたものであり、基材への貴金属担持量のばらつきを低減する貴金属担持方法を提案する。 The present invention has been made in view of such problems, we propose a noble metal-supported how to reduce variations of the support amount of precious metal to the substrate.

上述した問題点を解決するためになされた請求項1記載の貴金属担持方法は、少なくとも一方の端部Aに開口を有する孔を複数備え、前記孔は他方の端部Bと連通する基材へ貴金属を担持させる貴金属担持方法であって、前記貴金属および増粘剤を含み、せん断速度4sec -1 における粘度が1000〜7000mPa・sである貴金属溶液を前記端部Aに所定量供給し、前記端部Aに供給された前記貴金属溶液を前記端部Bから吸引することで、前記孔の表面に前記貴金属溶液を伸展させる第1伸展工程を有することを特徴とする貴金属担持方法である。 The noble metal supporting method according to claim 1, which is made to solve the above-described problem, includes a plurality of holes having openings at at least one end A, and the holes communicate with the other end B. a noble metal-supported method of supporting the noble metal, the saw including a noble metal and a thickening agent, a viscosity at a shear rate of 4 sec -1 is a predetermined amount supplied noble metal solution is 1000~7000mPa · s to the end a, the It is a noble metal carrying method characterized by having a first extension step of drawing the noble metal solution supplied to the end A from the end B to extend the noble metal solution to the surface of the hole.

このような貴金属担持方法によると、基材の端部Aに供給された貴金属を含む貴金属溶液が端部Bへ吸引されることで、孔の表面に貴金属溶液が伸展される。貴金属溶液が余った場合には、端部Bから排出される。よって、上述した第1伸展工程後に基材に担持される貴金属量は、端部Aに供給された貴金属量から、端部Bにて排出された貴金属量を差し引いた量(排出されない場合は、端部Aに供給された量)となる。   According to such a noble metal supporting method, the noble metal solution containing the noble metal supplied to the end portion A of the base material is sucked into the end portion B, so that the noble metal solution is extended on the surface of the hole. When the noble metal solution remains, it is discharged from the end B. Therefore, the amount of noble metal supported on the base material after the first extension step described above is the amount obtained by subtracting the amount of noble metal discharged at the end B from the amount of noble metal supplied to the end A (if not discharged, Amount supplied to the end A).

そのため、このような貴金属担持方法では、孔の表面のコート層における吸着速度の影響などを受け難く、基材に担持される貴金属量を容易に調整することができるため、ロット間での貴金属担持量のばらつきを低減することができる。   Therefore, in such a noble metal loading method, the amount of noble metal supported on the base material can be easily adjusted without being affected by the adsorption rate in the coating layer on the surface of the hole, so that noble metal loading between lots is possible. Variation in the amount can be reduced.

また、吸着速度の影響を受け難いため、同一の基材における複数の孔間での貴金属担持量のばらつきも低減することができる。よって、供給した貴金属は各孔にほぼ均等に行き渡ることになるため、すべての孔に所定量以上の貴金属を担持させたいときでも、過剰に貴金属溶液を端部Aへ供給する必要がないので、端部Bからの排出量は多くならない。
また、このような貴金属担持方法によると、端部Aおよび端部Bにおいて供給された貴金属溶液を吸引した後に、粘度が低すぎるために基材の孔の表面に伸展した貴金属溶液が流れて垂れ落ちることや、流れた貴金属溶液が孔の表面に溜まって孔を閉塞することなどを抑制できる。さらに、貴金属溶液の粘度が高いことで、貴金属溶液に含まれる貴金属の分散がよくなること,および,基材に伸展した後における貴金属の孔内での移動が抑制されることから、貴金属担持量の基材の内部におけるばらつきも低減できる。
Moreover, since it is difficult to be influenced by the adsorption rate, it is possible to reduce variation in the amount of the noble metal supported between a plurality of holes in the same substrate. Therefore, since the supplied noble metal is distributed almost uniformly in each hole, even when it is desired to carry a predetermined amount or more of noble metal in all the holes, it is not necessary to supply the noble metal solution to the end A excessively. The amount of discharge from the end B does not increase.
Also, according to such a noble metal loading method, after the noble metal solution supplied at the end A and the end B is sucked, the noble metal solution extended on the surface of the hole of the base material flows and drips because the viscosity is too low. It is possible to prevent the falling precious metal solution from being accumulated on the surface of the hole and closing the hole. Furthermore, since the viscosity of the noble metal solution is high, the dispersion of the noble metal contained in the noble metal solution is improved, and the movement of the noble metal in the pores after extending to the base material is suppressed. Variations within the substrate can also be reduced.

上記第1伸展工程において、端部Aに供給された貴金属溶液を端部Bに吸引するタイミングは特に限定されない。例えば、端部Aに貴金属溶液が供給されている際に、同時に吸引を行ってもよいし、端部Aに貴金属溶液が所定量供給された後に、吸引を行ってもよい。   In the first extending step, the timing for sucking the noble metal solution supplied to the end A to the end B is not particularly limited. For example, suction may be performed at the same time when the noble metal solution is supplied to the end A, or suction may be performed after a predetermined amount of the noble metal solution is supplied to the end A.

なお、ここでいう基材とは、触媒の基材として用いることができるものであればよい。例えば、セラミックス等の耐熱性材料からなり、軸方向に貫通孔が形成された複数のセルからなるハニカム形状のモノリス基材や、基材の軸方向の両端部において、各端部から他方の端部に向けて延びる孔が複数形成されており、各孔の側壁に形成される細孔を通して各孔が連通するフィルター基材、または、耐熱合金を用いた厚さ数十μmの平板および波板を、交互に積層して巻き回して形成されるメタル基材、などが考えられる。   In addition, the base material here should just be used as a base material of a catalyst. For example, a honeycomb-shaped monolith substrate made of a heat-resistant material such as ceramics and having a plurality of axially formed through-holes, or both ends in the axial direction of the substrate from each end to the other end A plurality of holes extending toward the part, and a filter base material in which the holes communicate with each other through the pores formed on the side walls of the holes, or a flat plate and corrugated plate having a thickness of several tens of μm using a heat-resistant alloy The metal base material etc. which are formed by laminating | stacking alternately and winding are considered.

また、ここでいう貴金属溶液とは、貴金属が錯体を形成するなどして溶媒に溶解してなるものや、貴金属または貴金属化合物の微粒子が溶媒に混合してなるものなどが該当する。   The noble metal solution referred to here includes a solution in which a noble metal is dissolved in a solvent by forming a complex, or a solution in which fine particles of a noble metal or a noble metal compound are mixed in a solvent.

ところで、請求項1に記載の貴金属担持方法を、請求項2に記載のような方法としてもよい。それは、請求項1の方法の後に、貴金属および増粘剤を含む貴金属溶液を前記端部Bに所定量供給し、前記端部Bに供給された前記貴金属溶液を前記端部Aから吸引することで、前記孔の表面に前記貴金属溶液を伸展させる第2伸展工程を有する貴金属担持方法である。   By the way, the noble metal supporting method described in claim 1 may be a method as described in claim 2. After the method of claim 1, a predetermined amount of a noble metal solution containing a noble metal and a thickener is supplied to the end B, and the noble metal solution supplied to the end B is sucked from the end A. And a noble metal supporting method having a second extension step of extending the noble metal solution on the surface of the hole.

このような貴金属担持方法によると、所定量の貴金属溶液を、第1伸展工程にて端部Aから基材の孔の表面に伸展させた後、第2伸展工程にて端部Bからもその孔の表面に伸展させることができる。また、第1伸展工程にて貴金属溶液を伸展させたその部分の上に、第2伸展工程にて貴金属溶液を重ねて伸展することもできる。   According to such a noble metal loading method, after a predetermined amount of the noble metal solution is extended from the end A to the surface of the hole of the base material in the first extension step, the noble metal solution is also applied from the end B in the second extension step. It can be extended to the surface of the hole. In addition, the noble metal solution can be extended and overlapped on the portion where the noble metal solution is extended in the first extension step, in the second extension step.

また、この請求項2に記載の貴金属担持方法において、端部Aおよび端部Bに供給される貴金属溶液は、それぞれ同じ貴金属を含む貴金属溶液であってもよいが、請求項3のように、前記第1伸展工程において前記孔の表面に伸展される前記貴金属溶液と、前記第2伸展工程において前記孔の表面に伸展される前記貴金属溶液とが、それぞれ異なる貴金属を含んでいるものであってもよい。   Further, in the noble metal loading method according to claim 2, the noble metal solutions supplied to the end A and the end B may be noble metal solutions each containing the same noble metal, but as in claim 3, The noble metal solution extended on the surface of the hole in the first extension step and the noble metal solution extended on the surface of the hole in the second extension step contain different noble metals, respectively. Also good.

このような貴金属担持方法によると、それぞれの端部から基材の孔の表面に対して異なる貴金属溶液を伸展することができるため、端部A側と端部B側で異なる貴金属を担持させることができる。さらに、それぞれの端部に供給される貴金属溶液における貴金属および増粘剤の濃度および量を調整して、基材の孔におけるそれぞれの端部から貴金属溶液が伸展する長さを調整することができるため、それぞれの端部から貴金属が担持される長さを調整することができる。また、第1伸展工程にて貴金属溶液を伸展させたその部分の上に、第2伸展工程にて異なる貴金属溶液を重ねて伸展することもできる。   According to such a noble metal supporting method, different noble metal solutions can be extended from the respective end portions to the surface of the hole of the base material, so that different noble metals are supported on the end A side and the end B side. Can do. Further, the length and length of the noble metal solution extending from each end of the hole of the substrate can be adjusted by adjusting the concentration and amount of the noble metal and the thickener in the noble metal solution supplied to each end. Therefore, it is possible to adjust the length in which the noble metal is supported from each end. Further, different noble metal solutions can be extended in the second extension step on the portion where the noble metal solution has been extended in the first extension step.

ところで、上述した請求項1から請求項3に記載の貴金属担持方法において、貴金属溶液として、請求項4に記載のように、せん断速度380sec-1における粘度が100〜300mPa・sであるものを用いてもよい。 By the way, in the above-mentioned noble metal supporting method according to claims 1 to 3, a noble metal solution having a viscosity of 100 to 300 mPa · s at a shear rate of 380 sec −1 as described in claim 4 is used. May be.

このような貴金属担持方法によると、端部Aおよび端部Bにおいて供給された貴金属溶液を吸引する際に、粘度が低すぎるために吸引により多くの貴金属溶液が排出されてしまうことや、粘度が高すぎるために基材の孔の表面に充分に貴金属溶液が伸展しないことなどの問題を発生させずに適切な吸引を行うことができる。   According to such a noble metal loading method, when the noble metal solution supplied at the end A and the end B is sucked, the viscosity is too low, so that a lot of the noble metal solution is discharged by suction, Appropriate suction can be performed without causing problems such as the precious metal solution not being sufficiently extended on the surface of the pores of the substrate because it is too high.

また、上述した請求項1から請求項4に記載の貴金属担持方法において、請求項5に記載のように、前記貴金属溶液のpHを2〜10としてもよい。
このような貴金属担持方法によると、貴金属溶液の粘度を調整した後に長時間放置しても粘度の変化が小さいので、貴金属溶液を調製した直後でなくとも適切な貴金属の担持作業を行うことができる。
Moreover, in the noble metal carrying | support method of Claim 1 to Claim 4 mentioned above, as described in Claim 5 , pH of the said noble metal solution is good also as 2-10.
According to such a noble metal loading method, even if the viscosity of the noble metal solution is adjusted and left to stand for a long time, the change in viscosity is small, so that it is possible to carry out an appropriate noble metal loading operation even immediately after the noble metal solution is prepared. .

ところで、上述した請求項1から請求項5に記載の貴金属担持方法において、貴金属溶液に含まれる貴金属は、請求項6に記載のように、白金,パラジウム,ロジウムのいずれか1種または2種以上であるようにしてもよい。 By the way, in the noble metal supporting method according to any one of claims 1 to 5 , the noble metal contained in the noble metal solution is any one or more of platinum, palladium, and rhodium as described in claim 6. You may make it be.

このような貴金属担持方法によると、基材に対して白金,パラジウム,ロジウムのいずれか1種または2種以上を担持させることができる According to such a noble metal supporting method, one or more of platinum, palladium, and rhodium can be supported on the base material .

本発明の実施の形態を、実施例を用いて説明する。
[実施例1]
(貴金属担持装置)
本実施例1における貴金属担持装置1を、図1に基づいて説明する。
Embodiments of the present invention will be described using examples.
[Example 1]
(Precious metal carrier)
A noble metal carrying device 1 according to the first embodiment will be described with reference to FIG.

貴金属担持装置1は、貴金属錯体溶液10を、ハニカム形状のモノリス基材20における一方の端部24に所定量保持する保持部材30と、その貴金属錯体溶液10を、モノリス基材20の他方の端部26から吸引する吸引部材40と、端部24に貴金属錯体溶液10を所定量供給する供給部材50と、からなる。   The noble metal support device 1 includes a holding member 30 that holds a predetermined amount of the noble metal complex solution 10 at one end 24 of the honeycomb-shaped monolith substrate 20, and the noble metal complex solution 10 at the other end of the monolith substrate 20. A suction member 40 that sucks from the portion 26 and a supply member 50 that supplies a predetermined amount of the noble metal complex solution 10 to the end portion 24.

上記モノリス基材20は、端部24から端部26に向けて貫通孔22が形成された複数のセルにより構成されている。本実施例1における貫通孔22の長さ(端部24から端部26までの長さ)は155mmである。   The monolith substrate 20 includes a plurality of cells in which through holes 22 are formed from the end 24 toward the end 26. In the first embodiment, the length of the through hole 22 (the length from the end 24 to the end 26) is 155 mm.

また、保持部材30は、モノリス基材20の端部24に被さって、供給部材50より供給された貴金属錯体溶液10を端部24上に保持する。
また、吸引部材40は、内部空間42を有する基材受け部44と、内部空間42と配管46を介して繋がる図示しない減圧装置と、配管46の開閉を行うバルブ48と、から構成される。基材受け部44は、モノリス基材20を挿入可能な開口が形成されている。この開口にモノリス基材20を挿入すると、基材受け部44とモノリス基材20の側面との間に隙間がなくなるように密着し、端部26が内部空間42に到達する。
The holding member 30 covers the end 24 of the monolith substrate 20 and holds the noble metal complex solution 10 supplied from the supply member 50 on the end 24.
The suction member 40 includes a base material receiving portion 44 having an internal space 42, a decompression device (not shown) connected to the internal space 42 via a pipe 46, and a valve 48 that opens and closes the pipe 46. The base material receiving portion 44 has an opening into which the monolith base material 20 can be inserted. When the monolith substrate 20 is inserted into the opening, the monolith substrate 20 comes into close contact with the substrate receiving portion 44 and the side surface of the monolith substrate 20 so that the end portion 26 reaches the internal space 42.

この状態でバルブ48を開放すると、内部空間42が減圧されることで、端部24上に保持された貴金属錯体溶液10が、貫通孔22から端部26方向に吸引される。本実施例では、貫通孔22内を線速度10〜50m/sで吸引する。なお、この貴金属担持装置1においては、各端部24,26を入れ替えても同様に操作できる。
(貴金属錯体溶液の調製)
上述した貴金属錯体溶液10は、次に示す白金錯体の水溶液に、増粘剤を添加してなるものである。
When the valve 48 is opened in this state, the internal space 42 is depressurized, whereby the noble metal complex solution 10 held on the end 24 is sucked from the through hole 22 toward the end 26. In the present embodiment, the inside of the through hole 22 is sucked at a linear velocity of 10 to 50 m / s. In addition, in this noble metal carrying | support apparatus 1, even if each edge part 24 and 26 is replaced, it can operate similarly.
(Preparation of noble metal complex solution)
The noble metal complex solution 10 described above is obtained by adding a thickener to an aqueous solution of a platinum complex shown below.

白金(Pt)錯体の水溶液:Pt1g相当
増粘剤:HEC(ヒドロキシルエチルセルロース)1wt%
上記組成の貴金属錯体溶液10の粘度は、せん断速度380sec-1(以降「高せん断速度」はこの値を指すこととする)において100mPa・s、せん断速度4sec-1(以降「低せん断速度」はこの値を指すこととする)において1000mPa・sであった。これらの粘度は、粘度計TVE−30H(東機産業株式会社製)を用いて測定した。
Platinum (Pt) complex aqueous solution: Pt equivalent to 1 g Thickener: HEC (hydroxyl ethyl cellulose) 1 wt%
The viscosity of the noble metal complex solution 10 having the above composition is 100 mPa · s at a shear rate of 380 sec −1 (hereinafter “high shear rate” refers to this value), and a shear rate of 4 sec −1 (hereinafter “low shear rate” is This value is 1000 mPa · s). These viscosities were measured using a viscometer TVE-30H (manufactured by Toki Sangyo Co., Ltd.).

なお、増粘剤は、HECに替えて、カルボキシメチルセルロース,メチルセルロース,ポリビニルアルコール等の水溶性高分子を用いてもよい。
(貴金属担持方法)
本実施例1においては、まず、モノリス基材20の一方の端部24に保持部材30が被さり、他方の端部26が基材受け部44に挿入されるようにセットした。
The thickener may be a water-soluble polymer such as carboxymethylcellulose, methylcellulose, polyvinyl alcohol, etc., instead of HEC.
(Precious metal loading method)
In Example 1, first, the monolith substrate 20 was set so that one end portion 24 of the monolith substrate 20 was covered with the holding member 30 and the other end portion 26 was inserted into the substrate receiving portion 44.

次に、供給部材50より貴金属錯体溶液10を所定量(Pt1g相当)供給し、保持部材30により、モノリス基材20の一方の端部24に保持した。
次に、バルブ48を開放して内部空間42を減圧し、端部24上に保持された貴金属錯体溶液10を貫通孔22に吸引した。貴金属錯体溶液10は、吸引により貫通孔22において端部24から端部26まで拡がり、その一部が端部26から排出された。
(結果)
セルの貫通孔22全域(155mm)に亘ってPtを担持させることができた。また、吸引により担持されずに排出されたPtは、供給量の0.5%未満(Pt0.005g未満)であった。
[実施例2]
(貴金属担持装置)
本実施例2においては、実施例1と同様の貴金属担持装置1を用いた。
(貴金属錯体溶液の調製)
本実施例2における貴金属錯体溶液10は、基本的には実施例1と同様であるが、HECの添加量を1.5wt%とした。貴金属錯体溶液10の粘度は、高せん断速度において200mPa・s、低せん断速度において3000mPa・sであった。
(貴金属担持方法)
本実施例2においては、実施例1と同様の貴金属担持方法を用いて20個のモノリス基材20にそれぞれPtを担持させ、モノリス基材20間の担持量のばらつきを調べた。
Next, a predetermined amount (corresponding to Pt 1 g) of the noble metal complex solution 10 was supplied from the supply member 50, and held on one end 24 of the monolith substrate 20 by the holding member 30.
Next, the valve 48 was opened to decompress the internal space 42, and the noble metal complex solution 10 held on the end 24 was sucked into the through hole 22. The noble metal complex solution 10 spread from the end 24 to the end 26 in the through hole 22 by suction, and a part of the noble metal complex solution 10 was discharged from the end 26.
(result)
Pt could be supported over the entire through-hole 22 (155 mm) of the cell. Moreover, Pt discharged without being supported by suction was less than 0.5% of the supply amount (less than 0.005 g of Pt).
[Example 2]
(Precious metal carrier)
In Example 2, the same noble metal supporting device 1 as that in Example 1 was used.
(Preparation of noble metal complex solution)
The noble metal complex solution 10 in Example 2 is basically the same as that in Example 1, but the amount of HEC added is 1.5 wt%. The viscosity of the noble metal complex solution 10 was 200 mPa · s at a high shear rate and 3000 mPa · s at a low shear rate.
(Precious metal loading method)
In Example 2, Pt was supported on each of the 20 monolith substrates 20 using the same noble metal loading method as in Example 1, and the variation in the amount supported between the monolith substrates 20 was examined.

すべてのモノリス基材20において、貴金属錯体溶液10は、吸引により貫通孔22において端部24から端部26まで拡がり、その一部が端部26から排出された。
(結果)
全てのモノリス基材20において、セルの貫通孔22全域(155mm)に亘ってPtを担持させることができた。また、吸引により担持されずに排出されたPtは、供給量の0.5%未満(Pt0.005g未満)であった。
In all the monolith substrates 20, the noble metal complex solution 10 spread from the end 24 to the end 26 in the through hole 22 by suction, and a part of the noble metal complex solution 10 was discharged from the end 26.
(result)
In all the monolith substrates 20, Pt could be supported over the entire through-hole 22 of the cell (155 mm). Moreover, Pt discharged without being supported by suction was less than 0.5% of the supply amount (less than 0.005 g of Pt).

また、20個のモノリス基材20におけるPt担持量のばらつきの度合を示す値4σは2%であった。ここで、σは標準偏差である。
[実施例3]
(貴金属担持装置)
本実施例3においては、実施例1と同様の貴金属担持装置1を用いた。
(貴金属錯体溶液の調製)
本実施例3における貴金属錯体溶液10は、基本的には実施例1と同様であるが、HECの添加量を2wt%とした。貴金属錯体溶液10の粘度は、高せん断速度において300mPa・s、低せん断速度において7000mPa・sであった。
(貴金属担持方法)
本実施例3においては、実施例1と同様の貴金属担持方法を用いてモノリス基材20に対する貴金属の担持操作を行った。貴金属錯体溶液10は、吸引により貫通孔22において端部24から端部26まで拡がり、その一部が端部26から排出された。
(結果)
セルの貫通孔22全域(155mm)に亘ってPtを担持させることができた。また、吸引により担持されずに排出されたPtは、供給量の0.5%未満(Pt0.005g未満)であった。
[実施例4]
(貴金属担持装置)
本実施例4においては、実施例1と同様の貴金属担持装置1を用いた。
(貴金属錯体溶液の調製)
本実施例4においては、実施例1と同様の貴金属錯体溶液10を用いた。
(貴金属担持方法)
本実施例4においては、まず、モノリス基材20の一方の端部24に保持部材30が被さり、他方の端部26が基材受け部44に挿入されるようにセットした。
Further, the value 4σ indicating the degree of variation in the amount of Pt supported in the 20 monolith substrates 20 was 2%. Here, σ is a standard deviation.
[Example 3]
(Precious metal carrier)
In Example 3, the same noble metal supporting apparatus 1 as that in Example 1 was used.
(Preparation of noble metal complex solution)
The noble metal complex solution 10 in Example 3 is basically the same as that in Example 1, but the amount of HEC added is 2 wt%. The viscosity of the noble metal complex solution 10 was 300 mPa · s at a high shear rate and 7000 mPa · s at a low shear rate.
(Precious metal loading method)
In the present Example 3, the noble metal supporting operation with respect to the monolith substrate 20 was performed using the same noble metal supporting method as in Example 1. The noble metal complex solution 10 spread from the end 24 to the end 26 in the through hole 22 by suction, and a part of the noble metal complex solution 10 was discharged from the end 26.
(result)
Pt could be supported over the entire through-hole 22 (155 mm) of the cell. Moreover, Pt discharged without being supported by suction was less than 0.5% of the supply amount (less than 0.005 g of Pt).
[Example 4]
(Precious metal carrier)
In Example 4, the same noble metal supporting device 1 as that in Example 1 was used.
(Preparation of noble metal complex solution)
In this Example 4, the same noble metal complex solution 10 as in Example 1 was used.
(Precious metal loading method)
In Example 4, first, the monolith substrate 20 was set so that one end portion 24 of the monolith substrate 20 was covered with the holding member 30 and the other end portion 26 was inserted into the substrate receiving portion 44.

次に、供給部材50より貴金属錯体溶液10を所定量(Pt0.5g相当)供給し、保持部材30により、モノリス基材20の一方の端部24に保持した。
次に、バルブ48を開放して内部空間42を減圧し、貴金属錯体溶液10を貫通孔22に吸引した。貴金属錯体溶液10は、吸引により貫通孔22における端部24から78±12mmの位置まで拡がった。端部26から排出された貴金属錯体溶液10はなかった。
Next, a predetermined amount (equivalent to 0.5 g Pt) of the noble metal complex solution 10 was supplied from the supply member 50, and was held on one end 24 of the monolith substrate 20 by the holding member 30.
Next, the valve 48 was opened to decompress the internal space 42, and the noble metal complex solution 10 was sucked into the through hole 22. The noble metal complex solution 10 spread from the end 24 in the through hole 22 to a position of 78 ± 12 mm by suction. There was no noble metal complex solution 10 discharged from the end portion 26.

次に、モノリス基材20を取り外し、上述したものとは反対に、一方の端部24が基材受け部44に挿入され、他方の端部26に保持部材30が被さるようにセットし直した。
次に、供給部材50より貴金属錯体溶液10を所定量(Pt0.5g相当)供給し、保持部材30により、モノリス基材20の他方の端部26に保持した。
Next, the monolith base material 20 was removed and, contrary to what was described above, one end portion 24 was inserted into the base material receiving portion 44 and the other end portion 26 was set so that the holding member 30 was covered. .
Next, a predetermined amount (equivalent to 0.5 g Pt) of the noble metal complex solution 10 was supplied from the supply member 50, and was held on the other end portion 26 of the monolith substrate 20 by the holding member 30.

次に、バルブ48を開放して内部空間42を減圧し、貴金属錯体溶液10を貫通孔22に吸引した。貴金属錯体溶液10は、吸引により貫通孔22における端部26から78±12mmの位置まで拡がった。端部24から排出された貴金属錯体溶液10はなかった。
(結果)
セルの貫通孔22における端部24から78±12mmの位置までPtを担持させることができ、端部26から78±12mmの位置までPtを担持させることができた。つまり、セルの貫通孔22全域(155mm)に亘ってPtを担持させることができた。また、吸引によりモノリス基材20に担持されずに排出されたPtはなかった。
[実施例5]
(貴金属担持装置)
本実施例5においては、実施例1と同様の貴金属担持装置1を用いた。
(貴金属錯体溶液の調製)
本実施例5においては、実施例2と同様の貴金属錯体溶液10を用いた。
(貴金属担持方法)
本実施例5においては、実施例4と同様の貴金属担持方法を用いてモノリス基材20に対する貴金属の担持操作を行った。その際、端部24に保持された貴金属錯体溶液10は、吸引により貫通孔22における端部24から78±12mmの位置まで拡がった。また、端部26に保持された貴金属錯体溶液10は、吸引により端部26から78±12mmの位置まで拡がった。端部24または端部26から排出された貴金属錯体溶液10はなかった。
(結果)
セルの貫通孔22における端部24から78±12mmの位置までPtを担持させることができ、端部26から78±12mmの位置までPtを担持させることができた。つまり、セルの貫通孔22全域(155mm)に亘ってPtを担持させることができた。また、吸引によりモノリス基材20に担持されずに排出されたPtはなかった。
[実施例6]
(貴金属担持装置)
本実施例6においては、実施例1と同様の貴金属担持装置1を用いた。
(貴金属錯体溶液の調製)
本実施例6における貴金属錯体溶液10は、基本的には実施例2と同様であるが、貴金属錯体溶液10中のPt濃度を20%増加させることで、貴金属錯体溶液10の粘度を、高せん断速度において300mPa・s、低せん断速度において7000mPa・sに調整した。
(貴金属担持方法)
本実施例6においては、実施例1と同様の貴金属担持方法を用いてモノリス基材20に対する貴金属の担持操作を行った。なお、貴金属錯体溶液10中のPt濃度が高い分、供給する貴金属錯体溶液10の量を少なくして、供給される総Pt量を実施例1と同様に1gとした。貴金属錯体溶液10は、吸引により貫通孔22における端部24から20±3mmの位置まで拡がった。端部26から排出された貴金属錯体溶液10はなかった。
(結果)
セルの貫通孔22における端部24から20±3mmの位置までPtを担持させることができた。また、吸引によりモノリス基材20に担持されずに排出されたPtはなかった。
[実施例7]
(貴金属担持装置)
本実施例7においては、実施例1と同様の貴金属担持装置1を用いた。
(貴金属錯体溶液の調製)
本実施例7における貴金属錯体溶液10は、基本的には実施例2と同様であるが、貴金属錯体溶液10中のPt濃度を20%減少させることで、貴金属錯体溶液10の粘度を、高せん断速度において100mPa・s、低せん断速度において1000mPa・sに調整した。
(貴金属担持方法)
本実施例7においては、実施例1と同様の貴金属担持方法を用いてモノリス基材20に対する貴金属の担持操作を行った。なお、貴金属錯体溶液10中のPt濃度が低い分、供給する貴金属錯体溶液10の量を多くして、供給される総Pt量を実施例1と同様に1gとした。貴金属錯体溶液10は、吸引により貫通孔22における端部24から100±15mmの位置まで拡がった。端部26から排出された貴金属錯体溶液10はなかった。
(結果)
セルの貫通孔22における端部24から100±15mmの位置までPtを担持させることができた。また、吸引によりモノリス基材20に担持されずに排出されたPtはなかった。
[実施例8]
(貴金属担持装置)
本実施例8においては、実施例1と同様の貴金属担持装置1を用いた。
(貴金属錯体溶液の調製)
本実施例8においては、次に示す組成の貴金属錯体溶液10Aおよび10Bを調製した。
(貴金属錯体溶液10A)
パラジウム(Pd)錯体の水溶液:Pd0.5g相当
増粘剤:HEC1wt%
上記組成の貴金属錯体溶液10Aの粘度は、高せん断速度において100mPa・s、低せん断速度において1000mPa・sであった。
(貴金属錯体溶液10B)
Ptおよびロジウム(Rh)錯体の水溶液:Pt・Rh合計0.5g相当
増粘剤:HEC1wt%
上記組成の貴金属錯体溶液10Aの粘度は、高せん断速度において100mPa・s、低せん断速度において1000mPa・sであった。
(貴金属担持方法)
本実施例8においては、まず、モノリス基材20の一方の端部24に保持部材30が被さり、他方の端部26が基材受け部44に挿入されるようにセットした。
Next, the valve 48 was opened to decompress the internal space 42, and the noble metal complex solution 10 was sucked into the through hole 22. The noble metal complex solution 10 spread from the end portion 26 in the through hole 22 to a position of 78 ± 12 mm by suction. There was no noble metal complex solution 10 discharged from the end 24.
(result)
Pt could be carried from the end 24 in the cell through-hole 22 to a position of 78 ± 12 mm, and Pt could be carried from the end 26 to a position of 78 ± 12 mm. That is, Pt could be carried over the entire through-hole 22 of the cell (155 mm). Moreover, there was no Pt discharged without being supported on the monolith substrate 20 by suction.
[Example 5]
(Precious metal carrier)
In Example 5, the same noble metal supporting device 1 as that in Example 1 was used.
(Preparation of noble metal complex solution)
In Example 5, the same noble metal complex solution 10 as in Example 2 was used.
(Precious metal loading method)
In the present Example 5, a noble metal supporting operation on the monolith substrate 20 was performed using the same noble metal supporting method as in Example 4. At that time, the noble metal complex solution 10 held in the end portion 24 spread from the end portion 24 in the through hole 22 to a position of 78 ± 12 mm by suction. Further, the noble metal complex solution 10 held at the end portion 26 spread from the end portion 26 to a position of 78 ± 12 mm by suction. There was no noble metal complex solution 10 discharged from the end 24 or the end 26.
(result)
Pt could be carried from the end 24 in the cell through-hole 22 to a position of 78 ± 12 mm, and Pt could be carried from the end 26 to a position of 78 ± 12 mm. That is, Pt could be carried over the entire through-hole 22 of the cell (155 mm). Moreover, there was no Pt discharged without being supported on the monolith substrate 20 by suction.
[Example 6]
(Precious metal carrier)
In Example 6, the same noble metal supporting device 1 as that in Example 1 was used.
(Preparation of noble metal complex solution)
The noble metal complex solution 10 in Example 6 is basically the same as that in Example 2, but the viscosity of the noble metal complex solution 10 is increased by increasing the Pt concentration in the noble metal complex solution 20 by 20%. The speed was adjusted to 300 mPa · s, and the low shear rate was adjusted to 7000 mPa · s.
(Precious metal loading method)
In Example 6, the same noble metal loading method as in Example 1 was used to carry the noble metal loading operation on the monolith substrate 20. Note that the amount of the noble metal complex solution 10 to be supplied was reduced by the amount of Pt concentration in the noble metal complex solution 10 being high, and the total amount of Pt to be supplied was set to 1 g as in Example 1. The noble metal complex solution 10 spread from the end 24 in the through hole 22 to a position of 20 ± 3 mm by suction. There was no noble metal complex solution 10 discharged from the end portion 26.
(result)
Pt could be supported from the end 24 in the through hole 22 of the cell to a position of 20 ± 3 mm. Moreover, there was no Pt discharged without being supported on the monolith substrate 20 by suction.
[Example 7]
(Precious metal carrier)
In Example 7, the same noble metal supporting apparatus 1 as that in Example 1 was used.
(Preparation of noble metal complex solution)
The noble metal complex solution 10 in Example 7 is basically the same as that in Example 2, but the viscosity of the noble metal complex solution 10 is increased by reducing the Pt concentration in the noble metal complex solution 20 by 20%. The speed was adjusted to 100 mPa · s, and the low shear rate was adjusted to 1000 mPa · s.
(Precious metal loading method)
In Example 7, the same noble metal supporting method as that in Example 1 was used to carry the noble metal on the monolith substrate 20. Note that the amount of noble metal complex solution 10 to be supplied was increased by the amount of Pt concentration in the noble metal complex solution 10 being low, and the total amount of Pt to be supplied was set to 1 g as in Example 1. The noble metal complex solution 10 spread from the end 24 in the through hole 22 to a position of 100 ± 15 mm by suction. There was no noble metal complex solution 10 discharged from the end portion 26.
(result)
Pt could be supported from the end 24 in the through-hole 22 of the cell to a position of 100 ± 15 mm. Moreover, there was no Pt discharged without being supported on the monolith substrate 20 by suction.
[Example 8]
(Precious metal carrier)
In the present Example 8, the same noble metal supporting apparatus 1 as that in Example 1 was used.
(Preparation of noble metal complex solution)
In Example 8, noble metal complex solutions 10A and 10B having the following composition were prepared.
(Noble metal complex solution 10A)
Palladium (Pd) complex aqueous solution: Pd equivalent to 0.5 g Thickener: HEC 1 wt%
The viscosity of the noble metal complex solution 10A having the above composition was 100 mPa · s at a high shear rate and 1000 mPa · s at a low shear rate.
(Precious metal complex solution 10B)
Aqueous solution of Pt and rhodium (Rh) complex: Pt · Rh total equivalent to 0.5g Thickener: HEC 1wt%
The viscosity of the noble metal complex solution 10A having the above composition was 100 mPa · s at a high shear rate and 1000 mPa · s at a low shear rate.
(Precious metal loading method)
In Example 8, first, the monolith substrate 20 was set so that one end portion 24 of the monolith substrate 20 was covered with the holding member 30 and the other end portion 26 was inserted into the substrate receiving portion 44.

次に、供給部材50より貴金属錯体溶液10Aを所定量(Pd0.5g相当)供給し、保持部材30により、モノリス基材20の一方の端部24に保持した。
次に、バルブ48を開放して内部空間42を減圧し、貴金属錯体溶液10Aを貫通孔22に吸引した。貴金属錯体溶液10Aは、吸引により貫通孔22における端部24から78±12mmの位置まで拡がった。端部26から排出された貴金属錯体溶液10Aはなかった。
Next, a predetermined amount (corresponding to 0.5 g of Pd) of the noble metal complex solution 10A was supplied from the supply member 50 and held on one end 24 of the monolith substrate 20 by the holding member 30.
Next, the valve 48 was opened to decompress the internal space 42, and the noble metal complex solution 10 </ b> A was sucked into the through hole 22. The noble metal complex solution 10A spread from the end 24 in the through hole 22 to a position of 78 ± 12 mm by suction. There was no noble metal complex solution 10A discharged from the end portion 26.

次に、モノリス基材20を取り外し、上述したものとは反対に、一方の端部24が基材受け部44に挿入され、他方の端部26に保持部材30が被さるようにセットし直した。
次に、供給部材50より貴金属錯体溶液10Bを所定量(Pt・Rh合計0.5g相当)供給し、保持部材30により、モノリス基材20の他方の端部26に保持した。
Next, the monolith base material 20 was removed and, contrary to what was described above, one end portion 24 was inserted into the base material receiving portion 44 and the other end portion 26 was set so that the holding member 30 was covered. .
Next, a predetermined amount (corresponding to a total of 0.5 g of Pt · Rh) of the noble metal complex solution 10 </ b> B was supplied from the supply member 50, and held by the other end portion 26 of the monolith substrate 20 by the holding member 30.

次に、バルブ48を開放して内部空間42を減圧し、貴金属錯体溶液10Bを貫通孔22に吸引した。貴金属錯体溶液10Bは、吸引により貫通孔22における端部26から78±12mmの位置まで拡がった。端部24から排出された貴金属錯体溶液10Bはなかった。
(結果)
セルの貫通孔22における端部24から78±12mmの位置までPdを担持させることができ、端部26から78±12mmの位置までPtおよびRhを担持させることができた。また、吸引によりモノリス基材20に担持されずに排出された貴金属はなかった。
[実施例9]
(貴金属担持装置)
本実施例9においては、実施例1と同様の貴金属担持装置1を用いた。
(貴金属錯体溶液の調製)
本実施例9においては、基本的に実施例8と同様の貴金属錯体溶液10Aおよび10Bを用いたが、HECの添加量を2wt%とした。貴金属錯体溶液10Aおよび10Bの粘度は、いずれも高せん断速度において300mPa・s、低せん断速度において7000mPa・sであった。
(貴金属担持方法)
本実施例9においては、実施例8と同様の貴金属担持方法を用いてモノリス基材20に対する貴金属の担持操作を行った。その際、端部24に保持された貴金属錯体溶液10Aは、吸引により貫通孔22における端部24から78±12mmの位置まで拡がった。また、端部26に保持された貴金属錯体溶液10Bは、吸引により貫通孔22における端部26から78±12mmの位置まで拡がった。貴金属錯体溶液10Aおよび10Bのいずれも、端部24または端部26から排出されなかった。
(結果)
セルの貫通孔22における端部24から78±12mmの位置までPdを担持させることができ、端部26から78±12mmの位置までPtおよびRhを担持させることができた。また、吸引によりモノリス基材20に担持されずに排出された貴金属はなかった。
[実施例10]
本実施例10においては、まず、実施例2と同様の貴金属錯体溶液10を7個準備した。そして、その貴金属錯体溶液10のpHを1,2,4,6,8,10,11に調整して24時間放置し、それぞれの粘度の変化を調べると共に、実施例1と同様の貴金属担持装置1および貴金属担持方法を用いて貴金属の担持操作を行った。
(結果)
各pHの貴金属錯体溶液10を24時間放置した後の粘度を図2に示す。図2(a)は高せん断速度における粘度を示し、図2(b)は低せん断速度における粘度を示す。
Next, the valve 48 was opened to decompress the internal space 42, and the noble metal complex solution 10 </ b> B was sucked into the through hole 22. The noble metal complex solution 10B spread from the end 26 in the through hole 22 to a position of 78 ± 12 mm by suction. There was no noble metal complex solution 10 </ b> B discharged from the end 24.
(result)
Pd could be carried from the end 24 in the cell through-hole 22 to a position of 78 ± 12 mm, and Pt and Rh could be carried from the end 26 to a position of 78 ± 12 mm. Further, no noble metal was discharged without being supported on the monolith substrate 20 by suction.
[Example 9]
(Precious metal carrier)
In Example 9, the same noble metal supporting device 1 as that in Example 1 was used.
(Preparation of noble metal complex solution)
In Example 9, the same noble metal complex solutions 10A and 10B as in Example 8 were used, but the amount of HEC added was 2 wt%. The viscosities of the noble metal complex solutions 10A and 10B were 300 mPa · s at a high shear rate and 7000 mPa · s at a low shear rate.
(Precious metal loading method)
In Example 9, a noble metal loading operation was performed on the monolith substrate 20 using the same noble metal loading method as in Example 8. At that time, the noble metal complex solution 10A held at the end 24 spread from the end 24 in the through hole 22 to a position of 78 ± 12 mm by suction. Moreover, the noble metal complex solution 10B held at the end portion 26 spread from the end portion 26 in the through hole 22 to a position of 78 ± 12 mm by suction. None of the noble metal complex solutions 10 </ b> A and 10 </ b> B was discharged from the end 24 or the end 26.
(result)
Pd could be carried from the end 24 in the cell through-hole 22 to a position of 78 ± 12 mm, and Pt and Rh could be carried from the end 26 to a position of 78 ± 12 mm. Further, no noble metal was discharged without being supported on the monolith substrate 20 by suction.
[Example 10]
In Example 10, first, seven noble metal complex solutions 10 similar to those in Example 2 were prepared. Then, the pH of the noble metal complex solution 10 is adjusted to 1, 2, 4, 6, 8, 10, 11 and left for 24 hours to examine changes in the respective viscosities, and the same noble metal supporting apparatus as in Example 1. No. 1 and the noble metal loading method were used to carry the noble metal loading operation.
(result)
The viscosity after leaving the noble metal complex solution 10 at each pH for 24 hours is shown in FIG. FIG. 2 (a) shows the viscosity at a high shear rate, and FIG. 2 (b) shows the viscosity at a low shear rate.

pH1の貴金属錯体溶液10では、高せん断速度における粘度が60mPa・sとなり、低せん断速度における粘度が800mPa・sとなった。そして、モノリス基材20にPtを担持させる操作を行ったところ、50%のPt(Pt0.5g相当)が担持されずに排出された。   In the noble metal complex solution 10 having a pH of 1, the viscosity at a high shear rate was 60 mPa · s, and the viscosity at a low shear rate was 800 mPa · s. When the monolith substrate 20 was loaded with Pt, 50% Pt (equivalent to 0.5 g Pt) was discharged without being loaded.

また、pH11の貴金属錯体溶液10では、高せん断速度における粘度が70mPa・sとなり、低せん断速度における粘度が850mPa・sとなった。そして、モノリス基材20にPtを担持させる操作を行ったところ、40%のPt(Pt0.4g相当)が担持されずに排出された。   Further, in the noble metal complex solution 10 having a pH of 11, the viscosity at a high shear rate was 70 mPa · s, and the viscosity at a low shear rate was 850 mPa · s. Then, when an operation for supporting Pt on the monolith substrate 20 was performed, 40% of Pt (equivalent to 0.4 g of Pt) was discharged without being supported.

また、その他のpH値に調製された貴金属錯体溶液10においては、実施例1と同様の結果となった。
[参考例1]
(貴金属担持装置)
本参考例1においては、実施例1と同様の貴金属担持装置1を用いた。
(貴金属錯体溶液の調製)
本参考例1における貴金属錯体溶液10は、基本的には実施例1と同様であるが、HECの添加量を0.5wt%とした。貴金属錯体溶液10の粘度は、高せん断速度において50mPa・s、低せん断速度において600mPa・sであった。
(貴金属担持方法)
本参考例1においては、実施例1と同様の貴金属担持方法を用いてモノリス基材20に対する貴金属の担持操作を行った。貴金属錯体溶液10は、吸引により貫通孔22において端部24から端部26まで拡がり、その一部が端部26から排出された。
(結果)
セルの貫通孔22全域(155mm)に亘ってPtを担持させることができた。しかし、吸引により約70%のPt(Pt0.7g相当)が担持されずに排出された。
[参考例2]
(貴金属担持装置)
本参考例2においては、実施例1と同様の貴金属担持装置1を用いた。
(貴金属錯体溶液の調製)
本参考例2における貴金属錯体溶液10は、基本的には実施例1と同様であるが、HECの添加量を2.5wt%とした。貴金属錯体溶液10の粘度は、高せん断速度において450mPa・s、低せん断速度において10000mPa・sであった。
(貴金属担持方法)
本参考例2においては、実施例1と同様の貴金属担持方法を用いてモノリス基材20に対する貴金属の担持操作を行った。貴金属錯体溶液10は、吸引により貫通孔22における端部24から130±20mmの位置まで拡がった。排出された貴金属錯体溶液10はなかった。
(結果)
セルの貫通孔22における端部24から130±20mmの位置までPtを担持させることができたが、貫通孔22全域にはPtを担持できなかった。また、吸引によりモノリス基材20に担持されずに排出されたPtはなかった。
[比較例]
本比較例においては、Ptを含む貴金属錯体溶液の槽に20個のモノリス基材20を浸漬させて、Ptを担持させ、モノリス基材20間の担持量のばらつきを調べた。
(結果)
20個のモノリス基材20におけるPt担持量のばらつきの度合を示す値4σは8%であった。
[効果]
実施例1〜9,参考例1,2および比較例の結果一覧を表1に示す。
Further, in the noble metal complex solution 10 prepared at other pH values, the same results as in Example 1 were obtained.
[Reference Example 1]
(Precious metal carrier)
In this reference example 1, the same noble metal supporting apparatus 1 as that of the example 1 was used.
(Preparation of noble metal complex solution)
The noble metal complex solution 10 in Reference Example 1 is basically the same as in Example 1, but the amount of HEC added is 0.5 wt%. The viscosity of the noble metal complex solution 10 was 50 mPa · s at a high shear rate and 600 mPa · s at a low shear rate.
(Precious metal loading method)
In the present Reference Example 1, a noble metal support operation was performed on the monolith substrate 20 using the same noble metal support method as in Example 1. The noble metal complex solution 10 spread from the end 24 to the end 26 in the through hole 22 by suction, and a part of the noble metal complex solution 10 was discharged from the end 26.
(result)
Pt could be supported over the entire through-hole 22 (155 mm) of the cell. However, about 70% of Pt (equivalent to 0.7 g of Pt) was discharged without being supported by suction.
[Reference Example 2]
(Precious metal carrier)
In the present Reference Example 2, the same noble metal supporting device 1 as that in Example 1 was used.
(Preparation of noble metal complex solution)
The noble metal complex solution 10 in Reference Example 2 is basically the same as that in Example 1, but the amount of HEC added is 2.5 wt%. The viscosity of the noble metal complex solution 10 was 450 mPa · s at a high shear rate and 10,000 mPa · s at a low shear rate.
(Precious metal loading method)
In the present Reference Example 2, a noble metal support operation on the monolith substrate 20 was performed using the same noble metal support method as in Example 1. The noble metal complex solution 10 spread from the end 24 in the through hole 22 to a position of 130 ± 20 mm by suction. There was no noble metal complex solution 10 discharged.
(result)
Although Pt could be supported from the end 24 in the cell through hole 22 to a position of 130 ± 20 mm, Pt could not be supported throughout the through hole 22. Moreover, there was no Pt discharged without being supported on the monolith substrate 20 by suction.
[Comparative example]
In this comparative example, 20 monolith substrates 20 were immersed in a tank of a noble metal complex solution containing Pt to support Pt, and the variation in the supported amount between the monolith substrates 20 was examined.
(result)
The value 4σ indicating the degree of variation in the amount of Pt supported on the 20 monolith substrates 20 was 8%.
[effect]
Table 1 shows a list of results of Examples 1 to 9, Reference Examples 1 and 2, and Comparative Example.

Figure 0005378659
表1から分かるように、上述した実施例1〜9の貴金属担持方法では、貫通孔22表面のコート層における吸着速度の影響を受けず、モノリス基材20に担持される貴金属量を容易に調整することができる。すなわち、上記各実施例においては、排出される貴金属量が非常に少なく、端部24および端部26に保持した貴金属はほぼ全量担持されているため、端部24および端部26に保持する量を調整することで貴金属の担持量を調整できる。
Figure 0005378659
As can be seen from Table 1, in the above-described noble metal supporting methods of Examples 1 to 9, the amount of noble metal supported on the monolith substrate 20 is easily adjusted without being affected by the adsorption rate in the coating layer on the surface of the through-hole 22. can do. That is, in each of the above embodiments, the amount of noble metal discharged is very small, and almost all of the noble metal held at the end 24 and the end 26 is supported, so the amount held at the end 24 and the end 26. The amount of noble metal supported can be adjusted by adjusting.

また、実施例2の貴金属担持方法では、端部24,26に保持した量の貴金属がほぼ全量担持されることから、モノリス基材20への貴金属担持量のばらつきを低減することができる。実施例2において、ばらつきの度合を示す値4σは2%であった。それに対し、比較例では、4σは8%とばらつきが大きくなった。   Further, in the noble metal loading method of the second embodiment, since almost the entire amount of the noble metal held at the end portions 24 and 26 is loaded, variation in the amount of noble metal carried on the monolith substrate 20 can be reduced. In Example 2, the value 4σ indicating the degree of variation was 2%. On the other hand, in the comparative example, 4σ showed a large variation of 8%.

また、実施例4,5の貴金属担持方法によると、所定量の貴金属錯体溶液10を、端部24から貫通孔22表面に伸展させた後、端部26からも貫通孔22表面に伸展させることができる。よって、目的とする量の貴金属を担持させるために必要な貴金属錯体溶液10を、端部24および端部26の2箇所に2度に分けて保持することができるため、それぞれの端部に保持される貴金属錯体溶液10の量は、一度の吸引工程のみで吸引する場合に比べて少なくすることができる。   Moreover, according to the noble metal carrying | support method of Example 4, 5, after extending the noble metal complex solution 10 of predetermined amount from the edge part 24 to the through-hole 22 surface, it is extended also from the edge part 26 to the through-hole 22 surface. Can do. Therefore, the noble metal complex solution 10 necessary for supporting the target amount of the noble metal can be held in two locations, the end portion 24 and the end portion 26 in two portions. The amount of the noble metal complex solution 10 can be reduced as compared with the case where the noble metal complex solution 10 is sucked only by one suction step.

そのため、2度の吸引工程にて排出される貴金属錯体溶液10の量を少なくでき、排出される貴金属量も少なくできることで、2度の保持工程にて保持された貴金属錯体溶液10に含まれる貴金属の排出ロスを小さくすることができるので、貴金属の担持量をより目的の値に近づけることができ、モノリス基材20ごとのばらつきをさらに少なくできる。さらに、実施例8,9の貴金属担持方法では、端部24および端部26それぞれから貫通孔22表面に対して異なる貴金属を担持させることができる。   Therefore, since the amount of the noble metal complex solution 10 discharged in the two suction steps can be reduced and the amount of the noble metal discharged can be reduced, the noble metal contained in the noble metal complex solution 10 held in the two holding steps. Therefore, the amount of noble metal supported can be made closer to the target value, and the variation for each monolith substrate 20 can be further reduced. Furthermore, in the noble metal supporting methods of Examples 8 and 9, different noble metals can be supported from the end 24 and the end 26 to the surface of the through hole 22.

また、実施例1〜9の貴金属担持方法のように、高せん断速度における貴金属錯体溶液10の粘度を100〜300mPa・sとすることで、端部24および端部26において保持された貴金属錯体溶液10を吸引する際に、粘度が低すぎるために吸引により多くの貴金属錯体溶液10が排出されてしまうことや、粘度が高すぎるために貫通孔22表面に充分に貴金属錯体溶液10が伸展しないことなどの問題を発生させずに適切な吸引を行うことができる。   Moreover, the noble metal complex solution hold | maintained in the edge part 24 and the edge part 26 by making the viscosity of the noble metal complex solution 10 in high shear rate into 100-300 mPa * s like the noble metal carrying | support method of Examples 1-9. When sucking 10, the viscosity is too low so that a large amount of the noble metal complex solution 10 is discharged by suction, or the viscosity is too high that the noble metal complex solution 10 does not sufficiently extend to the surface of the through-hole 22. Appropriate suction can be performed without causing problems such as.

また、低せん断速度における貴金属錯体溶液10の粘度を1000〜7000mPa・sとすることで、端部24および端部26において保持された貴金属錯体溶液10を吸引した後に、粘度が低すぎることにより貫通孔22表面に伸展した貴金属錯体溶液10が流れて垂れ落ちることや、流れた貴金属錯体溶液10が貫通孔22表面に溜まって貫通孔22を閉塞することを抑制できる。さらに、貴金属錯体溶液10の粘度が高いことで、貴金属錯体溶液10に含まれる貴金属の分散がよくなり、また、モノリス基材20に伸展した後における貴金属の貫通孔22内での移動が抑制されるので、貴金属担持量のモノリス基材20内部におけるばらつきも低減できる。   Further, by setting the viscosity of the noble metal complex solution 10 at a low shear rate to 1000 to 7000 mPa · s, the noble metal complex solution 10 held at the end 24 and the end 26 is sucked and then penetrated due to the viscosity being too low. It is possible to prevent the noble metal complex solution 10 extending on the surface of the hole 22 from flowing and dripping, and the flowing noble metal complex solution 10 from being accumulated on the surface of the through hole 22 to block the through hole 22. Further, since the viscosity of the noble metal complex solution 10 is high, the dispersion of the noble metal contained in the noble metal complex solution 10 is improved, and the movement of the noble metal in the through holes 22 after being extended to the monolith substrate 20 is suppressed. Therefore, the dispersion | variation in the monolith base material 20 of the noble metal carrying amount can also be reduced.

また、実施例10の貴金属担持方法のように、貴金属錯体溶液10のpHを2〜10とすることで、粘度を調整した後に長時間放置しても粘度の変化が小さくなり、貴金属錯体溶液10を調製した直後でなくとも適切な貴金属の担持作業を行うことができる。   Further, by adjusting the pH of the noble metal complex solution 10 to 2 to 10 as in the noble metal loading method of Example 10, the viscosity change becomes small even after leaving for a long time after adjusting the viscosity, and the noble metal complex solution 10 Even if it is not immediately after preparing a suitable noble metal carrying | support operation | work can be performed.

また、上述した貴金属担持方法によると、モノリス基材20に対して白金,パラジウム,ロジウムのいずれか1種または2種以上を担持させることができる。
[変形例]
以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の形態をとり得ることは言うまでもない。
In addition, according to the above-described noble metal supporting method, one or more of platinum, palladium, and rhodium can be supported on the monolith substrate 20.
[Modification]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various forms can be taken as long as they belong to the technical scope of the present invention.

例えば、上記実施例8,9においては、貴金属錯体溶液10A,10Bとして、それぞれが同量の貴金属(いずれも0.5g)を含み、それぞれが同じ粘度であるものを用いる方法を例示した。しかし、これらの貴金属錯体溶液10A,10Bに含まれる貴金属の量は同量でなくともよく、また、それぞれの粘度が異なっていてもよい。そのようにすることで、貴金属錯体溶液10A,10Bの貴金属の濃度,粘度,端部24および端部26に保持する溶液の量に応じて、貫通孔22におけるそれぞれの端部から貴金属錯体溶液10A,10Bが伸展する長さを調整することができる。   For example, in Examples 8 and 9 described above, a method was used in which the noble metal complex solutions 10A and 10B each contain the same amount of noble metal (both 0.5 g) and each have the same viscosity. However, the amount of the noble metal contained in these noble metal complex solutions 10A and 10B may not be the same, and the respective viscosities may be different. By doing so, the noble metal complex solution 10 </ b> A from each end of the through hole 22 according to the concentration and viscosity of the noble metal of the noble metal complex solution 10 </ b> A, 10 </ b> B and the amount of the solution held at the end 24 and the end 26. , 10B can be adjusted.

また、貫通孔22表面において貴金属錯体溶液10Aが既に伸展している部分の上に、貴金属錯体溶液10Bを重ねるように伸展させてもよい。
また、上記各実施例においては、貴金属錯体溶液10を、モノリス基材20の端部(端部24または端部26)に供給して保持した後、吸引を行う方法を例示した。しかし、端部に供給された貴金属錯体溶液10を吸引するタイミングは特に限定されない。例えば、端部に貴金属錯体溶液10が供給されている際に、同時に吸引を行うこととしてもよい。
Alternatively, the noble metal complex solution 10B may be extended so as to overlap the portion of the through hole 22 where the noble metal complex solution 10A has already extended.
Moreover, in each said Example, after supplying and hold | maintaining the noble metal complex solution 10 to the edge part (edge part 24 or edge part 26) of the monolith base material 20, the method of performing attraction | suction was illustrated. However, the timing for sucking the noble metal complex solution 10 supplied to the end is not particularly limited. For example, suction may be performed simultaneously when the noble metal complex solution 10 is supplied to the end portion.

また、上記各実施例においては、貴金属を担持させる基材として、ハニカム状のモノリス基材20を用いるものを例示した。しかし、貴金属を担持させて触媒の基材として用いることができる基材であれば、上記の基材に限定されない。例えば、基材の軸方向の両端部において、各端部から他方の端部に向けて延びる孔が複数形成されており、各孔の側壁に形成される細孔を通して各孔が連通するフィルター基材や、耐熱合金を用いた厚さ数十μmの平板および波板を、交互に積層して巻き回して形成されるメタル基材などを用いてもよい。   Further, in each of the above-described embodiments, the substrate using the honeycomb-shaped monolith substrate 20 is exemplified as the substrate for supporting the noble metal. However, the base material is not limited to the above base material as long as it can support a noble metal and can be used as a base material for the catalyst. For example, a filter base in which a plurality of holes extending from each end toward the other end are formed at both ends in the axial direction of the base material, and each hole communicates through the pore formed in the side wall of each hole. You may use the metal base material etc. which are formed by alternately laminating | stacking a material, a flat plate and corrugated board using a heat-resistant alloy, and several tens of micrometers.

また、上記各実施例においては、モノリス基材20に貴金属を担持させるための貴金属溶液として、白金,パラジウム,ロジウムの錯体が溶解した貴金属錯体溶液10を用いる方法を例示した。しかし、基材に貴金属を担持させることができれば、貴金属溶液は、貴金属が溶媒に溶解しているものには限定されない。例えば、貴金属または貴金属化合物の微粒子が溶媒に混合してなるものなどを用いて、貴金属を担持させてもよい。   Moreover, in each said Example, the method of using the noble metal complex solution 10 in which the complex of platinum, palladium, and rhodium dissolved was illustrated as a noble metal solution for making the monolith base material 20 carry | support a noble metal. However, the noble metal solution is not limited to one in which the noble metal is dissolved in the solvent as long as the noble metal can be supported on the substrate. For example, the noble metal may be supported using a mixture of noble metal or noble metal compound fine particles mixed with a solvent.

本発明の貴金属担持装置を示す側面図Side view showing a noble metal carrying device of the present invention pHと粘度の関係を示す図Diagram showing the relationship between pH and viscosity

符号の説明Explanation of symbols

1…貴金属担持装置、10,10A,10B…貴金属錯体溶液、20…モノリス基材、22…貫通孔、24,26…端部、30…保持部材、40…吸引部材、42…内部空間、44…基材受け部、46…配管、48…バルブ、50…供給部材。   DESCRIPTION OF SYMBOLS 1 ... Noble metal carrying | support apparatus 10, 10A, 10B ... Noble metal complex solution, 20 ... Monolith base material, 22 ... Through-hole, 24, 26 ... End part, 30 ... Holding member, 40 ... Suction member, 42 ... Internal space, 44 ... base material receiving part, 46 ... piping, 48 ... valve, 50 ... supply member.

Claims (6)

少なくとも一方の端部Aに開口を有する孔を複数備え、前記孔は他方の端部Bと連通する基材へ貴金属を担持させる貴金属担持方法であって、
前記貴金属および増粘剤を含み、せん断速度4sec−1における粘度が1000〜7000mPa・sである貴金属溶液を前記端部Aに所定量供給し、前記端部Aに供給された前記貴金属溶液を前記端部Bから吸引することで、前記孔の表面に前記貴金属溶液を伸展させる第1伸展工程を有する
ことを特徴とする貴金属担持方法。
A plurality of holes having openings at at least one end A, wherein the holes support a noble metal on a base material communicating with the other end B,
A predetermined amount of a noble metal solution containing the noble metal and a thickener and having a viscosity at a shear rate of 4 sec −1 of 1000 to 7000 mPa · s is supplied to the end A, and the noble metal solution supplied to the end A is A noble metal loading method comprising: a first extension step of drawing the noble metal solution on the surface of the hole by suction from the end B.
貴金属および増粘剤を含む貴金属溶液を前記端部Bに所定量供給し、前記端部Bに供給された前記貴金属溶液を前記端部Aから吸引することで、前記孔の表面に前記貴金属溶液を伸展させる第2伸展工程を有する
ことを特徴とする請求項1に記載の貴金属担持方法。
A predetermined amount of a noble metal solution containing a noble metal and a thickener is supplied to the end portion B, and the noble metal solution supplied to the end portion B is sucked from the end portion A, whereby the noble metal solution is applied to the surface of the hole. The precious metal carrying method according to claim 1, further comprising a second extending step of extending the material.
前記第1伸展工程において前記孔の表面に伸展される前記貴金属溶液と、前記第2伸展工程において前記孔の表面に伸展される前記貴金属溶液とが、それぞれ異なる貴金属を含んでいる
ことを特徴とする請求項2に記載の貴金属担持方法。
The noble metal solution extended on the surface of the hole in the first extension step and the noble metal solution extended on the surface of the hole in the second extension step each contain different noble metals. The noble metal loading method according to claim 2.
前記貴金属溶液として、せん断速度380sec−1における粘度が100〜300mPa・sであるものを用いる
ことを特徴とする請求項1から請求項3のいずれかに記載の貴金属担持方法。
The noble metal supporting method according to any one of claims 1 to 3, wherein the noble metal solution has a viscosity of 100 to 300 mPa · s at a shear rate of 380 sec- 1 .
前記貴金属溶液のpHを2〜10とする
ことを特徴とする請求項1から請求項4のいずれかに記載の貴金属担持方法。
The noble metal loading method according to any one of claims 1 to 4, wherein the noble metal solution has a pH of 2 to 10.
前記貴金属は、白金,パラジウム,ロジウムのいずれか1種または2種以上である
ことを特徴とする請求項1から請求項5のいずれかに記載の貴金属担持方法。
The noble metal loading method according to any one of claims 1 to 5, wherein the noble metal is one or more of platinum, palladium, and rhodium.
JP2007151742A 2007-06-07 2007-06-07 Precious metal loading method Active JP5378659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151742A JP5378659B2 (en) 2007-06-07 2007-06-07 Precious metal loading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151742A JP5378659B2 (en) 2007-06-07 2007-06-07 Precious metal loading method

Publications (2)

Publication Number Publication Date
JP2008302304A JP2008302304A (en) 2008-12-18
JP5378659B2 true JP5378659B2 (en) 2013-12-25

Family

ID=40231483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151742A Active JP5378659B2 (en) 2007-06-07 2007-06-07 Precious metal loading method

Country Status (1)

Country Link
JP (1) JP5378659B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008082A1 (en) 2017-07-06 2019-01-10 Umicore Ag & Co. Kg Contactless leveling of a washcoat suspension
DE102018100834A1 (en) 2018-01-16 2019-07-18 Umicore Ag & Co. Kg Process for producing an SCR catalyst
DE102018100833A1 (en) 2018-01-16 2019-07-18 Umicore Ag & Co. Kg Process for producing an SCR catalyst
DE102018108346A1 (en) 2018-04-09 2019-10-10 Umicore Ag & Co. Kg Coated wall flow filter
WO2019211373A1 (en) 2018-05-04 2019-11-07 Umicore Ag & Co. Kg Coated wall-flow filter
WO2019215208A1 (en) 2018-05-09 2019-11-14 Umicore Ag & Co. Kg Method for coating a wall-flow filter
DE102018127957A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Particle filter with multiple coatings
DE102018127953A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Wall flow filter with high filtration efficiency
DE102018127955A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Catalytically active particle filter with high filtration efficiency
WO2021023659A1 (en) 2019-08-05 2021-02-11 Umicore Ag & Co. Kg Catalyser substrates with porous coating
DE102020103292A1 (en) 2020-02-10 2021-08-12 Umicore Ag & Co. Kg Using ultrasound to clean wall flow filter substrates
DE202022000455U1 (en) 2022-02-22 2022-03-02 Umicore Ag & Co. Kg coating hat
WO2022112376A1 (en) 2020-11-26 2022-06-02 Umicore Ag & Co. Kg Exhaust gas purification system for stoichiometric-combustion engines
EP4015066A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
EP4015067A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
EP4015065A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
EP4015064A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
WO2022200311A1 (en) 2021-03-23 2022-09-29 Umicore Ag & Co. Kg Method for increasing the fresh filtration of gasoline particle filters
EP4159310A1 (en) 2021-10-01 2023-04-05 UMICORE AG & Co. KG Catalytic coating
DE102021125536A1 (en) 2021-10-01 2023-04-06 Umicore Ag & Co. Kg Catalytically active particle filter with high filtration efficiency
WO2024028197A1 (en) 2022-08-05 2024-02-08 Umicore Ag & Co. Kg Catalytically active particulate filter with a high degree of filtration efficiency and oxidation function
EP4424407A1 (en) 2023-02-28 2024-09-04 Umicore AG & Co. KG Gpf with improved washcoat distribution

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498450B (en) * 2012-11-22 2015-09-01 Nat Applied Res Laboratories Closed flow channel reaction tank system for manufacturing catalyst or support material
GB201405277D0 (en) * 2014-03-25 2014-05-07 Johnson Matthey Plc Method for coating a filter substrate
JP6248243B2 (en) * 2015-03-31 2017-12-20 サンノプコ株式会社 Thickener, slurry for exhaust gas purification catalyst, method for producing the same, and internal combustion engine
JP2017148780A (en) * 2016-02-26 2017-08-31 サンノプコ株式会社 Thickener, slurry for exhaust gas purification catalyst and manufacturing method therefor and internal combustion engine
US10183287B1 (en) * 2017-07-06 2019-01-22 Umicore Ag & Co. Kg Method of applying a multilayer wet-on-wet coating to a substrate
WO2019163403A1 (en) 2018-02-21 2019-08-29 株式会社キャタラー Exhaust gas purification catalyst device
EP3756760A4 (en) * 2018-02-21 2021-03-31 Cataler Corporation Exhaust gas purification catalyst device
JP7340954B2 (en) * 2018-11-21 2023-09-08 株式会社キャタラー Exhaust gas purification device and its manufacturing method
WO2020105545A1 (en) * 2018-11-21 2020-05-28 株式会社キャタラー Exhaust-gas purification apparatus and method for manufacturing same
JP2020185539A (en) 2019-05-15 2020-11-19 株式会社キャタラー Exhaust gas purification catalyst device
JP7372052B2 (en) 2019-05-15 2023-10-31 株式会社キャタラー Exhaust gas purification catalyst device
DE202023100970U1 (en) 2023-03-01 2023-03-16 Umicore Ag & Co. Kg coating device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208454A (en) * 1978-01-19 1980-06-17 General Motors Corporation Method for coating catalyst supports
JPH0626669B2 (en) * 1986-03-25 1994-04-13 バブコツク日立株式会社 Coating composition for combustion catalyst
GB8621792D0 (en) * 1986-09-10 1986-10-15 Ici Plc Hydrodesulphurisation
JPH04224109A (en) * 1990-12-21 1992-08-13 Tosoh Corp Method for wash coating of zeolite component
US5370729A (en) * 1993-09-15 1994-12-06 Ecolab Inc. Food safe composition to facilitate soil removal
GB9805815D0 (en) * 1998-03-19 1998-05-13 Johnson Matthey Plc Manufacturing process
JP4313449B2 (en) * 1998-12-15 2009-08-12 株式会社キャタラー Catalyst slurry adjuster
JP3978759B2 (en) * 1999-01-18 2007-09-19 日産自動車株式会社 Method and apparatus for coating catalyst slurry on ceramic monolith support
MXPA02011983A (en) * 2000-06-09 2003-05-27 Avecia Ltd Thickeners.
JP2002066338A (en) * 2000-08-25 2002-03-05 Nissan Motor Co Ltd Carrier for purification of internal combustion engine exhaust gas, exhaust gas purification device using the same carrier, preparation process of the same carrier and manufacturing method of the same device
JP4650858B2 (en) * 2001-02-27 2011-03-16 哲 五十嵐 Method for producing plate-type catalyst and plate-type catalyst
JP4470554B2 (en) * 2004-03-29 2010-06-02 トヨタ自動車株式会社 Method for producing exhaust gas purification catalyst
JP4595401B2 (en) * 2004-06-29 2010-12-08 富士ゼロックス株式会社 Immersion coating method
JP4546171B2 (en) * 2004-07-08 2010-09-15 株式会社キャタラー Substrate coating method
JP4513014B2 (en) * 2005-05-27 2010-07-28 住友電気工業株式会社 Method for producing gas reaction catalyst and production apparatus used therefor
JP4907108B2 (en) * 2005-06-28 2012-03-28 株式会社キャタラー Method for adjusting viscosity of slurry and coating slurry for exhaust gas purification catalyst

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11590484B2 (en) 2017-07-06 2023-02-28 Umicore Ag & Co. Kg Contactless leveling of a washcoat suspension
DE102017115138A1 (en) 2017-07-06 2019-01-10 Umicore Ag & Co. Kg Contactless leveling of a washcoat suspension
WO2019008082A1 (en) 2017-07-06 2019-01-10 Umicore Ag & Co. Kg Contactless leveling of a washcoat suspension
WO2019141719A1 (en) 2018-01-16 2019-07-25 Umicore Ag & Co. Kg Ultrasound-assisted method for producing an scr catalytic converter
US11230955B2 (en) 2018-01-16 2022-01-25 Umicore Ag & Co. Kg Method for producing an SCR catalytic converter by way of pre-drying
US11400443B2 (en) 2018-01-16 2022-08-02 Umicore Ag & Co. Kg Ultrasound-assisted method for producing an SCR catalytic converter
WO2019141718A1 (en) 2018-01-16 2019-07-25 Umicore Ag & Co. Kg Method for producing an scr catalytic converter by way of pre-drying
DE102018100834A1 (en) 2018-01-16 2019-07-18 Umicore Ag & Co. Kg Process for producing an SCR catalyst
DE102018100833A1 (en) 2018-01-16 2019-07-18 Umicore Ag & Co. Kg Process for producing an SCR catalyst
EP4219006A1 (en) 2018-04-09 2023-08-02 Umicore AG & Co. KG Coated wall-flow filter
DE102018108346A1 (en) 2018-04-09 2019-10-10 Umicore Ag & Co. Kg Coated wall flow filter
WO2019197177A1 (en) 2018-04-09 2019-10-17 Umicore Ag & Co. Kg Coated wall-flow filter
US11305269B2 (en) 2018-04-09 2022-04-19 Umicore Ag & Co. Kg Coated wall-flow filter
US11441459B2 (en) 2018-05-04 2022-09-13 Umicore Ag & Co. Kg Coated wall-flow filter
DE102018110804B4 (en) 2018-05-04 2024-06-27 Umicore Ag & Co. Kg Coated wall flow filter
DE102018110804A1 (en) * 2018-05-04 2019-11-07 Umicore Ag & Co. Kg Coated wall flow filter
WO2019211373A1 (en) 2018-05-04 2019-11-07 Umicore Ag & Co. Kg Coated wall-flow filter
EP4286031A2 (en) 2018-05-09 2023-12-06 Umicore AG & Co. KG Method for coating a wall-flow filter
WO2019215208A1 (en) 2018-05-09 2019-11-14 Umicore Ag & Co. Kg Method for coating a wall-flow filter
EP4043088A1 (en) 2018-05-09 2022-08-17 Umicore AG & Co. KG Method for coating a wall flow filter
US11566548B2 (en) 2018-11-08 2023-01-31 Umicore Ag & Co. Kg Catalytically active particle filter with a high degree of filtration efficiency
DE102018127955A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Catalytically active particle filter with high filtration efficiency
WO2020094760A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Catalytically active particle filter with a high degree of filtration efficiency
WO2020094763A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg High-filtration efficiency wall-flow filter
WO2020094766A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Particle filter with a plurality of coatings
DE102018127957A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Particle filter with multiple coatings
US12018605B2 (en) 2018-11-08 2024-06-25 Umicore Ag & Co. Kg Catalytically active particle filter with a high degree of filtration efficiency
DE102018127953A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Wall flow filter with high filtration efficiency
US11808189B2 (en) 2018-11-08 2023-11-07 Umicore Ag & Co. Kg High-filtration efficiency wall-flow filter
WO2021023659A1 (en) 2019-08-05 2021-02-11 Umicore Ag & Co. Kg Catalyser substrates with porous coating
WO2021160572A1 (en) 2020-02-10 2021-08-19 Umicore Ag & Co. Kg Use of ultrasound for cleaning wall-flow filter substrates
DE102020103292A1 (en) 2020-02-10 2021-08-12 Umicore Ag & Co. Kg Using ultrasound to clean wall flow filter substrates
DE102020131366A1 (en) 2020-11-26 2022-06-02 Umicore Ag & Co. Kg Emission control system for stoichiometric combustion engines
WO2022112376A1 (en) 2020-11-26 2022-06-02 Umicore Ag & Co. Kg Exhaust gas purification system for stoichiometric-combustion engines
WO2022129014A1 (en) 2020-12-15 2022-06-23 Umicore Ag & Co. Kg Catalytically active particulate filter having a high degree of filtering efficiency
EP4015065A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
EP4015066A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
EP4015067A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
WO2022129023A1 (en) 2020-12-15 2022-06-23 Umicore Ag & Co. Kg Catalytically active particulate filter having a high degree of filtering efficiency
WO2022129010A1 (en) 2020-12-15 2022-06-23 Umicore Ag & Co. Kg Catalytically active particle filter with a high degree of filtration efficiency
WO2022129027A1 (en) 2020-12-15 2022-06-23 Umicore Ag & Co. Kg Catalytically active particulate filter with a high degree of filtering efficiency
EP4015064A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
DE102021107130B4 (en) 2021-03-23 2022-12-29 Umicore Ag & Co. Kg Device for increasing the fresh filtration of petrol particle filters
DE102021107130A1 (en) 2021-03-23 2022-09-29 Umicore Ag & Co. Kg Device for increasing the fresh filtration of petrol particle filters
WO2022200311A1 (en) 2021-03-23 2022-09-29 Umicore Ag & Co. Kg Method for increasing the fresh filtration of gasoline particle filters
DE102021125536A1 (en) 2021-10-01 2023-04-06 Umicore Ag & Co. Kg Catalytically active particle filter with high filtration efficiency
WO2023052580A1 (en) 2021-10-01 2023-04-06 Umicore Ag & Co. Kg Catalytically active particle filter with a high degree of filtration efficiency
WO2023052578A1 (en) 2021-10-01 2023-04-06 Umicore Ag & Co. Kg Catalytic coating
EP4159310A1 (en) 2021-10-01 2023-04-05 UMICORE AG & Co. KG Catalytic coating
DE202022000455U1 (en) 2022-02-22 2022-03-02 Umicore Ag & Co. Kg coating hat
WO2024028197A1 (en) 2022-08-05 2024-02-08 Umicore Ag & Co. Kg Catalytically active particulate filter with a high degree of filtration efficiency and oxidation function
DE102022002854A1 (en) 2022-08-05 2024-02-08 Umicore Ag & Co. Kg Catalytically active particle filter with high filtration efficiency and oxidation function
EP4424407A1 (en) 2023-02-28 2024-09-04 Umicore AG & Co. KG Gpf with improved washcoat distribution
WO2024180031A1 (en) 2023-02-28 2024-09-06 Umicore Ag & Co. Kg Gpf with improved washcoat distribution

Also Published As

Publication number Publication date
JP2008302304A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5378659B2 (en) Precious metal loading method
CN105148908A (en) Preparation method and application of supported noble metal catalyst
JP4811793B2 (en) Silica-coated porous metal whose hydrophilicity is maintained for a long time and method for producing the same
US8445055B2 (en) Method for the fabrication of composite palladium and palladium-alloy membranes
JP4753180B2 (en) Hydrogen separation material and method for producing the same
JP2009136833A (en) Method for producing monolithic catalyst for exhaust gas cleaning and monolithic catalyst
JP4729755B2 (en) Composite membrane, method for producing the same, and hydrogen separation membrane
CN104475088B (en) Catalyst capable of low-temperature catalytic combustion and preparation method thereof
JP4412615B2 (en) Exhaust gas purification catalyst and method for producing the same
US20110139007A1 (en) Hydrogen separator and process for production thereof
CN115028473A (en) Method for preparing porous ceramic coated with metal coating and aerosol generating device
JP6968972B2 (en) Exhaust gas purification catalyst device
JP2015058406A (en) Precious metal supporting device and precious metal supporting method using the same
JP2011111643A (en) Hydrophilic metal foam body
US12030038B2 (en) Exhaust gas purification catalytic device
WO2019082553A1 (en) Exhaust gas purging device using metallic base material and method for manufacturing exhaust gas purging device
JP2014124574A (en) Honeycomb structure and production method thereof
JP5376149B2 (en) Hydrophobic silica coated metal foam
US11534737B2 (en) Exhaust gas purification catalyst
WO2020105545A1 (en) Exhaust-gas purification apparatus and method for manufacturing same
CN101563482B (en) Porous titanium having low contact resistance
JP2006314876A (en) Hydrogen separator
JP2019202261A (en) Manufacturing method of coating layer of catalyst device for exhaust emission control
EP3970855A1 (en) Exhaust gas purification catalyst device
JP6972978B2 (en) Manufacturing method of copper terminal material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Ref document number: 5378659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250