JP5373124B2 - 化合物 - Google Patents
化合物 Download PDFInfo
- Publication number
- JP5373124B2 JP5373124B2 JP2012002180A JP2012002180A JP5373124B2 JP 5373124 B2 JP5373124 B2 JP 5373124B2 JP 2012002180 A JP2012002180 A JP 2012002180A JP 2012002180 A JP2012002180 A JP 2012002180A JP 5373124 B2 JP5373124 B2 JP 5373124B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- alkyl group
- compound
- carbon atoms
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 CCC(C)(C)*[C@](C)(CC)[N+]([O-])O* Chemical compound CCC(C)(C)*[C@](C)(CC)[N+]([O-])O* 0.000 description 8
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Materials For Photolithography (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、レジスト組成物用としての利用が可能な化合物に関する。
近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩により急速にパターンの微細化が進んでいる。
微細化の手法としては、一般に、露光光源の短波長化が行われている。具体的には、従来は、g線、i線に代表される紫外線が用いられていたが、現在では、KrFエキシマレーザーや、ArFエキシマレーザーを用いた半導体素子の量産が開始されている。また、これらエキシマレーザーより短波長のF2エキシマレーザー、電子線、EUV(極紫外線)やX線などについても検討が行われている。
また、微細な寸法のパターンを形成可能なパターン形成材料の1つとして、膜形成能を有する基材成分と、露光により酸を発生する酸発生剤成分とを含有する化学増幅型レジストが知られている。化学増幅型レジストには、露光によりアルカリ可溶性が低下するネガ型と、露光によりアルカリ可溶性が増大するポジ型とがある。
微細化の手法としては、一般に、露光光源の短波長化が行われている。具体的には、従来は、g線、i線に代表される紫外線が用いられていたが、現在では、KrFエキシマレーザーや、ArFエキシマレーザーを用いた半導体素子の量産が開始されている。また、これらエキシマレーザーより短波長のF2エキシマレーザー、電子線、EUV(極紫外線)やX線などについても検討が行われている。
また、微細な寸法のパターンを形成可能なパターン形成材料の1つとして、膜形成能を有する基材成分と、露光により酸を発生する酸発生剤成分とを含有する化学増幅型レジストが知られている。化学増幅型レジストには、露光によりアルカリ可溶性が低下するネガ型と、露光によりアルカリ可溶性が増大するポジ型とがある。
従来、このような化学増幅型レジストの基材成分としてはポリマーが用いられており、例えばポリヒドロキシスチレン(PHS)やその水酸基の一部を酸解離性溶解抑制基で保護した樹脂等のPHS系樹脂、(メタ)アクリル酸エステルから誘導される共重合体やそのカルボキシ基の一部を酸解離性溶解抑制基で保護した樹脂等が用いられている。
しかし、化学増幅型レジストの基材成分としてこれらのポリマーを用いてパターンを形成した場合、パターンの上面や側壁の表面に荒れ(ラフネス)が生じる問題がある。たとえばレジストパターン側壁表面のラフネス、すなわちラインエッジラフネス(LER)は、ホールパターンにおけるホール周囲の歪みや、ラインアンドスペースパターンにおけるライン幅のばらつき等の原因となるため、微細な半導体素子の形成等に悪影響を与えるおそれがある。
かかる問題は、パターン寸法が小さいほど重大となってくる。そのため、例えば電子線やEUVによるリソグラフィーでは、数10nmの微細なパターン形成を目標としていることから、現状のパターンラフネスを越える極低ラフネスが求められている。
しかし、一般的に基材として用いられているポリマーは、分子サイズ(一分子当たりの平均自乗半径)が数nm前後と大きい。パターン形成の現像工程において、現像液に対するレジストの溶解挙動は通常、基材成分1分子単位で行われるため、基材成分としてポリマーを使う限り、さらなるラフネスの低減は極めて困難である。
しかし、化学増幅型レジストの基材成分としてこれらのポリマーを用いてパターンを形成した場合、パターンの上面や側壁の表面に荒れ(ラフネス)が生じる問題がある。たとえばレジストパターン側壁表面のラフネス、すなわちラインエッジラフネス(LER)は、ホールパターンにおけるホール周囲の歪みや、ラインアンドスペースパターンにおけるライン幅のばらつき等の原因となるため、微細な半導体素子の形成等に悪影響を与えるおそれがある。
かかる問題は、パターン寸法が小さいほど重大となってくる。そのため、例えば電子線やEUVによるリソグラフィーでは、数10nmの微細なパターン形成を目標としていることから、現状のパターンラフネスを越える極低ラフネスが求められている。
しかし、一般的に基材として用いられているポリマーは、分子サイズ(一分子当たりの平均自乗半径)が数nm前後と大きい。パターン形成の現像工程において、現像液に対するレジストの溶解挙動は通常、基材成分1分子単位で行われるため、基材成分としてポリマーを使う限り、さらなるラフネスの低減は極めて困難である。
このような問題に対し、極低ラフネスを目指した材料として、基材成分として低分子材料を用いるレジストが提案されている。たとえば非特許文献1,2には、水酸基、カルボキシ基等のアルカリ可溶性基を有し、その一部または全部が酸解離性溶解抑制基で保護された低分子材料が提案されている。
T.Hirayama,D.Shiono,H.Hada and J.Onodera:J.Photopolym.Sci.Technol.17(2004)、p435
Jim−Baek Kim,Hyo−Jin Yun,Young−Gil Kwon:Chemistry Letters(2002)、p1064〜1065
このような低分子材料は、低分子量であるが故に分子サイズが小さく、ラフネスを低減できると予想される。そのため、レジスト組成物用として利用できる新規な低分子材料に対する要求が高まっている。
本発明は、上記事情に鑑みてなされたものであって、レジスト組成物用としての利用が可能な化合物、該化合物を含有するポジ型レジスト組成物および該ポジ型レジスト組成物を用いたレジストパターン形成方法を提供することを目的とする。
本発明は、上記事情に鑑みてなされたものであって、レジスト組成物用としての利用が可能な化合物、該化合物を含有するポジ型レジスト組成物および該ポジ型レジスト組成物を用いたレジストパターン形成方法を提供することを目的とする。
上記課題を解決する本発明の第一の態様は、下記一般式(A−1)で表される化合物である。
[式(A−1)中、R11〜R17はそれぞれ独立に炭素数1〜10のアルキル基または芳香族炭化水素基であって、その構造中にヘテロ原子を含んでもよく;g、jはそれぞれ独立に1以上の整数であり、k、qは0以上の整数であり、かつg+j+k+qが5以下であり;bは1以上の整数であり、l、mはそれぞれ独立に0以上の整数であり、かつb+l+mが4以下であり;cは1以上の整数であり、n、oはそれぞれ独立に0以上の整数であり、かつc+n+oが4以下であり;Aは3価の芳香族環式基、3価のアルキル基、3価の脂肪族環式基、ベンゼン、ナフタレン、アントラセン、フェナントレン若しくはピレンに炭素数1〜5のアルキル基が1個乃至3個付加した有機化合物のうち、当該アルキル基から3個の水素原子を除いた基、モノシクロアルカンに炭素数1〜5のアルキル基が1個乃至3個付加した有機化合物のうち、当該アルキル基から3個の水素原子を除いた基、又は、ビシクロアルカン、トリシクロアルカン若しくはテトラシクロアルカンに炭素数1〜5のアルキル基が1個乃至3個付加した有機化合物のうち、当該アルキル基から3個の水素原子を除いた基であり;Zは下記一般式(z1)で表される基である。]
[式(z1)中、Yはアルキレン基、2価の芳香族炭化水素基、2価の脂肪族環式基、又は、芳香族炭化水素基若しくは脂肪族環式基を有する2価のアルキル基であり;R’は第3級アルキル基、又は、下記一般式(p1)若しくは(p2)で表される基である。]
ここで、本特許請求の範囲及び明細書における「アルキル基」は、特に記載のない限り、直鎖状、分岐状および環状の1価の飽和炭化水素基を包含するものとする。
「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものとする。「脂肪族環式基」は、芳香族性を持たない単環式基または多環式基であることを示す。
「芳香族環式基」とは、芳香族性を有する環式基を意味するものとする。「芳香族環式基」は、芳香族性を有する単環式基または多環式基であることを示す。
「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものとする。「脂肪族環式基」は、芳香族性を持たない単環式基または多環式基であることを示す。
「芳香族環式基」とは、芳香族性を有する環式基を意味するものとする。「芳香族環式基」は、芳香族性を有する単環式基または多環式基であることを示す。
本発明により、レジスト組成物用としての利用が可能な化合物、該化合物を含有するポジ型レジスト組成物および該ポジ型レジスト組成物を用いたレジストパターン形成方法が提供される。
≪化合物≫
本発明の化合物(以下、化合物(A1)という。)は、上記一般式(A−1)で表される。
上記一般式(A−1)中、Zは上記一般式(z1)で表される基である。Yはアルキレン基、2価の芳香族炭化水素基、2価の脂肪族環式基、又は、芳香族炭化水素基若しくは脂肪族環式基を有する2価の有機基である。
Yがアルキレン基である場合、炭素数1〜5のアルキレン基であることが好ましく、炭素数1〜3であることがより好ましく、メチレン基、エチレン基、プロピレン基であることがさらに好ましく、メチレン基であることがもっとも好ましい。
Yが2価の芳香族炭化水素基である場合、炭素数6〜16の芳香族炭化水素基が挙げられる。具体的には、ベンゼン、ナフタレン、アントラセン、フェナントレン、ピレンなどから2個の水素原子を除いた基などを例示できる。
Yが2価の脂肪族環式基である場合、後述するR1としての環状のアルキル基における基本環(置換基を除いた基本の環)の構造から、2個の水素原子を除いた基などを例示できる。
Yが芳香族炭化水素基若しくは脂肪族環式基を有する2価の有機基である場合、芳香族炭化水素基および脂肪族環式基は前記と同様であり、前記有機基としては、炭素数1〜5のアルキル基があげられる。
本発明の化合物(以下、化合物(A1)という。)は、上記一般式(A−1)で表される。
上記一般式(A−1)中、Zは上記一般式(z1)で表される基である。Yはアルキレン基、2価の芳香族炭化水素基、2価の脂肪族環式基、又は、芳香族炭化水素基若しくは脂肪族環式基を有する2価の有機基である。
Yがアルキレン基である場合、炭素数1〜5のアルキレン基であることが好ましく、炭素数1〜3であることがより好ましく、メチレン基、エチレン基、プロピレン基であることがさらに好ましく、メチレン基であることがもっとも好ましい。
Yが2価の芳香族炭化水素基である場合、炭素数6〜16の芳香族炭化水素基が挙げられる。具体的には、ベンゼン、ナフタレン、アントラセン、フェナントレン、ピレンなどから2個の水素原子を除いた基などを例示できる。
Yが2価の脂肪族環式基である場合、後述するR1としての環状のアルキル基における基本環(置換基を除いた基本の環)の構造から、2個の水素原子を除いた基などを例示できる。
Yが芳香族炭化水素基若しくは脂肪族環式基を有する2価の有機基である場合、芳香族炭化水素基および脂肪族環式基は前記と同様であり、前記有機基としては、炭素数1〜5のアルキル基があげられる。
酸解離溶解抑制基(R’)は、解離前は化合物(A1)をアルカリ不溶とするアルカリ溶解抑制性を有するとともに、解離後は化合物(A1)をアルカリ可溶性へ変化させる基である。そのため、化合物(A1)においては、後述するようにポジ型レジスト組成物に酸発生剤成分(B)とともに配合された場合に、露光により酸発生剤成分(B)から発生した酸が作用すると、酸解離溶解抑制基が解離して、化合物(A1)がアルカリ不溶からアルカリ可溶性へ変化する。本明細書においては、酸解離溶解抑制基の概念に酸解離性溶解抑制基を有する基も含まれる。
酸解離性溶解抑制基としては、特に制限はなく、KrFやArF用の化学増幅型レジスト組成物に用いられているもののなかから適宜選択して用いることができる。具体的には、第3級アルキル基、第3級アルキルオキシカルボニル基、アルコキシカルボニルアルキル基、アルコキシアルキル基、環状エーテル基等が挙げられる。
第3級アルキル基として、具体的には、tert−ブチル基、tert−アミル基、tert−ペンチル基、tert−ヘプチル基等の鎖状の第3級アルキル基、2−メチル−2−アダマンチル基、2−エチル−2−アダマンチル基、1−エチル−1−シクロヘキシル基、1−メチル−1−シクロへキシル基、1−エチル−1−シクロペンチル基、1−メチル−1−シクロペンチル基等の、脂肪族多環式基を含む第3級アルキル基等が挙げられる。
脂肪族環式基としては、飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。
第3級アルキルオキシカルボニル基における第3級アルキル基としては、上記と同様のものが挙げられる。第3級アルキルオキシカルボニル基として、具体的には、tert−ブチルオキシカルボニル基、tert−アミルオキシカルボニル基等が挙げられる。
環状エーテル基として、具体的には、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
第3級アルキル基として、具体的には、tert−ブチル基、tert−アミル基、tert−ペンチル基、tert−ヘプチル基等の鎖状の第3級アルキル基、2−メチル−2−アダマンチル基、2−エチル−2−アダマンチル基、1−エチル−1−シクロヘキシル基、1−メチル−1−シクロへキシル基、1−エチル−1−シクロペンチル基、1−メチル−1−シクロペンチル基等の、脂肪族多環式基を含む第3級アルキル基等が挙げられる。
脂肪族環式基としては、飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。
第3級アルキルオキシカルボニル基における第3級アルキル基としては、上記と同様のものが挙げられる。第3級アルキルオキシカルボニル基として、具体的には、tert−ブチルオキシカルボニル基、tert−アミルオキシカルボニル基等が挙げられる。
環状エーテル基として、具体的には、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
本発明においては、特に、本発明の効果に優れることから、R’として下記一般式(p1)で表されるアルコキシカルボニルアルキル基、および下記一般式(p2)で表されるアルコキシアルキル基からなる群から選択される少なくとも1種の酸解離性溶解抑制基を有することが好ましい。
一般式(p1)において、n’は1〜3の整数であり、1であることが好ましい。
R1は直鎖状、分岐状または環状のアルキル基であって、その構造中にヘテロ原子を含んでもよい。すなわち、R1としてのアルキル基は、水素原子の一部または全部がヘテロ原子を含む基(ヘテロ原子そのものの場合も含む)で置換されていてもよく、該アルキル基の炭素原子の一部がヘテロ原子で置換されていてもよい。
ヘテロ原子としては、酸素原子、硫黄原子、窒素原子、フッ素原子等が挙げられる。
ヘテロ原子を含む基としては、ヘテロ原子自体であってもよく、また、ヘテロ原子と炭素原子および/または水素原子とからなる基、たとえばアルコキシ基等であってもよい。
水素原子の一部または全部がヘテロ原子を含む基で置換されたアルキル基の例としては、たとえば、水素原子の一部または全部がフッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、同一の炭素原子に結合した2つの水素原子が1つの酸素原子で置換された基(すなわちカルボニル基(C=O)を有する基)、同一の炭素原子に結合した2つの水素原子が1つの硫黄原子で置換された基(すなわちチオカルボニル基(C=S)を有する基)等が挙げられる。
アルキル基の炭素原子の一部がヘテロ原子を含む基で置換されている基としては、たとえば、炭素原子が窒素原子で置換されている例(たとえば、その構造中に−CH2−を含む分岐状または環状のアルキル基において該−CH2−が−NH−で置換された基)や、炭素原子が酸素原子で置換されている例(たとえば、その構造中に−CH2−を含む分岐状または環状のアルキル基において該−CH2−が−O−で置換された基)等が挙げられる。
ヘテロ原子としては、酸素原子、硫黄原子、窒素原子、フッ素原子等が挙げられる。
ヘテロ原子を含む基としては、ヘテロ原子自体であってもよく、また、ヘテロ原子と炭素原子および/または水素原子とからなる基、たとえばアルコキシ基等であってもよい。
水素原子の一部または全部がヘテロ原子を含む基で置換されたアルキル基の例としては、たとえば、水素原子の一部または全部がフッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、同一の炭素原子に結合した2つの水素原子が1つの酸素原子で置換された基(すなわちカルボニル基(C=O)を有する基)、同一の炭素原子に結合した2つの水素原子が1つの硫黄原子で置換された基(すなわちチオカルボニル基(C=S)を有する基)等が挙げられる。
アルキル基の炭素原子の一部がヘテロ原子を含む基で置換されている基としては、たとえば、炭素原子が窒素原子で置換されている例(たとえば、その構造中に−CH2−を含む分岐状または環状のアルキル基において該−CH2−が−NH−で置換された基)や、炭素原子が酸素原子で置換されている例(たとえば、その構造中に−CH2−を含む分岐状または環状のアルキル基において該−CH2−が−O−で置換された基)等が挙げられる。
R1としての直鎖状のアルキル基は、炭素数が1〜5であることが好ましく、具体的にはメチル基、エチル基、n−プロピル基、n−ブチル基、イソブチル基、n−ペンチル基が挙げられ、メチル基又はエチル基であることが好ましい。
R1としての分岐状のアルキル基は、炭素数が4〜10であることが好ましく、4〜8であることがより好ましい。具体的には、イソブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基等が挙げられ、tert−ブチル基であることが好ましい。
R1としての分岐状のアルキル基は、炭素数が4〜10であることが好ましく、4〜8であることがより好ましい。具体的には、イソブチル基、tert−ブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基等が挙げられ、tert−ブチル基であることが好ましい。
R1としての環状のアルキル基は、炭素数が3〜20であることが好ましく、4〜14であることがより好ましく、5〜12であることが最も好ましい。
該環状のアルキル基における基本環(置換基を除いた基本の環)の構造は、単環でも多環でもよく、特に、本発明の効果に優れることから、多環であることが好ましい。また、基本環は、炭素および水素から構成された炭化水素環であってもよく、炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された複素環であってもよい。本発明においては、特に、基本環が炭化水素環であることが好ましい。炭化水素環の具体例としては、たとえば、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンが挙げられる。これらのなかでも、アダマンタン、ノルボルナン、トリシクロデカン、テトラシクロドデカンが好ましく、特にアダマンタンが好ましい。
これらの基本環は、その環上に置換基を有していてもよいし、有していなくてもよい。
置換基としては、低級アルキル基、フッ素原子、フッ素化低級アルキル基、酸素原子(=O)等が挙げられる。該低級アルキル基としては、メチル基、エチル基等の炭素数1〜5の直鎖状または分岐状のアルキル基が挙げられる。基本環が置換基を有する場合、置換基の数は、1〜3が好ましく、1がより好ましい。ここで、「置換基を有する」とは、基本環を構成する炭素原子に結合した水素原子が置換基で置換されていることを意味する。
R1の環状のアルキル基としては、これらの基本環から1つの水素原子を除いた基が挙げられる。R1においては、該R1に隣接する酸素原子が結合する炭素原子が、上記のような基本環を構成する炭素原子の1つであることが好ましく、特に、R1に隣接する酸素原子に結合する炭素原子が、低級アルキル基等の置換基が結合した第3級炭素原子であることが、本発明の効果に優れ、好ましい。
R1として環状アルキル基を有する酸解離性溶解抑制基としては、たとえば、下記式(p1−1)〜(p1−7)で表される基が挙げられる。これらの中でも、一般式(p1−1)で表されるものが好ましい。
該環状のアルキル基における基本環(置換基を除いた基本の環)の構造は、単環でも多環でもよく、特に、本発明の効果に優れることから、多環であることが好ましい。また、基本環は、炭素および水素から構成された炭化水素環であってもよく、炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された複素環であってもよい。本発明においては、特に、基本環が炭化水素環であることが好ましい。炭化水素環の具体例としては、たとえば、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンが挙げられる。これらのなかでも、アダマンタン、ノルボルナン、トリシクロデカン、テトラシクロドデカンが好ましく、特にアダマンタンが好ましい。
これらの基本環は、その環上に置換基を有していてもよいし、有していなくてもよい。
置換基としては、低級アルキル基、フッ素原子、フッ素化低級アルキル基、酸素原子(=O)等が挙げられる。該低級アルキル基としては、メチル基、エチル基等の炭素数1〜5の直鎖状または分岐状のアルキル基が挙げられる。基本環が置換基を有する場合、置換基の数は、1〜3が好ましく、1がより好ましい。ここで、「置換基を有する」とは、基本環を構成する炭素原子に結合した水素原子が置換基で置換されていることを意味する。
R1の環状のアルキル基としては、これらの基本環から1つの水素原子を除いた基が挙げられる。R1においては、該R1に隣接する酸素原子が結合する炭素原子が、上記のような基本環を構成する炭素原子の1つであることが好ましく、特に、R1に隣接する酸素原子に結合する炭素原子が、低級アルキル基等の置換基が結合した第3級炭素原子であることが、本発明の効果に優れ、好ましい。
R1として環状アルキル基を有する酸解離性溶解抑制基としては、たとえば、下記式(p1−1)〜(p1−7)で表される基が挙げられる。これらの中でも、一般式(p1−1)で表されるものが好ましい。
R4の低級アルキル基は、炭素原子数1〜5のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のアルキル基が挙げられる。R4としては、工業上入手しやすい点で、メチル基又はエチル基が好ましく、メチル基がより好ましい。
R1としては、特に、環状のアルキル基を有する酸解離性溶解抑制基が好ましい。
式(p2)中、R2としては、上記R1と同様のものが挙げられる。中でもR2としては、直鎖状アルキル基または環状アルキル基が好ましい。
R3は水素原子または低級アルキル基である。R3の低級アルキル基は、炭素原子数1〜5のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のアルキル基が挙げられる。R3としては、工業上入手しやすい点で、水素原子またはメチル基が好ましく、水素原子であることがより好ましい。
R3は水素原子または低級アルキル基である。R3の低級アルキル基は、炭素原子数1〜5のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のアルキル基が挙げられる。R3としては、工業上入手しやすい点で、水素原子またはメチル基が好ましく、水素原子であることがより好ましい。
R2が直鎖状アルキル基である式(p2)で表される基としては、たとえば、1−エトキシエチル基、1−エトキシメチル基、1−メトキシエチル基、1−メトキシメチル基、1−メトキシプロピル基、1−エトキシプロピル基、1−n−ブトキシエチル基、1−ペンタフルオロエトキシエチル基、1−トリフルオロメトキシエチル基、1−トリフルオロメトキシメチル基等が挙げられる。
R2が環状アルキル基である式(p2)で表される基としては、たとえば、下記式で表される基が挙げられる。
R2が環状アルキル基である式(p2)で表される基としては、たとえば、下記式で表される基が挙げられる。
これらのなかでも、下記一般式(p2−1)または(p2−2)で表される基が好ましい。
n”およびm”は0又は1であることが最も好ましい。
アダマンチル基と−CHR3−O−(CH2)n”−との結合位置は特に限定されないが、アダマンチル基の1位又は2位に結合することが好ましい。
アダマンチル基と−CHR3−O−(CH2)n”−との結合位置は特に限定されないが、アダマンチル基の1位又は2位に結合することが好ましい。
本発明においては、酸解離性溶解抑制基が、上述した式(p1−1)〜(p1−7)、(p2−1)〜(p2−2)で表される基のように、環式基を有する基であることが、本発明の効果に優れることから好ましい。酸解離性溶解抑制基が環式基を有する基であると、鎖状の基である場合に比べ、化合物(A1)のアルカリ溶解性が低くなる。そのため、当該化合物(A1)をポジ型レジスト組成物に配合した場合に、当該ポジ型レジスト組成物を用いて形成されるレジスト膜の未露光部のアルカリ現像液に対する耐性が高くなる。
つまり、露光部と未露光部とのアルカリ溶解性の差(溶解コントラスト)が大きくなり、解像性が向上する。
つまり、露光部と未露光部とのアルカリ溶解性の差(溶解コントラスト)が大きくなり、解像性が向上する。
本発明においては、酸解離性溶解抑制基の種類を選択することにより、化合物(A1)の特性、たとえばアルカリ溶解性等を調節することができる。すなわち、化合物(A1)においては、酸解離性溶解抑制基が導入される際、カルボキシ基の反応性が水酸基に比べて高いため、酸解離性溶解抑制基はZ中カルボキシ基の位置に導入される。そのため、Z以外の部分の構造は一定であり、従来ポジ型レジスト組成物の基材成分として用いられているポリマー等に比べ、分子間の構造のばらつきが非常に小さい。したがって、酸解離性溶解抑制基の種類を選択することにより、化合物(A1)全体の性質を調節することができる。たとえば酸解離性溶解抑制基としてアダマンタン等の多環構造を有する基を選択した場合と、シクロヘキサン等の単環構造を有する基を選択した場合と、鎖状構造の基を選択した場合とでは、化合物(A1)のアルカリ溶解性は、多環構造を有する基<単環構造を有する基<鎖状構造の基となる。
酸解離性溶解抑制基の種類の選択においては、特に、R11〜R17の構造を考慮することが好ましい。これにより、化合物(A1)のアルカリ溶解性を、ポジ型レジスト組成物用として好適な範囲に調節することができる。たとえばR11〜R17がメチル基等の鎖状のアルキル基である場合、化合物(A1)はアルカリ溶解性が高い傾向があるが、酸解離性溶解抑制基としてアダマンタン等の多環構造を有する基を選択することにより、化合物(A1)のアルカリ溶解性を低くすることができる。また、たとえばR11〜R17がシキロヘキシル基等の環状のアルキル基または芳香族炭化水素基である場合、化合物(A1)はアルカリ溶解性が低い傾向があるが、このとき、Z中の酸解離性溶解抑制基としてシクロヘキサン等の単環構造を有する基を選択して組み合わせることにより、化合物(A1)のアルカリ溶解性を高くすることができる。
酸解離性溶解抑制基の種類の選択においては、特に、R11〜R17の構造を考慮することが好ましい。これにより、化合物(A1)のアルカリ溶解性を、ポジ型レジスト組成物用として好適な範囲に調節することができる。たとえばR11〜R17がメチル基等の鎖状のアルキル基である場合、化合物(A1)はアルカリ溶解性が高い傾向があるが、酸解離性溶解抑制基としてアダマンタン等の多環構造を有する基を選択することにより、化合物(A1)のアルカリ溶解性を低くすることができる。また、たとえばR11〜R17がシキロヘキシル基等の環状のアルキル基または芳香族炭化水素基である場合、化合物(A1)はアルカリ溶解性が低い傾向があるが、このとき、Z中の酸解離性溶解抑制基としてシクロヘキサン等の単環構造を有する基を選択して組み合わせることにより、化合物(A1)のアルカリ溶解性を高くすることができる。
R11〜R17は、それぞれ独立に、炭素数1〜10の直鎖状、分岐状または環状のアルキル基または芳香族炭化水素基である。
前記アルキル基としては、炭素数1〜5の直鎖状または分岐状の低級アルキル基、または炭素数5〜6の環状アルキル基が好ましい。前記低級アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの直鎖状または分岐状のアルキル基が挙げられ、これらの中でもメチル基が好ましい。前記環状アルキル基としてはシクロヘキシル基、シクロペンチル基等が挙げられ、シクロヘキシル基が好ましい。
前記芳香族炭化水素基としては、フェニル基、トリル基、キシリル基、メシチル基、フェネチル基、ナフチル基などが挙げられる。
これらのアルキル基または芳香族炭化水素基は、その構造中に、酸素原子、窒素原子、硫黄原子等のヘテロ原子を含んでもよい。
前記アルキル基としては、炭素数1〜5の直鎖状または分岐状の低級アルキル基、または炭素数5〜6の環状アルキル基が好ましい。前記低級アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの直鎖状または分岐状のアルキル基が挙げられ、これらの中でもメチル基が好ましい。前記環状アルキル基としてはシクロヘキシル基、シクロペンチル基等が挙げられ、シクロヘキシル基が好ましい。
前記芳香族炭化水素基としては、フェニル基、トリル基、キシリル基、メシチル基、フェネチル基、ナフチル基などが挙げられる。
これらのアルキル基または芳香族炭化水素基は、その構造中に、酸素原子、窒素原子、硫黄原子等のヘテロ原子を含んでもよい。
g、jはそれぞれ独立に1以上の整数であり、k、qはそれぞれ独立に0以上の整数であり、かつg+j+k+qが5以下である。
gおよびjは、1または2であることが好ましく、最も好ましくは1である。
kは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは1である。
qは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。
gおよびjは、1または2であることが好ましく、最も好ましくは1である。
kは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは1である。
qは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。
bは1以上の整数であり、l、mはそれぞれ独立に0以上の整数であり、かつb+l+mが4以下である。
bは、1または2であることが好ましく、最も好ましくは1である。
lは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは1である。
mは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。l+mは1であることが特に好ましい。
cは1以上の整数であり、n、oはそれぞれ独立に0以上の整数であり、かつc+n+oが4以下である。
cは、1または2であることが好ましく、最も好ましくは1である。
nは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは1である。
oは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。n+oは1であることが特に好ましい。
bは、1または2であることが好ましく、最も好ましくは1である。
lは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは1である。
mは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。l+mは1であることが特に好ましい。
cは1以上の整数であり、n、oはそれぞれ独立に0以上の整数であり、かつc+n+oが4以下である。
cは、1または2であることが好ましく、最も好ましくは1である。
nは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは1である。
oは、0〜2の整数であることが好ましく、0または1がより好ましく、最も好ましくは0である。n+oは1であることが特に好ましい。
下付文字bまたはcを付した基[−OZ]の結合位置は、特に限定されないが、少なくとも、当該−OZが結合するベンゼン環に結合したAのパラ位に、−OZが結合していることが好ましい。かかる化合物は、当該化合物を用いて製造される低分子化合物がレジスト組成物用として好適であること、合成しやすい等の利点を有する。
下付文字gを付した水酸基の結合位置は、特に限定されないが、得られる化合物を用いて製造される低分子化合物がレジスト組成物用として好適であること、合成しやすさ等の点で、少なくとも、フェニル基のパラ位(4位)に結合していることが好ましい。
R11、R12およびR17の結合位置は、特に限定されないが、合成のしやすさ等の点で、R11が、水酸基が結合した炭素原子に隣接する炭素原子の少なくとも一方に結合していることが好ましい。
R11、R12およびR17の結合位置は、特に限定されないが、合成のしやすさ等の点で、R11が、水酸基が結合した炭素原子に隣接する炭素原子の少なくとも一方に結合していることが好ましい。
本発明において、Aは3価の芳香族環式基、3価のアルキル基、3価の脂肪族環式基、又は、芳香族環式基若しくは脂肪族環式基を有する3価の有機基である。
Aの3価の芳香族環式基、3価のアルキル基、3価の脂肪族環式基、芳香族環式基を有する3価の有機基、及び脂肪族環式基を有する3価の有機基としては、置換基を有していてもよいし、有していなくてもよい。置換基としては、炭素数1〜5の低級アルキル基、フッ素原子、フッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、酸素原子(=O)、等が挙げられる。
Aの3価の芳香族環式基、3価のアルキル基、3価の脂肪族環式基、芳香族環式基を有する3価の有機基、及び脂肪族環式基を有する3価の有機基としては、置換基を有していてもよいし、有していなくてもよい。置換基としては、炭素数1〜5の低級アルキル基、フッ素原子、フッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、酸素原子(=O)、等が挙げられる。
Aの3価の芳香族環式基としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、ピレンなどの芳香族化合物から3個の水素原子を除いた基が挙げられる。
Aの3価のアルキル基としては、炭素数1〜5のアルカンから3個の水素原子を除いた基が挙げられる。直鎖、分岐鎖状のいずれでもよい。
Aの3価の脂肪族環式基として、置換基を除いた基本の環の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。好ましくは多環式基である。
このような3価の脂肪族環式基の具体例としては、モノシクロアルカンから3個の水素原子を除いた基;ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから3個の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンから3個の水素原子を除いた基や、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから3個の水素原子を除いた基などが挙げられる。これらの基は、その水素原子の一部または全部が置換基(例えば低級アルキル基、フッ素原子またはフッ素化アルキル基)で置換されていてもよい。
これらの中でも、炭素数が4〜15の脂肪族環式基が好ましく、アダマンタンから3個の水素原子を除いた基がより好ましく、特に、アダマンタンの1位および3位の水素原子を除いた基が好ましい。
Aの3価のアルキル基としては、炭素数1〜5のアルカンから3個の水素原子を除いた基が挙げられる。直鎖、分岐鎖状のいずれでもよい。
Aの3価の脂肪族環式基として、置換基を除いた基本の環の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。好ましくは多環式基である。
このような3価の脂肪族環式基の具体例としては、モノシクロアルカンから3個の水素原子を除いた基;ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから3個の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンから3個の水素原子を除いた基や、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから3個の水素原子を除いた基などが挙げられる。これらの基は、その水素原子の一部または全部が置換基(例えば低級アルキル基、フッ素原子またはフッ素化アルキル基)で置換されていてもよい。
これらの中でも、炭素数が4〜15の脂肪族環式基が好ましく、アダマンタンから3個の水素原子を除いた基がより好ましく、特に、アダマンタンの1位および3位の水素原子を除いた基が好ましい。
更に、Aとして、芳香族環式基若しくは脂肪族環式基を有する3価の有機基を用いることができる。
Aの芳香族環式基を有する3価の有機基としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、ピレンなどの芳香族化合物に炭素数1〜5の低級アルキル基が1個乃至3個付加した有機化合物のうち、当該低級アルキル基から3個の水素原子を除いた有機基が挙げられる。
Aの脂肪族環式基を有する3価の有機基としては、モノシクロアルカンに炭素数1〜5の低級アルキル基が1個乃至3個付加した有機化合物のうち、当該低級アルキル基から3個の水素原子を除いた有機基を挙げることができ、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンに炭素数1〜5の低級アルキル基が1個乃至3個付加した有機化合物のうち、当該低級アルキル基から3個の水素原子を除いた有機基を挙げることができる。
Aとしては、3価のアルキル基、又は芳香族環式基を有する3価の有機基が好ましく、芳香族環式基を有する3価の有機基がより好ましい。
Aの芳香族環式基を有する3価の有機基としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、ピレンなどの芳香族化合物に炭素数1〜5の低級アルキル基が1個乃至3個付加した有機化合物のうち、当該低級アルキル基から3個の水素原子を除いた有機基が挙げられる。
Aの脂肪族環式基を有する3価の有機基としては、モノシクロアルカンに炭素数1〜5の低級アルキル基が1個乃至3個付加した有機化合物のうち、当該低級アルキル基から3個の水素原子を除いた有機基を挙げることができ、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンに炭素数1〜5の低級アルキル基が1個乃至3個付加した有機化合物のうち、当該低級アルキル基から3個の水素原子を除いた有機基を挙げることができる。
Aとしては、3価のアルキル基、又は芳香族環式基を有する3価の有機基が好ましく、芳香族環式基を有する3価の有機基がより好ましい。
本発明の化合物(A1)としては、特に、下記一般式(A−2)で表される化合物が、該化合物を用いて製造される化合物がレジスト組成物用として好適であるため好ましい。
前記式(A−2)の中でも、下記一般式(A−2−1)で表される化合物が好ましい。
R12はフェニル基の2又は3位に結合していることが好ましい。OZはフェニル基の4位に結合していることが好ましい。R13及びR15はフェニル基の3位に結合していることが好ましい。
化合物(A1)は、スピンコート法によりアモルファス(非晶質)な膜を形成しうる材料である。ここで、アモルファスな膜とは、結晶化しない光学的に透明な膜を意味する。
スピンコート法は、一般的に用いられている薄膜形成手法の1つである。
当該化合物がスピンコート法によりアモルファスな膜を形成しうる材料であるかどうかは、8インチシリコンウェーハ上にスピンコート法により形成した塗膜が全面透明であるか否かにより判別できる。より具体的には、例えば以下のようにして判別できる。まず、当該化合物に、一般的にレジスト溶剤に用いられている溶剤を用いて、例えば乳酸エチル/プロピレングリコールモノメチルエーテルアセテート=40/60(質量比)の混合溶剤(以下、EMと略記する)を、濃度が14質量%となるよう溶解し、超音波洗浄器を用いて超音波処理(溶解処理)を施して溶解させ、該溶液を、ウェーハ上に1500rpmにてスピンコートし、任意に乾燥ベーク(PAB,Post Applied Bake)を110℃、90秒の条件で施し、この状態で、目視にて、透明かどうかによりアモルファスな膜が形成されているかどうかを確認する。なお、透明でない曇った膜はアモルファスな膜ではない。
本発明において、化合物(A1)は、上述のようにして形成されたアモルファスな膜の安定性が良好であることが好ましく、例えば上記PAB後、室温環境下で2週間放置した後でも、アモルファスな状態が維持されていることが好ましい。
スピンコート法は、一般的に用いられている薄膜形成手法の1つである。
当該化合物がスピンコート法によりアモルファスな膜を形成しうる材料であるかどうかは、8インチシリコンウェーハ上にスピンコート法により形成した塗膜が全面透明であるか否かにより判別できる。より具体的には、例えば以下のようにして判別できる。まず、当該化合物に、一般的にレジスト溶剤に用いられている溶剤を用いて、例えば乳酸エチル/プロピレングリコールモノメチルエーテルアセテート=40/60(質量比)の混合溶剤(以下、EMと略記する)を、濃度が14質量%となるよう溶解し、超音波洗浄器を用いて超音波処理(溶解処理)を施して溶解させ、該溶液を、ウェーハ上に1500rpmにてスピンコートし、任意に乾燥ベーク(PAB,Post Applied Bake)を110℃、90秒の条件で施し、この状態で、目視にて、透明かどうかによりアモルファスな膜が形成されているかどうかを確認する。なお、透明でない曇った膜はアモルファスな膜ではない。
本発明において、化合物(A1)は、上述のようにして形成されたアモルファスな膜の安定性が良好であることが好ましく、例えば上記PAB後、室温環境下で2週間放置した後でも、アモルファスな状態が維持されていることが好ましい。
化合物(A1)は、下記一般式(J)で表される化合物(J1)のZ’中のカルボキシル基末端の水素原子を、周知の方法により、酸解離性溶解抑制基で置換することにより製造できる。
化合物(J1)は、従来公知の方法により製造でき、たとえば、3個のサリチルアルデヒド(置換基を有していてもよい)が前記Aを介して結合してなるトリスサリチルアルデヒド誘導体と、置換基を有するフェノール化合物とを酸性条件下で脱水縮合させることによりトリストリフェニルメタン誘導体を得、該トリストリフェニルメタン誘導体の水酸基に、Br−Y−COOH等ハロゲン化カルボン酸誘導体を反応させて−Y−COOH基を導入することにより製造できる。しかし、このような従来公知の方法では、−Y−COOH基が導入される水酸基の位置や数を制御しにくく、Aを介して結合した三つのベンゼン環それぞれに−Y−COOH基が結合した化合物(J1)の収率が低いという問題がある。
そのため、化合物(J1)は、下記一般式(J−1)で表される化合物(J−1)と下記一般式(J−2)で表される化合物(J−2)とを反応させて下記一般式(J−3)で表される化合物(J−3)を得る工程(以下、化合物(J−3)形成工程という)と、
前記化合物(J−3)と下記一般式(J−4)で表される化合物(J−4)とを酸性条件下で反応させる工程を経て化合物(J1)を得る工程(以下、化合物(J1)形成工程という)とを有する製造方法により製造されることが好ましい。
前記化合物(J−3)と下記一般式(J−4)で表される化合物(J−4)とを酸性条件下で反応させる工程を経て化合物(J1)を得る工程(以下、化合物(J1)形成工程という)とを有する製造方法により製造されることが好ましい。
一般式(J−1)〜(J−4)中、Xはハロゲン原子であり;Rは保護基であり;R11〜R17、g、j、k、q、b、l、m、c、n、oおよびAは、それぞれ、上記式(A−1)および(J)中のR11〜R17、g、j、k、q、b、l、m、c、n、oおよびAと同様である。Yは上記と同様である。
<化合物(J−3)形成工程>
一般式(J−2)中、Xのハロゲン原子としては、臭素原子、塩素原子、フッ素原子等が挙げられる。反応性に優れることから、臭素原子又は塩素原子が好ましい。
Rの保護基は、化合物(J−1)と化合物(J−2)とを反応させる際に反応せず、かつ、次の化合物(J−3)形成工程において化合物(J−3)を反応させる際の酸性条件下で解離する酸解離性の基または加水分解によっては解離する基であれば特に限定されず、一般的に保護基として提案されているもののなかから任意に選択できる。
かかる保護基としては、上記式(A−1)中のZ中の酸解離性溶解抑制基として挙げたものと同様のものが挙げられる。
一般式(J−2)中、Xのハロゲン原子としては、臭素原子、塩素原子、フッ素原子等が挙げられる。反応性に優れることから、臭素原子又は塩素原子が好ましい。
Rの保護基は、化合物(J−1)と化合物(J−2)とを反応させる際に反応せず、かつ、次の化合物(J−3)形成工程において化合物(J−3)を反応させる際の酸性条件下で解離する酸解離性の基または加水分解によっては解離する基であれば特に限定されず、一般的に保護基として提案されているもののなかから任意に選択できる。
かかる保護基としては、上記式(A−1)中のZ中の酸解離性溶解抑制基として挙げたものと同様のものが挙げられる。
化合物(J−1)と化合物(J−2)とは、公知の方法により反応させることができ、たとえば、アセトン等の有機溶剤に化合物(J−1)を溶解し、該溶液中に炭酸カリウム等の塩基を添加し、撹拌しながら該溶液中に、使用する化合物(J−1)に対して約2当量倍の化合物(J−2)を添加することにより反応させることができる。
このとき使用する有機溶剤としては、化合物(J−1)および化合物(J−2)、並びに生成する化合物(J−3)を溶解するものであればよく、一般的な有機溶剤から任意のものを選択すればよい。一般的な有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルアミルケトン、シクロヘキサノン等のケトン類;THF、ジオキサン、グライム、プロピレングリコールモノメチルエーテル等のエーテル類;酢酸エチル、乳酸エチル等のエステル類;プロピレングリコールメチルエーテルアセテート等のエーテルエステル類;γ−ブチロラクトン等のラクトン類等を挙げることができ、これらを単独で、または混合して用いることができる。
反応温度は、10〜80℃が好ましく、40〜80℃がより好ましく、60〜80℃が特に好ましい。
反応時間は、1〜24時間が好ましく、4〜15時間がより好ましい。
このとき使用する有機溶剤としては、化合物(J−1)および化合物(J−2)、並びに生成する化合物(J−3)を溶解するものであればよく、一般的な有機溶剤から任意のものを選択すればよい。一般的な有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルアミルケトン、シクロヘキサノン等のケトン類;THF、ジオキサン、グライム、プロピレングリコールモノメチルエーテル等のエーテル類;酢酸エチル、乳酸エチル等のエステル類;プロピレングリコールメチルエーテルアセテート等のエーテルエステル類;γ−ブチロラクトン等のラクトン類等を挙げることができ、これらを単独で、または混合して用いることができる。
反応温度は、10〜80℃が好ましく、40〜80℃がより好ましく、60〜80℃が特に好ましい。
反応時間は、1〜24時間が好ましく、4〜15時間がより好ましい。
反応終了後、反応液は、そのまま次の工程に用いてもよいが、水/酢酸エチル等を添加し、有機相(酢酸エチル相等)を減圧濃縮して化合物(J−3)を得てもよい。
<化合物(J1)形成工程>
本工程では、まず、化合物(J−3)と化合物(J−4)とを酸性条件下で反応させる工程を行う。これにより、化合物(J−3)のホルミル基(−CHO)と化合物(J−4)とが反応するとともに、化合物(J−3)の保護基Rが解離してカルボキシ基が生成する。
具体的には、例えば、使用する化合物(J−3)に対して約4当量倍の化合物(J−4)をメタノール等の有機溶剤に溶解し、該溶液中に、塩酸等の酸を添加し、この混合溶液中に、化合物(J−3)を添加することにより反応させることができる。
このとき使用する酸としては、化合物(J−3)と化合物(J−4)とが反応し、かつ保護基Rが解離するものであれば特に制限はない。好ましくは塩酸、硫酸、無水硫酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、シュウ酸、ギ酸、リン酸、トリクロロ酢酸、トリフルオロ酢酸等を好ましい具体例として挙げることができる。特に、塩酸が好ましく用いられる。これらの酸は、いずれか1種を単独で用いてもよく、2種類以上混合して用いてもよい。
酸の添加量は、例えば、35質量%塩酸の場合は、100質量部の化合物(J−3)に対して、1〜700質量部、好ましくは、10〜100質量部の範囲で用いられる。
反応温度は、20〜80℃が好ましく、30〜65℃がより好ましい。
反応時間は、2〜96時間が好ましく、5〜72時間がより好ましい。
反応終了後、反応液に水酸化ナトリウム等の塩基を添加して、反応液中の酸を中和する。このとき、たとえば反応液に用いる有機溶剤としてメタノール等のアルコールを用いた場合、生じたカルボキシ基が該アルコールにより若干エステル化している場合がある。そのため、エステルを加水分解させるために、過剰の塩基を加えることが好ましい。
このようにして得られる反応液中には、化合物(J1)が、塩となって溶解している。そのため、たとえば反応液を分液ロートに移し、水/メチルイソブチルケトン、又は水/ジエチルエーテル等で洗浄して原料(反応に用いた化合物等)を除去し、次いで水層を抜き取り、塩酸水溶液で中和すると、沈殿が生じる。この沈殿物をろ過等によって回収することにより、化合物(J1)が得られる。
この未精製の化合物(J1)は、さらに、再沈等の精製処理を行ってもよい。
本工程では、まず、化合物(J−3)と化合物(J−4)とを酸性条件下で反応させる工程を行う。これにより、化合物(J−3)のホルミル基(−CHO)と化合物(J−4)とが反応するとともに、化合物(J−3)の保護基Rが解離してカルボキシ基が生成する。
具体的には、例えば、使用する化合物(J−3)に対して約4当量倍の化合物(J−4)をメタノール等の有機溶剤に溶解し、該溶液中に、塩酸等の酸を添加し、この混合溶液中に、化合物(J−3)を添加することにより反応させることができる。
このとき使用する酸としては、化合物(J−3)と化合物(J−4)とが反応し、かつ保護基Rが解離するものであれば特に制限はない。好ましくは塩酸、硫酸、無水硫酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、シュウ酸、ギ酸、リン酸、トリクロロ酢酸、トリフルオロ酢酸等を好ましい具体例として挙げることができる。特に、塩酸が好ましく用いられる。これらの酸は、いずれか1種を単独で用いてもよく、2種類以上混合して用いてもよい。
酸の添加量は、例えば、35質量%塩酸の場合は、100質量部の化合物(J−3)に対して、1〜700質量部、好ましくは、10〜100質量部の範囲で用いられる。
反応温度は、20〜80℃が好ましく、30〜65℃がより好ましい。
反応時間は、2〜96時間が好ましく、5〜72時間がより好ましい。
反応終了後、反応液に水酸化ナトリウム等の塩基を添加して、反応液中の酸を中和する。このとき、たとえば反応液に用いる有機溶剤としてメタノール等のアルコールを用いた場合、生じたカルボキシ基が該アルコールにより若干エステル化している場合がある。そのため、エステルを加水分解させるために、過剰の塩基を加えることが好ましい。
このようにして得られる反応液中には、化合物(J1)が、塩となって溶解している。そのため、たとえば反応液を分液ロートに移し、水/メチルイソブチルケトン、又は水/ジエチルエーテル等で洗浄して原料(反応に用いた化合物等)を除去し、次いで水層を抜き取り、塩酸水溶液で中和すると、沈殿が生じる。この沈殿物をろ過等によって回収することにより、化合物(J1)が得られる。
この未精製の化合物(J1)は、さらに、再沈等の精製処理を行ってもよい。
上記化合物(A1)は、後述するように、酸の作用によりアルカリ可溶性が増大する基材成分(A)、および放射線の照射により酸を発生する酸発生剤成分(B)を含有するポジ型レジスト組成物において、前記基材成分(A)として好適に使用できる。
化合物(A1)を含有するポジ型レジスト組成物を用いることにより、高解像性のレジストパターン、たとえばパターン寸法200nm以下の超微細なレジストパターンを形成でき、しかもラフネスも低減できる。
これは、化合物(A1)の均一性によると推測される。すなわち、レジスト材料の基材成分として高分子量の重合体(樹脂)を用いる従来のレジストは、分子量分散やアルカリ溶解性分散を制御することが難しい。そのため、これらの分散や、その分子サイズそのものが原因となるLERなどの低減には限界がある。
また、上記問題の解決策として考えられている低分子化合物も、上述した非特許文献1,2等に記載されているように、アルカリ可溶性基を酸解離性溶解抑制基で保護することから、分子ごとに、保護されるアルカリ可溶性基の位置やその保護率などにばらつきが発生し、結果、その性質にもばらつきが生じて上記と同様の問題が生じる。
一方、化合物(A1)は、低分子量の非重合体である。また、その製造に用いられる化合物(J1)は、上述したように、アルカリ可溶性基としてフェノール性水酸基とカルボキシ基とを有しており、アルカリ可溶性基を酸解離性溶解抑制基により保護する際、より反応性の高いカルボキシ基が選択的に保護される。そのため、得られる化合物(A1)は、たとえばアルカリ可溶性基として水酸基のみを等量有するような場合に比べ、その構造や分子量にばらつきが少ない。そのため、化合物(A1)は、分子ごとのアルカリ溶解性や親水性・疎水性等の性質のばらつきが少なく、均一な性質のレジスト膜が形成できる。そのため、化合物(A1)を用いることにより、均一な性質のレジスト膜を形成でき、それによって高解像性のレジストパターンを形成でき、また、ラフネスも低減できると推測される。
化合物(A1)を含有するポジ型レジスト組成物を用いることにより、高解像性のレジストパターン、たとえばパターン寸法200nm以下の超微細なレジストパターンを形成でき、しかもラフネスも低減できる。
これは、化合物(A1)の均一性によると推測される。すなわち、レジスト材料の基材成分として高分子量の重合体(樹脂)を用いる従来のレジストは、分子量分散やアルカリ溶解性分散を制御することが難しい。そのため、これらの分散や、その分子サイズそのものが原因となるLERなどの低減には限界がある。
また、上記問題の解決策として考えられている低分子化合物も、上述した非特許文献1,2等に記載されているように、アルカリ可溶性基を酸解離性溶解抑制基で保護することから、分子ごとに、保護されるアルカリ可溶性基の位置やその保護率などにばらつきが発生し、結果、その性質にもばらつきが生じて上記と同様の問題が生じる。
一方、化合物(A1)は、低分子量の非重合体である。また、その製造に用いられる化合物(J1)は、上述したように、アルカリ可溶性基としてフェノール性水酸基とカルボキシ基とを有しており、アルカリ可溶性基を酸解離性溶解抑制基により保護する際、より反応性の高いカルボキシ基が選択的に保護される。そのため、得られる化合物(A1)は、たとえばアルカリ可溶性基として水酸基のみを等量有するような場合に比べ、その構造や分子量にばらつきが少ない。そのため、化合物(A1)は、分子ごとのアルカリ溶解性や親水性・疎水性等の性質のばらつきが少なく、均一な性質のレジスト膜が形成できる。そのため、化合物(A1)を用いることにより、均一な性質のレジスト膜を形成でき、それによって高解像性のレジストパターンを形成でき、また、ラフネスも低減できると推測される。
さらに、上述したように、化合物(A1)の性質が均一で、均一な性質(アルカリ溶解性や親水性・疎水性等)のレジスト膜を形成できると考えられることから、化合物(A1)を用いることにより、ディフェクトも低減できる。ここで、ディフェクトとは、例えば、KLAテンコール社の表面欠陥観察装置(商品名「KLA」)により、現像後のレジストパターンを真上から観察した際に検知される不具合全般のことである。この不具合とは、例えば現像後のスカム、泡、ゴミ、レジストパターン間のブリッジ、色むら、析出物等である。
また、化合物(A1)の性質が均一で、有機溶剤等に対する溶解性も均一であると考えられることから、化合物(A1)を含有するポジ型レジスト組成物の保存安定性も向上する。
化合物(A1)は、トリフェニルメタン骨格を三つ有しているので、化合物(A1)自体のガラス転移点(Tg)が高く、酸解離性溶解抑制基で保護される前の非保護体のTgも高い。仮に、純度が低い場合であっても、これらのTgの優位性を維持することできるので、ポジ型レジスト組成物の基材成分(A)として、更に、好適である。
また、化合物(A1)の性質が均一で、有機溶剤等に対する溶解性も均一であると考えられることから、化合物(A1)を含有するポジ型レジスト組成物の保存安定性も向上する。
化合物(A1)は、トリフェニルメタン骨格を三つ有しているので、化合物(A1)自体のガラス転移点(Tg)が高く、酸解離性溶解抑制基で保護される前の非保護体のTgも高い。仮に、純度が低い場合であっても、これらのTgの優位性を維持することできるので、ポジ型レジスト組成物の基材成分(A)として、更に、好適である。
<ポジ型レジスト組成物>
本発明のポジ型レジスト組成物は、酸の作用によりアルカリ可溶性が増大する基材成分(A)(以下、(A)成分という。)、および放射線の照射により酸を発生する酸発生剤成分(B)(以下、(B)成分という。)を含有するポジ型レジスト組成物であって、前記(A)成分として化合物(A1)を含有することを特徴とする。
(A)成分および(B)成分を含有するポジ型レジスト組成物においては、露光により前記(B)成分から発生した酸が前記(A)成分に作用すると、(A)成分全体がアルカリ不溶性からアルカリ可溶性に変化する。そのため、レジストパターンの形成において、該ポジ型レジスト組成物からなるレジスト膜を選択的に露光すると、または露光に加えて露光後加熱すると、露光部はアルカリ可溶性へ転じる一方で未露光部はアルカリ不溶性のまま変化しないので、アルカリ現像することによりポジ型のレジストパターンが形成できる。
本発明のポジ型レジスト組成物は、酸の作用によりアルカリ可溶性が増大する基材成分(A)(以下、(A)成分という。)、および放射線の照射により酸を発生する酸発生剤成分(B)(以下、(B)成分という。)を含有するポジ型レジスト組成物であって、前記(A)成分として化合物(A1)を含有することを特徴とする。
(A)成分および(B)成分を含有するポジ型レジスト組成物においては、露光により前記(B)成分から発生した酸が前記(A)成分に作用すると、(A)成分全体がアルカリ不溶性からアルカリ可溶性に変化する。そのため、レジストパターンの形成において、該ポジ型レジスト組成物からなるレジスト膜を選択的に露光すると、または露光に加えて露光後加熱すると、露光部はアルカリ可溶性へ転じる一方で未露光部はアルカリ不溶性のまま変化しないので、アルカリ現像することによりポジ型のレジストパターンが形成できる。
[(A)成分]
(A)成分は、上記化合物(A1)を含有する。
化合物(A1)は、1種単独で用いてもよく、2種以上を併用してもよい。
(A)成分中、化合物(A1)の割合は、40質量%超であることが好ましく、50質量%超であることがより好ましく、80質量%超がさらに好ましく、最も好ましくは100質量%である。
(A)成分中の化合物(A1)の割合は、逆相クロマトグラフィー等の手段により測定できる。
(A)成分は、上記化合物(A1)を含有する。
化合物(A1)は、1種単独で用いてもよく、2種以上を併用してもよい。
(A)成分中、化合物(A1)の割合は、40質量%超であることが好ましく、50質量%超であることがより好ましく、80質量%超がさらに好ましく、最も好ましくは100質量%である。
(A)成分中の化合物(A1)の割合は、逆相クロマトグラフィー等の手段により測定できる。
(A)成分は、さらに、化合物(A1)を用いることによる効果を損なわない範囲で、これまで化学増幅型レジストの基材成分として提案されている任意の樹脂成分(以下、(A2)成分ということがある)を含有していてもよい。
かかる(A2)成分としては、例えば従来の化学増幅型のKrF用ポジ型レジスト組成物、ArF用ポジ型レジスト組成物等のベース樹脂として提案されているものが挙げられ、レジストパターン形成時に用いる露光光源の種類に応じて適宜選択できる。
かかる(A2)成分としては、例えば従来の化学増幅型のKrF用ポジ型レジスト組成物、ArF用ポジ型レジスト組成物等のベース樹脂として提案されているものが挙げられ、レジストパターン形成時に用いる露光光源の種類に応じて適宜選択できる。
ポジ型レジスト組成物中の(A)成分の含有量は、形成しようとするレジスト膜厚に応じて調整すればよい。
[(B)成分]
(B)成分としては、特に限定されず、これまで化学増幅型レジスト用の酸発生剤として提案されているものを使用することができる。
このような酸発生剤としては、これまで、ヨードニウム塩やスルホニウム塩などのオニウム塩系酸発生剤、オキシムスルホネート系酸発生剤、ビスアルキルまたはビスアリールスルホニルジアゾメタン類、ポリ(ビススルホニル)ジアゾメタン類などのジアゾメタン系酸発生剤、ニトロベンジルスルホネート系酸発生剤、イミノスルホネート系酸発生剤、ジスルホン系酸発生剤など多種のものが知られている。
(B)成分としては、特に限定されず、これまで化学増幅型レジスト用の酸発生剤として提案されているものを使用することができる。
このような酸発生剤としては、これまで、ヨードニウム塩やスルホニウム塩などのオニウム塩系酸発生剤、オキシムスルホネート系酸発生剤、ビスアルキルまたはビスアリールスルホニルジアゾメタン類、ポリ(ビススルホニル)ジアゾメタン類などのジアゾメタン系酸発生剤、ニトロベンジルスルホネート系酸発生剤、イミノスルホネート系酸発生剤、ジスルホン系酸発生剤など多種のものが知られている。
オニウム塩系酸発生剤としては、例えば下記一般式(b−0)で表される酸発生剤が例示できる。
一般式(b−0)において、R51は、直鎖、分岐鎖若しくは環状のアルキル基、または直鎖、分岐鎖若しくは環状のフッ素化アルキル基を表す。
前記直鎖若しくは分岐鎖状のアルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。
前記環状のアルキル基としては、炭素数4〜12であることが好ましく、炭素数5〜10であることがさらに好ましく、炭素数6〜10であることが最も好ましい。
前記フッ素化アルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。また。該フッ化アルキル基のフッ素化率(アルキル基中全水素原子の個数に対する置換したフッ素原子の個数の割合)は、好ましくは10〜100%、さらに好ましくは50〜100%であり、特に水素原子をすべてフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
R51としては、直鎖状のアルキル基またはフッ素化アルキル基であることが最も好ましい。
前記直鎖若しくは分岐鎖状のアルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。
前記環状のアルキル基としては、炭素数4〜12であることが好ましく、炭素数5〜10であることがさらに好ましく、炭素数6〜10であることが最も好ましい。
前記フッ素化アルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。また。該フッ化アルキル基のフッ素化率(アルキル基中全水素原子の個数に対する置換したフッ素原子の個数の割合)は、好ましくは10〜100%、さらに好ましくは50〜100%であり、特に水素原子をすべてフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
R51としては、直鎖状のアルキル基またはフッ素化アルキル基であることが最も好ましい。
R52は、水素原子、水酸基、ハロゲン原子、直鎖、分岐鎖若しくは環状のアルキル基、直鎖、若しくは分岐鎖状のハロゲン化アルキル基、または直鎖若しくは分岐鎖状のアルコキシ基である。
R52において、ハロゲン原子としては、フッ素原子、臭素原子、塩素原子、ヨウ素原子などが挙げられ、フッ素原子が好ましい。
R52において、アルキル基は、直鎖または分岐鎖状であり、その炭素数は好ましくは1〜5、特に1〜4、さらには1〜3であることが望ましい。
R52において、ハロゲン化アルキル基は、アルキル基中の水素原子の一部または全部がハロゲン原子で置換された基である。ここでのアルキル基は、前記R52における「アルキル基」と同様のものが挙げられる。置換するハロゲン原子としては上記「ハロゲン原子」について説明したものと同様のものが挙げられる。ハロゲン化アルキル基において、水素原子の全個数の50〜100%がハロゲン原子で置換されていることが望ましく、全て置換されていることがより好ましい。
R52において、アルコキシ基としては、直鎖状または分岐鎖状であり、その炭素数は好ましくは1〜5、特に1〜4、さらには1〜3であることが望ましい。
R52としては、これらの中でも水素原子が好ましい。
R52において、ハロゲン原子としては、フッ素原子、臭素原子、塩素原子、ヨウ素原子などが挙げられ、フッ素原子が好ましい。
R52において、アルキル基は、直鎖または分岐鎖状であり、その炭素数は好ましくは1〜5、特に1〜4、さらには1〜3であることが望ましい。
R52において、ハロゲン化アルキル基は、アルキル基中の水素原子の一部または全部がハロゲン原子で置換された基である。ここでのアルキル基は、前記R52における「アルキル基」と同様のものが挙げられる。置換するハロゲン原子としては上記「ハロゲン原子」について説明したものと同様のものが挙げられる。ハロゲン化アルキル基において、水素原子の全個数の50〜100%がハロゲン原子で置換されていることが望ましく、全て置換されていることがより好ましい。
R52において、アルコキシ基としては、直鎖状または分岐鎖状であり、その炭素数は好ましくは1〜5、特に1〜4、さらには1〜3であることが望ましい。
R52としては、これらの中でも水素原子が好ましい。
R53は置換基を有していてもよいアリール基であり、置換基を除いた基本環(母体環)の構造としては、ナフチル基、フェニル基、アントラセニル基などが挙げられ、本発明の効果やArFエキシマレーザーなどの露光光の吸収の観点から、フェニル基が望ましい。
置換基としては、水酸基、低級アルキル基(直鎖または分岐鎖状であり、その好ましい炭素数は5以下であり、特にメチル基が好ましい)などを挙げることができる。
R53のアリール基としては、置換基を有しないものがより好ましい。
u”は1〜3の整数であり、2または3であることが好ましく、特に3であることが望ましい。
置換基としては、水酸基、低級アルキル基(直鎖または分岐鎖状であり、その好ましい炭素数は5以下であり、特にメチル基が好ましい)などを挙げることができる。
R53のアリール基としては、置換基を有しないものがより好ましい。
u”は1〜3の整数であり、2または3であることが好ましく、特に3であることが望ましい。
一般式(b−0)で表される酸発生剤の好ましいものとしては、以下の化学式で表されるものを挙げることができる。
一般式(b−0)で表される酸発生剤は1種または2種以上混合して用いることができる。
一般式(b−0)で表される酸発生剤の他のオニウム塩系酸発生剤としては、例えば下記一般式(b−1)または(b−2)で表される化合物が挙げられる。
式(b−1)中、R1”〜R3”はそれぞれ独立にアリール基またはアルキル基を表す。R1”〜R3”のうち、少なくとも1つはアリール基を表す。R1”〜R3”のうち、2以上がアリール基であることが好ましく、R1”〜R3”のすべてがアリール基であることが最も好ましい。
R1”〜R3”のアリール基としては、特に制限はなく、例えば、炭素数6〜20のアリール基であって、該アリール基は、その水素原子の一部または全部がアルキル基、アルコキシ基、ハロゲン原子等で置換されていてもよく、されていなくてもよい。アリール基としては、安価に合成可能なことから、炭素数6〜10のアリール基が好ましい。具体的には、たとえばフェニル基、ナフチル基が挙げられる。
前記アリール基の水素原子が置換されていても良いアルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n‐ブチル基、tert‐ブチル基であることが最も好ましい。
前記アリール基の水素原子が置換されていても良いアルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
前記アリール基の水素原子が置換されていても良いハロゲン原子としては、フッ素原子であることが好ましい。
R1”〜R3”のアルキル基としては、特に制限はなく、例えば炭素数1〜10の直鎖状、分岐状または環状のアルキル基等が挙げられる。解像性に優れる点から、炭素数1〜5であることが好ましい。メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ノニル基、デカニル基等が挙げられ、解像性に優れ、また安価に合成可能なことから好ましいものとして、メチル基を挙げることができる。
これらの中で、R1”〜R3”はすべてフェニル基であることが最も好ましい。
R1”〜R3”のアリール基としては、特に制限はなく、例えば、炭素数6〜20のアリール基であって、該アリール基は、その水素原子の一部または全部がアルキル基、アルコキシ基、ハロゲン原子等で置換されていてもよく、されていなくてもよい。アリール基としては、安価に合成可能なことから、炭素数6〜10のアリール基が好ましい。具体的には、たとえばフェニル基、ナフチル基が挙げられる。
前記アリール基の水素原子が置換されていても良いアルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n‐ブチル基、tert‐ブチル基であることが最も好ましい。
前記アリール基の水素原子が置換されていても良いアルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
前記アリール基の水素原子が置換されていても良いハロゲン原子としては、フッ素原子であることが好ましい。
R1”〜R3”のアルキル基としては、特に制限はなく、例えば炭素数1〜10の直鎖状、分岐状または環状のアルキル基等が挙げられる。解像性に優れる点から、炭素数1〜5であることが好ましい。メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ノニル基、デカニル基等が挙げられ、解像性に優れ、また安価に合成可能なことから好ましいものとして、メチル基を挙げることができる。
これらの中で、R1”〜R3”はすべてフェニル基であることが最も好ましい。
R4”は、直鎖、分岐または環状のアルキル基またはフッ素化アルキル基を表す。
前記直鎖のアルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。
前記環状のアルキル基としては、前記R1”で示したような環式基であって、炭素数4〜15であることが好ましく、炭素数4〜10であることがさらに好ましく、炭素数6〜10であることが最も好ましい。
前記フッ素化アルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。また。該フッ化アルキル基のフッ素化率(アルキル基中のフッ素原子の割合)は、好ましくは10〜100%、さらに好ましくは50〜100%であり、特に水素原子をすべてフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
R4”としては、直鎖または環状のアルキル基、またはフッ素化アルキル基であることが最も好ましい。
前記直鎖のアルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。
前記環状のアルキル基としては、前記R1”で示したような環式基であって、炭素数4〜15であることが好ましく、炭素数4〜10であることがさらに好ましく、炭素数6〜10であることが最も好ましい。
前記フッ素化アルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。また。該フッ化アルキル基のフッ素化率(アルキル基中のフッ素原子の割合)は、好ましくは10〜100%、さらに好ましくは50〜100%であり、特に水素原子をすべてフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
R4”としては、直鎖または環状のアルキル基、またはフッ素化アルキル基であることが最も好ましい。
式(b−2)中、R5”〜R6”はそれぞれ独立にアリール基またはアルキル基を表す。R5”〜R6”のうち、少なくとも1つはアリール基を表す。R5”〜R6”のすべてがアリール基であることが最も好ましい。
R5”〜R6”のアリール基としては、R1”〜R3”のアリール基と同様のものが挙げられる。
R5”〜R6”のアルキル基としては、R1”〜R3”のアルキル基と同様のものが挙げられる。
これらの中で、R5”〜R6”はすべてフェニル基であることが最も好ましい。
式(b−2)中のR4”としては上記式(b−1)のR4”と同様のものが挙げられる。
R5”〜R6”のアリール基としては、R1”〜R3”のアリール基と同様のものが挙げられる。
R5”〜R6”のアルキル基としては、R1”〜R3”のアルキル基と同様のものが挙げられる。
これらの中で、R5”〜R6”はすべてフェニル基であることが最も好ましい。
式(b−2)中のR4”としては上記式(b−1)のR4”と同様のものが挙げられる。
式(b−1)、(b−2)で表されるオニウム塩系酸発生剤の具体例としては、ジフェニルヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、ビス(4−tert−ブチルフェニル)ヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、トリフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリ(4−メチルフェニル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジメチル(4−ヒドロキシナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、モノフェニルジメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジフェニルモノメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(4−メチルフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(4−メトキシフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリ(4−tert−ブチル)フェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジフェニル(1−(4−メトキシ)ナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネートなどが挙げられる。また、これらのオニウム塩のアニオン部がメタンスルホネート、n−プロパンスルホネート、n−ブタンスルホネート、n−オクタンスルホネートに置き換えたオニウム塩も用いることができる。
また、前記一般式(b−1)又は(b−2)において、アニオン部を下記一般式(b−3)又は(b−4)で表されるアニオン部に置き換えたオニウム塩系酸発生剤も用いることができる(カチオン部は(b−1)又は(b−2)と同様)。
X”は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐状のアルキレン基であり、該アルキレン基の炭素数は2〜6であり、好ましくは炭素数3〜5、最も好ましくは炭素数3である。
Y”、Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐状のアルキル基であり、該アルキル基の炭素数は1〜10であり、好ましくは炭素数1〜7、より好ましくは炭素数1〜3である。
X”のアルキレン基の炭素数またはY”、Z”のアルキル基の炭素数は、上記炭素数の範囲内において、レジスト溶媒への溶解性も良好である等の理由により、小さいほど好ましい。
また、X”のアルキレン基またはY”、Z”のアルキル基において、フッ素原子で置換されている水素原子の数が多いほど、酸の強度が強くなり、また200nm以下の高エネルギー光や電子線に対する透明性が向上するので好ましい。該アルキレン基またはアルキル基中のフッ素原子の割合、すなわちフッ素化率は、好ましくは70〜100%、さらに好ましくは90〜100%であり、最も好ましくは、全ての水素原子がフッ素原子で置換されたパーフルオロアルキレン基またはパーフルオロアルキル基である。
Y”、Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐状のアルキル基であり、該アルキル基の炭素数は1〜10であり、好ましくは炭素数1〜7、より好ましくは炭素数1〜3である。
X”のアルキレン基の炭素数またはY”、Z”のアルキル基の炭素数は、上記炭素数の範囲内において、レジスト溶媒への溶解性も良好である等の理由により、小さいほど好ましい。
また、X”のアルキレン基またはY”、Z”のアルキル基において、フッ素原子で置換されている水素原子の数が多いほど、酸の強度が強くなり、また200nm以下の高エネルギー光や電子線に対する透明性が向上するので好ましい。該アルキレン基またはアルキル基中のフッ素原子の割合、すなわちフッ素化率は、好ましくは70〜100%、さらに好ましくは90〜100%であり、最も好ましくは、全ての水素原子がフッ素原子で置換されたパーフルオロアルキレン基またはパーフルオロアルキル基である。
本明細書において、オキシムスルホネート系酸発生剤とは、下記一般式(B−1)で表される基を少なくとも1つ有する化合物であって、放射線の照射によって酸を発生する特性を有するものである。この様なオキシムスルホネート系酸発生剤は、化学増幅型レジスト組成物用として多用されているので、任意に選択して用いることができる。
R31、R32の有機基は、炭素原子を含む基であり、炭素原子以外の原子(たとえば水素原子、酸素原子、窒素原子、硫黄原子、ハロゲン原子(フッ素原子、塩素原子等)等)を有していてもよい。
R31の有機基としては、直鎖、分岐または環状のアルキル基またはアリール基が好ましい。これらのアルキル基、アリール基は置換基を有していても良い。該置換基としては、特に制限はなく、たとえばフッ素原子、炭素数1〜6の直鎖、分岐または環状のアルキル基等が挙げられる。ここで、「置換基を有する」とは、アルキル基またはアリール基の水素原子の一部または全部が置換基で置換されていることを意味する。
アルキル基としては、炭素数1〜20が好ましく、炭素数1〜10がより好ましく、炭素数1〜8がさらに好ましく、炭素数1〜6が特に好ましく、炭素数1〜4が最も好ましい。アルキル基としては、特に、部分的または完全にハロゲン化されたアルキル基(以下、ハロゲン化アルキル基ということがある)が好ましい。なお、部分的にハロゲン化されたアルキル基とは、水素原子の一部がハロゲン原子で置換されたアルキル基を意味し、完全にハロゲン化されたアルキル基とは、水素原子の全部がハロゲン原子で置換されたアルキル基を意味する。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。すなわち、ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
アリール基は、炭素数4〜20が好ましく、炭素数4〜10がより好ましく、炭素数6〜10が最も好ましい。アリール基としては、特に、部分的または完全にハロゲン化されたアリール基が好ましい。なお、部分的にハロゲン化されたアリール基とは、水素原子の一部がハロゲン原子で置換されたアリール基を意味し、完全にハロゲン化されたアリール基とは、水素原子の全部がハロゲン原子で置換されたアリール基を意味する。
R31としては、特に、置換基を有さない炭素数1〜4のアルキル基、または炭素数1〜4のフッ素化アルキル基が好ましい。
R31の有機基としては、直鎖、分岐または環状のアルキル基またはアリール基が好ましい。これらのアルキル基、アリール基は置換基を有していても良い。該置換基としては、特に制限はなく、たとえばフッ素原子、炭素数1〜6の直鎖、分岐または環状のアルキル基等が挙げられる。ここで、「置換基を有する」とは、アルキル基またはアリール基の水素原子の一部または全部が置換基で置換されていることを意味する。
アルキル基としては、炭素数1〜20が好ましく、炭素数1〜10がより好ましく、炭素数1〜8がさらに好ましく、炭素数1〜6が特に好ましく、炭素数1〜4が最も好ましい。アルキル基としては、特に、部分的または完全にハロゲン化されたアルキル基(以下、ハロゲン化アルキル基ということがある)が好ましい。なお、部分的にハロゲン化されたアルキル基とは、水素原子の一部がハロゲン原子で置換されたアルキル基を意味し、完全にハロゲン化されたアルキル基とは、水素原子の全部がハロゲン原子で置換されたアルキル基を意味する。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。すなわち、ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
アリール基は、炭素数4〜20が好ましく、炭素数4〜10がより好ましく、炭素数6〜10が最も好ましい。アリール基としては、特に、部分的または完全にハロゲン化されたアリール基が好ましい。なお、部分的にハロゲン化されたアリール基とは、水素原子の一部がハロゲン原子で置換されたアリール基を意味し、完全にハロゲン化されたアリール基とは、水素原子の全部がハロゲン原子で置換されたアリール基を意味する。
R31としては、特に、置換基を有さない炭素数1〜4のアルキル基、または炭素数1〜4のフッ素化アルキル基が好ましい。
R32の有機基としては、直鎖、分岐または環状のアルキル基、アリール基またはシアノ基が好ましい。R32のアルキル基、アリール基としては、前記R31で挙げたアルキル基、アリール基と同様のものが挙げられる。
R32としては、特に、シアノ基、置換基を有さない炭素数1〜8のアルキル基、または炭素数1〜8のフッ素化アルキル基が好ましい。
R32としては、特に、シアノ基、置換基を有さない炭素数1〜8のアルキル基、または炭素数1〜8のフッ素化アルキル基が好ましい。
オキシムスルホネート系酸発生剤として、さらに好ましいものとしては、下記一般式(B−2)または(B−3)で表される化合物が挙げられる。
前記一般式(B−2)において、R33の置換基を有さないアルキル基またはハロゲン化アルキル基は、炭素数が1〜10であることが好ましく、炭素数1〜8がより好ましく、炭素数1〜6が最も好ましい。
R33としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましい。
R33におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上フッ素化されていることが好ましい。
R33としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましい。
R33におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上フッ素化されていることが好ましい。
R34のアリール基としては、フェニル基、ビフェニル(biphenyl)基、フルオレニル(fluorenyl)基、ナフチル基、アントラセル(anthracyl)基、フェナントリル基等の、芳香族炭化水素の環から水素原子を1つ除いた基、およびこれらの基の環を構成する炭素原子の一部が酸素原子、硫黄原子、窒素原子等のヘテロ原子で置換されたヘテロアリール基等が挙げられる。これらのなかでも、フルオレニル基が好ましい。
R34のアリール基は、炭素数1〜10のアルキル基、ハロゲン化アルキル基、アルコキシ基等の置換基を有していても良い。該置換基におけるアルキル基またはハロゲン化アルキル基は、炭素数が1〜8であることが好ましく、炭素数1〜4がさらに好ましい。また、該ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
R34のアリール基は、炭素数1〜10のアルキル基、ハロゲン化アルキル基、アルコキシ基等の置換基を有していても良い。該置換基におけるアルキル基またはハロゲン化アルキル基は、炭素数が1〜8であることが好ましく、炭素数1〜4がさらに好ましい。また、該ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
R35の置換基を有さないアルキル基またはハロゲン化アルキル基は、炭素数が1〜10であることが好ましく、炭素数1〜8がより好ましく、炭素数1〜6が最も好ましい。
R35としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましく、部分的にフッ素化されたアルキル基が最も好ましい。
R35におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上フッ素化されていることが、発生する酸の強度が高まるため好ましい。最も好ましくは、水素原子が100%フッ素置換された完全フッ素化アルキル基である。
R35としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましく、部分的にフッ素化されたアルキル基が最も好ましい。
R35におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上フッ素化されていることが、発生する酸の強度が高まるため好ましい。最も好ましくは、水素原子が100%フッ素置換された完全フッ素化アルキル基である。
前記一般式(B−3)において、R36の置換基を有さないアルキル基またはハロゲン化アルキル基としては、上記R33の置換基を有さないアルキル基またはハロゲン化アルキル基と同様のものが挙げられる。
R37の2または3価の芳香族炭化水素基としては、上記R34のアリール基からさらに1または2個の水素原子を除いた基が挙げられる。
R38の置換基を有さないアルキル基またはハロゲン化アルキル基としては、上記R35の置換基を有さないアルキル基またはハロゲン化アルキル基と同様のものが挙げられる。
p”は好ましくは2である。
R37の2または3価の芳香族炭化水素基としては、上記R34のアリール基からさらに1または2個の水素原子を除いた基が挙げられる。
R38の置換基を有さないアルキル基またはハロゲン化アルキル基としては、上記R35の置換基を有さないアルキル基またはハロゲン化アルキル基と同様のものが挙げられる。
p”は好ましくは2である。
オキシムスルホネート系酸発生剤の具体例としては、α−(p−トルエンスルホニルオキシイミノ)−ベンジルシアニド、α−(p−クロロベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(4−ニトロベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(4−ニトロ−2−トリフルオロメチルベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−4−クロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−2,4−ジクロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−2,6−ジクロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−4−メトキシベンジルシアニド、α−(2−クロロベンゼンスルホニルオキシイミノ)−4−メトキシベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−チエン−2−イルアセトニトリル、α−(4−ドデシルベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−[(p−トルエンスルホニルオキシイミノ)−4−メトキシフェニル]アセトニトリル、α−[(ドデシルベンゼンスルホニルオキシイミノ)−4−メトキシフェニル]アセトニトリル、α−(トシルオキシイミノ)−4−チエニルシアニド、α−(メチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロヘプテニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロオクテニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−シクロヘキシルアセトニトリル、α−(エチルスルホニルオキシイミノ)−エチルアセトニトリル、α−(プロピルスルホニルオキシイミノ)−プロピルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−シクロペンチルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−シクロヘキシルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(イソプロピルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(n−ブチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(イソプロピルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(n−ブチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−フェニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−フェニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(プロピルスルホニルオキシイミノ)−p−メチルフェニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−p−ブロモフェニルアセトニトリルなどが挙げられる。
また、特開平9−208554号公報(段落[0012]〜[0014]の[化18]〜[化19])に開示されているオキシムスルホネート系酸発生剤、WO2004/074242A2(65〜85頁目のExample1〜40)に開示されているオキシムスルホネート系酸発生剤も好適に用いることができる。
また、好適なものとして以下のものを例示することができる。
また、特開平9−208554号公報(段落[0012]〜[0014]の[化18]〜[化19])に開示されているオキシムスルホネート系酸発生剤、WO2004/074242A2(65〜85頁目のExample1〜40)に開示されているオキシムスルホネート系酸発生剤も好適に用いることができる。
また、好適なものとして以下のものを例示することができる。
上記例示化合物の中でも、下記の4つの化合物が好ましい。
ジアゾメタン系酸発生剤のうち、ビスアルキルまたはビスアリールスルホニルジアゾメタン類の具体例としては、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(1,1−ジメチルエチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(2,4−ジメチルフェニルスルホニル)ジアゾメタン等が挙げられる。
また、特開平11−035551号公報、特開平11−035552号公報、特開平11−035573号公報に開示されているジアゾメタン系酸発生剤も好適に用いることができる。
また、ポリ(ビススルホニル)ジアゾメタン類としては、例えば、特開平11−322707号公報に開示されている、1,3−ビス(フェニルスルホニルジアゾメチルスルホニル)プロパン、1,4−ビス(フェニルスルホニルジアゾメチルスルホニル)ブタン、1,6−ビス(フェニルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(フェニルスルホニルジアゾメチルスルホニル)デカン、1,2−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)エタン、1,3−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)プロパン、1,6−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)デカンなどを挙げることができる。
また、特開平11−035551号公報、特開平11−035552号公報、特開平11−035573号公報に開示されているジアゾメタン系酸発生剤も好適に用いることができる。
また、ポリ(ビススルホニル)ジアゾメタン類としては、例えば、特開平11−322707号公報に開示されている、1,3−ビス(フェニルスルホニルジアゾメチルスルホニル)プロパン、1,4−ビス(フェニルスルホニルジアゾメチルスルホニル)ブタン、1,6−ビス(フェニルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(フェニルスルホニルジアゾメチルスルホニル)デカン、1,2−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)エタン、1,3−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)プロパン、1,6−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)デカンなどを挙げることができる。
(B)成分としては、これらの酸発生剤を1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
ポジ型レジスト組成物における(B)成分の含有量は、(A)成分100質量部に対し、0.5〜30質量部が好ましく、1〜15質量部がより好ましい。上記範囲とすることでパターン形成が十分に行われる。また、均一な溶液が得られ、保存安定性が良好となるため好ましい。
ポジ型レジスト組成物における(B)成分の含有量は、(A)成分100質量部に対し、0.5〜30質量部が好ましく、1〜15質量部がより好ましい。上記範囲とすることでパターン形成が十分に行われる。また、均一な溶液が得られ、保存安定性が良好となるため好ましい。
[任意成分]
ポジ型レジスト組成物には、レジストパターン形状、引き置き経時安定性などを向上させるために、さらに任意の成分として、含窒素有機化合物(D)(以下、(D)成分という)を配合させることができる。
この(D)成分は、既に多種多様なものが提案されているので、公知のものから任意に用いれば良く、例えば、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン等のモノアルキルアミン;ジエチルアミン、ジ−n−プロピルアミン、ジ−n−ヘプチルアミン、ジ−n−オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ヘキシルアミン、トリ−n−ペンチルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デカニルアミン、トリ−n−ドデシルアミン等のトリアルキルアミン;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ−n−オクタノールアミン、トリ−n−オクタノールアミン等のアルキルアルコールアミンが挙げられる。これらの中でも、特に第2級脂肪族アミンや第3級脂肪族アミンが好ましく、炭素数5〜10のトリアルキルアミンがさらに好ましく、トリ−n−オクチルアミンが最も好ましい。
これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(D)成分は、(A)成分100質量部に対して、通常0.01〜5.0質量部の範囲で用いられる。
ポジ型レジスト組成物には、レジストパターン形状、引き置き経時安定性などを向上させるために、さらに任意の成分として、含窒素有機化合物(D)(以下、(D)成分という)を配合させることができる。
この(D)成分は、既に多種多様なものが提案されているので、公知のものから任意に用いれば良く、例えば、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン等のモノアルキルアミン;ジエチルアミン、ジ−n−プロピルアミン、ジ−n−ヘプチルアミン、ジ−n−オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ヘキシルアミン、トリ−n−ペンチルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デカニルアミン、トリ−n−ドデシルアミン等のトリアルキルアミン;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ−n−オクタノールアミン、トリ−n−オクタノールアミン等のアルキルアルコールアミンが挙げられる。これらの中でも、特に第2級脂肪族アミンや第3級脂肪族アミンが好ましく、炭素数5〜10のトリアルキルアミンがさらに好ましく、トリ−n−オクチルアミンが最も好ましい。
これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(D)成分は、(A)成分100質量部に対して、通常0.01〜5.0質量部の範囲で用いられる。
ポジ型レジスト組成物には、前記(D)成分の配合による感度劣化の防止、またレジストパターン形状、引き置き安定性等の向上の目的で、さらに任意の成分として、有機カルボン酸又はリンのオキソ酸若しくはその誘導体(E)(以下、(E)成分という)を含有させることができる。なお、(D)成分と(E)成分は併用することもできるし、いずれか1種を用いることもできる。
有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。
リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ−n−ブチルエステル、リン酸ジフェニルエステルなどのリン酸又はそれらのエステルのような誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸−ジ−n−ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステルなどのホスホン酸及びそれらのエステルのような誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルのような誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。
(E)成分は、(A)成分100質量部当り0.01〜5.0質量部の割合で用いられる。
有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。
リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ−n−ブチルエステル、リン酸ジフェニルエステルなどのリン酸又はそれらのエステルのような誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸−ジ−n−ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステルなどのホスホン酸及びそれらのエステルのような誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルのような誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。
(E)成分は、(A)成分100質量部当り0.01〜5.0質量部の割合で用いられる。
ポジ型レジスト組成物には、さらに所望により混和性のある添加剤、例えばレジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための界面活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤、染料などを適宜、添加含有させることができる。
ポジ型レジスト組成物は、材料を有機溶剤(以下、「(S)成分」ということがある。
)に溶解させて製造することができる。
(S)成分としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを1種または2種以上適宜選択して用いることができる。
例えば、γ−ブチロラクトン等のラクトン類;アセトン、メチルエチルケトン、シクロヘキサノン、メチル−n−アミルケトン、メチルイソアミルケトン、2−ヘプタノンなどのケトン類;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコールなどの多価アルコール類及びその誘導体;エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、またはジプロピレングリコールモノアセテート等のエステル結合を有する化合物、前記多価アルコール類または前記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等のモノアルキルエーテルまたはモノフェニルエーテル等のエーテル結合を有する化合物等の多価アルコール類の誘導体;ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル(EL)、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類;アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、エチルベンゼン、ジエチルベンゼンン、アミルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン等の芳香族系有機溶剤などを挙げることができる。
これらの有機溶剤は単独で用いてもよく、2種以上の混合溶剤として用いてもよい。
中でも、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、ELが好ましい。
また、PGMEAと極性溶剤とを混合した混合溶媒は好ましい。その配合比(質量比)は、PGMEAと極性溶剤との相溶性等を考慮して適宜決定すればよいが、好ましくは1:9〜9:1、より好ましくは2:8〜8:2の範囲内とすることが好ましい。
より具体的には、極性溶剤としてELを配合する場合は、PGMEA:ELの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2である。また、極性溶剤としてPGMEを配合する場合は、PGMEA:PGMEの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2、さらに好ましくは3:7〜7:3である。
また、(S)成分として、その他には、PGMEA及びELの中から選ばれる少なくとも1種とγ−ブチロラクトンとの混合溶剤も好ましい。この場合、混合割合としては、前者と後者の質量比が好ましくは70:30〜95:5とされる。
(S)成分の使用量は特に限定しないが、基板等に塗布可能な濃度で、塗布膜厚に応じて適宜設定されるものであるが、一般的にはレジスト組成物の固形分濃度が2〜20質量%、好ましくは5〜15質量%の範囲内となる様に用いられる。
)に溶解させて製造することができる。
(S)成分としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを1種または2種以上適宜選択して用いることができる。
例えば、γ−ブチロラクトン等のラクトン類;アセトン、メチルエチルケトン、シクロヘキサノン、メチル−n−アミルケトン、メチルイソアミルケトン、2−ヘプタノンなどのケトン類;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコールなどの多価アルコール類及びその誘導体;エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、またはジプロピレングリコールモノアセテート等のエステル結合を有する化合物、前記多価アルコール類または前記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等のモノアルキルエーテルまたはモノフェニルエーテル等のエーテル結合を有する化合物等の多価アルコール類の誘導体;ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル(EL)、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類;アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、エチルベンゼン、ジエチルベンゼンン、アミルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン等の芳香族系有機溶剤などを挙げることができる。
これらの有機溶剤は単独で用いてもよく、2種以上の混合溶剤として用いてもよい。
中でも、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、ELが好ましい。
また、PGMEAと極性溶剤とを混合した混合溶媒は好ましい。その配合比(質量比)は、PGMEAと極性溶剤との相溶性等を考慮して適宜決定すればよいが、好ましくは1:9〜9:1、より好ましくは2:8〜8:2の範囲内とすることが好ましい。
より具体的には、極性溶剤としてELを配合する場合は、PGMEA:ELの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2である。また、極性溶剤としてPGMEを配合する場合は、PGMEA:PGMEの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2、さらに好ましくは3:7〜7:3である。
また、(S)成分として、その他には、PGMEA及びELの中から選ばれる少なくとも1種とγ−ブチロラクトンとの混合溶剤も好ましい。この場合、混合割合としては、前者と後者の質量比が好ましくは70:30〜95:5とされる。
(S)成分の使用量は特に限定しないが、基板等に塗布可能な濃度で、塗布膜厚に応じて適宜設定されるものであるが、一般的にはレジスト組成物の固形分濃度が2〜20質量%、好ましくは5〜15質量%の範囲内となる様に用いられる。
<レジストパターン形成方法>
上記ポジ型レジスト組成物は、ポジ型レジスト組成物を用いて基板上にレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜を現像してレジストパターンを形成する工程を含むレジストパターン形成方法に使用できる。
該レジストパターン形成方法は、たとえば以下のようにして実施できる。すなわち、まずシリコンウェーハのような基板上に、上記ポジ型レジスト組成物をスピンナーなどで塗布し、任意にプレベーク(PAB)を施してレジスト膜を形成する。形成されたレジスト膜を、例えばArF露光装置、電子線描画装置、EUV露光装置等の露光装置を用いて、マスクパターンを介した露光、またはマスクパターンを介さない電子線の直接照射による描画等により選択的に露光した後、PEB(露光後加熱)を施す。続いて、アルカリ現像液を用いて現像処理した後、リンス処理を行って、基板上の現像液および該現像液によって溶解したレジスト組成物を洗い流し、乾燥させて、レジストパターンを得る。
これらの工程は、周知の手法を用いて行うことができる。操作条件等は、使用するポジ型レジスト組成物の組成や特性に応じて適宜設定することが好ましい。
露光光源は、特に限定されず、ArFエキシマレーザー、KrFエキシマレーザー、F2エキシマレーザー、EUV(極紫外線)、VUV(真空紫外線)、電子線、X線、軟X線などの放射線を用いて行うことができる。特に、上記ポジ型レジスト組成物は、ArFエキシマレーザー、電子線またはEUV、特にArFエキシマレーザーまたは電子線に対して有効である。
なお、場合によっては、上記アルカリ現像後ポストベーク工程を含んでもよいし、基板とレジスト膜との間には、有機系または無機系の反射防止膜を設けてもよい。
上記ポジ型レジスト組成物は、ポジ型レジスト組成物を用いて基板上にレジスト膜を形成する工程、前記レジスト膜を露光する工程、および前記レジスト膜を現像してレジストパターンを形成する工程を含むレジストパターン形成方法に使用できる。
該レジストパターン形成方法は、たとえば以下のようにして実施できる。すなわち、まずシリコンウェーハのような基板上に、上記ポジ型レジスト組成物をスピンナーなどで塗布し、任意にプレベーク(PAB)を施してレジスト膜を形成する。形成されたレジスト膜を、例えばArF露光装置、電子線描画装置、EUV露光装置等の露光装置を用いて、マスクパターンを介した露光、またはマスクパターンを介さない電子線の直接照射による描画等により選択的に露光した後、PEB(露光後加熱)を施す。続いて、アルカリ現像液を用いて現像処理した後、リンス処理を行って、基板上の現像液および該現像液によって溶解したレジスト組成物を洗い流し、乾燥させて、レジストパターンを得る。
これらの工程は、周知の手法を用いて行うことができる。操作条件等は、使用するポジ型レジスト組成物の組成や特性に応じて適宜設定することが好ましい。
露光光源は、特に限定されず、ArFエキシマレーザー、KrFエキシマレーザー、F2エキシマレーザー、EUV(極紫外線)、VUV(真空紫外線)、電子線、X線、軟X線などの放射線を用いて行うことができる。特に、上記ポジ型レジスト組成物は、ArFエキシマレーザー、電子線またはEUV、特にArFエキシマレーザーまたは電子線に対して有効である。
なお、場合によっては、上記アルカリ現像後ポストベーク工程を含んでもよいし、基板とレジスト膜との間には、有機系または無機系の反射防止膜を設けてもよい。
<溶解抑制剤>
上記化合物(A1)は、ポジ型レジスト組成物用の溶解抑制剤としても好適に用いることができる。化合物(A1)からなる溶解抑制剤を用いることにより、該溶解抑制剤を含有するポジ型レジスト組成物を用いて得られるレジスト膜(露光前)のアルカリ溶解性が抑制される。そのため、該レジスト膜を選択的に露光した際に、露光部と未露光部との間のアルカリ溶解性の差(溶解コントラスト)が大きくなり、解像性や形状が良好なレジストパターンが形成できる。
かかる溶解抑制剤は、酸解離性溶解抑制基を有する樹脂成分と酸発生剤成分とを含む2成分系の化学増幅型レジスト組成物に添加して用いることができ、また、酸解離性溶解抑制基を有さない樹脂成分と酸発生剤成分と溶解抑制剤とを用いる、いわゆる3成分系の化学増幅型のレジスト組成物としても用いることができる。
上記化合物(A1)は、ポジ型レジスト組成物用の溶解抑制剤としても好適に用いることができる。化合物(A1)からなる溶解抑制剤を用いることにより、該溶解抑制剤を含有するポジ型レジスト組成物を用いて得られるレジスト膜(露光前)のアルカリ溶解性が抑制される。そのため、該レジスト膜を選択的に露光した際に、露光部と未露光部との間のアルカリ溶解性の差(溶解コントラスト)が大きくなり、解像性や形状が良好なレジストパターンが形成できる。
かかる溶解抑制剤は、酸解離性溶解抑制基を有する樹脂成分と酸発生剤成分とを含む2成分系の化学増幅型レジスト組成物に添加して用いることができ、また、酸解離性溶解抑制基を有さない樹脂成分と酸発生剤成分と溶解抑制剤とを用いる、いわゆる3成分系の化学増幅型のレジスト組成物としても用いることができる。
以下、本発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
合成例1
(i) TRIFTOCPA−TCM(化合物(1))の合成
27.5g(0.05mol)のTRIF−TOCPA(下記式参照)に、68.8gのN−メチルピロリドンを加えて溶解させた。50℃まで昇温後、これに、2.75g(0.017mol)のよう化カリウム、24.2g(0.175mo1)の炭酸カリウムを加えて1時間撹拌させた。次いで70℃まで昇温させ、そこに32.6g(0.3mol)の塩化酢酸メチルを1時間かけて滴下し、70℃で6時間撹拌した。その後、100.Ogの水、120.0gのトルエンを加えて60℃で水洗し、水層を抜き取り、さらに50.Ogの水を加えて同様の操作で水洗、分液を3回行った。残った上層をナスフラスコに移し、エバポレーターにて70℃で溶媒を留去させ、褐色液体40.5gの化合物(1)TRIFTOCPA−TCMを得た。純度は92.8%(HPLC)であった。
(i) TRIFTOCPA−TCM(化合物(1))の合成
27.5g(0.05mol)のTRIF−TOCPA(下記式参照)に、68.8gのN−メチルピロリドンを加えて溶解させた。50℃まで昇温後、これに、2.75g(0.017mol)のよう化カリウム、24.2g(0.175mo1)の炭酸カリウムを加えて1時間撹拌させた。次いで70℃まで昇温させ、そこに32.6g(0.3mol)の塩化酢酸メチルを1時間かけて滴下し、70℃で6時間撹拌した。その後、100.Ogの水、120.0gのトルエンを加えて60℃で水洗し、水層を抜き取り、さらに50.Ogの水を加えて同様の操作で水洗、分液を3回行った。残った上層をナスフラスコに移し、エバポレーターにて70℃で溶媒を留去させ、褐色液体40.5gの化合物(1)TRIFTOCPA−TCMを得た。純度は92.8%(HPLC)であった。
(ii) Hex25X−TRIFTOCPA−TC(化合物(2))の合成
次に、45.8g(0.375mol)の2,5−キシレノール、55.Ogのメタノール、及び9.2gの35%塩酸水溶液の混合液に、上記(i)で得られた40.5gの褐色液体(TRIFTOCPA−TCM)及び45.Ogのテトラヒドロフランをあらかじめ混合させた溶液を30℃で1時間30分かけて滴下した。その後、40℃に昇温し、22.5時間撹拌し、23.1gの16%水酸化ナトリウム水溶液にて中和した。次いで、常圧にて濃縮を行い、115.9gの溶媒を留去させ、80.0gの水、120.Ogのメチルイソブチルケトンを加えて、70℃まで昇温後、10分間静置し、水層を抜き取り、さらに80.Ogの水を加え、同様の操作で水洗、分液を行った。その後、98.4gの25%TMAH水溶液を加えて、40℃で30分撹拌して加水分解させ、上層を抜き取った。40℃で残った水層に120.0gのメチルイソブチルケトン、180.Ogの17.5%塩酸水溶液を加え、水層を抜き取り、さらに80.0gの水を加え、同様の操作で70℃にて水洗、分液を行った。上層をナスフラスコに移し、エバポレーターにて70℃で溶媒を留去させ、37.3gの淡黄色粉末(Hex25X−TRIFTOCPA−TC)を得た。Tgは159℃、純度は87.7%(HPLC)であった。
次に、45.8g(0.375mol)の2,5−キシレノール、55.Ogのメタノール、及び9.2gの35%塩酸水溶液の混合液に、上記(i)で得られた40.5gの褐色液体(TRIFTOCPA−TCM)及び45.Ogのテトラヒドロフランをあらかじめ混合させた溶液を30℃で1時間30分かけて滴下した。その後、40℃に昇温し、22.5時間撹拌し、23.1gの16%水酸化ナトリウム水溶液にて中和した。次いで、常圧にて濃縮を行い、115.9gの溶媒を留去させ、80.0gの水、120.Ogのメチルイソブチルケトンを加えて、70℃まで昇温後、10分間静置し、水層を抜き取り、さらに80.Ogの水を加え、同様の操作で水洗、分液を行った。その後、98.4gの25%TMAH水溶液を加えて、40℃で30分撹拌して加水分解させ、上層を抜き取った。40℃で残った水層に120.0gのメチルイソブチルケトン、180.Ogの17.5%塩酸水溶液を加え、水層を抜き取り、さらに80.0gの水を加え、同様の操作で70℃にて水洗、分液を行った。上層をナスフラスコに移し、エバポレーターにて70℃で溶媒を留去させ、37.3gの淡黄色粉末(Hex25X−TRIFTOCPA−TC)を得た。Tgは159℃、純度は87.7%(HPLC)であった。
実施例1
(iii) Hex25X−TRIFTOCPA−TADMの合成(化合物(3))の合成
上記(ii)で得られた28.0g(2.0×10−2mol)のHex25X−TRIFTOCPA−TC、及び112.0gのテトラヒドロフランを混合し、これに7.6g(7.5×10−2mol)のトリエチルアミン及び28.Ogのテトラヒドロフランの混合溶液を25℃、15分間で滴下し、1時間撹絆した。そこに14.0g (7.0×10−2mol)の2−クロロメトキシアダマンタン及び14.Ogのテトラヒドロフランを混合させた溶液を30℃で1時間40分かけて滴下した。その後、30℃を保持したまま5時間撹拌し、次いで減圧下で116.4gの溶媒を除去した。そこに80.0gの酢酸エチルを添加し、40.Ogの水を加えて40℃で水洗、分液を行い下層を抜き取った。さらに同様の操作で水洗、分液を2回繰り返した。残った上層を減圧下で濃縮し、シリカゲルカラムクロマトグラフィーにより精製した。得られた目的物の含まれるフラクションを濃縮し、3.6gの淡黄白色粉末を得た。純度は99.0%(HPLC)であった。
(iii) Hex25X−TRIFTOCPA−TADMの合成(化合物(3))の合成
上記(ii)で得られた28.0g(2.0×10−2mol)のHex25X−TRIFTOCPA−TC、及び112.0gのテトラヒドロフランを混合し、これに7.6g(7.5×10−2mol)のトリエチルアミン及び28.Ogのテトラヒドロフランの混合溶液を25℃、15分間で滴下し、1時間撹絆した。そこに14.0g (7.0×10−2mol)の2−クロロメトキシアダマンタン及び14.Ogのテトラヒドロフランを混合させた溶液を30℃で1時間40分かけて滴下した。その後、30℃を保持したまま5時間撹拌し、次いで減圧下で116.4gの溶媒を除去した。そこに80.0gの酢酸エチルを添加し、40.Ogの水を加えて40℃で水洗、分液を行い下層を抜き取った。さらに同様の操作で水洗、分液を2回繰り返した。残った上層を減圧下で濃縮し、シリカゲルカラムクロマトグラフィーにより精製した。得られた目的物の含まれるフラクションを濃縮し、3.6gの淡黄白色粉末を得た。純度は99.0%(HPLC)であった。
化合物(3)について、1H−NMR、IRによる分析を行った。
1H−NMR(重メチルスルホキシド(DMSO−d6)、400MHz、内部標準:テトラメチルシラン):δ(ppm)=1.41−2.07(m,96H,−CH3((1)+(2)+(3)+(4)+(5))+ (−CH2−CH(ADM:(6)以外)))、3.72(s,3H,−CH(ADM:(6)))、3.93−3.96(m,6H,−CH2(7))、5.34−5.38(m,6H,−CH2(8))、5.73−5.80(m,3H,−CH2(9))、6.19−7.05(m,22H,ph−H)、8.88−8.93(m,6H,ph−OH(2,5−キシレノール))。
IRデータ(cm−1):3675、2907、2855。
1H−NMR(重メチルスルホキシド(DMSO−d6)、400MHz、内部標準:テトラメチルシラン):δ(ppm)=1.41−2.07(m,96H,−CH3((1)+(2)+(3)+(4)+(5))+ (−CH2−CH(ADM:(6)以外)))、3.72(s,3H,−CH(ADM:(6)))、3.93−3.96(m,6H,−CH2(7))、5.34−5.38(m,6H,−CH2(8))、5.73−5.80(m,3H,−CH2(9))、6.19−7.05(m,22H,ph−H)、8.88−8.93(m,6H,ph−OH(2,5−キシレノール))。
IRデータ(cm−1):3675、2907、2855。
更に、質量分析LC−MS(APCI−)の結果、分子量は1895(M−H)であった。これらの結果から、化合物(3)が下記に示す構造を有することが確認できた。
実施例2
実施例1で合成した100質量部の化合物(3)と、10質量部のトリフェニルスルホニウムノナフルオロ−n−ブタンスルホネートと、1質量部のトリ−n−オクチルアミンとを、PGMEA:EL=6:4の混合溶剤(1470質量部)に溶解してポジ型レジスト組成物溶液を調製した。
得られたポジ型レジスト組成物溶液を、ヘキサメチルジシラザン処理を施した8インチシリコン基板上にスピンナーを用いて均一に塗布し、110℃にて90秒間ベーク処理(PAB)を行ってレジスト膜(膜厚150nm)を成膜した。
該レジスト膜に対し、電子線描画機HL−800D(VSB)(Hitachi社製)を用い、加速電圧70kVにて描画(露光)を行い、100℃にて90秒間のベーク処理(PEB)を行い、テトラメチルアンモニウムヒドロキシド(TMAH)の2.38質量%水溶液(23℃)を用いて60秒間の現像を行った後、純水にて30秒間リンスして、ラインアンドスペース(L/S)パターンを形成した。その結果、120nmのL/Sパターン(1:1)を形成することが出来た。その際の露光量(μC/cm2)を求めたところ、48μC/cm2であった。
実施例1で合成した100質量部の化合物(3)と、10質量部のトリフェニルスルホニウムノナフルオロ−n−ブタンスルホネートと、1質量部のトリ−n−オクチルアミンとを、PGMEA:EL=6:4の混合溶剤(1470質量部)に溶解してポジ型レジスト組成物溶液を調製した。
得られたポジ型レジスト組成物溶液を、ヘキサメチルジシラザン処理を施した8インチシリコン基板上にスピンナーを用いて均一に塗布し、110℃にて90秒間ベーク処理(PAB)を行ってレジスト膜(膜厚150nm)を成膜した。
該レジスト膜に対し、電子線描画機HL−800D(VSB)(Hitachi社製)を用い、加速電圧70kVにて描画(露光)を行い、100℃にて90秒間のベーク処理(PEB)を行い、テトラメチルアンモニウムヒドロキシド(TMAH)の2.38質量%水溶液(23℃)を用いて60秒間の現像を行った後、純水にて30秒間リンスして、ラインアンドスペース(L/S)パターンを形成した。その結果、120nmのL/Sパターン(1:1)を形成することが出来た。その際の露光量(μC/cm2)を求めたところ、48μC/cm2であった。
以上の結果より、本発明の化合物を用いたポジ型レジスト組成物を用いることにより、微細なレジストパターンを形成することが出来た。
Claims (2)
- 下記一般式(A−1)で表される化合物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012002180A JP5373124B2 (ja) | 2012-01-10 | 2012-01-10 | 化合物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012002180A JP5373124B2 (ja) | 2012-01-10 | 2012-01-10 | 化合物 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006169854A Division JP5031277B2 (ja) | 2006-06-20 | 2006-06-20 | ポジ型レジスト組成物およびレジストパターン形成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012087143A JP2012087143A (ja) | 2012-05-10 |
JP5373124B2 true JP5373124B2 (ja) | 2013-12-18 |
Family
ID=46259147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012002180A Expired - Fee Related JP5373124B2 (ja) | 2012-01-10 | 2012-01-10 | 化合物 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5373124B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007142353A1 (ja) * | 2006-06-09 | 2007-12-13 | Honshu Chemical Industry Co., Ltd. | 新規なトリス(ホルミルフェニル)類及びそれから誘導される新規な多核ポリフェノール類 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007142353A1 (ja) * | 2006-06-09 | 2007-12-13 | Honshu Chemical Industry Co., Ltd. | 新規なトリス(ホルミルフェニル)類及びそれから誘導される新規な多核ポリフェノール類 |
-
2012
- 2012-01-10 JP JP2012002180A patent/JP5373124B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012087143A (ja) | 2012-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5049935B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP2010026254A (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4397834B2 (ja) | ポジ型レジスト組成物、レジストパターン形成方法および化合物 | |
KR100990353B1 (ko) | 화합물 및 그 제조 방법, 포지티브형 레지스트 조성물 및레지스트 패턴 형성 방법 | |
JP5031277B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4980078B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4846294B2 (ja) | 多価フェノール化合物、化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4732038B2 (ja) | 化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4855293B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP2010197689A (ja) | ポジ型レジスト組成物及びレジストパターン形成方法 | |
JP5138157B2 (ja) | ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4813103B2 (ja) | 化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP5128105B2 (ja) | 化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4879559B2 (ja) | 化合物およびその製造方法 | |
JP5373124B2 (ja) | 化合物 | |
JP4846332B2 (ja) | 化合物およびその製造方法、低分子化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4948798B2 (ja) | 化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4969829B2 (ja) | 化合物およびその製造方法 | |
JP5000241B2 (ja) | 化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP4823578B2 (ja) | 多価フェノール化合物、化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
US8257903B2 (en) | Compound, positive resist composition and method for formation of resist pattern | |
JP2007099727A (ja) | 化合物およびその製造方法 | |
JP5314922B2 (ja) | 化合物、ポジ型レジスト組成物およびレジストパターン形成方法 | |
JP2008162970A (ja) | 化合物、ネガ型レジスト組成物およびパターン形成方法 | |
JP2008056596A (ja) | 化合物、ポジ型レジスト組成物およびレジストパターン形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130910 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130918 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |