Nothing Special   »   [go: up one dir, main page]

JP5366685B2 - Electric vehicle - Google Patents

Electric vehicle Download PDF

Info

Publication number
JP5366685B2
JP5366685B2 JP2009157947A JP2009157947A JP5366685B2 JP 5366685 B2 JP5366685 B2 JP 5366685B2 JP 2009157947 A JP2009157947 A JP 2009157947A JP 2009157947 A JP2009157947 A JP 2009157947A JP 5366685 B2 JP5366685 B2 JP 5366685B2
Authority
JP
Japan
Prior art keywords
battery
electric vehicle
electric
warm
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009157947A
Other languages
Japanese (ja)
Other versions
JP2011015544A (en
Inventor
紀之 清水
義一 西田
健一 福田
裕 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009157947A priority Critical patent/JP5366685B2/en
Publication of JP2011015544A publication Critical patent/JP2011015544A/en
Application granted granted Critical
Publication of JP5366685B2 publication Critical patent/JP5366685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • B60L1/04Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
    • B60L1/06Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line using only one supply
    • B60L1/08Methods and devices for control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • B60W2710/305Auxiliary equipments target power to auxiliaries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電気エネルギーによって走行可能な電動車両に関する。   The present invention relates to an electric vehicle capable of traveling with electric energy.

EV(Electric Vehicle:電気自動車)やHEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)等の車両には、電動機等に電力を供給する蓄電器が搭載される。一般に、蓄電器の入出力特性は温度に依存し、温度が低いほどその入出力性能は低下する。したがって、特に寒冷地での使用に際しては、蓄電器を暖機しておくことが望ましい。   Vehicles such as EVs (Electric Vehicles) and HEVs (Hybrid Electrical Vehicles) are equipped with a battery that supplies electric power to an electric motor or the like. In general, the input / output characteristics of a capacitor depend on temperature, and the lower the temperature, the lower the input / output performance. Therefore, it is desirable to warm up the battery, especially when used in cold regions.

但し、ドライバが車両を始動(イグニッションをオン)した直後から蓄電器の暖機を開始しても、当該蓄電器が十分温まるには時間がかかる場合がある。しかも、蓄電器の暖機に必要なエネルギーを当該蓄電器から取り出すと、車両の走行に利用可能なエネルギーが減ってしまう。また、外部電源から蓄電器を充電可能なプラグインタイプのEVやHEV等の車両において、蓄電器が低温の状態で充電が開始されると、当該蓄電器の入力性能が低下しているために充電電力は低く、かつ、蓄電器にとっての負荷が大きい。この場合、充電開始から暖機までの時間が長くなるだけでなく、蓄電器の劣化も進行すると考えられる。   However, even if the driver starts warming up immediately after the driver starts the vehicle (turns on the ignition), it may take time for the capacitor to warm up sufficiently. Moreover, when the energy required for warming up the battery is taken out from the battery, the energy available for running the vehicle is reduced. In addition, in vehicles such as plug-in type EVs and HEVs that can charge a capacitor from an external power source, if charging starts when the capacitor is at a low temperature, the charging power is reduced because the input performance of the capacitor decreases. Low and heavy load on the battery. In this case, it is considered that not only the time from the start of charging to the warm-up becomes longer, but also the deterioration of the storage battery progresses.

特開2005−295668号公報JP 2005-295668 A 特開2008−98098号公報JP 2008-98098 A

図8は、特許文献1に開示された車両用の電源装置を示すブロック図である。図8に示すように、特許文献1に開示された車両用の電源装置は、走行用バッテリ50と、走行用バッテリ50を加温するヒーター40と、ヒーター40の通電を制御する制御回路60とを備える。制御回路60は、車両のイグニッションスイッチ68をオフに切り換えてからヒーター40で走行用バッテリ50を暖機状態に保持する保温時間を記憶する保温タイマー69を備えている。制御回路60は、イグニッションスイッチ68がオフに切り換えられた状態で、保温タイマー69がタイムアップするまでの保温時間(12時間〜36時間)において、ヒーター40の通電を制御して、走行用バッテリ50を暖機状態に保持する。   FIG. 8 is a block diagram showing a power supply device for a vehicle disclosed in Patent Document 1. As shown in FIG. As shown in FIG. 8, the power supply device for a vehicle disclosed in Patent Document 1 includes a traveling battery 50, a heater 40 that heats the traveling battery 50, and a control circuit 60 that controls energization of the heater 40. Is provided. The control circuit 60 includes a heat retention timer 69 that stores a heat retention time for holding the travel battery 50 in the warm-up state by the heater 40 after the ignition switch 68 of the vehicle is turned off. The control circuit 60 controls the energization of the heater 40 during the heat retention time (12 hours to 36 hours) until the heat retention timer 69 times up in a state where the ignition switch 68 is turned off, and the traveling battery 50 Is kept warm.

しかし、走行用バッテリ50を暖機状態に保持するためにヒーター40を通電すると、この通電のためのエネルギーが消費される。したがって、ヒーター40の電源として走行用バッテリ50が用いられる場合には、車両の走行に利用可能なエネルギーが減ってしまう。また、ヒーター40の電源として家庭用の商用電源が用いられる場合、ヒーター40は、イグニッションスイッチ68がオフに切り換えられてから保温時間中、電力を消費し続ける。このため、実際には次回乗車が延びて保温終了から長時間が経過した場合には、無駄な電力を消費したことになってしまう。さらに、次回乗車時には走行用バッテリ50の保温効果もなくなっている。   However, when the heater 40 is energized in order to keep the traveling battery 50 in a warm-up state, energy for this energization is consumed. Therefore, when the traveling battery 50 is used as the power source of the heater 40, the energy available for traveling of the vehicle is reduced. When a household commercial power source is used as the power source of the heater 40, the heater 40 continues to consume power during the heat retention time after the ignition switch 68 is switched off. For this reason, when the next boarding is actually extended and a long time has passed since the end of the heat insulation, useless power is consumed. Further, the heat retention effect of the traveling battery 50 is lost when the next ride is made.

特許文献2は、ハイブリッド自動車に搭載される電源装置を開示している。当該電源装置では、ハイブリッド自動車の外部に設置される充放電装置と充放電可能なキャパシタとの間で電力を入出力することによって、キャパシタの抵抗発熱によって当該キャパシタの温度を上昇させている。しかし、当該電源装置は、装備が大型化してコストが増すといった課題がある。さらに、低温時にキャパシタに電力が入力されると、当該キャパシタの劣化が進行してしまう。   Patent document 2 is disclosing the power supply device mounted in a hybrid vehicle. In the power supply device, the temperature of the capacitor is increased by resistance heat generation of the capacitor by inputting and outputting power between a charge / discharge device installed outside the hybrid vehicle and a chargeable / dischargeable capacitor. However, the power supply device has a problem that the equipment is enlarged and the cost is increased. Furthermore, when power is input to the capacitor at a low temperature, the deterioration of the capacitor proceeds.

本発明の目的は、環境温度が低くても蓄電器の劣化を抑制しつつ迅速に当該蓄電器を充電可能な電動車両を提供することである。   An object of the present invention is to provide an electric vehicle capable of charging a battery quickly while suppressing deterioration of the battery even when the environmental temperature is low.

上記課題を解決して係る目的を達成するために、請求項1に記載の発明の電動車両は、電気エネルギーによって走行可能な電動車両であって、当該電動車両が走行するためのエネルギー源である充放電可能な蓄電器(例えば、実施の形態での蓄電器101)と、前記蓄電器の温度を検出する温度センサ(例えば、実施の形態での温度センサ111)と、前記蓄電器からの電力供給によって駆動する補機(例えば、実施の形態でのヒーター107及びファン109)と、前記外部電源から前記蓄電器への充電を制御する充電器(例えば、実施の形態での充電器129)と、前記充電器が前記蓄電器の充電を開始する前、前記蓄電器の温度がしきい値未満のときは、前記蓄電器からの電力供給によって前記補機を駆動するよう制御する制御部(例えば、実施の形態での暖機制御部131)と、を備え、前記制御部は、当該電動車両が走行中に、前記蓄電器の暖機に必要な充電状態値を確保した走行制御を行うことを特徴としている。 In order to solve the above-described problems and achieve the object, the electric vehicle according to the first aspect of the invention is an electric vehicle capable of traveling by electric energy, and is an energy source for the electric vehicle to travel. It is driven by a chargeable / dischargeable battery (for example, battery 101 in the embodiment), a temperature sensor for detecting the temperature of the battery (for example, temperature sensor 111 in the embodiment), and power supply from the battery. An auxiliary machine (for example, the heater 107 and the fan 109 in the embodiment), a charger (for example, the charger 129 in the embodiment) that controls charging from the external power source to the capacitor, and the charger Before starting charging of the battery, when the temperature of the battery is lower than a threshold value, a control unit (for example, controlling to drive the auxiliary machine by supplying power from the battery) If a warm-up control unit 131) in the embodiment, wherein the control unit, the electric vehicle is traveling, performing the running control that ensures the state of charge value needed to warm-up of the capacitor It is characterized by.

さらに、請求項2に記載の発明の電動車両では、前記充電器は、前記蓄電器の温度が前記しきい値以上のとき、前記蓄電器の充電を開始することを特徴としている。   Furthermore, in the electric vehicle according to a second aspect of the present invention, the charger starts charging the capacitor when the temperature of the capacitor is equal to or higher than the threshold value.

さらに、請求項3に記載の発明の電動車両では、前記補機は、前記蓄電器からの電力供給によって熱を発生して、前記蓄電器を加温する電熱器(例えば、実施の形態でのヒーター107)を有することを特徴としている。   Furthermore, in the electric vehicle according to the third aspect of the present invention, the auxiliary machine generates heat by supplying electric power from the power storage device, and heats the power storage device (for example, the heater 107 in the embodiment). ).

さらに、請求項4に記載の発明の電動車両では、前記補機は、前記蓄電器を通過する空気の流れを生じる送風機(例えば、実施の形態でのファン109)を有し、前記電熱器は、前記蓄電器に対して前記空気の流れの上流側に設けられたことを特徴としている。   Furthermore, in the electric vehicle of the invention according to claim 4, the auxiliary machine has a blower (for example, the fan 109 in the embodiment) that generates a flow of air passing through the battery, and the electric heater is It is provided on the upstream side of the air flow with respect to the capacitor.

さらに、請求項5に記載の発明の電動車両では、前記蓄電器は、複数の蓄電セルを内部に有し、前記送風機が発生した風は、前記蓄電器内の前記蓄電セル間を通過することを特徴としている。   Furthermore, in the electric vehicle of the invention according to claim 5, the power storage device has a plurality of power storage cells inside, and the wind generated by the blower passes between the power storage cells in the power storage device. It is said.

さらに、請求項6に記載の発明の電動車両では、前記制御部は、当該電動車両のドライバによって設定された次回乗車予定日時から、前記補機の駆動による前記蓄電器の暖機に要する時間、及び前記充電器による前記外部電源から前記蓄電器への充電に要する時間の合計時間を逆算した日時に、前記補機の駆動を開始することを特徴としている。   Furthermore, in the electric vehicle according to the sixth aspect of the invention, the control unit determines a time required for warming up the capacitor by driving the auxiliary device from a scheduled next boarding date and time set by a driver of the electric vehicle, and The auxiliary device is started to be driven on the date and time when the total time required for charging the battery from the external power source by the charger is calculated.

さらに、請求項7に記載の発明の電動車両は、前記蓄電器に充電する電気エネルギーを供給する電力供給部(例えば、実施の形態での内燃機関121及び発電機125)と、前記蓄電器の充電状態を示す値を算出する充電状態算出部(例えば、実施の形態でのバッテリECU113)と、を備え、当該電動車両が走行終了時の前記蓄電器が、前記充電器による充電開始前の前記蓄電器の暖機に必要な充電状態値を確保できるよう、前記制御部は、当該電動車両が走行中に前記電力供給部の駆動を制御することを特徴としている。ここで、電力供給部は燃料電池やキャパシタなど、蓄電器に電力を供給できるものであれば限定されない。   Furthermore, an electric vehicle according to a seventh aspect of the invention includes an electric power supply unit (for example, the internal combustion engine 121 and the generator 125 in the embodiment) that supplies electric energy to be charged to the battery, and a charge state of the battery. A charge state calculation unit (for example, battery ECU 113 in the embodiment) that calculates a value indicating the temperature of the battery before the start of charging by the charger. The control unit controls driving of the power supply unit while the electric vehicle is traveling so as to ensure a state of charge necessary for the machine. Here, the power supply unit is not limited as long as it can supply power to the battery, such as a fuel cell or a capacitor.

さらに、請求項8に記載の発明の電動車両では、前記制御部は、前記蓄電器の充電状態値が前記蓄電器の暖機に必要な充電状態値未満のとき、前記電力供給部を駆動するよう制御することを特徴としている。   Furthermore, in the electric vehicle according to the eighth aspect of the present invention, the control unit controls to drive the power supply unit when a charge state value of the battery is less than a charge state value necessary for warming up the battery. It is characterized by doing.

さらに、請求項9に記載の発明の電動車両では、環境最低温度が前記しきい値未満のとき、前記制御部は、前記蓄電器の暖機に必要な充電状態値を確保するための制御を行うことを特徴としている。   Furthermore, in the electric vehicle according to the ninth aspect of the present invention, when the lowest environmental temperature is less than the threshold value, the control unit performs control to ensure a state of charge necessary for warming up the battery. It is characterized by that.

さらに、請求項10に記載の発明の電動車両では、前記制御部は、当該電動車両の走行終了日時から前記充電器が前記蓄電器の充電を開始する日時までの待機時間が所定値未満の場合、前記待機時間が前記所定値以上の場合と比較して、前記蓄電器の暖機に必要な充電状態値を小さく設定することを特徴としている。   Furthermore, in the electric vehicle of the invention according to claim 10, when the control unit waits for less than a predetermined value from a running end date / time of the electric vehicle to a date / time when the charger starts charging the battery, Compared with the case where the standby time is equal to or greater than the predetermined value, the state of charge necessary for warming up the battery is set to be small.

請求項1〜10に記載の発明の電動車両によれば、環境温度が低くても、蓄電器の放電による自己発熱によって蓄電器が暖機されるため、蓄電器の劣化を抑制しつつ迅速に当該蓄電器を充電できる。   According to the electric vehicle of the first to tenth aspects of the present invention, even when the environmental temperature is low, the battery is warmed up by self-heating due to the discharge of the battery, so that the battery can be quickly removed while suppressing the deterioration of the battery. Can be charged.

請求項3〜5に記載の発明の電動車両によれば、電熱器が発生した熱によっても蓄電器が温められる。   According to the electric vehicle of the invention described in claims 3 to 5, the battery is also warmed by the heat generated by the electric heater.

請求項6〜10に記載の発明の電動車両によれば、蓄電器の充電は、蓄電器が十分に温まった状態で開始されるため、環境温度が低くても蓄電器101の劣化を抑制しつつ迅速に蓄電器101を充電できる。また、蓄電器の暖機及び充電は、次回乗車の直前に行われる。したがって、蓄電器の暖機に用いられたエネルギーは無駄にならない。しかも、蓄電器は暖機された状態であるため、車両は速やかに発車できる。   According to the electric vehicle of the invention described in claims 6 to 10, since the charging of the battery is started in a state where the battery is sufficiently warmed, the deterioration of the battery 101 can be suppressed quickly even when the environmental temperature is low. The battery 101 can be charged. In addition, warming up and charging of the battery is performed immediately before the next boarding. Therefore, the energy used for warming up the battery is not wasted. In addition, since the battery is warmed up, the vehicle can start quickly.

一実施形態の電動車両の内部構成を示すブロック図The block diagram which shows the internal structure of the electric vehicle of one Embodiment. 蓄電器101及びファン109の位置関係を示す斜視図The perspective view which shows the positional relationship of the battery 101 and the fan 109. 蓄電器101及びファン109の位置関係を示す側面図Side view showing the positional relationship between the battery 101 and the fan 109 ヒーター107及びファン109の駆動時に温風が蓄電器101内を通過する際の概念図Conceptual diagram when warm air passes through the capacitor 101 when the heater 107 and the fan 109 are driven. 暖機制御部131の動作を示すフローチャートFlow chart showing operation of warm-up control unit 131 車両が走行を開始してから終了するまでの蓄電器101のSOCの変化の一例を示すグラフThe graph which shows an example of the change of SOC of the electrical storage device 101 from the time the vehicle starts to the end マネジメントECU133の動作を示すフローチャートFlow chart showing the operation of the management ECU 133 特許文献1に開示された車両用の電源装置を示すブロック図Block diagram showing a power supply device for a vehicle disclosed in Patent Document 1

以下、本発明の実施形態について、図面を参照して説明する。なお、以下説明する実施形態では、シリーズ方式のHEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)を例に説明する。シリーズ方式のHEVは、電動機及び内燃機関を備え、蓄電器を電源として駆動する電動機の動力を利用して走行する。内燃機関は発電のためだけに用いられ、内燃機関の動力によって発電された電力は蓄電器に充電されるか、電動機に供給される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the embodiment described below, a series-type HEV (Hybrid Electrical Vehicle) will be described as an example. The series-type HEV includes an electric motor and an internal combustion engine, and travels by using the power of the electric motor that is driven by using a capacitor as a power source. The internal combustion engine is used only for power generation, and the electric power generated by the power of the internal combustion engine is charged in a capacitor or supplied to an electric motor.

図1は、一実施形態の電動車両の内部構成を示すブロック図である。図1に示す電動車両(以下、単に「車両」という)は、蓄電器(BATT)101と、コンバータ103と、12Vバッテリ105と、ヒーター107と、ファン109と、温度センサ111と、バッテリECU(BATT ECU)113と、第1インバータ(第1INV)115と、電動機(Mot)117と、モータECU(MOT ECU)119と、内燃機関(ENG)121と、エンジンECU(ENG ECU)123と、発電機(GEN)125と、第2インバータ(第2INV)127と、充電器129と、暖機制御部131と、マネジメントECU(MG ECU)133とを備える。   FIG. 1 is a block diagram illustrating an internal configuration of an electric vehicle according to an embodiment. 1 includes a battery (BATT) 101, a converter 103, a 12V battery 105, a heater 107, a fan 109, a temperature sensor 111, a battery ECU (BATT). ECU) 113, first inverter (first INV) 115, electric motor (Mot) 117, motor ECU (MOT ECU) 119, internal combustion engine (ENG) 121, engine ECU (ENG ECU) 123, and generator (GEN) 125, a second inverter (second INV) 127, a charger 129, a warm-up control unit 131, and a management ECU (MG ECU) 133.

蓄電器101は、直列に接続された複数の蓄電セルを有し、例えば100〜200Vの高電圧を供給する。なお、蓄電器101が放電する際には、各蓄電セルの内部抵抗による自己発熱によって蓄電器101の温度が上昇する。また、蓄電器101には吸気口及び排気口が設けられており、外部からの熱又は風が各蓄電セルを暖機又は冷却する。   The storage battery 101 has a plurality of storage cells connected in series, and supplies a high voltage of, for example, 100 to 200V. Note that when the battery 101 is discharged, the temperature of the battery 101 rises due to self-heating due to the internal resistance of each battery cell. In addition, the storage device 101 is provided with an intake port and an exhaust port, and heat or wind from the outside warms or cools each storage cell.

コンバータ103は、蓄電器101の出力電圧を降圧する。12Vバッテリ105は、補機用電圧(例えば12Vの低電圧)を出力する。12Vバッテリ105は、コンバータ103によって降圧された電圧が充電される。ヒーター107は、蓄電器101の吸気口側に設けられており、蓄電器101の出力電圧がコンバータ103によって降圧された電圧によって駆動する。ファン109は、蓄電器101の排気口側に設けられており、蓄電器101の出力電圧がコンバータ103によって降圧された電圧によって駆動する。   Converter 103 steps down the output voltage of battery 101. The 12V battery 105 outputs an auxiliary machine voltage (for example, a low voltage of 12V). The 12V battery 105 is charged with the voltage stepped down by the converter 103. The heater 107 is provided on the intake port side of the battery 101 and is driven by a voltage obtained by stepping down the output voltage of the battery 101 by the converter 103. Fan 109 is provided on the exhaust port side of battery 101, and is driven by a voltage obtained by stepping down the output voltage of battery 101 by converter 103.

図2及び図3は、蓄電器101及びファン109の位置関係を示す斜視図及び側面図である。図2及び図3に示されるように、蓄電器101の排気口側及び吸気口側にはそれぞれダクト147が設けられている。ファン109が駆動することにより、図3中の点線で示すように、蓄電器101の吸気口側から排気口側への空気の流れが生じる。このとき、蓄電器101の吸気口側に設けられたヒーター107を駆動すると、温風が蓄電器101内の蓄電セル間を通過して排気口側へ抜けていく。   2 and 3 are a perspective view and a side view showing the positional relationship between the battery 101 and the fan 109, respectively. As shown in FIGS. 2 and 3, ducts 147 are respectively provided on the exhaust port side and the intake port side of the battery 101. When the fan 109 is driven, an air flow from the intake port side to the exhaust port side of the battery 101 occurs as indicated by a dotted line in FIG. At this time, when the heater 107 provided on the intake port side of the capacitor 101 is driven, the warm air passes between the storage cells in the capacitor 101 and escapes to the exhaust port side.

図4に、ヒーター107及びファン109の駆動時に温風が蓄電器101内を通過する際の概念図を示す。図4に示すように、ヒーター107及びファン109の駆動のために蓄電器101が放電すると、蓄電器101内の各蓄電セルの内部抵抗によって蓄電器101は自己発熱する。さらに、ヒーター107が発生した熱は、温風となって蓄電器101内の蓄電セル間を通過していく。また、このとき、ファン109によって生じた風のために蓄電器101内の空気は攪拌される。その結果、蓄電器101の温度は、内側と外側の両方から上昇していき、各蓄電セルは均等に加温されていく。   FIG. 4 is a conceptual diagram when warm air passes through the battery 101 when the heater 107 and the fan 109 are driven. As shown in FIG. 4, when the battery 101 is discharged to drive the heater 107 and the fan 109, the battery 101 self-heats due to the internal resistance of each battery cell in the battery 101. Further, the heat generated by the heater 107 becomes warm air and passes between the storage cells in the storage battery 101. At this time, the air in the battery 101 is agitated due to the wind generated by the fan 109. As a result, the temperature of the storage battery 101 rises from both the inside and the outside, and each storage cell is evenly heated.

温度センサ111は、蓄電器101の近傍又は内部に設けられ、蓄電器101の温度を検出する。温度センサ111によって検出された温度を示す信号は、バッテリECU113に送られる。バッテリECU113は、蓄電器101の状態を検知して、当該状態を示す情報をマネジメントECU133及び暖機制御部131に送る。蓄電器101の状態を示す情報には、例えば、蓄電器101のSOC(充電深度:State of Charge)及び温度等の情報が含まれる。蓄電器101のSOCは、バッテリECU113が、蓄電器101の温度及び開回路電圧(OCV:Open Circuit Voltage)から電流積算等の方法を用いて算出する。第1インバータ115は、蓄電器101の出力電圧である直流電圧を交流電圧に変換して、3相電流を電動機117に供給する。   The temperature sensor 111 is provided in the vicinity of or inside the battery 101 and detects the temperature of the battery 101. A signal indicating the temperature detected by the temperature sensor 111 is sent to the battery ECU 113. The battery ECU 113 detects the state of the battery 101 and sends information indicating the state to the management ECU 133 and the warm-up control unit 131. The information indicating the state of the battery 101 includes information such as the SOC (State of Charge) and temperature of the battery 101, for example. The SOC of the battery 101 is calculated by the battery ECU 113 from the temperature of the battery 101 and an open circuit voltage (OCV) using a method such as current integration. The first inverter 115 converts a DC voltage that is an output voltage of the battery 101 into an AC voltage and supplies a three-phase current to the electric motor 117.

電動機117は、車両が走行するための動力(トルク)を発生する。なお、電動機117で発生したトルクは、トランスミッション151を介して車輪153の駆動軸155に伝達される。なお、電動機117は車両の減速時に発電機として動作し、電動機117が発電した電力は回生エネルギーとして蓄電器101に回収される。モータECU119は、マネジメントECU133からの指示に応じて、電動機117の動作及び状態を制御する。   The electric motor 117 generates power (torque) for the vehicle to travel. The torque generated by the electric motor 117 is transmitted to the drive shaft 155 of the wheel 153 via the transmission 151. The electric motor 117 operates as a generator when the vehicle decelerates, and the electric power generated by the electric motor 117 is recovered by the battery 101 as regenerative energy. The motor ECU 119 controls the operation and state of the electric motor 117 in accordance with an instruction from the management ECU 133.

内燃機関121は、発電のためだけに用いられ、内燃機関121の動力によって発電された電力は蓄電器101に充電されるか、電動機117に供給される。エンジンECU123は、マネジメントECU133からの指令に応じて、内燃機関121の始動及び停止や回転数を制御する。   The internal combustion engine 121 is used only for power generation, and the electric power generated by the power of the internal combustion engine 121 is charged in the battery 101 or supplied to the electric motor 117. The engine ECU 123 controls the start and stop of the internal combustion engine 121 and the rotation speed in accordance with a command from the management ECU 133.

発電機125は、内燃機関121の駆動によって発電エネルギーを生成する。第2インバータ127は、発電機125で発生した交流電圧を直流電圧に変換する。第2インバータ127によって変換された電力は蓄電器101に充電されるか、第1インバータ115を介して電動機117に供給される。   The generator 125 generates power generation energy by driving the internal combustion engine 121. The second inverter 127 converts the AC voltage generated by the generator 125 into a DC voltage. The electric power converted by the second inverter 127 is charged in the battery 101 or supplied to the electric motor 117 via the first inverter 115.

充電器129には、外部電源に接続可能なプラグ141が設けられている。充電器129は、プラグ141を介して外部電源から供給される交流電圧を直流電圧に変換し、かつ、当該直流電圧による充電器129への充電を制御する。   The charger 129 is provided with a plug 141 that can be connected to an external power source. The charger 129 converts an AC voltage supplied from an external power source through the plug 141 into a DC voltage, and controls charging of the charger 129 with the DC voltage.

暖機制御部131は、蓄電器101の状態に関する情報及び外部から入力された情報に基づいて、蓄電器101を暖機するためにヒーター107及びファン109の駆動を制御する。なお、暖機制御部131は、タイマー143を有する。   The warm-up control unit 131 controls the driving of the heater 107 and the fan 109 in order to warm up the battery 101 based on information regarding the state of the battery 101 and information input from the outside. The warm-up control unit 131 includes a timer 143.

図5は、暖機制御部131の動作を示すフローチャートである。図5に示すように、暖機制御部131は、現在時刻がタイマー143に設定された充電開始日時か否かを判別し(ステップS101)、充電開始日時であればステップS103に進む。ステップS103では、暖機制御部131は、蓄電器101の温度が設定温度T_tgt未満か否かを判別する。暖機制御部131は、蓄電器101の温度が設定温度T_tgt未満であればステップS105に進み、設定温度T_tgt以上であればステップS107に進む。   FIG. 5 is a flowchart showing the operation of the warm-up control unit 131. As shown in FIG. 5, the warm-up control unit 131 determines whether or not the current time is the charging start date and time set in the timer 143 (step S101), and proceeds to step S103 if it is the charging start date and time. In step S103, the warm-up control unit 131 determines whether or not the temperature of the battery 101 is lower than the set temperature T_tgt. The warm-up control unit 131 proceeds to step S105 if the temperature of the battery 101 is lower than the set temperature T_tgt, and proceeds to step S107 if it is equal to or higher than the set temperature T_tgt.

ステップS105では、暖機制御部131は、蓄電器101の温度が設定温度T_tgtに到達するまでヒーター107及びファン109を駆動する。ステップS107では、暖機制御部131は、ヒーター107及びファン109の駆動を停止して、ステップS109に進む。ステップS109では、充電器129は、外部電源から蓄電器101への充電を開始する。ステップS111では、充電器129は、充電を完了する条件を満たすまで充電を続ける。   In step S105, the warm-up control unit 131 drives the heater 107 and the fan 109 until the temperature of the battery 101 reaches the set temperature T_tgt. In step S107, the warm-up control unit 131 stops driving the heater 107 and the fan 109, and proceeds to step S109. In step S109, the charger 129 starts charging the battery 101 from the external power source. In step S111, the charger 129 continues charging until a condition for completing charging is satisfied.

マネジメントECU133には、バッテリECU113から送られた蓄電器101の状態に関する情報、並びに、ドライバによって設定された目的地及び次回乗車予定日時等が入力される。マネジメントECU133は内部にメモリ145を有し、入力された情報はメモリ145に格納される。マネジメントECU133は、バッテリECU113、モータECU119及びエンジンECU123に対する指示を行う。   Information concerning the state of the battery 101 sent from the battery ECU 113, the destination set by the driver, the next boarding date and time, and the like are input to the management ECU 133. The management ECU 133 has a memory 145 inside, and the input information is stored in the memory 145. The management ECU 133 gives instructions to the battery ECU 113, the motor ECU 119, and the engine ECU 123.

図6は、車両が走行を開始してから終了するまでの蓄電器101のSOCの変化の一例を示すグラフである。図6に示す例では、車両の走行開始時には蓄電器101のSOCが十分高いため、マネジメントECU133は、内燃機関121を駆動せずに、電動機117のみを駆動する。SOCが蓄電器101の暖機に必要なSOC(以下「暖機SOC」という)まで低下すると、マネジメントECU133は、内燃機関121を駆動して発電機125で発生した発電エネルギーを蓄電器101に充電する。その結果、車両の運転状況に応じて蓄電器101のSOCは変化する。但し、マネジメントECU133は、車両の到着予定時には蓄電器101のSOCが暖機SOC以上となるよう、内燃機関121の駆動を制御する。   FIG. 6 is a graph showing an example of the change in the SOC of the battery 101 from when the vehicle starts running to when it ends. In the example shown in FIG. 6, since the SOC of the battery 101 is sufficiently high when the vehicle starts to travel, the management ECU 133 drives only the electric motor 117 without driving the internal combustion engine 121. When the SOC decreases to the SOC required to warm up the battery 101 (hereinafter referred to as “warm up SOC”), the management ECU 133 drives the internal combustion engine 121 to charge the battery 101 with the power generation energy generated by the power generator 125. As a result, the SOC of the battery 101 changes according to the driving situation of the vehicle. However, the management ECU 133 controls the drive of the internal combustion engine 121 so that the SOC of the battery 101 is equal to or higher than the warm-up SOC when the vehicle is scheduled to arrive.

図7は、マネジメントECU133の動作を示すフローチャートである。図7に示すように、マネジメントECU133は、車両のイグニッションがオンされたか否かを判定し(ステップS201)、イグニッションがオンされるとステップS203に進む。ステップS203では、マネジメントECU133は、イグニッションがオンされた直後の蓄電器101のSOC(初期SOC)、環境最低温度、並びに、ドライバによって設定される目的地及び次回乗車予定日時を取得する。なお、環境最低温度とは、天気予報や最近1ヶ月間の最低気温の傾向から得られる値である。天気予報等の外部情報は、図示しない無線又は有線の通信機等から得られる。   FIG. 7 is a flowchart showing the operation of the management ECU 133. As shown in FIG. 7, the management ECU 133 determines whether or not the ignition of the vehicle is turned on (step S201). When the ignition is turned on, the process proceeds to step S203. In step S203, the management ECU 133 acquires the SOC (initial SOC) of the battery 101 immediately after the ignition is turned on, the environmental minimum temperature, the destination set by the driver, and the next scheduled boarding date and time. Note that the environmental minimum temperature is a value obtained from a weather forecast or a trend of the lowest temperature during the last month. External information such as weather forecast is obtained from a wireless or wired communication device (not shown).

次に、マネジメントECU133は、蓄電器101の暖機に必要なSOC(暖機SOC)を算出する(ステップS205)。マネジメントECU133は、バッテリECU113から蓄電器101のSOCを定期的に取得し、当該SOCが暖機SOC以上か否かを判定する(ステップS207)。蓄電器101のSOCが暖機SOC未満であればステップS209に進み、マネジメントECU133は、発電機125が発電エネルギーを生成するよう内燃機関121の駆動を制御する。一方、蓄電器101のSOCが暖機SOC以上であればステップS211に進み、マネジメントECU133は、車両が目的地に到着したか否かを判別する。   Next, the management ECU 133 calculates the SOC (warm-up SOC) necessary for warming up the battery 101 (step S205). The management ECU 133 periodically acquires the SOC of the battery 101 from the battery ECU 113, and determines whether the SOC is equal to or higher than the warm-up SOC (step S207). If the SOC of the battery 101 is less than the warm-up SOC, the process proceeds to step S209, and the management ECU 133 controls the drive of the internal combustion engine 121 so that the generator 125 generates generated energy. On the other hand, if the SOC of the battery 101 is equal to or higher than the warm-up SOC, the process proceeds to step S211 and the management ECU 133 determines whether or not the vehicle has arrived at the destination.

車両が目的地に到着していなければステップS207に戻り、目的地に到着していればステップS213に進む。ステップS213では、マネジメントECU133は、ステップS203で設定された次回乗車予定日時から充電開始日時を算出して、当該充電開始日時を暖機制御部131のタイマー143に設定する。ドライバは、遅くとも当該充電開始日時までには外部電源に充電器129のプラグ141を接続しておく。   If the vehicle has not arrived at the destination, the process returns to step S207, and if it has arrived at the destination, the process proceeds to step S213. In step S213, the management ECU 133 calculates the charging start date and time from the next boarding scheduled date and time set in step S203, and sets the charging start date and time in the timer 143 of the warm-up control unit 131. The driver connects the plug 141 of the charger 129 to the external power supply at the latest by the charging start date and time.

なお、充電開始日時は、ヒーター107及びファン109の駆動による蓄電器101の暖機に要する時間、及び充電器129による外部電源から蓄電器101への充電に要する時間の合計時間を次回乗車予定日時から逆算した日時である。蓄電器101の暖機に要する時間は、ヒーター107及びファン109の駆動によって、蓄電器101の温度が環境最低温度から目標暖機温度に到達するまでに要する時間である。また、蓄電器101の充電に要する時間は、外部電源からの電力供給によって、蓄電器101のSOCが暖機によって低下したSOCから目標SOCに到達するまでに要する時間である。   The charging start date and time is calculated by calculating the total time of the time required for warming up the battery 101 by driving the heater 107 and the fan 109 and the time required for charging the battery 101 from the external power source by the charger 129 from the next boarding scheduled date and time. Date and time. The time required for warming up the battery 101 is the time required for the temperature of the battery 101 to reach the target warming temperature from the lowest environmental temperature by driving the heater 107 and the fan 109. In addition, the time required for charging the battery 101 is the time required for the SOC of the battery 101 to reach the target SOC from the SOC that has decreased due to warm-up due to the power supply from the external power source.

以下、上記説明したステップS205で行われる暖機SOCの算出方法について説明する。暖機SOCを算出するためには、蓄電器101の暖機のために必要な蓄電器101の容量(以下「暖機容量」という)をまず算出する。以下、暖機容量の算出方法について説明する。マネジメントECU133は、環境最低温度(T_min)を取得し、かつ、目標暖機温度(T_tgt)を設定する。なお、目標暖機温度(T_tgt)は、蓄電器101の性能から設定することが好ましい。目標増加温度(ΔT)を「ΔT=T_tgt-T_min」とすると、蓄電器101の熱容量(C_box)を用いて、必要熱量(Q_req)は「Q_req=C_box・ΔT」として求まる。なお、熱容量(C_box)は、蓄電器101に固有の値であり、マネジメントECU133は事前に算出しておく。   Hereinafter, a method for calculating the warm-up SOC performed in step S205 described above will be described. In order to calculate the warm-up SOC, the capacity of the battery 101 necessary for warming up the battery 101 (hereinafter referred to as “warm-up capacity”) is first calculated. Hereinafter, a method for calculating the warm-up capacity will be described. The management ECU 133 acquires the minimum environment temperature (T_min) and sets the target warm-up temperature (T_tgt). The target warm-up temperature (T_tgt) is preferably set from the performance of the battery 101. When the target increase temperature (ΔT) is “ΔT = T_tgt-T_min”, the required heat quantity (Q_req) is obtained as “Q_req = C_box · ΔT” using the heat capacity (C_box) of the battery 101. The heat capacity (C_box) is a value unique to the battery 101, and the management ECU 133 calculates it in advance.

熱収支の観点から以下の式(1)が得られる。
Q_req=∫(W_batt+W_air-con-W_loss)dt …(1)
From the viewpoint of heat balance, the following formula (1) is obtained.
Q_req = ∫ (W_batt + W_air-con-W_loss) dt (1)

ここで、「W_batt」は、蓄電器101の内部抵抗による発熱仕事量を示し、W_batt=I2・R(I:電流、R:蓄電器101の内部抵抗)となる。「I」は図示しない電流センサによる検出値を用い、「R」は蓄電器101の電圧-電流挙動から推定して求めることが好ましい。また、「R」はSOC、温度及び通電時間等に依存するため、これらの相関マップを用いて導出しても良い。「W_air-con」はヒーター107による蓄電器101に対する加熱仕事量を示し、ヒーター107の駆動状態とファン109の動作の影響を受けるため、時間(t)と流速(F)に依存した関数「W_air-con=f(t,F)」になる。「W_loss」は熱損を示し、蓄電器101の温度(T_batt)、環境温度(T_env)、流速(F)に依存した関数「W_loss=f(T_batt,T_env,F)」になる。 Here, “W_batt” indicates the heat generation work due to the internal resistance of the capacitor 101, and becomes W_batt = I 2 · R (I: current, R: internal resistance of the capacitor 101). It is preferable that “I” is a value detected by a current sensor (not shown), and “R” is obtained by estimation from the voltage-current behavior of the battery 101. Further, since “R” depends on the SOC, temperature, energization time, and the like, these may be derived using these correlation maps. “W_air-con” indicates the amount of heating work performed on the battery 101 by the heater 107 and is affected by the driving state of the heater 107 and the operation of the fan 109. Therefore, the function “W_air-con” depending on time (t) and flow velocity (F) con = f (t, F) ". “W_loss” indicates heat loss, and becomes a function “W_loss = f (T_batt, T_env, F)” depending on the temperature (T_batt), environmental temperature (T_env), and flow velocity (F) of the capacitor 101.

マネジメントECU133は、式(1)から蓄電器101の暖機に要する時間(t_warm)を求め、式(1)と「W_batt=I2・R」の式から、以下に示すように、蓄電器101の暖機に必要な暖機容量(Capa_warm)を求める。 The management ECU 133 obtains the time (t_warm) required for warming up the capacitor 101 from the formula (1), and from the formula (1) and the formula “W_batt = I 2 · R”, as shown below, Obtain the warm-up capacity (Capa_warm) required for the machine.

Q_req=∫(W_batt+W_air-con-W_loss)dt
=Q_batt+Q_air-con-Q_loss

Q_batt=Q_req-Q_air_con+Q_loss

I_ave2・R_ave・t_warm=Q_req-Q_air_con+Q_loss
I_ave・V_ave・t_warm=Q_req-Q_air_con+Q_loss

Capa_warm・V_ave=Q_req-Q_air_con+Q_loss
Capa_warm=(Q_req-Q_air_con+Q_loss)/V_ave …(2)
Q_req = ∫ (W_batt + W_air-con-W_loss) dt
= Q_batt + Q_air-con-Q_loss

Q_batt = Q_req-Q_air_con + Q_loss

I_ave 2・ R_ave ・ t_warm = Q_req-Q_air_con + Q_loss
I_ave ・ V_ave ・ t_warm = Q_req-Q_air_con + Q_loss

Capa_warm ・ V_ave = Q_req-Q_air_con + Q_loss
Capa_warm = (Q_req-Q_air_con + Q_loss) / V_ave (2)

ここで「Q_batt」は蓄電器101の内部抵抗による発熱量であり、「Q_air-con」はヒーター107による加熱量であり、「Q_loss」は熱損量であり、「I_ave」は暖機時の平均電流であり、「R_ave」は暖機時の平均抵抗であり、「V_ave」は暖機時の平均電圧である。   Here, “Q_batt” is the amount of heat generated by the internal resistance of the capacitor 101, “Q_air-con” is the amount of heating by the heater 107, “Q_loss” is the amount of heat loss, and “I_ave” is the average during warm-up. It is a current, “R_ave” is an average resistance during warm-up, and “V_ave” is an average voltage during warm-up.

このようにして、マネジメントECU133は、蓄電器101の暖機に必要な暖機容量(Capa_warm)を算出できる。但し、マネジメントECU133は、上記式から暖機容量(Capa_warm)を算出しなくても、環境温度と暖機容量(Capa_warm)を一義的な関係から決定しても良い。その際、マネジメントECU133は、導出した暖機容量(Capa_warm)を劣化度合い等により補正することがより好ましい。   In this way, the management ECU 133 can calculate the warm-up capacity (Capa_warm) necessary for warming up the battery 101. However, the management ECU 133 may determine the ambient temperature and the warm-up capacity (Capa_warm) from a unique relationship without calculating the warm-up capacity (Capa_warm) from the above formula. At that time, the management ECU 133 more preferably corrects the derived warm-up capacity (Capa_warm) based on the degree of deterioration or the like.

なお、夏場など、目標暖機温度(T_tgt)よりも環境最低温度(T_min)が高いときには、目標増加温度ΔT<0となる。このときは、マネジメントECU133は、蓄電器101を暖機する必要がないと判断し、暖機容量Capa_warm=0に設定して、暖機のための容量確保を行わない。その結果、走行のための電池容量が増加する。   It should be noted that when the environmental minimum temperature (T_min) is higher than the target warm-up temperature (T_tgt), such as in summer, the target increase temperature ΔT <0. At this time, the management ECU 133 determines that it is not necessary to warm up the battery 101, sets the warm-up capacity Capa_warm = 0, and does not secure the capacity for warm-up. As a result, the battery capacity for running increases.

次に、暖機SOCの算出方法について説明する。暖機SOC(SOC_warm)は、以下の式(3)より求まる。
SOC_warm=Capa_warm/Capa_batt …(3)
Next, a method for calculating the warm-up SOC will be described. The warm-up SOC (SOC_warm) is obtained from the following equation (3).
SOC_warm = Capa_warm / Capa_batt (3)

ここで、「Capa_batt」は蓄電器101の全体容量を示す。マネジメントECU133が暖機SOC(SOC_warm)を下回らないように走行制御を行えば、蓄電器101を暖機するために必要な容量を常に確保することができる。このため、マネジメントECU133はSOCに基づいて出力制限を設け、走行時の容量を制御する。   Here, “Capa_batt” indicates the overall capacity of the battery 101. If the management ECU 133 performs traveling control so as not to fall below the warm-up SOC (SOC_warm), it is possible to always ensure a capacity necessary for warming up the battery 101. For this reason, the management ECU 133 provides an output limit based on the SOC and controls the capacity during travel.

出力制限を設ける方法として、急激な車両の許可出力低下がなく、スムーズな走行を行うためには、以下の方法が考えられる。当該出力制限方法では、マネジメントECU113は、暖機SOC(SOC_warm)での許可出力を0とし、暖機SOC(SOC_warm)と現時点でのSOCの差に対して一次相関的に許可出力を増加させる。すなわち、暖機SOC(SOC_warm)と現時点でのSOCの差に対する許可出力が一次関数の関係を有する。したがって、現時点でのSOCが暖機SOC(SOC_warm)になると、マネジメントECU113は、許可出力を1とし、最大の出力制限を行う。   As a method for setting the output restriction, the following method can be considered in order to perform a smooth running without a rapid decrease in the permitted output of the vehicle. In the output limiting method, the management ECU 113 sets the permission output at the warm-up SOC (SOC_warm) to 0, and increases the permission output in a first-order correlation with respect to the difference between the warm-up SOC (SOC_warm) and the current SOC. That is, the permission output for the difference between the warm-up SOC (SOC_warm) and the current SOC has a linear function relationship. Therefore, when the current SOC becomes the warm-up SOC (SOC_warm), the management ECU 113 sets the permission output to 1 and performs maximum output restriction.

また、SOCの算出方法には、例えばイグニッションがオンされた直後の開回路電圧(OCV)から初期SOCを算出し、これを基点として電流積算により求める手法や、電流及び電圧から求めた蓄電器101の抵抗を用いて開回路電圧(OCV)を推定し、当該推定OCVからSOCを算出する手法等が既に一般的である。   As the SOC calculation method, for example, the initial SOC is calculated from the open circuit voltage (OCV) immediately after the ignition is turned on, the current SOC is calculated based on the initial SOC, or the capacitor 101 calculated from the current and voltage is used. A method of estimating an open circuit voltage (OCV) using a resistor and calculating an SOC from the estimated OCV is already common.

マネジメントECU133が走行制御を行う際には、マネジメントECU133は、目的地までの交通状況や地形(勾配等)等をカーナビゲーションシステムから取得し、走行に要する容量(Capa_Drv)を予め算出し、目的地に到着時、蓄電器101が暖機容量(Capa_warm)を有するように、回生エネルギーの取得量を予測及び調整し、効率良くエネルギーマネジメントを行うことが好ましい。また、マネジメントECU133は、SOCに基づく出力制限と、カーナビゲーションシステムの情報に基づく回生エネルギー取得量の予測及び調整とが併用しても良い。   When the management ECU 133 performs travel control, the management ECU 133 obtains the traffic situation to the destination, the terrain (gradient, etc.) from the car navigation system, calculates the capacity (Capa_Drv) required for traveling in advance, and It is preferable to perform energy management efficiently by predicting and adjusting the acquisition amount of regenerative energy so that the capacitor 101 has a warm-up capacity (Capa_warm) when it arrives at the power source. In addition, the management ECU 133 may use both the output restriction based on the SOC and the prediction and adjustment of the regenerative energy acquisition amount based on the information of the car navigation system.

マネジメントECU133は、車両の走行終了日時から次回乗車のための充電開始日時までの待機時間が短く、当該充電開始日時には蓄電器101が冷却され切らない場合には、暖機容量(Capa_warm)は上記式によって求めた値よりも小さな値を算出しても良い。この場合、走行に使用可能な容量が増す。なお、小さな値の暖機容量(Capa_warm)を算出する際、マネジメントECU133は、例えば、走行終了時の蓄電器101の温度、環境温度及び蓄電器101の冷却傾向から、充電開始日時での蓄電器101の温度(T_box)を推定し、当該温度を環境最低温度(T_min)の代わりに用いて、暖機容量(Capa_warm)を算出する。   The management ECU 133 determines that the warm-up capacity (Capa_warm) is equal to the above formula when the standby time from the vehicle travel end date and time to the charge start date and time for the next ride is short and the capacitor 101 is not completely cooled at the charge start date and time. A value smaller than the value obtained by the above may be calculated. In this case, the capacity that can be used for running increases. When calculating the warm-up capacity (Capa_warm) with a small value, the management ECU 133 determines the temperature of the battery 101 at the charging start date and time from the temperature of the battery 101 at the end of travel, the environmental temperature, and the cooling tendency of the battery 101, for example. (T_box) is estimated, and the warm-up capacity (Capa_warm) is calculated using the temperature instead of the minimum environmental temperature (T_min).

以上説明したように、本実施形態の電動車両によれば、ヒーター107及びファン109を用いた蓄電器101の暖機時には、蓄電器101の放電による自己発熱とヒーター107からの熱によって、蓄電器101を内側と外側の両方から温めることができる。さらに、ファン109によって生じた風のために蓄電器101内の空気が攪拌されるため、蓄電器101内の各蓄電セルは均等に加温されていく。   As described above, according to the electric vehicle of the present embodiment, when the battery 101 using the heater 107 and the fan 109 is warmed up, the battery 101 is placed inside by the self-heating due to the discharge of the battery 101 and the heat from the heater 107. Can be warmed from both the outside and the outside. Further, since the air in the battery 101 is agitated by the wind generated by the fan 109, each power storage cell in the battery 101 is evenly heated.

また、蓄電器101の充電は、蓄電器101が十分に温まった状態で開始されるため、環境温度が低くても蓄電器101の劣化を抑制しつつ迅速に蓄電器101を充電できる。例えば、蓄電器101がリチウムイオン電池の場合、蓄電器101が低温時に充電が行われると、リチウム析出等の現象によって蓄電器101が劣化する。しかし、本実施形態では、蓄電器101が温まった状態で充電が行われるため、このような現象は生じない。   In addition, since charging of the battery 101 is started in a state where the battery 101 is sufficiently warmed, the battery 101 can be charged quickly while suppressing deterioration of the battery 101 even when the environmental temperature is low. For example, when the battery 101 is a lithium ion battery, if the battery 101 is charged at a low temperature, the battery 101 is deteriorated due to a phenomenon such as lithium deposition. However, in this embodiment, such a phenomenon does not occur because charging is performed in a state where the battery 101 is warm.

さらに、蓄電器101の暖機及び充電は、次回乗車の直前に行われる。したがって、蓄電器101の暖機に用いられたエネルギーは無駄にならない。しかも、車両のイグニッションがオンされた時点で蓄電器101は暖機された状態であるため、車両は速やかに発車できる。   Furthermore, warming up and charging of the battery 101 are performed immediately before the next boarding. Therefore, the energy used for warming up the battery 101 is not wasted. In addition, since the battery 101 is warmed up when the ignition of the vehicle is turned on, the vehicle can start quickly.

なお、本実施形態では、蓄電器101を充電するための電力が内燃機関121及び発電機125によって生成されている。しかし、当該充電電力を生成する手段としては、内燃機関121及び発電機125に限らず、燃料電池やキャパシタ等を用いても良い。   In the present embodiment, electric power for charging the battery 101 is generated by the internal combustion engine 121 and the generator 125. However, the means for generating the charging power is not limited to the internal combustion engine 121 and the generator 125, and a fuel cell, a capacitor, or the like may be used.

101 蓄電器(BATT)
103 コンバータ
105 12Vバッテリ
107 ヒーター
109 ファン
111 温度センサ
113 バッテリECU(BATT ECU)
115 第1インバータ(第1INV)
117 電動機(Mot)
119 モータECU(MOT ECU)
121 内燃機関(ENG)
123 エンジンECU(ENG ECU)
125 発電機(GEN)
127 第2インバータ(第2INV)
129 充電器
131 暖機制御部
133 マネジメントECU(MG ECU)
141 プラグ
143 タイマー
145 メモリ
101 Battery (BATT)
103 Converter 105 12V Battery 107 Heater 109 Fan 111 Temperature Sensor 113 Battery ECU (BATT ECU)
115 1st inverter (1st INV)
117 Motor (Mot)
119 Motor ECU (MOT ECU)
121 Internal combustion engine (ENG)
123 Engine ECU (ENG ECU)
125 Generator (GEN)
127 Second inverter (second INV)
129 Charger 131 Warm-up control unit 133 Management ECU (MG ECU)
141 Plug 143 Timer 145 Memory

Claims (10)

電気エネルギーによって走行可能な電動車両であって、
当該電動車両が走行するためのエネルギー源である充放電可能な蓄電器と、
前記蓄電器の温度を検出する温度センサと、
前記蓄電器からの電力供給によって駆動する補機と、
前記外部電源から前記蓄電器への充電を制御する充電器と、
前記充電器が前記蓄電器の充電を開始する前、前記蓄電器の温度がしきい値未満のときは、前記蓄電器からの電力供給によって前記補機を駆動するよう制御する制御部と、を備え
前記制御部は、当該電動車両が走行中に、前記蓄電器の暖機に必要な充電状態値を確保した走行制御を行うことを特徴とする電動車両。
An electric vehicle that can be driven by electric energy,
A chargeable / dischargeable battery as an energy source for the electric vehicle to travel;
A temperature sensor for detecting the temperature of the battery;
An auxiliary machine driven by power supply from the battery;
A charger for controlling charging from the external power source to the battery;
Before the charger starts charging the capacitor, and when the temperature of the capacitor is less than a threshold, a control unit that controls to drive the auxiliary device by supplying power from the capacitor ; and
The said control part performs driving | running | working control which ensured the charge condition value required for the warming-up of the said electrical storage device while the said electric vehicle drive | works.
請求項1に記載の電動車両であって、
前記充電器は、前記蓄電器の温度が前記しきい値以上のとき、前記蓄電器の充電を開始することを特徴とする電動車両。
The electric vehicle according to claim 1,
The battery charger starts charging the battery when the temperature of the battery is equal to or higher than the threshold value.
請求項1又は2に記載の電動車両であって、
前記補機は、前記蓄電器からの電力供給によって熱を発生して、前記蓄電器を加温する電熱器を有することを特徴とする電動車両。
The electric vehicle according to claim 1 or 2,
The electric machine includes an electric heater that generates heat by supplying electric power from the electric storage device and heats the electric storage device.
請求項3に記載の電動車両であって、
前記補機は、前記蓄電器を通過する空気の流れを生じる送風機を有し、
前記電熱器は、前記蓄電器に対して前記空気の流れの上流側に設けられたことを特徴とする電動車両。
The electric vehicle according to claim 3,
The auxiliary machine has a blower that generates a flow of air passing through the battery,
The electric vehicle, wherein the electric heater is provided on the upstream side of the air flow with respect to the electric storage device.
請求項4に記載の電動車両であって、
前記蓄電器は、複数の蓄電セルを内部に有し、
前記送風機が発生した風は、前記蓄電器内の前記蓄電セル間を通過することを特徴とする電動車両。
The electric vehicle according to claim 4,
The capacitor has a plurality of storage cells inside,
The electric vehicle characterized in that the wind generated by the blower passes between the storage cells in the storage battery.
請求項1〜5のいずれか一項に記載の電動車両であって、
前記制御部は、当該電動車両のドライバによって設定された次回乗車予定日時から、前記補機の駆動による前記蓄電器の暖機に要する時間、及び前記充電器による前記外部電源から前記蓄電器への充電に要する時間の合計時間を逆算した日時に、前記補機の駆動を開始することを特徴とする電動車両。
An electric vehicle according to any one of claims 1 to 5,
The control unit starts from the next boarding scheduled date and time set by the driver of the electric vehicle, and takes time required for warming up the battery by driving the auxiliary machine, and charging the battery from the external power source by the charger. An electric vehicle characterized by starting driving of the auxiliary machine at a date and time when the total time required is calculated backward.
請求項1〜6のいずれか一項に記載の電動車両であって、
前記蓄電器に充電する電気エネルギーを供給する電力供給部と、
前記蓄電器の充電状態を示す値を算出する充電状態算出部と、を備え、
当該電動車両が走行終了時の前記蓄電器が、前記充電器による充電開始前の前記蓄電器の暖機に必要な充電状態値を確保できるよう、前記制御部は、当該電動車両が走行中に前記電力供給部の駆動を制御することを特徴とする電動車両。
The electric vehicle according to any one of claims 1 to 6,
A power supply for supplying electrical energy to charge the capacitor;
A charge state calculation unit for calculating a value indicating a charge state of the battery,
In order to ensure that the battery at the end of travel of the electric vehicle can secure a charge state value necessary for warming up the battery before the start of charging by the charger, the control unit is configured to output the power while the electric vehicle is running. An electric vehicle characterized by controlling driving of a supply unit.
請求項7に記載の電動車両であって、
前記制御部は、前記蓄電器の充電状態値が前記蓄電器の暖機に必要な充電状態値未満のとき、前記電力供給部を駆動するよう制御することを特徴とする電動車両。
The electric vehicle according to claim 7,
The electric vehicle characterized in that the control unit controls the power supply unit to be driven when a charge state value of the battery is less than a charge state value necessary for warming up the battery.
請求項7に記載の電動車両であって、
環境最低温度が前記しきい値未満のとき、前記制御部は、前記蓄電器の暖機に必要な充電状態値を確保するための制御を行うことを特徴とする電動車両。
The electric vehicle according to claim 7,
When the environmental minimum temperature is lower than the threshold value, the control unit performs control for ensuring a charge state value necessary for warming up the battery.
請求項7に記載の電動車両であって、
前記制御部は、当該電動車両の走行終了日時から前記充電器が前記蓄電器の充電を開始する日時までの待機時間が所定値未満の場合、前記待機時間が前記所定値以上の場合と比較して、前記蓄電器の暖機に必要な充電状態値を小さく設定することを特徴とする電動車両。
The electric vehicle according to claim 7,
When the standby time from the date and time when the electric vehicle finishes running to the date and time when the charger starts charging the battery is less than a predetermined value, the control unit compares the standby time with the predetermined value or more. An electric vehicle characterized in that a charging state value necessary for warming up the battery is set small.
JP2009157947A 2009-07-02 2009-07-02 Electric vehicle Expired - Fee Related JP5366685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157947A JP5366685B2 (en) 2009-07-02 2009-07-02 Electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157947A JP5366685B2 (en) 2009-07-02 2009-07-02 Electric vehicle

Publications (2)

Publication Number Publication Date
JP2011015544A JP2011015544A (en) 2011-01-20
JP5366685B2 true JP5366685B2 (en) 2013-12-11

Family

ID=43593863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157947A Expired - Fee Related JP5366685B2 (en) 2009-07-02 2009-07-02 Electric vehicle

Country Status (1)

Country Link
JP (1) JP5366685B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5760531B2 (en) 2011-03-11 2015-08-12 日産自動車株式会社 Battery temperature control device
JP6089403B2 (en) * 2012-01-17 2017-03-08 日産自動車株式会社 Battery system element arrangement structure of electric vehicle
JP5626294B2 (en) 2012-08-29 2014-11-19 トヨタ自動車株式会社 Power storage system
JP6183411B2 (en) * 2015-05-26 2017-08-23 トヨタ自動車株式会社 vehicle
JP6583104B2 (en) * 2016-04-05 2019-10-02 株式会社豊田自動織機 Industrial vehicle
KR101936465B1 (en) 2016-09-21 2019-01-08 현대자동차주식회사 System and Method for charging Battery
JP2019089524A (en) 2017-11-17 2019-06-13 アイシン精機株式会社 Vehicular heat exchange device
CN109733467B (en) * 2019-01-24 2021-05-25 江苏大学 Composite power source EPS multi-mode switching method and device based on dynamic switching threshold
CN114050356B (en) * 2021-11-09 2023-11-14 长沙理工大学 Multifunctional power battery module thermal management system device
JP7404408B2 (en) * 2022-01-21 2023-12-25 本田技研工業株式会社 battery temperature control system
JP2023113437A (en) * 2022-02-03 2023-08-16 株式会社クボタ electric work vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773906A (en) * 1993-09-06 1995-03-17 Kojima Press Co Ltd Charging device for electric automobile
JP3376718B2 (en) * 1994-10-17 2003-02-10 日産自動車株式会社 Charging system
JP4390609B2 (en) * 2004-03-31 2009-12-24 三洋電機株式会社 Power supply for vehicle
US20060016793A1 (en) * 2004-07-23 2006-01-26 Douglas Zhu Electrical storage device heater for vehicle
JP5162100B2 (en) * 2006-03-07 2013-03-13 プライムアースEvエナジー株式会社 Secondary battery temperature control device, vehicle battery pack, and secondary battery temperature control program
JP4228086B1 (en) * 2007-08-09 2009-02-25 トヨタ自動車株式会社 vehicle
JP4333798B2 (en) * 2007-11-30 2009-09-16 トヨタ自動車株式会社 Charge control device and charge control method

Also Published As

Publication number Publication date
JP2011015544A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5366685B2 (en) Electric vehicle
CN109070758B (en) Battery temperature and charge regulation system and method
US9919710B2 (en) Power storage system
JP5899674B2 (en) Control device for hybrid vehicle
JP5547699B2 (en) Vehicle drive device
JP5713111B2 (en) Vehicle control apparatus and control method
JP5223232B2 (en) Electric vehicle charge control system and electric vehicle charge control method
JP2012044813A (en) Vehicle power supply
JP6545435B2 (en) Vehicle control device, vehicle, and control method of vehicle
US9718453B2 (en) Hybrid vehicle
JP6741791B2 (en) Battery pack heat adjustment method and system
JP2019221025A (en) Drive control device of vehicle drive system
JP2004328906A (en) Charging controller of hybrid vehicle
JP2020082825A (en) Hybrid-vehicular control apparatus, hybrid-vehicular control method, and hybrid-vehicular control program
US9809224B2 (en) Battery charge/discharge control apparatus
JP2005261034A (en) Controller of electric storage mechanism
JP5042816B2 (en) Internal combustion engine control device
JP2016201250A (en) Cooling system for on-vehicle secondary battery
JP5603404B2 (en) Vehicle temperature riser
JP4495003B2 (en) Railway vehicle power storage device warm-up method and apparatus
JP6424596B2 (en) Vehicle charge control device
JP5958457B2 (en) Hybrid vehicle
JP7454469B2 (en) vehicle power system
KR20130017725A (en) System for control engine starting of hybrid vehicle and method thereof
JP2010247801A (en) Charging system for plug-in hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Ref document number: 5366685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees