Nothing Special   »   [go: up one dir, main page]

JP5366297B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5366297B2
JP5366297B2 JP2009028530A JP2009028530A JP5366297B2 JP 5366297 B2 JP5366297 B2 JP 5366297B2 JP 2009028530 A JP2009028530 A JP 2009028530A JP 2009028530 A JP2009028530 A JP 2009028530A JP 5366297 B2 JP5366297 B2 JP 5366297B2
Authority
JP
Japan
Prior art keywords
region
electrode
emitter
conductivity type
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009028530A
Other languages
Japanese (ja)
Other versions
JP2010186805A (en
Inventor
崇一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Denso Corp
Original Assignee
Fuji Electric Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Denso Corp filed Critical Fuji Electric Co Ltd
Priority to JP2009028530A priority Critical patent/JP5366297B2/en
Publication of JP2010186805A publication Critical patent/JP2010186805A/en
Application granted granted Critical
Publication of JP5366297B2 publication Critical patent/JP5366297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of improving reverse recovery characteristics and reverse recovery resistance of a diode provided side by side with an IGBT and connected in antiparallel to the IGBT on the same semiconductor substrate without deterioration of characteristics of the IGBT, and also improving, in particular, so as to reduce reverse recovery loss. <P>SOLUTION: In the semiconductor device, p-type regions on which a metal electrode is placed via an insulating film and which has high impurity concentration in a gate pad electrode region, are formed into a structure in which the regions are mutually connected on a surface by ion implantation and thermal diffusion from a plurality of isolated surface regions. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、IGBTと、このIGBTに逆並列接続されるフリーホイーリングダイオード(以降FWDと略記する)とが同一半導体基板上に併設される半導体装置の改良に関する。   The present invention relates to an improvement in a semiconductor device in which an IGBT and a free wheeling diode (hereinafter abbreviated as FWD) connected in reverse parallel to the IGBT are provided on the same semiconductor substrate.

図12に示すような直流を交流に変換するインバータ回路は、コンバータ部100、ブレーキ部200、インバータ部300を備えている。インバータ部300ではIGBT(Insulated Gate Bipolar Transistor)301とFWD(Free Wheeling Diode)302が逆並列に接続される構成を有している。通常、インバータ部300に用いられる前記FWD302の動作には、順方向の通電状態から逆電圧阻止状態を回復する際の逆回復モードがある。この際、素子破壊が最も起こりやすいため、FWD302には素子破壊を起こし難くする逆回復耐量が求められ、さらには逆回復損失の小さいことも求められる。   The inverter circuit that converts direct current into alternating current as shown in FIG. 12 includes a converter unit 100, a brake unit 200, and an inverter unit 300. The inverter unit 300 has a configuration in which an IGBT (Insulated Gate Bipolar Transistor) 301 and an FWD (Free Wheeling Diode) 302 are connected in antiparallel. Usually, the operation of the FWD 302 used in the inverter unit 300 includes a reverse recovery mode for recovering the reverse voltage blocking state from the forward energization state. At this time, since element breakdown is most likely to occur, the FWD 302 is required to have a reverse recovery resistance that makes it difficult to cause element breakdown, and further, it is also required to have a low reverse recovery loss.

一方で、コンパクト化やコストダウンという観点から、IGBTとFWDとを同一半導体基板上に併設した一体型逆導通IGBTが検討されている。このような一体型逆導通IGBT(RC−IGBT)には既に発表されているものもある。しかし、この一体型逆導通IGBTは、一般的に製造プロセス上の問題から、IGBTとFWDとを別個のデバイスのように、それぞれ最適の特性が得られるような最適な構造設計をして製造することは極めて困難である。それでもIGBTの特性をできるだけ劣化させずに、FWDのリカバリー(逆回復)特性を改善できるように改良した一体型の逆導通IGBTについて既に特許文献が公開されている(例えば、下記特許文献1参照。)。   On the other hand, from the viewpoint of downsizing and cost reduction, an integrated reverse conducting IGBT in which an IGBT and an FWD are provided on the same semiconductor substrate has been studied. Some such integrated reverse conducting IGBTs (RC-IGBTs) have already been announced. However, this integrated reverse conducting IGBT is generally manufactured by designing the optimal structure so that the optimal characteristics can be obtained for each of the IGBT and FWD as separate devices due to problems in the manufacturing process. It is extremely difficult. Still, a patent document has already been published for an integrated reverse conducting IGBT that can improve the recovery (reverse recovery) characteristics of the FWD without degrading the characteristics of the IGBT as much as possible (see, for example, Patent Document 1 below). ).

また、ゲートパッド電極直下のp+領域を櫛歯状にするIGBT、MOSFET等について記載された特許文献も公開されている(例えば、下記特許文献2参照。)。さらにまた、ゲートパッド電極直下に高濃度p+領域を設けないようにしてもドレイン−ソース間耐圧を確保できるIGBTについての記載がある特許文献も公開されている(例えば、下記特許文献3参照。)。 Also, patent documents describing IGBTs, MOSFETs, and the like in which the p + region immediately below the gate pad electrode is comb-like are disclosed (for example, see Patent Document 2 below). Furthermore, a patent document that describes an IGBT that can ensure a drain-source breakdown voltage without providing a high-concentration p + region directly under the gate pad electrode is also disclosed (see, for example, Patent Document 3 below). ).

従来の逆導通IGBTチップ50は、図11のチップの要部断面図に示すように、同一半導体基板にIGBT部51と逆並列接続のFWD部52とを内蔵させている。基板表面側のn+エミッタ領域53の表面からp-チャネル形成領域54を貫通してn-基板領域(n-ドリフト層)55に達する複数の平行トレンチ56を有する(図11)。この図11に示すように、これらのトレンチ56にはゲート絶縁膜57を介してポリシリコンゲート電極58が埋め込まれている。これらの複数トレンチ56間のp-チャネル形成領域54の表面層にはトレンチ56に接する前記n+エミッタ領域53と、アルミニウム電極とオーミック接触するためのp+コンタクト領域54aを備えている。前記トレンチ56に埋め込まれたポリシリコンゲート電極58を絶縁するために、基板表面に層間絶縁膜59が形成される。この層間絶縁膜59には開口部が設けられ、n+エミッタ領域53表面とp+コンタクト領域54aの表面が露出した表面には共通にアルミニウムなどのエミッタ(アノード)電極60がオーミック接触する。 As shown in the cross-sectional view of the main part of the chip shown in FIG. 11, the conventional reverse conducting IGBT chip 50 incorporates an IGBT part 51 and an antiparallel-connected FWD part 52 in the same semiconductor substrate. There are a plurality of parallel trenches 56 that reach the n substrate region (n drift layer) 55 through the p channel formation region 54 from the surface of the n + emitter region 53 on the substrate surface side (FIG. 11). As shown in FIG. 11, a polysilicon gate electrode 58 is buried in these trenches 56 with a gate insulating film 57 interposed therebetween. The surface layer of the p channel forming region 54 between the plurality of trenches 56 includes the n + emitter region 53 in contact with the trench 56 and a p + contact region 54 a for making ohmic contact with the aluminum electrode. In order to insulate the polysilicon gate electrode 58 embedded in the trench 56, an interlayer insulating film 59 is formed on the substrate surface. The interlayer insulating film 59 is provided with an opening, and an emitter (anode) electrode 60 such as aluminum is in ohmic contact with the exposed surfaces of the n + emitter region 53 and the p + contact region 54a.

前記p-チャネル形成領域54を取り巻く、逆導通IGBTチップ50の周辺部には該p-チャネル形成領域54より深くて不純物濃度の高い高濃度p+領域65aと、さらにその外側を取り巻く耐圧構造部66には、該高濃度p+領域65aと同時のイオン注入および熱拡散により形成されるガードリング67を備えている。前記高濃度p+領域65aは層間絶縁膜59に形成された開口部を介してエミッタ(アノード)電極60が接触している。前記高濃度p+領域65aと前記ガードリング67がp-チャネル形成領域54より深い拡散層にされているのは、p-チャネル形成領域54のpn接合から、逆バイアス時に空乏層が延びる際に電界強度の集中が発生し易いpn接合端部の曲率半径を大きくして電界集中を緩和するためである。さらに、オフ時に主電流の流れる活性領域69の周縁部に集中し易い残留ホールを抵抗を小さくして引き抜き易くすることにより、逆回復電流がpn主接合の周縁部へ集中することによる素子破壊を抑制するためである。 The p - surrounding the channel forming region 54, the peripheral portion of the reverse conducting IGBT chip 50 the p - and deep high impurity concentration high-concentration p + region 65a than the channel formation region 54, further pressure-resistant structure portion surrounding the outer 66 includes a guard ring 67 formed by ion implantation and thermal diffusion at the same time as the high concentration p + region 65a. The emitter (anode) electrode 60 is in contact with the high concentration p + region 65 a through an opening formed in the interlayer insulating film 59. The high-concentration p + region 65a and the guard ring 67 is p - what is the deep diffusion layer from the channel formation region 54, p - from the pn junction of the channel forming region 54, when the depletion layer extends when a reverse bias This is to reduce the electric field concentration by increasing the radius of curvature at the end of the pn junction where electric field intensity concentration is likely to occur. Furthermore, by reducing the resistance of the residual holes that tend to concentrate on the peripheral portion of the active region 69 through which the main current flows at the time of OFF, the reverse recovery current is concentrated on the peripheral portion of the pn main junction. It is for suppressing.

前記活性領域69中の前記トレンチ56内のポリシリコンゲート電極58は該活性領域69外周辺の前記高濃度p+領域65a表面に層間絶縁膜59を介して設けられるポリシリコン電極配線およびアルミニウムのゲート電極配線68aに接続され、基板表面で幅広のアルミニウムゲートパッド電極68(図7参照)に集められる。このアルミニウムゲートパッド電極68の直下では、層間絶縁膜59を挟んで基板表面層に形成される前記高濃度p+領域65aも、図2の平面図に示すように、幅広のアルミニウムゲートパッド電極68に対応して幅広に形成される。図2は、一体型逆導通型IGBTチップの高濃度p+領域の平面パターンを示す平面図である。 A polysilicon gate electrode 58 in the trench 56 in the active region 69 is formed on the surface of the high-concentration p + region 65a outside the active region 69 via an interlayer insulating film 59 and an aluminum gate. It is connected to the electrode wiring 68a and collected on a wide aluminum gate pad electrode 68 (see FIG. 7) on the substrate surface. Immediately below the aluminum gate pad electrode 68, the high-concentration p + region 65a formed on the substrate surface layer with the interlayer insulating film 59 interposed therebetween is also wide as shown in the plan view of FIG. It is formed wide corresponding to. FIG. 2 is a plan view showing a planar pattern of the high concentration p + region of the integrated reverse conducting IGBT chip.

一方、主電流の流れる活性領域69の表面に対向する基板の裏面側には、IGBTのオフ時に、逆バイアスの際にpn接合から延びる空乏層を抑えてn-ドリフト層55の厚さを低減するためのn型フィールドストップ層61を挟んで、図9のチップの裏面側平面図に示すように、p+コレクタ領域62とn+カソード領域63とが交互に平行パターンで設けられている。さらに、これらの両領域に共通に接触するコレクタ(カソード)電極64を備えている。 On the other hand, on the back side of the substrate facing the surface of the active region 69 through which the main current flows, the thickness of the n drift layer 55 is reduced by suppressing the depletion layer extending from the pn junction when the IGBT is turned off and during reverse biasing. As shown in the plan view of the back side of the chip in FIG. 9, the p + collector regions 62 and the n + cathode regions 63 are alternately provided in a parallel pattern with the n-type field stop layer 61 interposed therebetween. Furthermore, a collector (cathode) electrode 64 that is in common contact with both of these regions is provided.

以上説明した従来の逆導通IGBTでは、IGBTのオフ時、前記FWDの順方向動作時にアノード側から注入されたホールを、逆回復時には、特にホールの引き抜きが集中し易い活性領域69の外周辺部に設けられた高濃度p+領域65aにより有効に引き抜き易くなり、リカバリー特性を改善することができる。 In the conventional reverse conducting IGBT described above, the holes injected from the anode side during the forward operation of the FWD when the IGBT is off, the outer peripheral portion of the active region 69 where the extraction of the holes is particularly likely to concentrate during reverse recovery. The high-concentration p + region 65a provided in the region can be easily extracted effectively, and the recovery characteristics can be improved.

特開2007−214541号公報(要約)JP 2007-214541 A (summary) 特許第3391715号公報(請求項1の記載)Japanese Patent No. 3391715 (claim 1) 特開2008−85188号公報(図8、図9)JP 2008-85188 A (FIGS. 8 and 9)

しかしながら、前記特許文献1に記載の一体型逆導通IGBTでは、前記図11に示すゲート電極配線68aや図示しないゲートパッド電極68(図7参照)の構成について特に明記されていないが、ゲート電極は、ゲート電極と外部導線とを接続するために必要な広い面積を持つゲートパッド電極68を必要とする。さらに、このゲートパッド電極68の直下には、IGBTのRBSOA(安全動作領域)を確保するために、前述のように残留キャリア(ホール)の引き抜きが集中しないようにすることが好ましいので、通常、層間絶縁膜59を介して高濃度p+領域65aが設けられ、アノード電極に接続されている。 However, in the integrated reverse conducting IGBT described in Patent Document 1, the configuration of the gate electrode wiring 68a shown in FIG. 11 and the gate pad electrode 68 (not shown) (see FIG. 7) is not particularly specified. The gate pad electrode 68 having a large area necessary for connecting the gate electrode and the external conductor is required. Further, in order to ensure the RBSOA (safe operation area) of the IGBT immediately below the gate pad electrode 68, it is preferable that the extraction of residual carriers (holes) is not concentrated as described above. A high-concentration p + region 65a is provided via the interlayer insulating film 59 and connected to the anode electrode.

前記高濃度p+領域65aが設けられるとp-チャネル形成領域(p型アノード拡散領域)54への残留キャリアの引き抜きの集中を抑制できる理由について説明する。ゲートパッド電極68の直下に、エミッタ(アノード)電極60に接続される高濃度p+領域65aが設けられると、FWDの順方向動作時には、この高濃度p+領域65aからは高濃度のホールの注入が生じる。次に、FWDが逆バイアスされると、n-ドリフト層55に残存する、電導度変調によって生じた過剰な少数キャリア(正孔)、多数キャリア(電子)が再結合および掃き出し過程を経てn-ドリフト層55に空乏層が広がる。空乏層が広がりきると電圧阻止状態となる。この過程が逆回復と呼ばれる。この逆回復時の前述のキャリア掃き出し過程はマクロ的には逆回復電流と称され、逆バイアスにもかかわらず、過渡的な電流が流れる状態である。この逆回復電流は順から逆方向に移行する際の電流低減率が大きいほど、ピーク電流値が大きくなる(ハードリカバリーともいう)。 The reason why when the high concentration p + region 65a is provided, the concentration of the extraction of residual carriers in the p channel formation region (p-type anode diffusion region) 54 can be suppressed will be described. When a high-concentration p + region 65a connected to the emitter (anode) electrode 60 is provided immediately below the gate pad electrode 68, a high-concentration hole is removed from the high-concentration p + region 65a during forward operation of the FWD. Injection occurs. Next, when the FWD is reverse-biased, excess minority carriers (holes) and majority carriers (electrons) generated by the conductivity modulation remaining in the n drift layer 55 undergo n A depletion layer spreads in the drift layer 55. When the depletion layer is fully expanded, the voltage is blocked. This process is called reverse recovery. The aforementioned carrier sweeping process at the time of reverse recovery is macroscopically referred to as reverse recovery current, and is a state in which a transient current flows despite reverse bias. This reverse recovery current has a higher peak current value (also called hard recovery) as the current reduction rate at the time of transition from the forward direction to the reverse direction increases.

さらに、この電流は、少数キャリア(正孔)が、逆バイアス時の負極側であるアノード電極から引き抜かれる(または掃き出される)際、逆バイアスの電界集中が起き易い該p-チャネル形成領域(p型アノード拡散領域)54の周縁部の曲率部に集中するので、この部分で電流密度が高くなって破壊を引き起こす(特に上述した順逆移行時の電流低減率が大きい時)ことが知られている。この現象は該p-チャネル形成領域(p型アノード拡散領域)54の周縁部形状が曲率を有しているため、等電位線が密になり易いことと、一般的にFWDで主電流の流れる該p-チャネル形成領域(p型アノード拡散領域)54を取り巻く外周辺部の表面層に設けられる耐圧構造部下にも広がっている少数キャリアの引き抜き(掃き出し)がほとんどこの部分に集中するためである。そこで、前述のように、逆回復電流の集中を緩和する機能を有するように、該p-チャネル形成領域(p型アノード拡散領域)54より抵抗が小さく、曲率半径の大きい高濃度p+領域65aを設けてアノード電極に接続させるのである。 In addition, this current is applied to the p channel formation region in which electric field concentration of reverse bias is likely to occur when minority carriers (holes) are extracted (or swept out) from the anode electrode on the negative electrode side during reverse bias. p-type anode diffusion region) is concentrated on the curvature portion of the peripheral portion of 54, and it is known that the current density is increased at this portion and causes breakdown (especially when the current reduction rate during the forward / reverse transition described above is large). Yes. In this phenomenon, since the peripheral shape of the p channel formation region (p-type anode diffusion region) 54 has a curvature, the equipotential lines tend to become dense, and the main current generally flows in FWD. This is because minority carrier extraction (sweeping) spreading under the pressure-resistant structure portion provided in the surface layer of the outer peripheral portion surrounding the p channel formation region (p-type anode diffusion region) 54 is almost concentrated on this portion. . Therefore, as described above, the high-concentration p + region 65a having a resistance smaller than that of the p channel formation region (p-type anode diffusion region) 54 and a large curvature radius so as to have a function of relaxing the concentration of the reverse recovery current. Is provided and connected to the anode electrode.

この逆回復電流の大きさは、n-ドリフト層55のコレクタ側での過剰少数キャリアの蓄積量が大きいほど逆回復電流が大きく、ハードリカバリー波形になる傾向が強い。この点に、前記特許文献1に記載の逆導通IGBTには、さらに改善の余地がある。 As for the magnitude of the reverse recovery current, the reverse recovery current increases as the accumulation amount of excess minority carriers on the collector side of the n drift layer 55 increases, and it tends to be a hard recovery waveform. In this respect, the reverse conducting IGBT described in Patent Document 1 has room for further improvement.

本発明は、以上、述べた点に鑑みてなされたものであり、本発明の目的はIGBTの特性を低下させることなく、同一半導体基板上に併設される逆並列接続ダイオードの逆回復特性と逆回復耐量の改善をするだけでなく、さらに、特に逆回復損失を小さくするように改善することのできる半導体装置を提供することである。   The present invention has been made in view of the above points, and the object of the present invention is the reverse of the reverse recovery characteristics of the reverse parallel connected diodes provided on the same semiconductor substrate without degrading the characteristics of the IGBT. It is an object to provide a semiconductor device that can be improved not only to improve the recovery tolerance, but also to reduce the reverse recovery loss.

本発明によれば、n導電型半導体基板の一方の主面に、p導電型チャネル形成領域と、該チャネル形成領域表面に形成されるn導電型エミッタ領域と、該エミッタ領域表面と前記チャネル形成領域表面とに共通にオーミック接触するエミッタ電極と、前記エミッタ領域表面と前記半導体基板表面とに挟まれる前記チャネル形成領域の表面にゲート絶縁膜を介して積層されるゲート電極とを含む活性領域と、前記ゲート電極と実質的に同電位であって、前記チャネル形成領域を介して前記エミッタ電極と電気的に接続された、記チャネル形成領域より高不純物濃度のp導電型領域表面に絶縁膜を介して設けられ、ゲート外部導線を接続させるための金属電極を載置するゲートパッド電極領域と、該ゲートパッド電極領域と前記活性領域との外周をリング状に取り囲む耐圧構造部と、少なくとも前記活性領域に対向する他方の主面側領域に選択的に形成されるp導電型コレクタ領域と該他方の主面側領域にオーミック接触するコレクタ電極と、を備えるIGBT部と、前記活性領域に対向する他方の主面側領域に選択的に前記コレクタ領域と交互に形成されるn導電型領域を有し、該n導電型領域にオーミック接触するコレクタ電極をカソード電極、前記エミッタ電極をアノード電極とするダイオード部とを備える半導体装置において、前記ゲートパッド電極領域内であって、前記金属電極が絶縁膜を介して載置される高不純物濃度の前記p導電型領域が、複数の分離表面領域からのイオン注入と熱拡散とにより表面で相互に連結した構造にされており、前記複数の分離表面領域が、前記活性領域から外周へ向かう方向に延びるストライプ状部分を有する櫛歯状の表面形状である半導体装置とすることにより前記本発明の目的は達成される。 According to the present invention, on one main surface of the n conductivity type semiconductor substrate, a p-type conductivity of the channel forming region, and the n conductivity type emitter region formed in the channel formation region surface, and said emitter region surface An emitter electrode commonly in ohmic contact with the surface of the channel formation region; and a gate electrode stacked on a surface of the channel formation region sandwiched between the surface of the emitter region and the surface of the semiconductor substrate via a gate insulating film and the active region, wherein a gate electrode is substantially the same potential, the channel formation region is electrically connected to the emitter electrode via, p conductivity type region of high impurity concentration than before Eat Yaneru formation region surface is provided via an insulating film, and the gate pad electrode region for placing a metal electrode for connecting the gate external conductors, said active territory with the gate pad electrode area Ohmic contact periphery and a pressure-resistant structure portion surrounding in a ring shape, the main surface side region of at least the active region p-type conductivity said other and the collector region of which is selectively formed on the other main surface side region facing the with IGBT circuit comprising a collector electrode, and has the active region n-type conductivity region on the other major surface region facing formed selectively alternating the front Kiko collector region, the n conductivity type placing a collector electrode that is in ohmic contact with the area cathode electrode, a semiconductor device and a diode unit to the emitter electrode and the anode electrode, an said gate pad electrode region, the metal electrode through the insulating film the p conductivity type region of high impurity concentrations are, are the structures linked to each other by surface by ion implantation and thermal diffusion from the plurality of separation surface region of said plurality separation Surface area, the object of the present invention is achieved by a semiconductor device is a comb-like surface shape having a stripe-shaped portion extending in a direction toward the outer periphery from the active region.

本発明の半導体装置では、ゲートパッド電極直下に層間絶縁膜を挟んで設けられる高濃度p+領域は、IGBTのRBSOAを確保するために必要な逆回復時の残留ホールの引き抜きの機能を有するので、欠かせない。しかし、その結果、逆回復損失が増加する。この逆回復損失をも低減させるためには、FWDの順方向動作時のホール注入量を低減させることが必要となる。そこで、ゲートパッド電極直下のp+領域形成を直下の全面ではなく、平行ストライプ状領域または格子間領域の各表面パターンからのイオン注入により形成することで、ゲートパッド電極直下のp+領域全体からのホールの濃度を低下させ逆回復電流および損失を抑制する構成とする。ただし、前記平行ストライプ状または格子間領域のゲートパッド電極直下のp+領域は、イオン注入時のパターンであり、さらに熱拡散処理を加えることにより、拡散領域は広げられる。たとえば、イオン注入領域パターンのストライプ幅および間隔を5μm程度に設定すると、熱拡散による領域の広がりにより平行ストライプ状のパターンが表面で相互に接触して連続させることができる。その結果、逆回復損失を小さくすることができるだけでなく、RBSOA(安全動作領域)耐量を確保することができる。 In the semiconductor device of the present invention, the high concentration p + region provided with the interlayer insulating film directly under the gate pad electrode has a function of extracting a residual hole at the time of reverse recovery necessary for securing the RBSOA of the IGBT. ,necessary. However, as a result, reverse recovery loss increases. In order to reduce this reverse recovery loss, it is necessary to reduce the hole injection amount during the forward operation of the FWD. Therefore, by forming the p + region immediately below the gate pad electrode by ion implantation from each surface pattern of the parallel stripe region or interstitial region instead of the entire surface directly below, the entire p + region immediately below the gate pad electrode is formed. The hole concentration is reduced to suppress reverse recovery current and loss. However, the p + region immediately below the gate pad electrode in the parallel stripe shape or interstitial region is a pattern at the time of ion implantation, and the diffusion region can be expanded by applying a thermal diffusion treatment. For example, if the stripe width and interval of the ion implantation region pattern are set to about 5 μm, parallel stripe patterns can be brought into contact with each other on the surface due to the expansion of the region due to thermal diffusion. As a result, not only can reverse recovery loss be reduced, but also RBSOA (safe operation area) tolerance can be ensured.

本発明によれば、IGBTの特性を低下させることなく、同一半導体基板上に形成される逆並列接続ダイオードの逆回復特性と逆回復耐量の改善をするだけでなく、さらに、特に逆回復損失を小さくするように改善することのできる半導体装置を提供することができる。   According to the present invention, not only the reverse recovery characteristics and reverse recovery tolerance of the reverse parallel connection diode formed on the same semiconductor substrate are improved, but also the reverse recovery loss is reduced. A semiconductor device that can be improved to be small can be provided.

本発明の半導体装置にかかる一体型逆導通型IGBTチップの高濃度p+領域のそれぞれ異なる平面パターン(a)、(b)を示す平面図である。It is a top view which shows each different plane pattern (a), (b) of the high concentration p <+> area | region of the integrated reverse conduction type IGBT chip concerning the semiconductor device of the present invention. 従来の一体型逆導通型IGBTチップの高濃度p+領域の平面パターンを示す平面図である。It is a top view which shows the plane pattern of the high concentration p <+> area | region of the conventional integrated reverse conduction type IGBT chip. 本発明と従来の一体型逆導通型IGBTチップの逆回復電流を比較して示す逆回復電流波形図である。It is a reverse recovery current waveform figure which compares and shows the reverse recovery current of this invention and the conventional integrated reverse conduction type IGBT chip. 前記図1(b)のB−B’線に対応する断面図である。It is sectional drawing corresponding to the B-B 'line | wire of the said FIG.1 (b). 本発明にかかる耐圧600Vの逆導通IGBTの製造方法を説明するための主要な製造工程ごとの半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate for every main manufacturing processes for demonstrating the manufacturing method of reverse conduction | electrical_connection IGBT of the pressure | voltage resistant 600V concerning this invention. 前記図1(a)のA−A’線に対応する断面図である。It is sectional drawing corresponding to the A-A 'line of the said Fig.1 (a). 本発明の半導体装置にかかる一体型逆導通型IGBTチップの最表面のパターンを示す平面図である。It is a top view which shows the pattern of the outermost surface of the integrated reverse conduction type IGBT chip concerning the semiconductor device of the present invention. 前記図7からアルミニウム電極と層間絶縁膜を除いた従来の表面パターンを示す平面図である。FIG. 8 is a plan view showing a conventional surface pattern excluding an aluminum electrode and an interlayer insulating film from FIG. 7. 本発明と従来の一体型逆導通型IGBTチップの裏面側のコレクタ(カソード)電極を除いた裏面側基板表面層に形成されるn+領域とp+領域のパターンを示す平面図である。It is a top view which shows the pattern of the n <+> area | region and p <+> area | region formed in the back surface side substrate surface layer except the collector (cathode) electrode of the back surface side of this invention and the conventional integrated reverse conduction type IGBT chip | tip. 本発明の半導体装置にかかる一体型逆導通型IGBTチップの要部断面図である。It is principal part sectional drawing of the integrated reverse conduction type IGBT chip concerning the semiconductor device of the present invention. 従来の一体型逆導通型IGBTチップの要部断面図である。It is principal part sectional drawing of the conventional integrated reverse conduction type IGBT chip. 一般的な直流を交流に変換するインバータ回路図である。It is an inverter circuit diagram which converts general direct current into alternating current.

図1(a)、(b)は本発明の半導体装置にかかる一体型逆導通型IGBTチップの高濃度p+領域のそれぞれ異なる平面パターンを示す平面図である。図3は、本発明と従来の一体型逆導通型IGBTチップの逆回復電流を比較して示す逆回復電流波形図である。図4、図6は前記図1(b)のB−B’線、前記図1(a)のA−A’線、に対応するそれぞれ断面図である。ただし、各断面図には高濃度p+領域表面上に酸化膜を介して、前記図1には無い金属電極が載置されている。図5は本発明にかかる耐圧600Vの逆導通IGBTの製造方法を説明するための主要な製造工程ごとの半導体基板の要部断面図である。図7は本発明の半導体装置にかかる一体型逆導通型IGBTチップの最表面のパターンを示す平面図である。図8は本発明にかかり、前記図7からアルミニウム電極と層間絶縁膜を除いた表面パターンを示す平面図である。図9は本発明の半導体装置にかかる一体型逆導通型IGBTチップの裏面側のコレクタ(カソード)電極を除いた裏面側基板表面層に形成されるn+領域とp+領域のパターンを示す平面図である。この図9に関しては従来の半導体装置の平面図と同じである。図10は本発明の半導体装置にかかる一体型逆導通型IGBTチップの要部断面図である。 FIGS. 1A and 1B are plan views showing different planar patterns of high-concentration p + regions of an integrated reverse conducting IGBT chip according to the semiconductor device of the present invention. FIG. 3 is a reverse recovery current waveform diagram comparing the reverse recovery current of the present invention and the conventional integrated reverse conduction type IGBT chip. 4 and 6 are cross-sectional views corresponding to the line BB ′ in FIG. 1B and the line AA ′ in FIG. In each cross-sectional view, however, a metal electrode not shown in FIG. 1 is placed on the surface of the high concentration p + region via an oxide film. FIG. 5 is a fragmentary cross-sectional view of a semiconductor substrate for each main manufacturing process for explaining a method of manufacturing a reverse conducting IGBT having a withstand voltage of 600 V according to the present invention. FIG. 7 is a plan view showing an outermost surface pattern of the integrated reverse conducting IGBT chip according to the semiconductor device of the present invention. FIG. 8 is a plan view showing a surface pattern according to the present invention, excluding the aluminum electrode and the interlayer insulating film from FIG. FIG. 9 is a plan view showing patterns of the n + region and the p + region formed on the back side substrate surface layer excluding the collector (cathode) electrode on the back side of the integrated reverse conducting IGBT chip according to the semiconductor device of the present invention. FIG. FIG. 9 is the same as the plan view of the conventional semiconductor device. FIG. 10 is a cross-sectional view of an essential part of an integrated reverse conducting IGBT chip according to the semiconductor device of the present invention.

以下、本発明の半導体装置にかかる実施例である一体型逆導通型IGBTについて、図面を用いて詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。   Hereinafter, an integrated reverse conducting IGBT which is an embodiment of a semiconductor device of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.

本発明の半導体装置にかかる実施例である一体型逆導通型IGBTの製造方法について、図5および本発明の半導体装置にかかる一体型逆導通型IGBTチップの完成後の要部断面図である図10を参照して詳細に説明する。図5(a)では、従来のエピタキシャル層を堆積させた半導体基板ではなく、FZあるいはCZ基板などで、抵抗率20Ωcm〜50Ωcmの高抵抗n型半導体基板(以降、基板と略記する)を用意する。なお、この高抵抗n型半導体基板がn-ドリフト層55となる。 FIG. 5 is a cross-sectional view of the main part of the integrated reverse conducting IGBT according to the embodiment of the semiconductor device of the present invention after the completion of the integrated reverse conducting IGBT chip according to FIG. 5 and the semiconductor device of the present invention; This will be described in detail with reference to FIG. In FIG. 5A, a high-resistance n-type semiconductor substrate (hereinafter abbreviated as a substrate) having a resistivity of 20 Ωcm to 50 Ωcm is prepared using an FZ or CZ substrate instead of a conventional semiconductor substrate on which an epitaxial layer is deposited. . This high resistance n-type semiconductor substrate becomes the n drift layer 55.

図5(b)では、厚さ1.2μmの初期酸化膜パターンをマスクにして、活性領域69の周縁部を取り巻く高濃度p+領域65と、該高濃度p+領域65を取り巻く耐圧構造部66を構成するガードリング67(図7、図8参照)とは同じ深さ、同じ不純物濃度で同時形成される。この図5ではガードリング67は3重に前記高濃度p+領域65を取り巻く構成を有しているが、図10ではガードリング67は1本のリングのみを示している。両者は共に基板表面からの拡散深さが最も深いので、各領域形成の工程では最初に形成される。イオン注入条件は、加速電圧45Kevで、ホウ素(B)のドーズ量を2×1015/cm2とし、1150℃で5時間の熱拡散処理を加えた。拡散深さは約8μmである。 In FIG. 5B, a high-concentration p + region 65 surrounding the periphery of the active region 69 and a breakdown voltage structure surrounding the high-concentration p + region 65 using an initial oxide film pattern having a thickness of 1.2 μm as a mask. The guard ring 67 (see FIG. 7 and FIG. 8) that constitutes 66 is formed at the same depth and the same impurity concentration. In FIG. 5, the guard ring 67 has a structure that surrounds the high-concentration p + region 65 in a triple manner, but in FIG. 10, the guard ring 67 shows only one ring. Since both have the deepest diffusion depth from the substrate surface, they are formed first in each region forming step. The ion implantation conditions were an acceleration voltage of 45 Kev, a boron (B) dose of 2 × 10 15 / cm 2 and a thermal diffusion treatment at 1150 ° C. for 5 hours. The diffusion depth is about 8 μm.

前記高濃度p+領域65は後述のゲートパッド電極68(図4、図6、図7参照)直下に相当する領域では、図1(a)、(b)に符号65b、65cで示すように、他の部分より幅広な領域にされている。ここで幅とはチップの外周辺を直角に横切り、中央に向かう方向の領域の距離をいう。しかし、これらのゲートパッド電極68直下に相当する高濃度p+領域65b、65cは、図2に示す従来の高濃度p+領域65aの構成とは異なり、まず、フォト工程により5μm以下のストライプ幅で、高濃度p+領域65b、65cの拡散深さと同程度の5μm間隔の櫛歯状パターンまたは格子状パターンにされる。間隔を5μmにしたのは拡散深さが5μmの場合、当初のイオン注入領域より基板表面方向にも5μmの80%程度の拡散の広がりがあるので、隣り合う櫛歯状のイオン注入領域が表面では確実に相互に接触するからである。なお、櫛歯状のイオン注入領域の間隔は拡散後に表面で相互に接触する範囲で、変えることができる。また、格子状パターンは図1(b)では格子間パターンはチップの外周辺を直角に横切り、中央に向かう方向では3つの小領域が描かれているが、実際には3つに限らない。 The high-concentration p + region 65 is a region corresponding to a region immediately below a gate pad electrode 68 (see FIGS. 4, 6, and 7), which will be described later, as indicated by reference numerals 65b and 65c in FIGS. The area is wider than other parts. Here, the width means the distance of the region in the direction crossing the outer periphery of the chip at a right angle toward the center. However, unlike the conventional high-concentration p + region 65a shown in FIG. 2, the high-concentration p + regions 65b and 65c corresponding to just below these gate pad electrodes 68 are first striped with a width of 5 μm or less by a photo process. Thus, a comb-tooth pattern or a lattice-like pattern with an interval of 5 μm, which is about the same as the diffusion depth of the high-concentration p + regions 65b and 65c, is formed. The spacing is set to 5 μm when the diffusion depth is 5 μm, since there is a diffusion spread of about 80% of 5 μm in the direction of the substrate surface from the initial ion implantation region, the adjacent comb-like ion implantation region is on the surface. Then, it is because it contacts reliably. Note that the interval between the comb-like ion implantation regions can be changed within a range where they are in contact with each other on the surface after diffusion. In addition, in FIG. 1B, the lattice-like pattern in FIG. 1B crosses the outer periphery of the chip at a right angle and three small areas are drawn in the direction toward the center, but the number is actually not limited to three.

このように、これらの複数の櫛歯状領域および格子間領域からのイオン注入と熱拡散によれば、前記櫛歯状パターンおよび格子間パターン領域は拡散広がりにより、基板表面で分離していた前記複数の櫛歯および格子間パターンは、いずれも、それぞれ連結する方向は異なるが、図4の断面図に示すように基板表面で相互に連結する構成を有するようになる。このような表面で相互に連結し、深い部分では分離している構成の前記高濃度p+領域65b、65cとすることにより、図2に示す従来の高濃度p+領域65aよりは基板の最表面では同面積の領域であっても総不純物量を低下させることができる。その結果、前記高濃度p+領域65b、65cからのホールの注入レベルを前記図2に示す高濃度p+領域65aの場合より低減させることができ、その分、逆回復電流が小さくなる。特に、格子状に分離されたイオン注入パターンとする場合は熱拡散後に分離パターンを相互に少なくとも表面で接触させることが必要である。格子状に分離されたままのパターンでは逆回復時に残留ホールの引き抜き効果が無くなり、素子破壊が生じる惧れが極めて高くなるからである。 Thus, according to ion implantation and thermal diffusion from the plurality of comb-like regions and interstitial regions, the comb-like patterns and interstitial pattern regions were separated on the substrate surface by diffusion spreading. Each of the plurality of comb teeth and interstitial patterns has a configuration in which they are connected to each other on the substrate surface as shown in the sectional view of FIG. The high-concentration p + regions 65b and 65c are structured such that they are connected to each other at such a surface and separated in a deep portion, so that the substrate can be more closely connected to the conventional high-concentration p + region 65a shown in FIG. Even if the surface has the same area, the total amount of impurities can be reduced. As a result, the hole injection level from the high concentration p + regions 65b and 65c can be reduced as compared with the case of the high concentration p + region 65a shown in FIG. 2, and the reverse recovery current is reduced accordingly. In particular, in the case of ion implantation patterns separated in a lattice shape, it is necessary to bring the separation patterns into contact with each other at least on the surface after thermal diffusion. This is because the pattern that is separated in a lattice pattern has no effect of pulling out residual holes during reverse recovery, and the possibility of element breakdown is extremely high.

その後、活性領域69に通常のIGBTの製造工程と同様の工程により、前記高濃度p+領域65b、65cより低濃度で浅いp-チャネル形成領域54およびp+コンタクト領域54a、n+エミッタ領域53等をイオン注入および熱拡散により形成する。前記n+エミッタ領域53表面より該領域53を貫通してn-半導体基板(n-ドリフト層)55に達するトレンチ56を形成する。トレンチ56内を覆うゲート酸化膜57を形成し、導電性ポリシリコン層を堆積してトレンチ56内を導電性ポリシリコンで埋め、エッチバックしてポリシリコンゲート電極58および表面のゲート引き出し線(図示せず)を形成する。次に、基板表面を覆う層間絶縁膜59を形成し、前記p+コンタクト領域54a、n+エミッタ領域53の表面を露出させる開口部を形成後、図5(c)に示すように、基板表面側にアルミニウムをスパッタ蒸着して、フォト工程によりエミッタ電極兼アノード電極60、アルミニウムゲートパッド電極68などに加工して表面側MOSデバイス構造を形成する。 Thereafter, in the active region 69, the p channel formation region 54, the p + contact region 54a, and the n + emitter region 53 which are lower in concentration and shallower than the high concentration p + regions 65b and 65c are formed by the same process as the manufacturing process of the normal IGBT. Etc. are formed by ion implantation and thermal diffusion. A trench 56 reaching the n semiconductor substrate (n drift layer) 55 through the region 53 from the surface of the n + emitter region 53 is formed. A gate oxide film 57 covering the trench 56 is formed, a conductive polysilicon layer is deposited, the trench 56 is filled with the conductive polysilicon, and etched back to form a polysilicon gate electrode 58 and a gate lead line (see FIG. (Not shown). Next, an interlayer insulating film 59 covering the substrate surface is formed, and openings for exposing the surfaces of the p + contact region 54a and the n + emitter region 53 are formed. Then, as shown in FIG. Aluminum is sputter-deposited on the side and processed into an emitter electrode / anode electrode 60, an aluminum gate pad electrode 68, and the like by a photo process to form a surface side MOS device structure.

図5(c)では半導体基板の表面側をポリイミド膜などの保護フィルム(図示せず)で保護したのち、半導体基板の裏面側を研削してこの基板を耐圧(600V)で決まる所定の厚さ(70μm〜120μm)にする。図5(d)では裏面側にn-ドリフト層55の不純物濃度より高不純物濃度で深いn型フィールドストップ層61を形成し、さらに、図9に示すように、フォト工程によってレジストフィルムを平行なストライプ状に開口し、ここにイオン注入などの方法でp型不純物として、たとえばボロンを、前記n型フィールドストップ層61よりは浅く、オーミック接触が得られる程度以上の高不純物表面濃度で導入する。同様に再度、フォト工程によって、前記ボロンのストライプ状イオン注入領域と交互に配置されるようなパターンで、レジストフィルムを平行なストライプ状に開口し、ここにイオン注入などの方法でn型不純物としてリンまたは砒素などをオーミック接触が得られる程度以上の高不純物表面濃度で導入する。 In FIG. 5C, after the front surface side of the semiconductor substrate is protected by a protective film (not shown) such as a polyimide film, the back surface side of the semiconductor substrate is ground and this substrate is determined to have a predetermined thickness determined by the withstand voltage (600 V). (70 μm to 120 μm). In FIG. 5D, an n-type field stop layer 61 having an impurity concentration higher than that of the n drift layer 55 is formed on the back surface side, and further, as shown in FIG. For example, boron is introduced as a p-type impurity by a method such as ion implantation at a high impurity surface concentration that is shallower than the n-type field stop layer 61 and provides an ohmic contact. Similarly, the resist film is opened in parallel stripes again in a pattern that is alternately arranged with the boron stripe ion implantation regions by a photo process, and this is used as an n-type impurity by a method such as ion implantation. Phosphorus, arsenic, or the like is introduced at a high impurity surface concentration that is higher than an ohmic contact.

その後、図5(e)に示すように、400℃程度の熱処理を行って、導入した不純物を熱的に活性化してp+型のコレクタ領域62およびn+型のカソード領域63とする。このとき、この温度では導入した不純物は100%活性化できないことから、さらに不純物濃度を高めるために必要ならば、たとえばレーザーアニール装置による活性化を行ってもよい。その後、図5(e)において裏面側にTi/Ni/Auなどの積層金属膜からなるコレクタ電極兼カソード電極を形成して逆導通IGBTチップ80を完成させる。このとき、裏面側基板表面と直接接触する金属としてはn型領域と良好な接触を得やすいTiあるいはAlなどを用いることが好ましい。図5(e)の拡大断面図を図10に示す。 Thereafter, as shown in FIG. 5E, a heat treatment at about 400 ° C. is performed to thermally activate the introduced impurities to form a p + -type collector region 62 and an n + -type cathode region 63. At this time, since the introduced impurity cannot be activated 100% at this temperature, the activation may be performed by, for example, a laser annealing apparatus if necessary to further increase the impurity concentration. After that, in FIG. 5E, a collector electrode / cathode electrode made of a laminated metal film such as Ti / Ni / Au is formed on the back surface side to complete the reverse conducting IGBT chip 80. At this time, it is preferable to use Ti, Al, or the like, which easily obtains good contact with the n-type region, as the metal that directly contacts the back side substrate surface. FIG. 10 shows an enlarged cross-sectional view of FIG.

以上説明した実施例1の逆導通IGBTは、図3に示す逆回復電流の時間(μs)経過との関係図からわかるように、ゲートパッド電極直下の高濃度p+領域65aの全面からのホールの注入がある従来の逆導通IGBT(鎖線)に比べると、ゲートパッド電極直下の高濃度p+領域65b、65cをストライプ状または格子状のイオン注入領域として総不純物量を減らした本発明の逆導通IGBT(実線)では逆回復電流が小さくなっている。従って、逆回復損失が低減される。 As described above, the reverse conducting IGBT of the first embodiment described above has a hole from the entire surface of the high-concentration p + region 65a immediately below the gate pad electrode, as can be seen from the relationship with the reverse recovery current time (μs) shown in FIG. Compared with a conventional reverse conducting IGBT (chain line) having a high concentration of p + regions 65b and 65c directly under the gate pad electrode, the total impurity amount is reduced compared to the conventional reverse conducting IGBT (chain line) having a stripe or lattice ion implantation region. The reverse recovery current is small in the conductive IGBT (solid line). Therefore, reverse recovery loss is reduced.

50 従来の逆導通IGBTチップ
51 IGBT部
52 FWD部
53 n+エミッタ領域
54 p-チャネル形成領域
55 n-ドリフト層
56 トレンチ
57 ゲート絶縁膜
58 ポリシリコンゲート電極
59 層間絶縁膜
60 エミッタ(アノード)電極
61 n型フィールドストップ層
62 コレクタ領域
63 カソード領域
64 コレクタ(カソード)電極
65 p+領域
66 耐圧構造部
67 ガードリング
68a ゲート電極配線
69 活性領域
80 逆導通IGBTチップ
DESCRIPTION OF SYMBOLS 50 Conventional reverse conduction IGBT chip 51 IGBT part 52 FWD part 53 n + emitter area | region 54 p - channel formation area 55 n - drift layer 56 Trench 57 Gate insulating film 58 Polysilicon gate electrode 59 Interlayer insulating film 60 Emitter (anode) electrode 61 n-type field stop layer 62 collector region 63 cathode region 64 collector (cathode) electrode 65 p + region 66 breakdown voltage structure 67 guard ring 68a gate electrode wiring 69 active region 80 reverse conducting IGBT chip

Claims (1)

一導電型半導体基板の一方の主面に、他導電型ベース領域と、該ベース領域表面に形成される一導電型エミッタ領域と、該エミッタ領域表面と前記ベース領域表面とに共通にオーミック接触するエミッタ電極と、前記エミッタ領域表面と前記半導体基板表面とに挟まれる前記ベース領域の表面にゲート絶縁膜を介して積層されるゲート電極とを含む活性領域と、
前記ゲート電極と実質的に同電位であって、前記ベース領域を介して前記エミッタ電極と電気的に接続された、記ベース領域より高不純物濃度の他導電型領域表面に絶縁膜を介して設けられ、ゲート外部導線を接続させるための金属電極を載置するゲートパッド電極領域と、
該ゲートパッド電極領域と前記活性領域との外周をリング状に取り囲む耐圧構造部と、少なくとも前記活性領域に対向する他方の主面側領域に選択的に形成される他導電型コレクタ領域と該他方の主面側領域にオーミック接触するコレクタ電極と、
を備えるIGBT部と、
前記活性領域に対向する他方の主面側領域に選択的に前記コレクタ領域と交互に形成される一導電型領域を有し、該一導電型領域にオーミック接触するコレクタ電極をカソード電極、前記エミッタ電極をアノード電極とするダイオード部と、
を備える半導体装置において、
前記ゲートパッド電極領域内であって、前記金属電極が絶縁膜を介して載置される高不純物濃度の前記他導電型領域が、複数の分離表面領域からのイオン注入と熱拡散とにより表面で相互に連結した構造にされており、
前記複数の分離表面領域が、前記活性領域から外周へ向かう方向に延びるストライプ状部分を有する櫛歯状の表面形状であることを特徴とする半導体装置。
One main surface of a semiconductor substrate of one conductivity type, a base region of another conductivity type, an emitter region of one conductivity type formed on the surface of the base region, the surface of the emitter region and the surface of the base region in common An active region including an emitter electrode in ohmic contact, and a gate electrode stacked on a surface of the base region sandwiched between the emitter region surface and the semiconductor substrate surface via a gate insulating film;
A said gate electrode and substantially the same potential, the base region is electrically connected to the emitter electrode via the insulating the surface of the opposite conductivity type region of high impurity concentration than the previous Kibe over source region layer via provided, the gate pad electrode region for placing a metal electrode for connecting the gate external conductors,
A breakdown voltage structure surrounding the outer periphery of the gate pad electrode region and the active region in a ring shape, a collector region of another conductivity type selectively formed at least on the other main surface side region facing the active region, and A collector electrode in ohmic contact with the other main surface side region;
An IGBT unit comprising:
Said active region having a selectively one conductivity type regions are alternately formed and before Kiko collector region on the other main surface side region facing the cathode electrode collector electrode in ohmic contact with the one conductivity type region, A diode portion having the emitter electrode as an anode electrode;
In a semiconductor device comprising:
A the gate pad electrode region, said another conductive region of high impurity concentration which the metal electrode is placed over the insulating film, the surface by ion implantation and thermal diffusion from the plurality of separation surface regions Are connected to each other ,
The semiconductor device, wherein the plurality of separation surface regions have a comb-like surface shape having a stripe-shaped portion extending in a direction from the active region toward the outer periphery .
JP2009028530A 2009-02-10 2009-02-10 Semiconductor device Active JP5366297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028530A JP5366297B2 (en) 2009-02-10 2009-02-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028530A JP5366297B2 (en) 2009-02-10 2009-02-10 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2010186805A JP2010186805A (en) 2010-08-26
JP5366297B2 true JP5366297B2 (en) 2013-12-11

Family

ID=42767302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028530A Active JP5366297B2 (en) 2009-02-10 2009-02-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5366297B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971621B2 (en) 2019-02-19 2021-04-06 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301776B2 (en) * 2010-05-26 2018-03-28 三菱電機株式会社 Semiconductor device
JP5582102B2 (en) 2010-07-01 2014-09-03 株式会社デンソー Semiconductor device
JP5544248B2 (en) 2010-08-24 2014-07-09 富士重工業株式会社 Vehicle headlamp
US8384151B2 (en) 2011-01-17 2013-02-26 Infineon Technologies Austria Ag Semiconductor device and a reverse conducting IGBT
JP6022774B2 (en) * 2012-01-24 2016-11-09 トヨタ自動車株式会社 Semiconductor device
US20130341673A1 (en) 2012-06-21 2013-12-26 Infineon Technologies Ag Reverse Conducting IGBT
JP2014075582A (en) * 2012-09-12 2014-04-24 Fuji Electric Co Ltd Semiconductor device and method of manufacturing semiconductor device
US9972618B2 (en) 2014-12-17 2018-05-15 Mitsubishi Electric Corporation Semiconductor device
JP6335829B2 (en) * 2015-04-06 2018-05-30 三菱電機株式会社 Semiconductor device
DE102015118550B4 (en) * 2015-10-29 2018-10-11 Infineon Technologies Austria Ag Semiconductor device and method for manufacturing a semiconductor device
JP6531731B2 (en) * 2016-07-21 2019-06-19 株式会社デンソー Semiconductor device
JP2018157040A (en) * 2017-03-16 2018-10-04 ローム株式会社 Semiconductor device
JP6865670B2 (en) * 2017-11-22 2021-04-28 三菱電機株式会社 Semiconductor devices and their manufacturing methods
JP7013898B2 (en) * 2018-01-31 2022-02-01 株式会社デンソー Manufacturing method of switching element
CN117650165B (en) * 2023-10-31 2024-05-31 海信家电集团股份有限公司 Semiconductor device with a semiconductor device having a plurality of semiconductor chips

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701502B2 (en) * 1990-01-25 1998-01-21 日産自動車株式会社 Semiconductor device
JP2950569B2 (en) * 1990-03-01 1999-09-20 株式会社東芝 MOS type field effect transistor
JP3932890B2 (en) * 2001-12-27 2007-06-20 株式会社デンソー Manufacturing method of semiconductor device
JP5011748B2 (en) * 2006-02-24 2012-08-29 株式会社デンソー Semiconductor device
JP4189415B2 (en) * 2006-06-30 2008-12-03 株式会社東芝 Semiconductor device
JP5511124B2 (en) * 2006-09-28 2014-06-04 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Insulated gate semiconductor device
JP5052091B2 (en) * 2006-10-20 2012-10-17 三菱電機株式会社 Semiconductor device
JP5070941B2 (en) * 2007-05-30 2012-11-14 株式会社デンソー Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971621B2 (en) 2019-02-19 2021-04-06 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
JP2010186805A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP5366297B2 (en) Semiconductor device
JP5935951B2 (en) Semiconductor device
US9673309B2 (en) Semiconductor device and method for fabricating semiconductor device
JP5707681B2 (en) Semiconductor device and manufacturing method thereof
JP6119577B2 (en) Semiconductor device
JP7230969B2 (en) semiconductor equipment
JP7030515B2 (en) Reverse conduction semiconductor device
CN109755293B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
CN108292676B (en) Silicon carbide semiconductor device
US9236460B2 (en) Semiconductor device having a diffusion region
US10229969B2 (en) Power semiconductor device
JP6597102B2 (en) Semiconductor device
JP6650431B2 (en) Semiconductor device and manufacturing method thereof
JP7403401B2 (en) semiconductor equipment
JP7505217B2 (en) Super-junction semiconductor device and method for manufacturing the same
JP7068994B2 (en) Semiconductor device
JP5011634B2 (en) Semiconductor device and bidirectional switch element using the semiconductor device
CN106489210B (en) Semiconductor device
JP2024019464A (en) Semiconductor device
JP2019087730A (en) Semiconductor device
JP6900535B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP2021044274A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5366297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250