Nothing Special   »   [go: up one dir, main page]

JP5360799B2 - Method for producing zinc oxide thin film - Google Patents

Method for producing zinc oxide thin film Download PDF

Info

Publication number
JP5360799B2
JP5360799B2 JP2008196879A JP2008196879A JP5360799B2 JP 5360799 B2 JP5360799 B2 JP 5360799B2 JP 2008196879 A JP2008196879 A JP 2008196879A JP 2008196879 A JP2008196879 A JP 2008196879A JP 5360799 B2 JP5360799 B2 JP 5360799B2
Authority
JP
Japan
Prior art keywords
zinc oxide
substrate
oxide substrate
cleaning
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008196879A
Other languages
Japanese (ja)
Other versions
JP2010034421A (en
Inventor
良和 貝渕
明彦 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008196879A priority Critical patent/JP5360799B2/en
Publication of JP2010034421A publication Critical patent/JP2010034421A/en
Application granted granted Critical
Publication of JP5360799B2 publication Critical patent/JP5360799B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of cleaning an oxide substrate by removing both organic substances and metal impurities on its surface, and to provide a method of forming an oxide thin film on the cleaned oxide substrate. <P>SOLUTION: The method of cleaning an oxide substrate includes: a first cleaning step wherein at least either atomic hydrogen or atomic heavy hydrogen is brought into contact with the surface of an oxide substrate 5 without heating the oxide substrate 5 placed in a vacuum atmosphere, so as to remove metal impurities from the surface of the oxide substrate 5; and a second cleaning step wherein oxygen plasma is brought into contact with the surface of the oxide substrate 5 so as to remove organic impurities from the surface thereof. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、酸化物基板の表面清浄化方法と酸化物薄膜の製造方法に関し、特に単結晶酸化亜鉛基板表面の清浄化に好適な技術に関する。   The present invention relates to a method for cleaning the surface of an oxide substrate and a method for manufacturing an oxide thin film, and particularly to a technique suitable for cleaning the surface of a single crystal zinc oxide substrate.

酸化亜鉛系半導体結晶の結晶成長には、Al(サファイア)基板が用いられてきたが、サファイア基板は酸化亜鉛系半導体との格子定数が大きく異なるため、サファイア基板上へ酸化亜鉛系半導体結晶を成長させると、その格子定数の違いから多数の結晶欠陥が発生してしまい、素子への応用が困難であった。
近年、単結晶酸化亜鉛基板が実現され、酸化亜鉛系半導体の結晶成長への応用が期待され始めている。単結晶酸化亜鉛基板を用いて酸化亜鉛系半導体を結晶成長させることで、サファイア基板を用いた場合のような格子定数の違いから発生する結晶欠陥を低減できる。しかしながら、現状の単結晶酸化亜鉛基板は、表面の清浄度や平坦性に問題があり、半導体結晶成長への応用が困難である。
An Al 2 O 3 (sapphire) substrate has been used for crystal growth of a zinc oxide based semiconductor crystal, but since the lattice constant of a sapphire substrate is significantly different from that of a zinc oxide based semiconductor, a zinc oxide based semiconductor is formed on the sapphire substrate. When a crystal is grown, a large number of crystal defects are generated due to the difference in the lattice constant, which makes it difficult to apply to a device.
In recent years, single crystal zinc oxide substrates have been realized, and application to crystal growth of zinc oxide based semiconductors has begun to be expected. Crystal growth of a zinc oxide-based semiconductor using a single crystal zinc oxide substrate can reduce crystal defects caused by a difference in lattice constant as in the case of using a sapphire substrate. However, current single crystal zinc oxide substrates have problems with surface cleanliness and flatness, and are difficult to apply to semiconductor crystal growth.

通常、半導体結晶成長に用いる基板表面は、様々な方法を用いて清浄化処理を行い、表面に存在している汚染の除去を行っている。基板表面に汚染が存在していると、基板上へ成長させる半導体結晶は、その汚染を起源として結晶欠陥を発生させてしまう。また基板表面の汚染は、結晶内部へ取り込まれて不純物になってしまう問題もある。このような半導体結晶内部の結晶欠陥や不純物は、半導体結晶の結晶性や電気的特性を悪化させてしまう。   Usually, the substrate surface used for semiconductor crystal growth is cleaned using various methods to remove contamination existing on the surface. If the substrate surface is contaminated, the semiconductor crystal grown on the substrate will generate crystal defects due to the contamination. Further, the contamination of the substrate surface has a problem that it is taken into the crystal and becomes an impurity. Such crystal defects and impurities inside the semiconductor crystal deteriorate the crystallinity and electrical characteristics of the semiconductor crystal.

また、半導体結晶は、その平坦性も重要である。発光ダイオード(LED)やレーザダイオード(LD)には、量子井戸構造と呼ばれる数原子層オーダの非常に薄い薄膜を挟むような積層構造が用いられている。このため、適用する薄膜は原子層オーダでの平坦性を得る必要がある。基板表面が荒れた形状をしていると、その基板上に成長させる半導体結晶は、基板の表面形状を引き継ぎ、荒れた表面になってしまう。   The flatness of the semiconductor crystal is also important. A light emitting diode (LED) or a laser diode (LD) has a laminated structure sandwiching a very thin thin film on the order of several atomic layers called a quantum well structure. For this reason, the thin film to be applied needs to obtain flatness in the atomic layer order. If the substrate surface has a rough shape, the semiconductor crystal grown on the substrate takes over the surface shape of the substrate and becomes a rough surface.

以上のような理由から、単結晶酸化亜鉛などの単結晶酸化物基板を用いて半導体素子を実現するためには、結晶欠陥や不純物を可能な限り抑制する必要がある。つまり、半導体結晶成長に用いる基板表面の清浄度と平坦性は極めて重要な特徴であると認識できる。
これらに関するアプローチとして、下記の非特許文献1に開示されるように、セラミックス酸化亜鉛の箱の中で単結晶酸化亜鉛基板を熱処理する方法により、単結晶酸化亜鉛基板表面の平坦化を行っている。
また、非特許文献2に開示されている技術では、水素プラズマを用いた単結晶酸化亜鉛基板の清浄化処理を行っている。現在、発光素子や電子デバイスとして利用されている砒化ガリウム(GaAs)基板では、清浄化方法として原子状水素照射処理が行われてきた。特許文献1、2には、原子状水素処理を行うことで、表面の酸化物や炭化物を除去する方法が開示されている。
特許文献1に開示された清浄化方法は、清浄化処理工程として、ラジカル処理工程と清浄化処理工程から構成されており、基板を真空チャンバ内に導入した後に加熱を行い、所定温度(200℃)に達した後にラジカル処理を行い、その後に高温(400℃)に昇温し熱処理する清浄化工程から構成されている。しかしながら、特許文献1には、真空チャンバ導入前の基板処理や、清浄化後の結晶成長に関しては記述がなされていない。
非特許文献2では記載されていないが、水素プラズマ処理は、特許文献1、2に記載のような効果を狙っていると思われる。
Japanese Journal of Applied Physics, Vol. 45, No.7, 2006, pp. 5724-5727 APPLIED PHYSICS LETTERS, Vol. 86, 091901 (2005) 特開平6−97139号公報 特開平10−79364号公報
For the above reasons, in order to realize a semiconductor element using a single crystal oxide substrate such as single crystal zinc oxide, it is necessary to suppress crystal defects and impurities as much as possible. That is, it can be recognized that the cleanliness and flatness of the substrate surface used for semiconductor crystal growth are extremely important features.
As an approach regarding these, as disclosed in Non-Patent Document 1 below, the surface of the single crystal zinc oxide substrate is planarized by a method of heat-treating the single crystal zinc oxide substrate in a ceramic zinc oxide box. .
In the technique disclosed in Non-Patent Document 2, the single crystal zinc oxide substrate is cleaned using hydrogen plasma. At present, gallium arsenide (GaAs) substrates used as light-emitting elements and electronic devices have been subjected to atomic hydrogen irradiation treatment as a cleaning method. Patent Documents 1 and 2 disclose a method of removing surface oxides and carbides by performing atomic hydrogen treatment.
The cleaning method disclosed in Patent Document 1 includes a radical processing step and a cleaning processing step as the cleaning processing step. After the substrate is introduced into the vacuum chamber, heating is performed to obtain a predetermined temperature (200 ° C. ), A radical treatment is performed, and then the temperature is raised to a high temperature (400 ° C.) and heat treatment is performed. However, Patent Document 1 does not describe substrate processing before introduction of the vacuum chamber and crystal growth after cleaning.
Although not described in Non-Patent Document 2, it is considered that hydrogen plasma treatment aims at the effects as described in Patent Documents 1 and 2.
Japanese Journal of Applied Physics, Vol. 45, No. 7, 2006, pp. 5724-5727 APPLIED PHYSICS LETTERS, Vol. 86, 091901 (2005) JP-A-6-97139 JP-A-10-79364

従来から、半導体結晶成長用の基板は、その結晶成長の前に基板の脱脂洗浄を行い、表面に付着した有機物を除去している。有機物が基板上に残っている状態で結晶成長を行うと、その不純物を核として半導体結晶に欠陥が発生し、半導体結晶の品質を低下させてしまう。
通常、脱脂洗浄ではアセトンやメタノールなどの溶剤により基板表面の有機物を除去しているが、その洗浄工程や、その乾燥工程が不十分であると、逆に有機物が残留し、結晶成長用基板を汚染してしまう恐れがある。
有機物の除去には酸素プラズマによるアッシングが効果的であると考えられるが、通常、半導体結晶成長用基板の表面には有機物以外の金属不純物等も存在しているため、酸素プラズマによる有機物除去を行うことで、残留している金属不純物の酸化物を形成してしまう。この金属酸化物は、化学的にも物理的にも非常に安定なため、基板表面に一度形成されてしまうと除去することが極めて困難な問題がある。
Conventionally, a substrate for semiconductor crystal growth has been degreased and cleaned before the crystal growth to remove organic substances adhering to the surface. When crystal growth is performed in a state where organic substances remain on the substrate, defects are generated in the semiconductor crystal using the impurities as nuclei, and the quality of the semiconductor crystal is degraded.
Usually, degreasing cleaning removes organic substances on the surface of the substrate with a solvent such as acetone or methanol. However, if the cleaning process or drying process is insufficient, the organic substances remain and the substrate for crystal growth is removed. There is a risk of contamination.
Ashing with oxygen plasma is considered to be effective for removing organic substances. However, since metal impurities other than organic substances are usually present on the surface of the semiconductor crystal growth substrate, organic substances are removed with oxygen plasma. As a result, oxides of remaining metal impurities are formed. Since this metal oxide is very stable both chemically and physically, there is a problem that it is extremely difficult to remove it once it is formed on the substrate surface.

前記問題を解決するため、本発明では不純物の取り込みや表面平坦性の悪化を抑制できる酸化物基板の清浄化方法の提供を目的とする。
また、本発明では、表面の有機物と金属不純物の両方を除去して清浄化した酸化物基板に酸化物薄膜を形成する方法の提供を目的とする。
In order to solve the above problems, an object of the present invention is to provide a method for cleaning an oxide substrate that can suppress the incorporation of impurities and the deterioration of surface flatness.
It is another object of the present invention to provide a method for forming an oxide thin film on an oxide substrate that has been cleaned by removing both organic substances and metal impurities on the surface.

本発明の酸化亜鉛薄膜の製造方法では、真真空雰囲気中に置いた酸化亜鉛基板を加熱することなしに、その表面に原子状水素および原子状重水素のうち少なくとも一方を接触させて該酸化亜鉛基板の表面から金属不純物を除去する第1の清浄化工程と、前記酸化亜鉛基板の表面に酸素プラズマを接触させて該酸化亜鉛基板の表面から有機系不純物を除去する第2の清浄化工程を具備する酸化亜鉛基板の清浄化方法によって酸化亜鉛基板の表面を清浄化する工程と、清浄化した酸化亜鉛基板の表面に酸化亜鉛の結晶を成長させて単結晶酸化亜鉛薄膜を得る工程とを有することを特徴とする。
前記製造方法では、1.0×10 −5 Torr以下の高真空中で前記清浄化処理を行うことが好ましい。
前記製造方法では、前記第1の清浄化処理時の基板温度が100℃以下であることが好ましい。
In the method for producing a zinc oxide thin film of the present invention, at least one of atomic hydrogen and atomic deuterium is brought into contact with the surface of the zinc oxide substrate placed in a true vacuum atmosphere without heating. A first cleaning step for removing metal impurities from the surface of the substrate; and a second cleaning step for removing organic impurities from the surface of the zinc oxide substrate by bringing oxygen plasma into contact with the surface of the zinc oxide substrate. A step of cleaning the surface of the zinc oxide substrate by a cleaning method of the zinc oxide substrate provided; and a step of growing a crystal of zinc oxide on the surface of the cleaned zinc oxide substrate to obtain a single crystal zinc oxide thin film. It is characterized by that.
In the manufacturing method, the cleaning treatment is preferably performed in a high vacuum of 1.0 × 10 −5 Torr or less.
In the manufacturing method, it is preferable that the substrate temperature during the first cleaning process is 100 ° C. or less.

本発明の酸化物基板の清浄化方法によれば、清浄且つ平坦性の高い酸化物基板表面を得ることができる。
また、基板の加熱や清浄化処理後の高温処理などを必要としないため、製造工程の簡略化を図ることができる。
本発明は、特に単結晶酸化亜鉛基板の表面清浄化において好適であり、本発明によって得られた清浄表面上に酸化亜鉛系半導体結晶などの薄膜を成長させることで、単原子層オーダの表面平坦性の良好な半導体結晶の薄膜を得ることが可能となる。
According to the oxide substrate cleaning method of the present invention, a clean and highly flat oxide substrate surface can be obtained.
In addition, the manufacturing process can be simplified because the substrate does not require high-temperature treatment after heating or cleaning.
The present invention is particularly suitable for surface cleaning of a single crystal zinc oxide substrate, and by growing a thin film such as a zinc oxide based semiconductor crystal on the cleaned surface obtained by the present invention, the surface flatness of the monoatomic layer order is obtained. It is possible to obtain a semiconductor crystal thin film with good properties.

また、本発明により清浄化処理された単結晶酸化亜鉛基板を用いて結晶成長することにより、量子井戸構造に必要な極めて高い表面平坦性を持つ酸化亜鉛系薄膜、例えば、酸化亜鉛系半導体薄膜を提供することが可能となる。
本発明は、加熱することなく、低温での原子状水素処理を行なうことで酸化物基板の表面の金属不純物を除去し、その後に酸素プラズマ照射を行うことで金属酸化物を形成することなく、有機系不純物の除去を実現でき、酸化物基板の表面清浄化を実現し、平坦かつ清浄な表面状態の酸化物基板を得ることを可能とする。
本発明により、真空チャンバ内部での清浄化時に加熱の必要性が無くなり、前述の特許文献1で示されているような高温での清浄化処理の必要が無くなる。また、脱脂洗浄で除去しきれていなかった残留有機系不純物の除去が可能となる上、超高真空中での清浄化工程のため、本発明で得た清浄な表面を有する基板を極力汚染することなく、結晶成長工程へ移行することが可能となる。
また、本発明により清浄化処理された単結晶酸化亜鉛基板を用いて結晶成長することで、発光ダイオードやレーザダイオードなどに設けられる量子井戸構造に必要な、極めて高い表面平坦性を持つ酸化亜鉛系半導体薄膜を提供することが可能となる。
In addition, by crystal growth using a single crystal zinc oxide substrate cleaned according to the present invention, a zinc oxide thin film having extremely high surface flatness necessary for a quantum well structure, for example, a zinc oxide semiconductor thin film is obtained. It becomes possible to provide.
The present invention removes metal impurities on the surface of the oxide substrate by performing atomic hydrogen treatment at a low temperature without heating, and then forms an oxide plasma by performing oxygen plasma irradiation, Removal of organic impurities can be realized, the surface of the oxide substrate can be cleaned, and an oxide substrate having a flat and clean surface state can be obtained.
According to the present invention, there is no need for heating at the time of cleaning inside the vacuum chamber, and there is no need for a cleaning process at a high temperature as shown in Patent Document 1 described above. In addition, it is possible to remove residual organic impurities that have not been removed by degreasing and to contaminate the substrate having a clean surface obtained in the present invention as much as possible due to the cleaning process in ultra-high vacuum. It is possible to shift to the crystal growth process without any problem.
In addition, by growing crystals using a single crystal zinc oxide substrate cleaned according to the present invention, a zinc oxide system having extremely high surface flatness required for quantum well structures provided in light emitting diodes, laser diodes, etc. A semiconductor thin film can be provided.

本発明は分子線エピタキシー(MBE)法に代表されるような半導体製造プロセスにおいて、酸化物基板を用いた半導体結晶の結晶成長に関し、成長前において酸化物基板の加熱をすることなく原子状水素照射処理を行ない、金属不純物を除去する第1の清浄化工程と、酸素プラズマ照射処理により有機物除去を行う第2の清浄化工程からなる清浄化方法を提供し、平坦かつ清浄な酸化物基板表面を得ることを特徴とする。   The present invention relates to crystal growth of a semiconductor crystal using an oxide substrate in a semiconductor manufacturing process represented by a molecular beam epitaxy (MBE) method, and relates to atomic hydrogen irradiation without heating the oxide substrate before growth. Provided is a cleaning method comprising a first cleaning process for removing metal impurities and a second cleaning process for removing organic substances by an oxygen plasma irradiation process, and a flat and clean oxide substrate surface is provided. It is characterized by obtaining.

本発明は、結晶成長前に酸化物基板を脱脂処理する工程と、その酸化物基板を真空チャンバ内に導入し、真空中での清浄化処理を行なう工程と、その後に結晶成長を行う工程から構成される酸化物薄膜形成技術に関するものであり、真空チャンバの内部へ酸化物基板を導入した後の清浄化処理において、低温での原子状水素処理を行なうことで酸化物基板の表面の金属不純物を除去し、その後に、酸素プラズマ照射を行うことで金属酸化物を形成することなく、有機系不純物の除去を実現することができ、酸化物基板の表面清浄化を実現し、平坦かつ清浄な表面を有する酸化物基板を得ることを可能とする。   The present invention includes a step of degreasing an oxide substrate before crystal growth, a step of introducing the oxide substrate into a vacuum chamber and performing a cleaning process in a vacuum, and a step of performing crystal growth thereafter. TECHNICAL FIELD The present invention relates to an oxide thin film forming technique, and in a cleaning process after introducing an oxide substrate into a vacuum chamber, metal impurities on the surface of the oxide substrate are obtained by performing atomic hydrogen treatment at a low temperature. After that, it is possible to realize removal of organic impurities without forming metal oxide by performing oxygen plasma irradiation, thereby realizing surface cleaning of the oxide substrate, flat and clean It is possible to obtain an oxide substrate having a surface.

以下、本発明に係る酸化物基板の清浄化方法の一例について、図面を参照して詳しく説明するが、本発明が以下に説明する実施の形態に制限されるものではないことは勿論である。
図1は、本発明の酸化物基板の清浄化方法を実施するのに好適な処理装置の一例を示す構成図である。この例の処理装置は、清浄化処理する酸化物基板5を所定位置に配置した状態で、内部を超高真空雰囲気に排気可能な真空チャンバ4と、該真空チャンバ4の内部空間に接続してその外壁に取り付けられた原子状水素供給用あるいは原子状重水素供給用の水素供給セル6と、該水素供給セル6の外部側に接続された水素源3及びフィラメント加熱用電源7と、前記真空チャンバ4の内部空間に接続してその外壁に取り付けられた酸素プラズマ供給用セル11と、該酸素プラズマ供給用セル11の外部側に接続された酸素源8及びRF電源10とを備えて構成されている。
Hereinafter, an example of a method for cleaning an oxide substrate according to the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the embodiments described below.
FIG. 1 is a block diagram showing an example of a processing apparatus suitable for carrying out the oxide substrate cleaning method of the present invention. In the processing apparatus of this example, the oxide substrate 5 to be cleaned is disposed at a predetermined position, and the inside is connected to a vacuum chamber 4 that can be evacuated to an ultra-high vacuum atmosphere, and an internal space of the vacuum chamber 4. A hydrogen supply cell 6 for supplying atomic hydrogen or atomic deuterium attached to the outer wall, a hydrogen source 3 and a filament heating power source 7 connected to the outside of the hydrogen supply cell 6, and the vacuum An oxygen plasma supply cell 11 connected to the inner space of the chamber 4 and attached to the outer wall thereof, and an oxygen source 8 and an RF power source 10 connected to the outside of the oxygen plasma supply cell 11 are configured. ing.

前記原子状水素供給セル6内には、フィラメント加熱用電源7と電気的に接続された原子状水素あるいは原子状重水素生成用のフィラメント1が設けられている。また、水素源3と水素供給セル6とが水素供給配管3aにより接続され、この水素供給配管3aの途中に、原子状水素供給セル6への水素供給量を調整するためのバルブ2が設けられている。更に、酸素源8と酸素プラズマ供給用セル11とが酸素供給配管8aにより接続され、この酸素供給配管8aの途中に、酸素プラズマ供給用セル11への酸素供給量を調整するためのバルブ9が設けられている。
前記酸化物基板5は、真空チャンバ4の内部において基台4Aに取り付けられ、この酸化物基板5の表面に対して斜め方向から対向するように、真空チャンバ4の外壁に水素供給セル6と酸素プラズマ供給用セル11が取り付けられている。
In the atomic hydrogen supply cell 6, a filament 1 for generating atomic hydrogen or atomic deuterium electrically connected to a filament heating power source 7 is provided. The hydrogen source 3 and the hydrogen supply cell 6 are connected by a hydrogen supply pipe 3a, and a valve 2 for adjusting the amount of hydrogen supplied to the atomic hydrogen supply cell 6 is provided in the middle of the hydrogen supply pipe 3a. ing. Further, the oxygen source 8 and the oxygen plasma supply cell 11 are connected by an oxygen supply pipe 8a, and a valve 9 for adjusting the oxygen supply amount to the oxygen plasma supply cell 11 is provided in the middle of the oxygen supply pipe 8a. Is provided.
The oxide substrate 5 is attached to the base 4A inside the vacuum chamber 4, and the hydrogen supply cell 6 and oxygen are disposed on the outer wall of the vacuum chamber 4 so as to face the surface of the oxide substrate 5 from an oblique direction. A plasma supply cell 11 is attached.

次に図1に示す装置を用いて酸化物基板5を清浄化する方法について説明する。
図1に示す装置を用いて酸化物基板5を清浄化する前に、酸化物基板5を脱脂処理して予備清浄化しておく。ここで行う脱脂処理は、一般的に基板を洗浄する際に通常なされている脱脂処理で良く、アセトンやメタノールなどの溶剤を用いて酸化物基板5の表面に付着していると想定される有機物を洗浄する。これらの溶剤を用いる場合、浸漬法、スプレイ法、ふき取り法、蒸気法など、一般的に行われている種々の方法を適宜選択して用いることができる。これらの溶剤により酸化物基板5の外面を洗浄した後、洗浄工程と乾燥工程により溶剤を完全に取り除いておくことが好ましい。
Next, a method for cleaning the oxide substrate 5 using the apparatus shown in FIG. 1 will be described.
Before the oxide substrate 5 is cleaned using the apparatus shown in FIG. 1, the oxide substrate 5 is degreased and preliminarily cleaned. The degreasing treatment performed here may be a degreasing treatment that is generally performed when cleaning the substrate, and an organic substance that is assumed to be attached to the surface of the oxide substrate 5 using a solvent such as acetone or methanol. Wash. When these solvents are used, various commonly used methods such as an immersion method, a spray method, a wiping method, and a steam method can be appropriately selected and used. After cleaning the outer surface of the oxide substrate 5 with these solvents, it is preferable to completely remove the solvent by a cleaning process and a drying process.

脱脂処理が終了した酸化物基板5については、真空チャンバ4に導入して基台4Aにセットし、チャンバ4の内部を1×10−5Torr以下の真空状態とする。
その後、真空チャンバ4内に水素源3から水素ガスを導入し、バルブ2を調整して水素ガス分圧を1.0×10−5Torr〜1.0×10−7Torrに設定する。ガス圧力が安定した後、フィラメント加熱用電源7を調節することでフィラメント1へ通電し、フィラメント温度を1900〜2200℃程度まで通電加熱する。高温のフィラメント1に触れた水素分子は水素原子に解離されて原子状水素供給用の水素供給セル6から酸化物基板5の表面へ照射されるので、第1の清浄化工程がなされる。
この第1の清浄化工程の時、清浄化の対象となる酸化物基板5は加熱をしないことを特徴とする。ここで基板加熱を行わないことで不純物の内部への拡散と基板表面の還元を防ぐことが可能となる。
基板加熱を行わないとは、加熱装置などにより積極的に基板加熱を行わないことを意味する。ただし、膜の処理に従い、酸化物基板5が自然に100℃程度あるいはそれ以下の温度になることは加熱しない、との概念とする。
また、上述の原子状水素の照射処理は、1.0×10−5Torr以下の高真空中で処理を行なうため、酸化物基板5への不純物の付着を最小限に抑えることができ、非常に清浄な状態を維持したまま、不純物の内部への拡散を防止し、基板表面の還元を防止しながら、酸化物基板5の表面の金属不純物を除去することが可能となる。
The oxide substrate 5 that has been degreased is introduced into the vacuum chamber 4 and set on the base 4A, and the inside of the chamber 4 is brought into a vacuum state of 1 × 10 −5 Torr or less.
Thereafter, hydrogen gas is introduced from the hydrogen source 3 into the vacuum chamber 4, and the valve 2 is adjusted to set the hydrogen gas partial pressure to 1.0 × 10 −5 Torr to 1.0 × 10 −7 Torr. After the gas pressure is stabilized, the filament heating power source 7 is adjusted to energize the filament 1 and the filament temperature is heated to about 1900 to 2200 ° C. Since the hydrogen molecules touching the high temperature filament 1 are dissociated into hydrogen atoms and irradiated from the hydrogen supply cell 6 for supplying atomic hydrogen to the surface of the oxide substrate 5, the first cleaning process is performed.
In the first cleaning step, the oxide substrate 5 to be cleaned is not heated. Here, by not heating the substrate, it is possible to prevent diffusion of impurities into the inside and reduction of the substrate surface.
Not heating the substrate means that the substrate is not actively heated by a heating device or the like. However, the concept that the oxide substrate 5 naturally reaches a temperature of about 100 ° C. or lower according to the processing of the film is not heated.
Further, since the above-described atomic hydrogen irradiation treatment is performed in a high vacuum of 1.0 × 10 −5 Torr or less, adhesion of impurities to the oxide substrate 5 can be minimized, The metal impurities on the surface of the oxide substrate 5 can be removed while preventing the diffusion of impurities into the interior and preventing the reduction of the substrate surface while maintaining a clean state.

原子状水素による第1の清浄化工程の後、真空チャンバ4内に残留する水素ガスを排気してその内部を1.0×10−10Torr程度まで減圧する。その後、酸素源8から供給される酸素ガスを、バルブ9を操作し真空チャンバ4内に導入する。真空チャンバ4内の酸素分圧を3.0×10−5〜1.0×10−7Torrに設定し、RF電源10によって発生する13.56MHzの高周波によって励起されたRFプラズマにより、酸素ラジカルを発生させる。この酸素ラジカルを酸素プラズマ供給源11から酸化物基板5に照射することで、酸化物基板5の表面の有機物を除去する第2の清浄化工程を行う。
先の原子状水素による第1の清浄化工程により、酸化物基板5の表面では十分に金属不純物が除去されているため、この第2の清浄化工程においては、酸化物基板5の表面に酸素ラジカルを照射しても金属酸化物の発生を引き起こすことなく、酸化物基板5の表面の有機物を除去することができる。
以上説明した第1の洗浄化工程と第2の洗浄化工程を行う本発明方法は、特に単結晶の酸化亜鉛基板5において好適であり、原子状水素処理と酸素ラジカル照射を行なった単結晶の酸化亜鉛基板5を用いてその表面上に酸化亜鉛系半導体結晶を成長させることで、原子層オーダーで平坦性を有する酸化亜鉛薄膜を表面に有する酸化亜鉛系半導体結晶を得ることが可能となる。
After the first cleaning step with atomic hydrogen, the hydrogen gas remaining in the vacuum chamber 4 is exhausted, and the inside is depressurized to about 1.0 × 10 −10 Torr. Thereafter, oxygen gas supplied from the oxygen source 8 is introduced into the vacuum chamber 4 by operating the valve 9. The oxygen partial pressure in the vacuum chamber 4 is set to 3.0 × 10 −5 to 1.0 × 10 −7 Torr, and oxygen radicals are generated by RF plasma excited by a high frequency of 13.56 MHz generated by the RF power source 10. Is generated. By irradiating the oxide substrate 5 with the oxygen radicals from the oxygen plasma supply source 11, a second cleaning process for removing organic substances on the surface of the oxide substrate 5 is performed.
Since metal impurities are sufficiently removed from the surface of the oxide substrate 5 by the first cleaning step using atomic hydrogen, oxygen is not added to the surface of the oxide substrate 5 in the second cleaning step. Even if it irradiates with a radical, the organic substance on the surface of the oxide substrate 5 can be removed without causing generation of a metal oxide.
The method of the present invention for performing the first cleaning step and the second cleaning step described above is particularly suitable for the single crystal zinc oxide substrate 5, and the single crystal subjected to atomic hydrogen treatment and oxygen radical irradiation is used. By growing a zinc oxide based semiconductor crystal on the surface of the zinc oxide substrate 5, it becomes possible to obtain a zinc oxide based semiconductor crystal having a zinc oxide thin film having flatness in the atomic layer order on the surface.

以上説明した表面清浄化した酸化亜鉛薄膜を有する酸化亜鉛系半導体結晶に対し、MBE法(分子線エピタキシー法)により、酸化亜鉛薄膜を結晶成長させることができる。
酸化亜鉛薄膜の結晶成長は、例えば、金属亜鉛とRF励起酸素プラズマを用いて行なうことができる。このときの酸化亜鉛半導体結晶の成長温度は400〜1000℃の範囲とすることができる。
この酸化亜鉛薄膜の表面にあっては、金属不純物、有機系不純物の両方を高度なレベルで除去できており、酸化亜鉛薄膜の結晶成長が円滑になされる結果、結晶欠陥の生じていない、表面平滑性の良好な、原子層オーダーで平坦性を有する酸化亜鉛薄膜を得ることができる。
The zinc oxide thin film can be grown by MBE (molecular beam epitaxy) on the zinc oxide semiconductor crystal having the surface-cleaned zinc oxide thin film described above.
Crystal growth of the zinc oxide thin film can be performed using, for example, metallic zinc and RF-excited oxygen plasma. The growth temperature of the zinc oxide semiconductor crystal at this time can be in the range of 400 to 1000 ° C.
On the surface of this zinc oxide thin film, both metal impurities and organic impurities can be removed at a high level, and the crystal growth of the zinc oxide thin film is facilitated, resulting in no crystal defects. A zinc oxide thin film having good smoothness and flatness in the atomic layer order can be obtained.

「単結晶酸化亜鉛基板を用いた酸化亜鉛薄膜の成長」
次に、本発明方法により単結晶酸化亜鉛基板を清浄化するとともに、この清浄化された単結晶酸化亜鉛基板を用いて、MBE法により行う、単結晶酸化亜鉛基板上への酸化亜鉛薄膜の結晶成長について具体的に説明する。
単結晶酸化亜鉛基板を溶剤により脱脂処理し、1.0×10−10Torr以下程度まで排気可能な図1に示す構造の超高真空チャンバへ導入する。
真空チャンバ内に単結晶酸化亜鉛基板を投入後、水素分圧を5.0×10−6Torrに設定し、フィラメントに通電してフィラメントを2100℃まで加熱し、単結晶酸化亜鉛基板への原子状水素照射を30分行ない、第1の清浄化工程を行った。この時、基板加熱を行わずに原子状水素を基板表面に照射することで、基板表面の還元を選択的に抑え、水素など不純物の内部拡散を抑えつつ基板表面の金属不純物を除去することができる。
"Growth of zinc oxide thin film using single crystal zinc oxide substrate"
Next, the single crystal zinc oxide substrate is cleaned by the method of the present invention, and the crystal of the zinc oxide thin film on the single crystal zinc oxide substrate is obtained by the MBE method using the cleaned single crystal zinc oxide substrate. The growth will be explained specifically.
The single crystal zinc oxide substrate is degreased with a solvent and introduced into an ultrahigh vacuum chamber having a structure shown in FIG. 1 that can be evacuated to about 1.0 × 10 −10 Torr or less.
After the single crystal zinc oxide substrate is put into the vacuum chamber, the hydrogen partial pressure is set to 5.0 × 10 −6 Torr, the filament is energized to heat the filament to 2100 ° C., and atoms to the single crystal zinc oxide substrate Irradiation with gaseous hydrogen was performed for 30 minutes, and the first cleaning step was performed. At this time, by irradiating the substrate surface with atomic hydrogen without heating the substrate, reduction of the substrate surface can be selectively suppressed, and metal impurities on the substrate surface can be removed while suppressing internal diffusion of impurities such as hydrogen. it can.

原子状水素による第1の清浄化工程後、残留する水素ガスを排気してチャンバの内部を1.0×10−10Torrまで排気する。その後、チャンバ内の酸素分圧を1.0×10−5Torrに設定し、13.56MHz、200Wの高周波によって励起させるRFプラズマにより、酸素ラジカルを発生させる。この酸素ラジカルを酸素プラズマ供給用セルから単結晶酸化亜鉛基板に向けて10分問照射し、基板表面の清浄化を行う第2の清浄化処理工程を行い、有機物を除去した。単結晶酸化亜鉛基板の表面は、先の原子状水素による第1の清浄化工程により、十分に金属不純物が除去されているため、第2の清浄化工程において、不要な金属酸化物の発生を引き起こすことなく、酸化物基板表面の有機物を除去することができる。 After the first cleaning step with atomic hydrogen, the remaining hydrogen gas is exhausted, and the interior of the chamber is exhausted to 1.0 × 10 −10 Torr. Thereafter, the oxygen partial pressure in the chamber is set to 1.0 × 10 −5 Torr, and oxygen radicals are generated by RF plasma excited by a high frequency of 13.56 MHz and 200 W. This oxygen radical was irradiated from the oxygen plasma supply cell toward the single crystal zinc oxide substrate for 10 minutes, and a second cleaning process for cleaning the substrate surface was performed to remove organic substances. Since the metal impurities are sufficiently removed from the surface of the single crystal zinc oxide substrate by the first cleaning step using atomic hydrogen, unnecessary metal oxides are generated in the second cleaning step. The organic substance on the surface of the oxide substrate can be removed without causing it.

次いで、先の原子状水素処理による第1の清浄化工程と、酸素プラズマによる第2の清浄化工程により清浄化された単結晶酸化亜鉛基板上へ、酸化亜鉛半導体結晶の成長を行う。
酸化亜鉛半導体結晶の成長は金属亜鉛とRF励起酸素プラズマを用いて行なう。このときの酸化亜鉛半導体結晶の成長温度は400〜1000℃とすることができるが、ここでは650℃で行った。
本発明方法に従い、上述の如く清浄化された単結晶酸化亜鉛基板上に結晶成長させた酸化亜鉛半導体結晶について、原子間力顕微鏡(AFM)による観察結果(AFM像)を図2に示し、本発明方法に係る清浄化工程を行わずに結晶成長させた酸化亜鉛半導体結晶のAFM像を図3に示す。なお、図2、図3の縦軸と横軸の単位はいずれもμmであり、図2に示す試料の二乗平均粗さは1.506nm、図3に示す試料の二乗平均粗さは2.057nmであった。
図2と図3のAFM像の比較から、本発明方法を実施することで得られる酸化亜鉛半導体結晶の表面平坦性が明らかに向上し、残留する不純物が核となって発生する表面の孔が減少していることがわかる。
Next, a zinc oxide semiconductor crystal is grown on the single crystal zinc oxide substrate cleaned by the first cleaning step by the atomic hydrogen treatment and the second cleaning step by oxygen plasma.
The growth of the zinc oxide semiconductor crystal is performed using metallic zinc and RF-excited oxygen plasma. The growth temperature of the zinc oxide semiconductor crystal at this time can be 400 to 1000 ° C., but here it was 650 ° C.
An observation result (AFM image) by an atomic force microscope (AFM) of the zinc oxide semiconductor crystal grown on the single crystal zinc oxide substrate cleaned as described above according to the method of the present invention is shown in FIG. FIG. 3 shows an AFM image of a zinc oxide semiconductor crystal grown without performing the cleaning step according to the inventive method. 2 and 3 are both μm, the mean square roughness of the sample shown in FIG. 2 is 1.506 nm, and the mean square roughness of the sample shown in FIG. It was 057 nm.
From the comparison of the AFM images of FIG. 2 and FIG. 3, the surface flatness of the zinc oxide semiconductor crystal obtained by carrying out the method of the present invention is clearly improved, and the surface pores generated by the remaining impurities as nuclei are observed. It turns out that it is decreasing.

図4に、本発明方法の清浄化処理を行なった単結晶酸化亜鉛基板上に成長した酸化亜鉛半導体結晶と、本発明の方法による清浄化処理を行なわずに成長させた酸化亜鉛半導体結晶のX線回折、2θ−ω測定の結果を示す。図4の縦軸は回折強さ(任意単位)を示し、横軸は2θ(゜)を示し、図4の実線が本発明の実施例、図4の鎖線が清浄化処理無しの試料を示す。
本発明の処理を行なっていない単結晶酸化亜鉛基板上に成長した酸化亜鉛半導体結晶では、酸化亜鉛半導体結晶のピークの低角度側に非対称な回折ピークが見られる。このピークは基板上に残留している不純物が起因していると考えられる。ピークの非対称性は、不純物が酸化亜鉛半導体結晶内で金属酸化物や有機物との不純物層を形成し、酸化亜鉛半導体結晶へひずみを与え、酸化亜鉛半導体結晶の格子定数に影響を与えていることによるものであると考えられる。
一方、本発明方法の清浄化処理を行なった単結晶酸化亜鉛基板上に成長させた酸化亜鉛半導体結晶は、図4の実線の如く前述の非対称なピークが見られず、ひずみのない酸化亜鉛半導体結晶であった。これは、原子状水素処理とプラズマ処理の両方により単結晶酸化亜鉛基板上の不純物を除去できていることを示し、高品質な酸化亜鉛半導体結晶が実現可能であることを示している。
FIG. 4 shows an X of a zinc oxide semiconductor crystal grown on a single crystal zinc oxide substrate subjected to the cleaning process of the present invention and a zinc oxide semiconductor crystal grown without performing the cleaning process of the present invention. The result of a line diffraction and 2 (theta) -omega measurement is shown. The vertical axis in FIG. 4 indicates the diffraction intensity (arbitrary unit), the horizontal axis indicates 2θ (°), the solid line in FIG. 4 indicates the embodiment of the present invention, and the chain line in FIG. 4 indicates the sample without cleaning treatment. .
In a zinc oxide semiconductor crystal grown on a single crystal zinc oxide substrate not subjected to the treatment of the present invention, an asymmetric diffraction peak is observed on the low angle side of the peak of the zinc oxide semiconductor crystal. This peak is considered to be caused by impurities remaining on the substrate. The asymmetry of the peak is that the impurity forms an impurity layer with metal oxide or organic matter in the zinc oxide semiconductor crystal, which distorts the zinc oxide semiconductor crystal and affects the lattice constant of the zinc oxide semiconductor crystal. It is thought to be due to
On the other hand, the zinc oxide semiconductor crystal grown on the single crystal zinc oxide substrate subjected to the cleaning treatment of the method of the present invention does not show the asymmetric peak as shown by the solid line in FIG. It was a crystal. This indicates that impurities on the single crystal zinc oxide substrate can be removed by both atomic hydrogen treatment and plasma treatment, and that a high-quality zinc oxide semiconductor crystal can be realized.

以上のことから、本発明方法は酸化物基板の表面を還元することなく、清浄な基板表面を提供することを可能とする。また、本発明方法を適用して得られた単結晶酸化亜鉛基板に成長させる酸化亜鉛半導体結晶は、酸化亜鉛半導体単結晶の1原子層に相当する程度の段差を有する極めて平坦な薄膜として得ることが可能となる。   From the above, the method of the present invention can provide a clean substrate surface without reducing the surface of the oxide substrate. Further, a zinc oxide semiconductor crystal grown on a single crystal zinc oxide substrate obtained by applying the method of the present invention is obtained as an extremely flat thin film having a level difference corresponding to one atomic layer of the zinc oxide semiconductor single crystal. Is possible.

「比較例1」:「酸素プラズマ処理後に原子状水素処理」
本発明方法の有効性を証明ずるために、比較例の清浄化方法を適用した単結晶酸化亜鉛基板上への、酸化亜鉛薄膜の結晶成長について説明する。
単結晶酸化亜鉛基板を脱脂処理し、1.0×10−10Torr以下の超高真空チャンバへ導入する。脱脂処理後の単結晶酸化亜鉛基板を真空チャンバ内に投入後、チャンバ内の醸素分圧を1.0×10−5Torrに設定し、13.56Maz、200Wの高周波によって励起させるRFプラズマにより、酸素ラジカルを発生させる。この酸素ラジカルを単結晶酸化亜鉛基板に10分間照射し、表面の有機物を除去した。
酸素プラズマによる第1の清浄化工程の後、残留する酸素ガスを1.0×10−10Torrまで排気する。その後、水素分圧を5.0×10−6Torrに設定し、フィラメントを2100℃まで加熱して単結晶酸化亜鉛基板への原子状水素照射を30分間行う。これらの清浄化処理は、いずれも基板加熱を行わずに行うことで、基板表面の還元や残留する不純物の内部拡散を抑えることができる。
“Comparative Example 1”: “Atomic hydrogen treatment after oxygen plasma treatment”
In order to prove the effectiveness of the method of the present invention, the crystal growth of a zinc oxide thin film on a single crystal zinc oxide substrate to which the cleaning method of the comparative example is applied will be described.
The single crystal zinc oxide substrate is degreased and introduced into an ultrahigh vacuum chamber of 1.0 × 10 −10 Torr or less. After introducing the single crystal zinc oxide substrate after degreasing treatment into the vacuum chamber, the brew partial pressure in the chamber is set to 1.0 × 10 −5 Torr, and RF plasma excited by a high frequency of 13.56 Maz and 200 W is used. , Generate oxygen radicals. This oxygen radical was irradiated to the single crystal zinc oxide substrate for 10 minutes to remove organic substances on the surface.
After the first cleaning step using oxygen plasma, the remaining oxygen gas is exhausted to 1.0 × 10 −10 Torr. Thereafter, the hydrogen partial pressure is set to 5.0 × 10 −6 Torr, the filament is heated to 2100 ° C., and atomic hydrogen irradiation to the single crystal zinc oxide substrate is performed for 30 minutes. By performing these cleaning processes without heating the substrate, reduction of the substrate surface and internal diffusion of remaining impurities can be suppressed.

以上説明の方法により処理された単結晶酸化亜鉛基板上へ、酸化亜鉛半導体結晶の成長を行った。結晶成長は金属亜鉛とRF励起酸素プラズマを用いて行なった。この時の酸化亜鉛半導体結晶の成長温度は400〜1000℃とすることができるが、ここでは650℃で行った。
結晶成長した酸化亜鉛半導体結晶の原子間力顕微鏡(AFM〉観察結果を図5に示す。
図5に示す結果、非常に荒れた表面を持つ酸化亜鉛半導体結晶が得られた。この試料の二乗平均粗さは4.692nmである。
更に、図2と図3と図5の横軸の下の方にnmと表記した濃淡表示バーは、各図に示すAFM像の表示色の濃淡に応じた粗さの尺度を示すもので、図2は最大11.95nm、図3は最大8.09、図5は最大47.99を示す。これらの指標の比較から、図5に示すAFM像を示す試料の表面粗さが、図2、図3に示す試料の表面粗さよりも遙かに大きいことが分かる。
これは、比較例1では酸素プラズマ処理を最初に行なったため、基板表面に存在している金属不純物が酸化物を形成し、後の清浄化工程である原子状水素処理でも清浄化できなかったためであると考えられる。なお、原子状水素処理の条件を変えることで金属酸化物は還元除去できると考えられるが、その場合、母体となる酸化亜鉛基板自身の表面も還元されてしまい、表面平坦性を損なってしまうおそれがある。
A zinc oxide semiconductor crystal was grown on the single crystal zinc oxide substrate treated by the method described above. Crystal growth was performed using metallic zinc and RF-excited oxygen plasma. The growth temperature of the zinc oxide semiconductor crystal at this time can be 400 to 1000 ° C., but here it was 650 ° C.
An atomic force microscope (AFM) observation result of the crystal-grown zinc oxide semiconductor crystal is shown in FIG.
As a result shown in FIG. 5, a zinc oxide semiconductor crystal having a very rough surface was obtained. The root mean square roughness of this sample is 4.692 nm.
2, 3, and 5, the shading display bar expressed as nm on the lower side of the horizontal axis shows a measure of roughness according to the shading of the display color of the AFM image shown in each figure. 2 shows a maximum of 11.95 nm, FIG. 3 shows a maximum of 8.09, and FIG. 5 shows a maximum of 47.99. From comparison of these indices, it can be seen that the surface roughness of the sample showing the AFM image shown in FIG. 5 is much larger than the surface roughness of the sample shown in FIGS.
This is because, in Comparative Example 1, since the oxygen plasma treatment was first performed, the metal impurities present on the substrate surface formed oxides and could not be cleaned even by the subsequent atomic hydrogen treatment, which is a cleaning process. It is believed that there is. In addition, it is thought that the metal oxide can be reduced and removed by changing the conditions of the atomic hydrogen treatment, but in that case, the surface of the base zinc oxide substrate itself is also reduced, which may impair the surface flatness. There is.

図6に、比較例1に記載の処理方法により清浄化した単結晶酸化亜鉛基板上に成長した酸化亜鉛半導体結晶のX線回折2θ−ω測定の結果と、先の実施例に係る単結晶酸化亜鉛基板上に成長した酸化亜鉛半導体結晶のX線回折2θ−ω測定の結果を比較して示す。比較例1の処理方法で清浄化した単結晶酸化亜鉛基板上に成長した酸化亜鉛半導体結晶(鎖線)では、本発明の実施例(実線)と比較して、酸化亜鉛半導体結晶のピークの広がりが見られる。これは、比較例1に記載の処理方法では酸素プラズマ照射によって有機物は除去できているが、残留する金属不純物が金属酸化物を形成し、酸化亜鉛半導体結晶へひずみを与え、酸化亜鉛半導体結晶の格子定数に影響を与えていることによるものであると考えられる。   FIG. 6 shows the results of X-ray diffraction 2θ-ω measurement of a zinc oxide semiconductor crystal grown on a single crystal zinc oxide substrate cleaned by the processing method described in Comparative Example 1, and the single crystal oxidation according to the previous example. The result of the X-ray diffraction 2 (theta) -omega measurement of the zinc oxide semiconductor crystal grown on the zinc substrate is compared and shown. In the zinc oxide semiconductor crystal (chain line) grown on the single crystal zinc oxide substrate cleaned by the treatment method of Comparative Example 1, the peak of the zinc oxide semiconductor crystal is broadened as compared with the example (solid line) of the present invention. It can be seen. This is because the organic substance can be removed by the oxygen plasma irradiation in the treatment method described in Comparative Example 1, but the remaining metal impurities form a metal oxide, which distorts the zinc oxide semiconductor crystal. This is thought to be due to the influence on the lattice constant.

以上の対比から、酸素プラズマを用いて処理してから原子状水素照射を施して酸化物基板を洗浄化し、その上に酸化物薄膜を成長させても、酸化物薄膜の表面が荒れた状態となり易いのに対し、原子状水素照射を施して金属不純物を除去した後に酸素プラズマを接触させて有機物を除去するという順番が重要であることが判る。   From the above comparison, the surface of the oxide thin film becomes rough even when the oxide substrate is cleaned by performing atomic hydrogen irradiation after the treatment with oxygen plasma and the oxide thin film is grown thereon. On the other hand, it can be seen that the order of removing organic impurities by contacting atomic plasma after removing metal impurities by performing atomic hydrogen irradiation is important.

図1は本発明に係る清浄化方法を実施するために使用する装置の一例を示す構成図。FIG. 1 is a block diagram showing an example of an apparatus used for carrying out the cleaning method according to the present invention. 図2は本発明に係る方法により得られた酸化亜鉛基板表面のAFM像の一例を示す図。FIG. 2 is a view showing an example of an AFM image of the surface of the zinc oxide substrate obtained by the method according to the present invention. 図3は本発明に係る方法を実施することなく得られた酸化亜鉛基板表面のAFM像の一例を示す図。FIG. 3 is a view showing an example of an AFM image of the surface of the zinc oxide substrate obtained without performing the method according to the present invention. 図4は本発明に係る方法を実施した試料のX線回折2θ−ω測定の結果と実施していない試料のX線回折2θ−ω測定の結果を比較して示す図。FIG. 4 is a diagram comparing the results of X-ray diffraction 2θ-ω measurement of a sample subjected to the method according to the present invention and the results of X-ray diffraction 2θ-ω measurement of a sample not performed. 図5は本発明に係る方法を実施することなく得られた比較例1の試料のAFM像の一例を示す図。FIG. 5 is a diagram showing an example of an AFM image of the sample of Comparative Example 1 obtained without performing the method according to the present invention. 図6は本発明に係る方法を実施した試料のX線回折2θ−ω測定の結果と実施していない比較例1の試料のX線回折2θ−ω測定の結果を比較して示す図。FIG. 6 is a diagram comparing the result of X-ray diffraction 2θ-ω measurement of a sample subjected to the method according to the present invention and the result of X-ray diffraction 2θ-ω measurement of a sample of Comparative Example 1 that is not performed.

符号の説明Explanation of symbols

1…フィラメント、2…バルブ、3…水素源、4…真空チャンバ、5…酸化物基板、6…水素供給セル、7…フィラメント加熱用電源、8…酸素源、9…バルブ、10…RF電源、11…酸素プラズマ供給用セル。   DESCRIPTION OF SYMBOLS 1 ... Filament, 2 ... Valve, 3 ... Hydrogen source, 4 ... Vacuum chamber, 5 ... Oxide substrate, 6 ... Hydrogen supply cell, 7 ... Filament heating power source, 8 ... Oxygen source, 9 ... Valve, 10 ... RF power source 11 ... oxygen plasma supply cell.

Claims (3)

真空雰囲気中に置いた酸化亜鉛基板を加熱することなしに、その表面に原子状水素および原子状重水素のうち少なくとも一方を接触させて該酸化亜鉛基板の表面から金属不純物を除去する第1の清浄化工程と、前記酸化亜鉛基板の表面に酸素プラズマを接触させて該酸化亜鉛基板の表面から有機系不純物を除去する第2の清浄化工程を具備する酸化亜鉛基板の清浄化方法によって酸化亜鉛基板の表面を清浄化する工程と、
清浄化した酸化亜鉛基板の表面に酸化亜鉛の結晶を成長させて単結晶酸化亜鉛薄膜を得る工程とを有することを特徴とする酸化亜鉛薄膜の製造方法。
The first step of removing metal impurities from the surface of the zinc oxide substrate by bringing at least one of atomic hydrogen and atomic deuterium into contact with the surface without heating the zinc oxide substrate placed in a vacuum atmosphere. Zinc oxide by a method of cleaning a zinc oxide substrate comprising a cleaning step and a second cleaning step of removing organic impurities from the surface of the zinc oxide substrate by bringing oxygen plasma into contact with the surface of the zinc oxide substrate A step of cleaning the surface of the substrate;
Method for producing a zinc oxide thin film characterized by having a step of growing a crystal of zinc oxide to clean the zinc oxide surface of the substrate to obtain a single-crystal zinc oxide thin film.
1.0×101.0 × 10 −5-5 Torr以下の高真空中で前記清浄化処理を行うことを特徴とする請求項1に記載の酸化亜鉛薄膜の製造方法。The method for producing a zinc oxide thin film according to claim 1, wherein the cleaning treatment is performed in a high vacuum of Torr or less. 前記第1の清浄化処理時の基板温度が100℃以下であることを特徴とする請求項1又は2に記載の酸化亜鉛薄膜の製造方法。The method for producing a zinc oxide thin film according to claim 1 or 2, wherein the substrate temperature during the first cleaning treatment is 100 ° C or lower.
JP2008196879A 2008-07-30 2008-07-30 Method for producing zinc oxide thin film Expired - Fee Related JP5360799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008196879A JP5360799B2 (en) 2008-07-30 2008-07-30 Method for producing zinc oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008196879A JP5360799B2 (en) 2008-07-30 2008-07-30 Method for producing zinc oxide thin film

Publications (2)

Publication Number Publication Date
JP2010034421A JP2010034421A (en) 2010-02-12
JP5360799B2 true JP5360799B2 (en) 2013-12-04

Family

ID=41738529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008196879A Expired - Fee Related JP5360799B2 (en) 2008-07-30 2008-07-30 Method for producing zinc oxide thin film

Country Status (1)

Country Link
JP (1) JP5360799B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034259B2 (en) * 1989-03-31 2000-04-17 株式会社東芝 Organic compound film removal method
JP2595894B2 (en) * 1994-04-26 1997-04-02 日本電気株式会社 Hydrogen radical generator
JP3424814B2 (en) * 1999-08-31 2003-07-07 スタンレー電気株式会社 ZnO crystal structure and semiconductor device using the same
JP4567910B2 (en) * 2001-05-01 2010-10-27 スタンレー電気株式会社 Semiconductor crystal growth method
JP2006278616A (en) * 2005-03-29 2006-10-12 Furukawa Electric Co Ltd:The Thin film manufacturing apparatus, method of manufacturing the same and thin film laminate

Also Published As

Publication number Publication date
JP2010034421A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5493861B2 (en) Method for manufacturing group III nitride crystal substrate
US8349076B2 (en) Method of fabricating GaN substrate
JP7008063B2 (en) Method for manufacturing modified SiC wafer and method for manufacturing SiC wafer with epitaxial layer
KR20130014566A (en) Silicon carbide epitaxial wafer and process for production thereof, silicon carbide bulk substrate for epitaxial growth purposes and process for production thereof, and heat treatment apparatus
KR20100033414A (en) Bonded wafer manufacturing method
JP6859496B1 (en) Cleaning method for semiconductor manufacturing equipment parts with gas holes
JP2002110949A (en) Heat treatment method of soi and its manufacturing method
JPS61270830A (en) Surface cleaning method
JP5575372B2 (en) Gallium nitride substrate
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
Falta et al. Cleaning and growth morphology of GaN and InGaN surfaces
JP5360799B2 (en) Method for producing zinc oxide thin film
WO2009119159A1 (en) Substrate for optical device and method for manufacturing the substrate
JP5024765B2 (en) Method for cleaning oxide substrate and method for manufacturing oxide semiconductor thin film
JP2010064911A (en) Structure having projecting part, and method for manufacturing the same
JP2002029896A (en) Crystal growth method for nitride semiconductor
TWI449659B (en) Method for making epitaxial structure
JP5216677B2 (en) Zinc oxide substrate surface treatment method and zinc oxide crystal production method
WO2017164036A1 (en) Method for producing group iii nitride laminate
Xing et al. Improved Crystal Quality of (112̄2) Semi-Polar GaN Grown on A Nanorod Template
JP3956343B2 (en) Manufacturing method of semiconductor device
Bashkatov et al. Preparation of Silicon (111) Surface for Epitaxial Growth of III-Nitride Structures by MBE
JP2011006304A (en) Nitride semiconductor substrate and production method of the same
JPH06293971A (en) Production of semiconductor substrate
Momose et al. Improvement of crystalline quality of GaAsyP1− x− yNx layers with high nitrogen compositions at low-temperature growth by atomic hydrogen irradiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees