Nothing Special   »   [go: up one dir, main page]

JP5353455B2 - 周辺監視装置 - Google Patents

周辺監視装置 Download PDF

Info

Publication number
JP5353455B2
JP5353455B2 JP2009138692A JP2009138692A JP5353455B2 JP 5353455 B2 JP5353455 B2 JP 5353455B2 JP 2009138692 A JP2009138692 A JP 2009138692A JP 2009138692 A JP2009138692 A JP 2009138692A JP 5353455 B2 JP5353455 B2 JP 5353455B2
Authority
JP
Japan
Prior art keywords
target object
dimensional
optical flow
unit
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009138692A
Other languages
English (en)
Other versions
JP2010286926A (ja
Inventor
宏 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2009138692A priority Critical patent/JP5353455B2/ja
Publication of JP2010286926A publication Critical patent/JP2010286926A/ja
Application granted granted Critical
Publication of JP5353455B2 publication Critical patent/JP5353455B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、車両やロボットなどの自走する移動体に搭載されて、該移動体の周囲の対象物体を監視する周辺監視装置に関し、特に前記移動体の前記対象物体への衝突判定の方法に関する。
前記のような衝突判定を行う周辺監視装置として用いることができる典型的な従来技術には、たとえば以下の特許文献1〜3が挙げられる。特許文献1では、単一カメラの時系列2次元画像から縦または横の着目エッジのオプティカルフローを算出し、そのオプティカルフローから衝突時間を算出することで、衝突危険性を高速で検出できるようにした車両用衝突警報方法及び装置が提案されている。
特許文献2も同様に、単一カメラの時系列2次元画像から縦・横エッジのオプティカルフローを算出し、そのオプティカルフロー上での横方向の移動速度成分を用いて対象領域を抽出し、抽出した対象領域に含まれる縦方向の移動速度成分を基に、自車両に到達するまでの時間を算出することで衝突の危険性を判定するようにした衝突判定装置および方法が提案されている。
また、特許文献3には、単一カメラの時系列2次元画像上の同一対象物体に属する任意の2点を評価点として抽出し、画像上に設定された任意の座標軸を基準として、抽出された2点から算出した情報を基に対象物体がカメラの撮像面と衝突するのに要する時間を算出するようにした衝突時間算出装置および障害物検出装置が提案されている。
これらの手法では、1台(単眼)のカメラによって衝突が生じる可能性のある時間を算出することが可能であるが、相対速度が小さい場合や、対象物体が遠くに存在するような場合で、対象物体の画面上での移動速度が小さいと、精度良く検出することができない可能性がある。また、単眼の時系列画像による衝突可能性の判断は、対象物体の種類(車種・人)などの判別や抽出が必要となり、処理も複雑となる。
そこで、このような問題に対応することができる従来技術としては、特許文献4が挙げられる。その従来技術によれば、2台の(ステレオ)カメラによる撮像画像から3次元オプティカルフローを算出し、3次元情報で静止物体と対象物体とを判定している。具体的には、ステレオ画像から距離情報を算出し、道路モデルに基づいて、視差方向において位置的に対応する道路面の高さと比較して、道路面より上にある場合には、その位置のデータを立体物として抽出し、抽出した立体物に対して3次元オプティカルフローを算出し、自走速度と操舵方向とのオプティカルフロー成分を除いた結果、移動ベクトルが残るものを対象物体、そうでない物を静止物体として判定している。
特開平11−353565号公報 特開2006−99155号公報 特開2006−107422号公報 特開2006−134035号公報
上述の従来技術では、先ず基準画像と参照画像との間の対応付け結果に対して、路面モデルを用いて、静止物体と対象物体との両方を抽出し、その後の動きから、いずれの物体であるのかの判定を行う必要がある。したがって、対応付け回数が大幅に削減されたわけではないので、処理の高速化(フレームレートの向上)を実現できないという問題がある。
本発明の目的は、処理の高速化(フレームレートの向上)を実現することができる周辺監視装置および周辺監視方法を提供することである。
本発明の周辺監視装置は、移動体に搭載され、該移動体の周囲の対象物体を監視する周辺監視装置において、前記周囲の画像を時系列に取得する画像取得部と、前記画像取得部で得られた時系列画像から移動成分を算出する時系列情報算出部と、前記時系列情報算出部で得られた前記移動成分を基に、前記対象物体が存在する可能性の高い候補領域を抽出する対象物体候補領域抽出部と、前記対象物体候補領域抽出部で算出された前記候補領域の3次元情報を取得する3次元情報取得部と、前記3次元情報取得部で得られた前記候補領域の3次元情報と、該周辺監視装置との位置関係とから、衝突可能性を判定する衝突判定部とを含み、前記時系列情報算出部は、前記画像取得部で得られた時系列画像の対応点探索処理によって、2次元オプティカルフローを前記移動成分として算出し、前記対象物体候補領域抽出部は、前記2次元オプティカルフローが予め定める第1閾値未満である領域を、前記候補領域として抽出することを特徴とする。
上記の構成によれば、移動体に搭載されて周囲の対象物体を監視する周辺監視装置において、単眼またはステレオのカメラなどの画像取得部で前記周囲の画像を時系列に取得し、得られた時系列画像から時系列情報算出部が2次元オプティカルフローなどの移動成分を算出すると、先ず対象物体候補領域抽出部が、前記移動成分を基に、前記対象物体が存在する可能性の高い候補領域を抽出する。その後、その候補領域に対して、3次元情報取得部が、前記単眼のカメラとは別途設けた距離測定部などで距離を算出することで、前記対象物体の候補領域の3次元(実空間上における位置)情報を取得する。或いは、前記ステレオカメラの場合、前記移動成分の算出に用いられた撮像画像を基準画像とするとき、もう1台のカメラによる撮像画像を参照画像として、前記対象物体の候補領域の3次元(実空間上における位置)情報を取得する。こうして得られた前記対象物体の候補領域の3次元情報と、該周辺監視装置との位置関係から、衝突判定部が衝突可能性を判定する。
したがって、先ず対象物体候補領域抽出部が、時系列画像から算出された移動成分から、側方飛び出しなどの衝突予測が難しい対象物体が存在する可能性の高い候補領域を限定し、次に3次元情報取得部が、その候補領域だけの3次元情報を算出し、衝突判定部でその抽出された対象物体の候補領域と監視装置との関係から衝突可能性の判定を行う。すなわち、自走状態で撮影された2次元時系列画像から、衝突予測が難しい対象物体候補領域のみに対し、詳しい3次元情報を求めて衝突危険性を判定する。こうして、複雑な物体認識処理や道路モデルなどを必要とせず、時系列画像から算出された情報のみを用いて対象物体の候補領域を限定することで、処理速度を速く(フレームレートを向上)することができる。
また、上記の構成によれば、前記移動成分として、対応点探索処理によって求めた2次元オプティカルフローを用いることで、画素単位の高精度な移動成分を求めることができる。
上記の構成によれば、前記3次元情報取得部で前記対象物体の候補領域と判断された位置に対応する3次元(実空間上における位置)情報を取得するにあたって、対象物体が正面に位置するような場合では、前記2次元オプティカルフローは小さくなり、相対速度が大きい場合には衝突の可能性が生じるので、該対象物体候補領域抽出部は、前記2次元オプティカルフローが予め定める値(第1閾値)未満である場合は、前記候補領域として抽出する。
したがって、演算処理量を抑えつつ、衝突の可能性のある対象物体を漏れなく抽出することができる。
また、本発明の周辺監視装置では、前記対象物体候補領域抽出部は、前記予め定める第1閾値以上である2次元オプティカルフローを延長した直線の消失点の中から、最もフローが集まる領域を除外した領域を前記候補領域として抽出することを特徴とする。
上記の構成によれば、移動体に搭載したカメラの時系列画像間に生じる2次元オプティカルフローの中で、その2次元オプティカルフローの延長線の最も集まる消失点は移動体の移動方向に応じて定まり、しかも道路などの静止物体の2次元オプティカルフローが集まる。
したがって、この領域を除外した領域を前記対象物体の候補領域として抽出することで、より効率的に、移動する対象物体のみを抽出することができる。
また、本発明の周辺監視装置では、前記3次元情報取得部は、前記画像取得部をステレオカメラとして得られたステレオ画像から、前記対象物体候補領域抽出部で算出された前記対象物体の候補領域と判断された位置に対応する3次元(実空間上における位置)情報を、前記ステレオ画像間の対応点探索処理によって算出することを特徴とする。
上記の構成によれば、別途距離情報を得る手段を用いることなく、画像のみの情報から距離情報を算出することができるので、シンプルな構成で衝突判定システムを構築することができる。
さらにまた、本発明の周辺監視装置では、前記3次元情報取得部は、前記対象物体候補領域抽出部で算出された前記対象物体の候補領域と判断された位置に対応する3次元(実空間上における位置)情報を取得する距離センサであることを特徴とする。
上記の構成によれば、ミリ波レーダなどの別途距離情報を得る手段を用いることで、特別な計算を行うことなく、前記距離情報を求めることができる。
また、本発明の周辺監視装置では、前記衝突判定部は、前記時系列情報算出部で得られた前記移動成分と、前記3次元情報取得部で得られた前記候補領域の3次元情報とを用いて、前記候補領域の3次元オプティカルフローを算出する3次元オプティカルフロー算出部を備え、該3次元オプティカルフロー算出部で算出された3次元オプティカルフローと、該周辺監視装置との位置関係とから、衝突可能性を判定することを特徴とする。
上記の構成によれば、3次元オプティカルフローと、該周辺監視装置との位置関係とから、衝突可能性を判定するので、判定処理が簡単である。
さらにまた、本発明の周辺監視装置では、前記衝突判定部は、前記3次元オプティカルフロー算出部で算出された前記候補領域の3次元オプティカルフローの向きおよび長さと、該周辺監視装置との交差判定によって衝突判定を行うことを特徴とする。
上記の構成によれば、前記3次元オプティカルフローの向きおよび長さの2つのパラメータを算出できれば、交差判定によって、対象物体が該周辺監視装置に向ってきているかどうかから、衝突可能性の有無を判定することができる。
また、本発明の周辺監視装置では、前記衝突判定部は、前記移動体の速度に対応して、衝突判定を行う前記対象物体までの距離を変更することを特徴とする。
上記の構成によれば、衝突判定を行う対象距離を固定するのではなく、現在の移動体の速度からして、安全と考えられる範囲、たとえば前記速度に対応した停止可能距離の範囲は除外するので、判定処理を軽減することができる。
さらにまた、本発明の周辺監視装置では、前記衝突判定部は、前記3次元オプティカルフロー算出部で算出された前記候補領域の3次元オプティカルフローの長さが予め定める閾値以上大きい場合には衝突可能性領域と判定することを特徴とする。
上記の構成によれば、上述のようにして前記3次元オプティカルフローと該周辺監視装置との関係から衝突判定を行うにあたって、上述の判定で衝突可能性が低いと判定される領域でも、3次元オプティカルフローの長さが予め定める閾値以上大きい場合には、衝突可能性領域と判定する。
したがって、3次元オプティカルフローの長さは対象物体の単位時間当りの相対的な移動量を表すので、それが前記閾値以上大きい場合には、急速に近付いている可能性があるので、衝突可能性領域と判定しておくことで、判定遅れとなることを回避することができる。
また、本発明の周辺監視装置では、前記時系列情報算出部は、計測点毎に対応点探索処理を行うことを特徴とする。
上記の構成によれば、前記移動成分としての2次元オプティカルフローを求めるにあたって、対応点探索処理を画素単位毎に行うことで、対象物体候補領域抽出部は、背景や路面を含まない対象物候補領域を詳細に抽出することができる。
さらにまた、本発明の周辺監視装置では、前記対象物体候補領域抽出部は、画面を予め複数の領域に分割しておき、その各領域の代表点に対して計測を行うことで、対象物体候補領域として抽出するか否かを判断することを特徴とする。
上記の構成によれば、対象物体候補領域への切出しを行うにあたって、全ての計測点毎に2次元オプティカルフローを計算するのではなく、画面を予め複数の領域に分割しておき、その各領域の代表点に対して計測を行う。
したがって、計測点数を減らすことが可能となり、より高速な処理が可能になる。
本発明の周辺監視装置は、以上のように、移動体に搭載されて周囲の対象物体を監視する周辺監視装置において、時系列画像から2次元オプティカルフローなどの移動成分を算出して、その移動成分を基に衝突対象物体が存在する可能性の高い候補領域を抽出し、その候補領域の3次元情報と、該周辺監視装置との位置関係から、衝突可能性を判定する。
それゆえ、時系列画像から算出された移動成分から、側方飛び出しなどの衝突予測が難しい対象物体が存在する可能性の高い候補領域を限定し、その候補領域だけの3次元情報を算出するので、複雑な物体認識処理や道路モデルなどを必要とせず、処理速度を速く(フレームレートを向上)することができる。
本発明の実施の一形態に係る周辺監視装置の概略構成図である。 衝突可能性の解析にあたっての対象物体の距離と移動量との一般的な求め方を説明するための図である。 前記周辺監視装置におけるコントローラの一構成例を示すブロック図である。 前記コントローラの動作を説明するためのフローチャートである。 時系列画像から2次元オプティカルフローを求める様子を説明するための図である。 衝突の可能性のある対象物体が存在する可能性の高い候補領域を説明するための図である。 前記候補領域を3次元空間上に示す図である。 前記対象物体が静止物体であるか移動物体であるかを旧来の方法で判定した結果を示す図である。 前記対象物体が静止物体であるか移動物体であるかを本実施の形態で判定した結果を示す図である。 静止物体の2次元オプティカルフローの例を示す図である。 移動物体と静止物体とが混在する場合の2次元オプティカルフローの例を示す図である。 路面の2次元オプティカルフローの例を示す図である。 2次元オプティカルフローの計算にあたっての画面の領域分割の一例を説明するための図である。 2次元オプティカルフローの計算にあたっての画面の領域分割の他の例を説明するための図である。 対象物体までの距離測定の他の例を説明するための図である。 衝突判定の他の例を説明するための図である。 対応点探索処理時に用いる多重解像度の手法を説明するための図である。 衝突判定の一例を説明するための図である。
図1は、本発明の実施の一形態に係る周辺監視装置1の概略構成図である。この周辺監視装置1は、車両2に搭載されて被写体の2次元入力画像をそれぞれ得るステレオカメラ11,12に、取得したステレオ画像から3次元画像を得て、路面3上に存在する対象物体4,5に対する衝突危険度を判定し、危険度が高い場合に、ブザー6を鳴動して警告を行うコントローラ13を備えて構成され、衝突判定システムに使用される。他にも、警告処理としては、運転者に回避処置を促すように表示ディスプレイに情報を表示したり、衝突対象までの距離や時間、或いは対象の大きさを表示する等の動作を、単独、或いは複数組合わせて行うことができる。一方、前記ブザー6に代えて、記録部が設けられると、前記危険度が高い場合にそのシーンを自動記録するドライブレコーダを実現することができ、ブレーキ装置が設けられると、前記危険度が高い場合に自動的にブレーキを掛ける衝突防止システムを実現することができる。
前記ステレオカメラ11,12は、被写体を同じタイミングで撮影した左右一対の画像(基準画像と参照画像)を出力する。本実施の形態においては、説明の簡単化の為に、ステレオカメラ11,12の収差は良好に補正されており、かつ相互に平行に設置されているものとする。また、実際のハードがこのような条件に無くても、画像処理によって、同等の画像に変換することも可能である。ステレオカメラ11,12からは、前記ステレオ画像が前記コントローラ13に通信線を介して送信される。ステレオカメラ11,12とコントローラ13との間での画像データの通信方式は、有線方式に限定されず、無線方式であってもよい。
ここで、前記特許文献4のように、3次元移動成分を用いた衝突可能性の解析の利点は、対象物体4,5と自車両2との衝突可能性の判定を高精度に行うことが可能である点である。しかしながら、図2で示すように、ステレオカメラ11,12の撮像画像から3次元移動成分を算出する場合、画像間の対応付け回数が大きくなり、計算コストが大幅に掛かるという問題点がある。
図2は、前記衝突可能性の解析にあたっての前記対象物体4,5の距離と移動量との一般的な求め方を説明するための図である。ステレオカメラ11,12の一方による画像を基準画像I1とし、他方を参照画像I2とし、時刻tおよびそれからΔt(1フレーム期間)経過した後の計4枚の画像を得ている。この場合、先ず時刻tにおける基準画像I1上の画素P1(i,j,t)に対し、対応点探索処理によって、参照画像I2上の対応点P2(i,j,t)を算出し、3次元情報F(i,j,t)が求められ、前記対象物体4,5までの距離が分る。同様に、時刻t+Δtにおける基準画像I1t+Δt上の画素P(i,j,t+Δt)に対し、対応点探索処理によって、参照画像I2t+Δt上の対応点P2(i,j,t+Δt)を算出し、3次元情報F(i,j,t+Δt)が求められる。続いて、基準画像I1,I1t+Δt同士で対応点探索処理が行われ、画素P1(i,j,t),P1(i,j,t+Δt)間の対応付けが行われる。これによって、3次元情報F(i,j,t),F(i,j,t+Δt)間も対応付けが行われ、前記対象物体4,5の移動量が算出できる。
しかしながら、ステレオカメラ11,12による3次元計測で最も時間の掛かるのは、この対応付けであり、それを減らす程、処理速度が速くなる(フレームレートを上げることができる)。そこで、本実施の形態では、先ず基準の時系列画像I1,I1t+Δt間で、対象物体4,5の距離と移動量とを用いた3次元移動成分から、これらの対象物体4,5が衝突の可能性の高い候補領域に有るかを判定する。
図3は、前記コントローラ13の一構成例を示すブロック図であり、図4はその動作を説明するためのフローチャートである。コントローラ13は、時系列情報算出部21と、対象物体候補領域抽出部22と、3次元情報取得部23と、衝突可能性判定部24とを備えて構成される。画像取得部である前記ステレオカメラ11,12は、ステップS1で、車両2の周囲の画像を時系列に取得し、得られた時系列画像から、注目すべきは、先ず時系列情報算出部21は、ステップS2で、図5で示すように、前記基準画像I1,I1t+Δt間の対応点探索処理によって、画素単位の高精度な2次元オプティカルフローなどの移動(ベクトル)成分OFXY(i,j,t+Δt)を算出することである。すなわち、
OFXY(i,j,t+Δt)=P1(i,j,t+Δt)−P(i,j,t)
である。
前記2次元オプティカルフローの算出方法としては、勾配法や相関演算法などを用いることができる。前記勾配法は、画像の時空間微分の拘束方程式による条件から2次元オプティカルフローを推定する一般的な手法である。また、前記相関演算法は、ウィンドウ内の相関演算によって対応点探索処理を行うものであり、既に確立されている一般的な手法である。ただし、この前記相関演算法の中でも、2つの入力画像に設定したウインドウ内のパターンを周波数分解し、振幅成分を抑制した信号の類似度に基づいて、サブピクセル単位で対応位置を演算することができるPOC(位相限定相関法)を用いることによって、前記基準画像I1,I1t+Δt間の輝度差やノイズの影響を受け難くなり、それらの対応付けを、安定かつ高精度に行うことが可能となる。前記ウィンドウ内のパターンを周波数分解する方法としては、FFT、DFT、DCT、DST、ウエーブレット変換、アダマール変換などの既に確立されている方法を用いることができ、これらの方法で周波数分解を確実に行うことができる。このように2次元オプティカルフローを求めるにあたって、対応点探索処理を画素単位毎に行うことで、後続の対象物体候補領域抽出部22は、背景や路面3を含まない対象物候補領域を詳細に抽出することができるようになる。
続いて、対象物体候補領域抽出部22が、ステップS3で、前記移動成分OFXY(i,j,t+Δt)を基に、図6で示すように、前記対象物体4,5が存在する可能性の高い候補領域OB(t,n)を抽出する。nは、1,2,・・・で、グループ化された候補領域(対象物体)の番号であるが、グループ化しない場合は静止物体か対象物体かのフラグとして使用してもよい。図6の例では、時刻tにおける1番目の候補領域OB(t,1)で、それを構成する画素は、P1(2,2,t),P1(3,2,t),P1(2,3,t),P1(3,3,t),P1(2,4,t),P1(3,4,t)である。
こうして候補領域OB(t,1)が抽出されると、3次元情報取得部23が、ステップS4で、それを構成する画素P1(2,2,t),P1(3,2,t),P1(2,3,t),P1(3,3,t),P1(2,4,t),P1(3,4,t)に対して、参照画像I2上の対応点P2(i,j,t)を対応点探索し、さらに対応する画素間の視差情報から、図7で示すような3次元(実空間上における位置)情報XYZ(i,j,t)(図6の場合には、XYZ(2,2,t,1),XYZ(3,2,t,1),XYZ(2,3,t,1),XYZ(3,3,t,1),XYZ(2,4,t,1),XYZ(3,4,t,1))を求める。同様に、Δt後の基準画像I1t+Δtについても、前記3次元情報取得部23は、前記候補領域OB(t,1)に対応する候補領域OB(t+Δt,1)の3次元情報XYZ(i,j,t+Δt)を求める。
こうして求められた同じ対象物体に対する時系列の3次元情報XYZ(i,j,t),XYZ(i,j,t+Δt)による3次元移動成分から、衝突判定部24は、その3次元オプティカルフロー算出部24aにおいて、ステップS5で、3次元オプティカルフローOF3を求め、その3次元オプティカルフローOF3と自車両2との位置関係から衝突可能性を判定し、ステップS6で衝突の可能性があれば、ステップS7でブザー6を鳴動して、時間Δt後に前記ステップS1に戻り、衝突の可能性が無ければ、そのまま時間Δt後に前記ステップS1に戻る。
前記衝突可能性の判定は、図18に示すように、前記3次元オプティカルフローOF3を用いることで、簡単で、高精度な判定を行うことができる。具体的には、その3次元オプティカルフローOF3の延長線と、自車両2とが交差するか否かを判定することで、該自車両2の前方に位置する対象物体4,5が衝突する可能性のある物体であるか否かを判定する。したがって、前記3次元オプティカルフローOF3の向きおよび長さの2つのパラメータを算出できれば、前記延長線を作成でき、その延長線と自車両2との交差判定によって、対象物体4,5が該周辺監視装置1に向ってきているかどうかから、衝突可能性の有無を判定することができる。図18では、自車両2の進路上にある路上障害物(静止体)から成る対象物体5および先行車両から成る対象物体4に加えて、前記進路上にはないものの、車線を横切ることで、前記3次元オプティカルフローOF3が交差する人物から成る対象物体7も、衝突物体と判定される。このように、3次元オプティカルフローOF3は自車両2の速度と対象物体4,5,7の速度との合成ベクトルによって表され、対象物体4,5,7の動きを3次元的に解析することができるので、衝突判定処理を精度良く行うことができ、好適である。この衝突判定処理の詳しくは、本件出願人による特願2008−24478号に詳しく記載されている。
また好ましくは、前記衝突判定部24は、上述のようにして3次元オプティカルフローOF3と自車両2との関係から衝突判定を行うにあたって、上述の判定で衝突可能性が低いと判定される領域でも、前記3次元オプティカルフロー算出部24aで算出された前記候補領域の3次元オプティカルフローOF3の長さが予め定める閾値以上大きい場合には衝突可能性領域と判定する。したがって、3次元オプティカルフローOF3の長さは対象物体4,5,6の単位時間当りの相対的な移動量を表すので、それが前記閾値以上大きい場合には、急速に近付いている可能性があるので、衝突可能性領域と判定しておくことで、判定遅れとなることを回避することができる。
ここで、画像から算出された2次元オプティカルフローから、対象物体が静止物体であるか、移動物体であるかを判定した場合、その結果は、図8で示すようになる。すなわち、2次元オプティカルフローの大きさが或るレベルOF1を超えると、対象物体の速度が或るレベルV1を境に、大きければ移動物体の候補、小さければ静止物体の候補と明確に判定できるが、前記2次元オプティカルフローの大きさが前記レベルOF1以下であると、対象物体が移動物体の候補であるのか、静止物体の候補であるのかの切り分けが困難になってしまう。すなわち、たとえば対象物体が自車両2の比較的正面にあるような場合には、相対速度が大きくても、前記2次元でのオプティカルフローは小さくなってしまう。したがって、このオプティカルフローが小さいような場合においても、衝突の危険性が多く含まれていることから、対象物体を含むような領域を、漏れの無いように抽出する必要がある。そこで、本実施の形態では、前記対象物体候補領域抽出部22に、以下の2つの対象物候補領域抽出方法を用いることで、図9で示すように、前記2次元オプティカルフローの大きさが前記レベルOF1未満であっても、移動速度が予め定める値V1以下である場合は前記候補領域として抽出することで、演算処理量を抑えつつ、そのような抽出の漏れを無くす。
先ず、前記2次元オプティカルフローの大きさが前記レベルOF1以上であり、かつ対称物体の移動速度が予め定める値V1より大きい場合に適用される第1の対象物候補領域抽出方法では、以下の3つの物体の切出し方法を用い、衝突判定を行うべき移動物体であるか、衝突判定の必要のない静止物体であるのかの切分けを行い、対象物体の領域を対象物体候補領域として抽出する。第1の切出し方法では、ステレオカメラ11,12が前方へ向けて取付けられ、自車両2が前方へ直進移動する場合、図10で示すように、静止物体8の2次元オプティカルフローOFSを延長した直線OFSaは、或る1点で交わることを利用するものである。この点は、消失点(FOE:Focus of Expansion)と呼ばれ、自車両2の移動方向に応じて定まる定点となる。たとえば、この図10のように静止物体8だけ存在するシーンにおいて、時刻tとt+Δtとの時系列画像から算出された2次元オプティカルフローOFSの延長線OFSaは、画像の中央付近に定まる。
これに対して、図11のように移動物体7と静止物体8とが混在するようなシーンのFOEは、静止物体8のFOEが、前述のように画像の中央付近に定まるのに対し、移動物体7の2次元オプティカルフローOFMの延長線OFMaのFOEは、前記画像中央とは限らず、任意に散在する。つまり静止物体8以外の対象物体においては、それぞれ独立のFOEが存在する。第1の切出し方法では、このFOEの特徴を用いて、対象物候補領域を抽出する。
抽出方法としては、単純に、各FOEに集まる計測点の数から算出することができる。たとえば、2次元オプティカルフローOFM,OFSの計測点数がN点存在した中で、最も集まっているFOEを算出し、そのFOEに集まる計測点を除外することで、移動物体7の候補領域を抽出することができる。すなわち、移動体に搭載したカメラ11,12の時系列画像間に生じる2次元オプティカルフローOFS,OFMの中で、その2次元オプティカルフローOFS,OFMの延長線OFSa,OFMaの最も集まる消失点(FOE)は移動体の移動方向に応じて定まり、しかも道路などの静止物体8の2次元オプティカルフローが集まるので、この領域を除外した領域を前記対象物体4,5(移動物体7)の候補領域として抽出することで、より効率的に、移動する対象物体のみを抽出することができる。
そして、移動物体7が複数存在する場合にも、同様に移動している物体はFOEが略一致するので、FOE毎に複数の物体をグループ化することが可能である。また、図12のように路面3における2次元オプティカルフローOFRの延長線OFRaのFOEも、静止物体8と同様の画像中央のFOEに集まることから、この方法によって路面3を含んだ静止物体8と、それ以外の移動物体との判別を行うことが可能となる。
一方、第2の切出し方法では、上述のように全ての計測点毎に2次元オプティカルフローを計算するのではなく、画面を予め複数の領域に分割しておき、その各領域の代表点に対して計測を行う。具体的には図13で示すように、画像領域10を、等間隔の局所領域Aに分割し、それぞれの局所領域の代表計測点OB(i,j,t+Δt,n)の結果から、対象物体候補の抽出を行う。この方法の利点は、計測点数を減らすことが可能となり、より高速な処理が可能なことである。
なお、各局所領域Aの設定方法としては、上述のような等間隔となるようにしてもよいが、図14で示すような、不等間隔であてもよい。この図14の例では、自車両2の近傍(画面下部)側の局所領域A1が大きく、遠去かる(画面上部に行く)程、参照符号A2,A3,・・・というように、小さくなっている。これは、車載カメラの場合、画像上部に行くに従ってより距離が遠くなる、つまり画像上で対象物体が小さくなることからである。これによって、計測点数を一層減らすことが可能となり、より高速な処理が可能になる。
さらにまた、第3の切出し方法は、たとえば(「主成分分析を用いた移動物体認識法の検討」情報処理学会研究報告、コンピュータビジョン研究会報告 IPSJ SIG Notes 96(31) pp,51−58 19960321)で示されるように既存技術であり、局所領域に切分けた領域毎にFOEを推定する際の推定誤差を加算、閾値処理することによって、対象物体を検出するような手法(消失点推定残差法)である。この手法は、歩行者を含む領域における推定残差は、背景における推定残差に比べ大きな値となることから、推定誤差が大きい領域を対象物候補領域OB(i,j,t+Δt,n)として検出することができる。これら第1〜第3の切出し方法を用いて、第1の対象物候補領域抽出方法を実現することができる。
これに対して、前記2次元オプティカルフローの大きさが前記レベルOF1未満の場合に適用される第2の対象物候補領域抽出方法では、前述のようにして算出された2次元オプティカルフロー(移動成分)OFXY(i,j,t+Δt)のベクトルの大きさがある範囲より小さいものだけを抽出し、抽出された領域を対象物候補OB(i,j,t+Δt,n)の存在する領域として抽出する。つまり、2次元画像から算出したオプティカルフローOFXY(i,j,t+Δt)がある程度大きなフローとして算出することができ(図8,9でOF1を超えるもの)、路面3との切り分けが容易に行える場合においては、その2次元オプティカルフローOFXY(i,j,t+Δt)で衝突可能性の判断を行うことができるが、小さい場合(図8,9でOF1以下のもの)は、対象物体の移動成分が、自車両2の走行によって発生しているのか、対象物体自体の移動によるものを含んでいるのかの切り分けが難しい。そこで、小さいものだけに対して3次元オプティカルフローを算出し、衝突の有無を判断することで、前述のように演算量を減らし、精度良く判定を行うことが可能である。
以上のようにして、前記ステップS3での対象物候補抽出部22による対象物候補領域OB(i,j,t+Δt,n)の抽出が終了すると、前記ステップS4で、3次元情報取得部23が、該対象物体候補領域OB(i,j,t+Δt,n)に対応する時刻tの撮影画像I1(i,j,t)と位置的な対応関係を持つ3次元情報XYZ(i,j,t,n)と、時刻t+Δtの撮影画像I1(i,j,t+Δt)と、位置的な対応関係を持つ3次元情報XYZ(i,j,t+Δt,n)とを算出する。
その算出にあたっては、上述の説明では、画像取得手段をステレオカメラ11,12として、3次元情報取得部23では、そのステレオ画像から、前記対象物体候補領域抽出部22で算出された前記対象物体の候補領域OB(i,j,t+Δt,n)と判断された位置に対応する3次元(実空間上における位置)情報を、前記ステレオ画像間の対応点探索処理によって算出する。この場合は、別途距離情報を得る手段を用いることなく、画像のみの情報から距離情報を算出することができるので、シンプルな構成で衝突判定システムを構築することができる。
しかしながら、本実施の形態で3次元情報を求めるには、対象物体までの距離情報が分ればよいので、カメラをモノラル(単眼)のカメラとし、外部の距離計測手段との組合わせに置換えてもよい。
前記距離計測手段としては、たとえば図15で示すように、CMOSセンサ51の周辺に装着されたLED52から近赤外線を照射し、被写体53に当って帰ってくる反射光をCMOSセンサ51が受光するまでの時間をタイマ54で計測する、いわゆるTOF(time of flight)方式で実現することができる。CMOSセンサ51の各画素での受光結果が、画像10上の各領域Aに存在する対象物体までの距離情報となり、こうして前記3次元情報を取得することができる。このような構成の代表的なものとしては、Canesta社によるレーザレンジファインダがあり、3次元計測結果を出力する。この3次元情報を用いることで、前記ステップS3で抽出された各対象物体候補領域OB(i,j,t+Δt,n)に対応する3次元情報の位置的な対応関係を取得することができる。
また、別の方法としては、レーダ電波を出射し、対象物体から反射してきた反射波を受信し、伝搬時間やドップラー効果によって生じる周波数差などを基に、前方の障害物までの距離を測定するものがある。代表的なものとしては、ミリ波レーダなどである。これら別機器によって取得された3次元情報取得とカメラ11,12による撮像画像との対応関係は、たとえば特開2000−348199号公報(テクスチャマッピング方法及び装置)のような手法を用い、対応関係を記憶させておけば、カメラの画角とミリ波の物体検知角度とによって、対応関係を得ることは可能である。このように別途距離計測手段を設けた場合、特別な計算を行うことなく、前記距離情報を求めることができる。
このようにして、各対象物体候補領域OB(i,j,t+Δt,n)に対応する3次元情報が得られると、前述のようにステップS6で、衝突可能性判定部24は、対象物体4,5が自車両2に衝突するか否かを判定する。それには、ステップS5で算出された2次元オプティカルフロー(移動成分)OFXY(i,j,t+Δt)の向きおよび長さならびに自車両2の速度と、上述のようにして求められた各対象物体候補領域OB(i,j,t+Δt,n)までの距離XYZ(i,j,t,n),XYZ(i,j,t+Δt,n)から、衝突判定を行う。前記速度の情報は、車両2側から得てもよいが、予め定める領域、たとえば正面下方の路面3のオプティカルフローの長さから求めることができる。
好ましくは、前記衝突判定部24は、衝突判定を行う対象距離を固定するのではなく、現在の自車両2の速度に対応して、変更するようにすればよい。このように構成することで、自車両2の速度からして、安全と考えられる範囲、たとえば前記速度に対応した停止可能距離(=空走距離+制動距離)や、ハンドルでの回避距離(運転者の操作遅れに、ステアリング機構の応答遅れ時間を考慮してもハンドル操作で安全に回避できる距離)の範囲は除外するので、判定処理を軽減することができる。
また、前記衝突可能性判定部24が、衝突判定を行うにあたって、図16で示すように、自車両2のハンドル操作が行われている際には、その操舵による移動方向を加味して衝突判定を行うことが好ましい。詳しくは、移動物体7が矢符F1で示すように直進しているところ、自車両2が矢符F2で示すように、角度θで曲がっていると、見掛け上、移動物体7が矢符F3で示すように前記角度θで曲がって接近して来るものと判定し、自車両2については、矢符F4の直進として、衝突判定を行う。すなわち、移動物体7の2次元オプティカルフローについては、実際に時系列画像I1,I1t+Δtから求められた2次元オプティカルフローOFXY(i,j,t+Δt)に、前記角度θ分の補正が加えられる。前記角度θは、車体制御のECUなどから、ステアリングセンサ出力などとして取込むことができる。
さらにまた、好ましくは、前記時系列情報算出部21は、前記ステレオカメラ11,12で得られた時系列画像の対応点の探索処理に、図17で示すような多重解像度を用いる。具体的には、上述の説明では、図5で示すように、時刻tの基準画像I1に対して、時刻t+Δtの基準画像I1t+Δtでの対応点を探索しているので、本来の高解像度の前記基準画像I1t+Δtに対応する1または複数の階層の低解像度の画像(図17の例ではI1’t+Δt,I1''t+Δt)を作成し、最も低解像度の画像I1''t+Δtから、I1’t+Δt,I1t+Δtへと、順次解像度を上げて対応点Qを探してゆくものである。このような手法を採用することで、2つの基準画像I1,I1t+Δt間で対応点の位置が離れていても、効率的、かつ高精度に対応点を探索することができる。
以上のように、本実施の形態の周辺監視装置1では、車両2に搭載されて周囲の対象物体4,5を監視する周辺監視装置において、単眼またはステレオのカメラ11,12などの画像取得部で前記周囲の画像を時系列に取得し、得られた時系列画像から時系列情報算出部21が2次元オプティカルフローなどの移動成分を算出すると、先ず対象物体候補領域抽出部22が、前記移動成分を基に、前記対象物体4,5が存在する可能性の高い候補領域を抽出し、その後、その候補領域に対して、3次元情報取得部23が前記対象物体4,5の候補領域の3次元(実空間上における位置)情報を取得し、得られた前記対象物体4,5の候補領域の3次元情報と、該周辺監視装置1との位置関係から、衝突判定部24が衝突可能性を判定する。
したがって、先ず対象物体候補領域抽出部22が、時系列画像から算出された移動成分から、側方飛び出しなどの衝突予測が難しい対象物体4,5が存在する可能性の高い候補領域を限定し、次に3次元情報取得部23が、その候補領域だけの3次元情報を算出し、衝突判定部24でその抽出された対象物体の候補領域と監視装置1との関係から衝突可能性の判定を行う、すなわち自走状態で撮影された2次元時系列画像から、衝突予測が難しい対象物体候補領域のみに対し、詳しい3次元情報を求めて衝突危険性を判定するので、複雑な物体認識処理や道路モデルなどを必要とせず、時系列画像から算出された情報のみを用いて対象物体4,5の候補領域を限定することで、処理速度を速く(フレームレートを向上)することができる。
また、前記時系列情報算出部21は、前記画像取得部で得られた時系列画像の対応点探索処理によって、2次元オプティカルフローを前記移動成分として算出するので、画素単位の高精度な移動成分を求めることができる。
1 周辺監視装置
2 車両
3 路面
4,5 対象物体
6 ブザー
7 移動物体
8 静止物体
11,12 ステレオカメラ
13 コントローラ
21 時系列情報算出部
22 対象物体候補領域抽出部
23 3次元情報取得部
24 衝突可能性判定部
24a 3次元オプティカルフロー算出部
51 CMOSセンサ
52 LED
53 被写体
54 タイマ

Claims (10)

  1. 移動体に搭載され、該移動体の周囲の対象物体を監視する周辺監視装置において、
    前記周囲の画像を時系列に取得する画像取得部と、
    前記画像取得部で得られた時系列画像から移動成分を算出する時系列情報算出部と、
    前記時系列情報算出部で得られた前記移動成分を基に、前記対象物体が存在する可能性の高い候補領域を抽出する対象物体候補領域抽出部と、
    前記対象物体候補領域抽出部で算出された前記候補領域の3次元情報を取得する3次元情報取得部と、
    前記3次元情報取得部で得られた前記候補領域の3次元情報と、該周辺監視装置との位置関係とから、衝突可能性を判定する衝突判定部とを含み、
    前記時系列情報算出部は、前記画像取得部で得られた時系列画像の対応点探索処理によって、2次元オプティカルフローを前記移動成分として算出し、
    前記対象物体候補領域抽出部は、前記2次元オプティカルフローが予め定める第1閾値未満である領域を、前記候補領域として抽出する
    ことを特徴とする周辺監視装置。
  2. 前記対象物体候補領域抽出部は、前記予め定める第1閾値以上である2次元オプティカルフローを延長した直線の消失点の中から、最もフローが集まる領域を除外した領域を前記候補領域として抽出することを特徴とする請求項記載の周辺監視装置。
  3. 前記3次元情報取得部は、前記画像取得部をステレオカメラとして得られたステレオ画像から、前記対象物体候補領域抽出部で算出された前記対象物体の候補領域と判断された位置に対応する3次元情報を、前記ステレオ画像間の対応点探索処理によって算出することを特徴とする請求項または記載の周辺監視装置。
  4. 前記3次元情報取得部は、前記対象物体候補領域抽出部で算出された前記対象物体の候補領域と判断された位置に対応する3次元情報を取得する距離センサであることを特徴とする請求項または記載の周辺監視装置。
  5. 前記衝突判定部は、前記時系列情報算出部で得られた前記移動成分と、前記3次元情報取得部で得られた前記候補領域の3次元情報とを用いて、前記候補領域の3次元オプティカルフローを算出する3次元オプティカルフロー算出部を備え、該3次元オプティカルフロー算出部で算出された3次元オプティカルフローと、該周辺監視装置との位置関係とから、衝突可能性を判定することを特徴とする請求項1〜のいずれか1項に記載の周辺監視装置。
  6. 前記衝突判定部は、前記3次元オプティカルフロー算出部で算出された前記候補領域の3次元オプティカルフローの向きおよび長さと、該周辺監視装置との交差判定によって衝突判定を行うことを特徴とする請求項記載の周辺監視装置。
  7. 前記衝突判定部は、前記移動体の速度に対応して、衝突判定を行う前記対象物体までの距離を変更することを特徴とする請求項1〜のいずれか1項に記載の周辺監視装置。
  8. 前記衝突判定部は、前記3次元オプティカルフロー算出部で算出された前記候補領域の3次元オプティカルフローの長さが予め定める第2閾値以上大きい場合には衝突可能性領域と判定することを特徴とする請求項または記載の周辺監視装置。
  9. 前記時系列情報算出部は、計測点毎に対応点探索処理を行うことを特徴とする請求項1〜のいずれか1項に記載の周辺監視装置。
  10. 前記対象物体候補領域抽出部は、画面を予め複数の領域に分割しておき、その各領域の代表点に対して計測を行うことで、対象物体候補領域として抽出するか否かを判断することを特徴とする請求項1〜のいずれか1項に記載の周辺監視装置。
JP2009138692A 2009-06-09 2009-06-09 周辺監視装置 Expired - Fee Related JP5353455B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138692A JP5353455B2 (ja) 2009-06-09 2009-06-09 周辺監視装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138692A JP5353455B2 (ja) 2009-06-09 2009-06-09 周辺監視装置

Publications (2)

Publication Number Publication Date
JP2010286926A JP2010286926A (ja) 2010-12-24
JP5353455B2 true JP5353455B2 (ja) 2013-11-27

Family

ID=43542598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138692A Expired - Fee Related JP5353455B2 (ja) 2009-06-09 2009-06-09 周辺監視装置

Country Status (1)

Country Link
JP (1) JP5353455B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267596B2 (ja) * 2011-02-23 2013-08-21 株式会社デンソー 移動体検出装置
JP5772321B2 (ja) * 2011-07-12 2015-09-02 アイシン精機株式会社 車両検出装置、車両検出方法及びプログラム
US9183638B2 (en) * 2011-08-09 2015-11-10 The Boeing Company Image based position determination
JP5786941B2 (ja) * 2011-08-25 2015-09-30 日産自動車株式会社 車両用自律走行制御システム
JP2014115978A (ja) * 2012-11-19 2014-06-26 Ricoh Co Ltd 移動物体認識装置及びこれを用いた報知装置及びその移動物体認識装置に用いる移動物体認識用プログラム及び移動物体認識装置を備えた移動体
JP6221292B2 (ja) * 2013-03-26 2017-11-01 富士通株式会社 集中度判定プログラム、集中度判定装置、および集中度判定方法
JP6716857B2 (ja) * 2014-12-26 2020-07-01 株式会社リコー 移動体、測定システム、測定方法及びプログラム
WO2016113904A1 (ja) * 2015-01-16 2016-07-21 株式会社日立製作所 3次元情報算出装置、3次元情報算出方法、および自律移動装置
JP2016197795A (ja) * 2015-04-03 2016-11-24 日立オートモティブシステムズ株式会社 撮像装置
JP7067370B2 (ja) * 2018-08-27 2022-05-16 株式会社デンソー 画像認識装置
EP3855215A4 (en) * 2018-09-18 2021-11-10 Panasonic Intellectual Property Management Co., Ltd. DEPTH ACQUISITION DEVICE, DEPTH ACQUISITION PROCESS AND PROGRAM
JP6643517B2 (ja) * 2019-05-23 2020-02-12 日立オートモティブシステムズ株式会社 撮像装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262375A (ja) * 1994-03-25 1995-10-13 Toshiba Corp 移動体検出装置
JP3515926B2 (ja) * 1999-06-23 2004-04-05 本田技研工業株式会社 車両の周辺監視装置
JP4269781B2 (ja) * 2003-05-27 2009-05-27 日本電気株式会社 オプティカルフロー検出システム、検出方法および検出プログラム
JP4052650B2 (ja) * 2004-01-23 2008-02-27 株式会社東芝 障害物検出装置、方法及びプログラム
JP2009026250A (ja) * 2007-07-23 2009-02-05 Panasonic Corp 面成分検出装置、地上面検出装置、及び障害物検出装置
JP2010204805A (ja) * 2009-03-02 2010-09-16 Konica Minolta Holdings Inc 周辺監視装置および該方法

Also Published As

Publication number Publication date
JP2010286926A (ja) 2010-12-24

Similar Documents

Publication Publication Date Title
JP5353455B2 (ja) 周辺監視装置
US10690770B2 (en) Navigation based on radar-cued visual imaging
CN107272021B (zh) 使用雷达和视觉定义的图像检测区域的对象检测
EP3283843B1 (en) Generating 3-dimensional maps of a scene using passive and active measurements
CN109017570B (zh) 车辆周围场景呈现方法和装置、车辆
JP5689907B2 (ja) 車両において通行物体位置検出を向上する方法
US9846812B2 (en) Image recognition system for a vehicle and corresponding method
US10580155B2 (en) Image processing apparatus, imaging device, device control system, frequency distribution image generation method, and recording medium
US10846542B2 (en) Systems and methods for augmentating upright object detection
JP6450294B2 (ja) 物体検出装置、物体検出方法、及びプログラム
JP2014222429A (ja) 画像処理装置、距離測定装置、移動体機器制御システム、移動体及び画像処理用プログラム
JP2010204805A (ja) 周辺監視装置および該方法
JP2011134207A (ja) 運転記録装置および地図作成システム
KR100962329B1 (ko) 스테레오 카메라 영상으로부터의 지면 추출 방법과 장치 및이와 같은 방법을 구현하는 프로그램이 기록된 기록매체
KR101491305B1 (ko) 장애물 검출 장치 및 방법
JP5256482B2 (ja) 測距装置
JP5163164B2 (ja) 3次元計測装置
JP2020086884A (ja) 区画線推定装置、表示制御装置、方法、及びコンピュータ・プログラム
JP4872943B2 (ja) 解析装置
JP2018088234A (ja) 情報処理装置、撮像装置、機器制御システム、移動体、情報処理方法、及びプログラム
JP2006004173A (ja) 車両周辺監視装置
JP7309630B2 (ja) 画像処理装置
Teutsch et al. 3d-segmentation of traffic environments with u/v-disparity supported by radar-given masterpoints
JP2023003924A (ja) 演算装置、速度算出方法
WO2021232031A2 (en) Detection of hidden object using non-line-of-sight (nlos) imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees