Nothing Special   »   [go: up one dir, main page]

JP5348853B2 - Sulfide-based electrolyte molded body and all-solid battery comprising the same - Google Patents

Sulfide-based electrolyte molded body and all-solid battery comprising the same Download PDF

Info

Publication number
JP5348853B2
JP5348853B2 JP2007133178A JP2007133178A JP5348853B2 JP 5348853 B2 JP5348853 B2 JP 5348853B2 JP 2007133178 A JP2007133178 A JP 2007133178A JP 2007133178 A JP2007133178 A JP 2007133178A JP 5348853 B2 JP5348853 B2 JP 5348853B2
Authority
JP
Japan
Prior art keywords
sulfide
based electrolyte
component
molded body
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007133178A
Other languages
Japanese (ja)
Other versions
JP2008288098A (en
JP2008288098A5 (en
Inventor
享子 永田
実 千賀
美勝 清野
幹也 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2007133178A priority Critical patent/JP5348853B2/en
Publication of JP2008288098A publication Critical patent/JP2008288098A/en
Publication of JP2008288098A5 publication Critical patent/JP2008288098A5/ja
Application granted granted Critical
Publication of JP5348853B2 publication Critical patent/JP5348853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Description

本発明は、硫化物系電解質粉体及びそれを用いた硫化物系電解質成形体、並びに全固体電池に関する。   The present invention relates to a sulfide-based electrolyte powder, a sulfide-based electrolyte molded body using the same, and an all-solid battery.

近年、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等に用いられるリチウムイオン二次電池の需要が増加している。
上記リチウムイオン二次電池には、電解質として有機系電解液が用いられている。有機系電解液は高いイオン伝導度を示すものの、液体でかつ可燃性であるため、漏洩、発火等の安全性が懸念されている。
In recent years, there has been an increasing demand for lithium ion secondary batteries used in personal digital assistants, portable electronic devices, small household power storage devices, motorcycles powered by motors, electric vehicles, hybrid electric vehicles, and the like.
In the lithium ion secondary battery, an organic electrolytic solution is used as an electrolyte. Although organic electrolytes exhibit high ionic conductivity, they are liquid and flammable, so there are concerns about safety such as leakage and ignition.

リチウムイオン二次電池の安全性を確保する方法として、有機系電解液に代えて無機固体電解質を用いた全固体二次電池が研究されている。しかし、一般的に無機固体電解質は、有機系電解液に比べてイオン伝導度が小さく、全固体二次電池の実用化は困難であった。   As a method for ensuring the safety of a lithium ion secondary battery, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been studied. However, in general, inorganic solid electrolytes have lower ionic conductivity than organic electrolytes, and it has been difficult to put all solid secondary batteries into practical use.

例えば、無機固体電解質としてLiNをベースとするリチウムイオン伝導性セラミックスが報告されている。しかし、このセラミックスは分解電圧が低いため、3V以上で作動する全固体二次電池に用いることはできなかった。 For example, lithium ion conductive ceramics based on Li 3 N have been reported as inorganic solid electrolytes. However, since this ceramic has a low decomposition voltage, it could not be used for an all-solid-state secondary battery operating at 3 V or higher.

特許文献1では、室温でも高いリチウムイオン伝導性を示す硫化物系結晶化ガラスからなる固体電解質が開示されている。しかし、特許文献1に記載の電解質は、高価なリチウムを多量に必要とするため、工業的に不利である。また、室温付近における電解質のイオン伝導度が1.0×10−3S/cm程度であることから、さらなるイオン伝導度の向上が必要であった。
特開2002−109955号公報
Patent Document 1 discloses a solid electrolyte made of sulfide-based crystallized glass that exhibits high lithium ion conductivity even at room temperature. However, the electrolyte described in Patent Document 1 is industrially disadvantageous because it requires a large amount of expensive lithium. Moreover, since the ionic conductivity of the electrolyte in the vicinity of room temperature is about 1.0 × 10 −3 S / cm, further improvement in ionic conductivity is necessary.
JP 2002-109955 A

本発明の目的は、高いイオン伝導度を有する硫化物系電解質成形体を提供することである。   An object of the present invention is to provide a sulfide-based electrolyte molded body having high ionic conductivity.

本発明によれば、以下の硫化物系電解質粉体等が提供される。
1.イオウ元素、リチウム元素、及び
ホウ素、ケイ素、ゲルマニウム、リン及びアルミニウムからなる群から選ばれる少なくとも1つの元素を含み、
平均粒径が0.01〜10μmである硫化物系電解質粉体。
2.下記成分(A)及び(B)を用いて得られる1に記載の硫化物系電解質粉体。
(A)硫化リチウム
(B)Aで表される化合物(Aは、ホウ素、ケイ素、ゲルマニウム、リン又はアルミニウムであり、m及びnはそれぞれ1〜10の整数である。)
3.イオウ元素、リチウム元素、酸素元素、及び
ホウ素、ケイ素、ゲルマニウム、リン及びアルミニウムからなる群から選ばれる少なくとも1つの元素を含み、
平均粒径が0.01〜10μmである硫化物系電解質粉体。
4.下記成分(A)、(B)及び(C)を用いて得られる3に記載の硫化物系電解質粉体。
(A)硫化リチウム
(B)Aで表される化合物(Aは、ホウ素、ケイ素、ゲルマニウム、リン又はアルミニウムであり、m及びnはそれぞれ1〜10の整数である。)
(C)Liで表される化合物(Mはホウ素、ケイ素、ゲルマニウム、硫黄、リン又はアルミニウムであり、x、y及びzはそれぞれ1〜10の整数である。)
5.示差走査熱量測定(乾燥窒素雰囲気下、昇温速度10℃/min、20〜400℃)で検出される発熱ピークが200〜300℃の間で実質的に1つである1〜4のいずれかに記載の硫化物系電解質粉体。
6.1〜5のいずれかに記載の硫化物系固体電解質粉体であって、その粉体を加圧成形した固体電解質成形体中の各一次粒子が融着し、かつ、その固体電解質成形体の算出密度が1.45〜2.00g/cmとなる硫化物系固体電解質粉体。
7.1〜6のいずれかに記載の硫化物系電解質粉体を成形してなる硫化物系電解質成形体であって、
前記硫化物系電解質粉体が互いに融着している硫化物系電解質成形体。
8.算出密度が1.45〜2.00g/cmである7に記載の硫化物系電解質成形体。
9.イオン伝導度が4.5×10−3S/cm以上である7又は8に記載の硫化物系電解質成形体。
10.7〜9のいずれかに記載の硫化物系電解質成形体を用いた全固体電池。
11.7〜9のいずれかに記載の硫化物系電解質成形体からなる固体電解質、及び
1〜6のいずれかに記載の硫化物系電解質粉体及び正極活物質を含む正極合材を加熱処理してなる正極、及び/又は1〜6のいずれかに記載の硫化物系電解質粉体及び負極活物質を含む負極合材を加熱処理してなる負極を具備する10に記載の全固体電池。
12.10又は11に記載の全固体電池をさらに加熱処理してなる全固体電池。
According to the present invention, the following sulfide-based electrolyte powder and the like are provided.
1. Including at least one element selected from the group consisting of sulfur element, lithium element, and boron, silicon, germanium, phosphorus, and aluminum;
A sulfide-based electrolyte powder having an average particle size of 0.01 to 10 μm.
2. 2. The sulfide electrolyte powder according to 1, obtained using the following components (A) and (B).
(A) Lithium sulfide (B) A m S compounds represented by n (A is boron, and silicon, germanium, phosphorus or aluminum, m and n is an integer of from 1 to 10, respectively.)
3. Including at least one element selected from the group consisting of sulfur element, lithium element, oxygen element, and boron, silicon, germanium, phosphorus and aluminum;
A sulfide-based electrolyte powder having an average particle size of 0.01 to 10 μm.
4). 4. The sulfide electrolyte powder according to 3, obtained by using the following components (A), (B) and (C).
(A) Lithium sulfide (B) A m S compounds represented by n (A is boron, and silicon, germanium, phosphorus or aluminum, m and n is an integer of from 1 to 10, respectively.)
(C) Compound represented by Li x M y O z (M is boron, silicon, germanium, sulfur, phosphorus, or aluminum, and x, y, and z are each an integer of 1 to 10)
5. Any one of 1 to 4 in which the exothermic peak detected by differential scanning calorimetry (in a dry nitrogen atmosphere, a heating rate of 10 ° C./min, 20 to 400 ° C.) is substantially one between 200 to 300 ° C. The sulfide-based electrolyte powder described in 1.
The sulfide-based solid electrolyte powder according to any one of 6.1 to 5, wherein each primary particle in a solid electrolyte molded body obtained by pressure-molding the powder is fused, and the solid electrolyte molding A sulfide-based solid electrolyte powder having a body density of 1.45 to 2.00 g / cm 3 .
A sulfide-based electrolyte molded body obtained by molding the sulfide-based electrolyte powder according to any one of 7.1 to 6,
A sulfide-based electrolyte molded body in which the sulfide-based electrolyte powders are fused to each other.
8). 8. The sulfide electrolyte molded body according to 7, wherein the calculated density is 1.45 to 2.00 g / cm 3 .
9. The sulfide-based electrolyte molded body according to 7 or 8 having an ionic conductivity of 4.5 × 10 −3 S / cm or more.
An all-solid-state battery using the sulfide-based electrolyte molded body according to any one of 10.7 to 9.
A solid electrolyte comprising the sulfide-based electrolyte molded body according to any one of 11.7 to 9, and a positive electrode mixture containing the sulfide-based electrolyte powder according to any one of 1 to 6 and a positive electrode active material are heat-treated. The all-solid-state battery of 10 which comprises the negative electrode formed by heat-processing the negative electrode compound material containing the positive electrode formed by and / or the sulfide type electrolyte powder in any one of 1-6, and a negative electrode active material.
12. An all solid state battery obtained by further heat-treating the all solid state battery described in 10 or 11.

本発明によれば、高いイオン伝導度を有する硫化物系電解質成形体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sulfide type electrolyte molded object which has high ionic conductivity can be provided.

本発明の硫化物系電解質粉体は、イオウ元素、リチウム元素、及びホウ素、ケイ素、ゲルマニウム、リン及びアルミニウムからなる群から選ばれる少なくとも1つの元素を含み、平均粒径が0.01〜10μmである。   The sulfide-based electrolyte powder of the present invention contains sulfur element, lithium element, and at least one element selected from the group consisting of boron, silicon, germanium, phosphorus and aluminum, and has an average particle size of 0.01 to 10 μm. is there.

本発明の硫化物系電解質粉体は、平均粒径が0.01〜10μmであり、好ましくは0.01〜0.1μmである。平均粒径が10μmを超えると、本発明の硫化物系電解質粉体を固体電池に用いた場合に、固体電池を高エネルギー密度化及び高出力化できないおそれがあり、平均粒径が0.01μm未満の場合、分級が必要になる恐れがある。
尚、上記平均粒径は、走査型電子顕微鏡を用いて硫化物系電解質粉体を観察し、任意の100μm面積中に観察された粉体粒子を任意に20個選択し、その粒径を測定して得られた値の平均値である。
The sulfide-based electrolyte powder of the present invention has an average particle size of 0.01 to 10 μm, preferably 0.01 to 0.1 μm. When the average particle diameter exceeds 10 μm, when the sulfide-based electrolyte powder of the present invention is used for a solid battery, there is a possibility that the solid battery cannot be increased in energy density and output, and the average particle diameter is 0.01 μm. If it is less, classification may be required.
The average particle size is determined by observing the sulfide-based electrolyte powder using a scanning electron microscope, arbitrarily selecting 20 powder particles observed in an arbitrary 100 μm 2 area, and determining the particle size. It is an average value of values obtained by measurement.

本発明の硫化物系電解質粉体は、好ましくは下記成分(A)及び(B)を用いて得られる硫化物系電解質粉体である。
(A)硫化リチウム
(B)Aで表される化合物(Aは、ホウ素、ケイ素、ゲルマニウム、リン又はアルミニウムであり、m及びnはそれぞれ1〜10の整数である。)
The sulfide-based electrolyte powder of the present invention is preferably a sulfide-based electrolyte powder obtained using the following components (A) and (B).
(A) Lithium sulfide (B) A m S compounds represented by n (A is boron, and silicon, germanium, phosphorus or aluminum, m and n is an integer of from 1 to 10, respectively.)

上記成分(B)としては、好ましくはPである。 The component (B) is preferably P 2 S 5 .

上記成分(A)及び(B)を用いた硫化物系電解質粉体において、成分(A)及び(B)のモル比は、例えば成分(A):成分(B)=50:50〜92.5:7.5あり、好ましくは65〜75:35〜25である。   In the sulfide-based electrolyte powder using the components (A) and (B), the molar ratio of the components (A) and (B) is, for example, component (A): component (B) = 50: 50 to 92. 5: 7.5, preferably 65-75: 35-25.

本発明の他の実施形態として、本発明の硫化物系電解質粉体は、イオウ元素、リチウム元素、酸素元素、及びホウ素、ケイ素、ゲルマニウム、リン及びアルミニウムからなる群から選ばれる少なくとも1つの元素を含み、平均粒径が0.01〜10μmである。
上記硫化物系電解質粉体の好ましい平均粒径及びその測定方法は、上述したとおりである。
As another embodiment of the present invention, the sulfide-based electrolyte powder of the present invention contains at least one element selected from the group consisting of sulfur element, lithium element, oxygen element, and boron, silicon, germanium, phosphorus, and aluminum. And the average particle size is 0.01 to 10 μm.
The preferred average particle diameter of the sulfide-based electrolyte powder and the measuring method thereof are as described above.

本発明の他の実施形態にかかる硫化物系電解質粉体は、好ましくは下記成分(A)、(B)及び(C)を用いて得られる硫化物系電解質粉体である。
(A)硫化リチウム
(B)Aで表される化合物(Aは、ホウ素、ケイ素、ゲルマニウム、リン又はアルミニウムであり、m及びnはそれぞれ1〜10の整数である。)
(C)Liで表される化合物(Mはホウ素、ケイ素、ゲルマニウム、硫黄、リン又はアルミニウムであり、x、y及びzはそれぞれ1〜10の整数である。)
The sulfide-based electrolyte powder according to another embodiment of the present invention is preferably a sulfide-based electrolyte powder obtained using the following components (A), (B), and (C).
(A) Lithium sulfide (B) A m S compounds represented by n (A is boron, and silicon, germanium, phosphorus or aluminum, m and n is an integer of from 1 to 10, respectively.)
(C) Compound represented by Li x M y O z (M is boron, silicon, germanium, sulfur, phosphorus, or aluminum, and x, y, and z are each an integer of 1 to 10)

上記成分(B)としては、好ましくはPであり、上記成分(C)としては、好ましくはMがケイ素又はリンである化合物である。 The component (B) is preferably P 2 S 5 , and the component (C) is preferably a compound in which M is silicon or phosphorus.

上記成分(A)、(B)及び(C)を用いた硫化物系電解質粉体において、成分(A)、(B)及び(C)のモル比は、例えば成分(A):40〜92.4モル%、成分(B):7.5〜40モル%、成分(C):0.1〜20モル%であり、好ましくは成分(A):63〜69.3モル%、成分(B):27〜29.7モル%、成分(C):1〜10モル%である。   In the sulfide-based electrolyte powder using the components (A), (B) and (C), the molar ratio of the components (A), (B) and (C) is, for example, component (A): 40 to 92. .4 mol%, component (B): 7.5 to 40 mol%, component (C): 0.1 to 20 mol%, preferably component (A): 63 to 69.3 mol%, component ( B): 27 to 29.7 mol%, component (C): 1 to 10 mol%.

本発明の硫化物系電解質粉体に用いる成分(A)〜(C)は特に限定されず、工業的に入手可能なものが使用できるが、高純度のものが好ましい。
例えば、成分(A)である硫化リチウムは、硫黄酸化物のリチウム塩の総含有量が好ましくは0.15質量%以下、より好ましくは0.1質量%以下であり、かつN−メチルアミノ酪酸リチウムの含有量が0.15質量%以下、より好ましくは0.1質量%以下である。硫黄酸化物のリチウム塩の総含有量が0.15質量%以下であると、得られる固体電解質は、ガラス状電解質(完全非晶質)となる。即ち、硫黄酸化物のリチウム塩の総含有量が0.15質量%を越えると、得られる電解質は、最初から結晶化物の恐れがあり、この結晶化物のイオン伝導度は低い。さらに、この結晶化物について熱処理を施しても結晶化物には変化がなく、高イオン伝導度の固体電解質を得ることはできないおそれがある。
The components (A) to (C) used in the sulfide-based electrolyte powder of the present invention are not particularly limited, and those that are industrially available can be used, but those with high purity are preferred.
For example, the lithium sulfide as the component (A) preferably has a total content of lithium salt of sulfur oxide of 0.15% by mass or less, more preferably 0.1% by mass or less, and N-methylaminobutyric acid. The lithium content is 0.15% by mass or less, more preferably 0.1% by mass or less. When the total content of the lithium salt of sulfur oxide is 0.15% by mass or less, the obtained solid electrolyte becomes a glassy electrolyte (fully amorphous). That is, when the total content of the lithium salt of sulfur oxide exceeds 0.15% by mass, the obtained electrolyte may be a crystallized product from the beginning, and the ionic conductivity of the crystallized product is low. Furthermore, even if this crystallized product is subjected to a heat treatment, the crystallized product is not changed, and there is a possibility that a solid electrolyte having high ionic conductivity cannot be obtained.

また、N−メチルアミノ酪酸リチウムの含有量が0.15質量%以下であると、N−メチルアミノ酪酸リチウムの劣化物がリチウム電池のサイクル性能を低下させることがない。
このように不純物が低減された硫化リチウムを用いると、高イオン伝導性電解質が得られる。
Further, when the content of lithium N-methylaminobutyrate is 0.15% by mass or less, a deteriorated product of lithium N-methylaminobutyrate does not deteriorate the cycle performance of the lithium battery.
When lithium sulfide with reduced impurities is used, a high ion conductive electrolyte can be obtained.

この固体物質で用いられる硫化リチウムの製造法としては、少なくとも上記不純物を低減できる方法であれば特に制限はない。
例えば、以下の方法で製造された硫化リチウムを精製することにより得ることもできる。
以下の製造法の中では、特にa又はbの方法が好ましい。
a.非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを0〜150℃で反応させて水硫化リチウムを生成し、次いでこの反応液を150〜200℃で脱硫化水素化する方法(特開平7−330312号公報)。
b.非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを150〜200℃で反応させ、直接硫化リチウムを生成する方法(特開平7−330312号公報)。
c.水酸化リチウムとガス状硫黄源を130〜445℃の温度で反応させる方法(特開平9−283156号公報)。
The method for producing lithium sulfide used in the solid substance is not particularly limited as long as it is a method that can reduce at least the impurities.
For example, it can also be obtained by purifying lithium sulfide produced by the following method.
Among the following production methods, the method a or b is particularly preferable.
a. A method in which lithium hydroxide and hydrogen sulfide are reacted at 0 to 150 ° C. in an aprotic organic solvent to produce lithium hydrosulfide, and this reaction solution is then desulfurized at 150 to 200 ° C. -330312).
b. A method of directly producing lithium sulfide by reacting lithium hydroxide and hydrogen sulfide at 150 to 200 ° C. in an aprotic organic solvent (Japanese Patent Laid-Open No. 7-330312).
c. A method of reacting lithium hydroxide and a gaseous sulfur source at a temperature of 130 to 445 ° C. (Japanese Patent Laid-Open No. 9-283156).

上記のようにして得られた硫化リチウムの精製方法としては、特に制限はない。好ましい精製法としては、例えば、国際公開WO2005/40039号等が挙げられる。
具体的には、上記のようにして得られた硫化リチウムを、有機溶媒を用い、100℃以上の温度で洗浄する。
洗浄に用いる有機溶媒は、非プロトン性極性溶媒であることが好ましく、さらに、硫化リチウム製造に使用する非プロトン性有機溶媒と洗浄に用いる非プロトン性極性有機溶媒とが同一であることがより好ましい。
洗浄に好ましく用いられる非プロトン性極性有機溶媒としては、例えば、アミド化合物、ラクタム化合物、尿素化合物、有機硫黄化合物、環式有機リン化合物等の非プロトン性の極性有機化合物が挙げられ、単独溶媒、又は混合溶媒として好適に使用することができる。特に、N−メチル−2−ピロリドン(NMP)は、良好な溶媒に選択される。
There is no restriction | limiting in particular as a purification method of the lithium sulfide obtained as mentioned above. Preferable purification methods include, for example, International Publication No. WO2005 / 40039.
Specifically, the lithium sulfide obtained as described above is washed at a temperature of 100 ° C. or higher using an organic solvent.
The organic solvent used for washing is preferably an aprotic polar solvent, and more preferably, the aprotic organic solvent used for lithium sulfide production and the aprotic polar organic solvent used for washing are the same. .
Examples of the aprotic polar organic solvent preferably used for washing include aprotic polar organic compounds such as amide compounds, lactam compounds, urea compounds, organic sulfur compounds, cyclic organophosphorus compounds, Or it can use suitably as a mixed solvent. In particular, N-methyl-2-pyrrolidone (NMP) is selected as a good solvent.

洗浄に使用する有機溶媒の量は特に限定されず、また、洗浄の回数も特に限定されないが、2回以上であることが好ましい。洗浄は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
洗浄された硫化リチウムを、洗浄に使用した有機溶媒の沸点以上の温度で、窒素等の不活性ガス気流下、常圧又は減圧下で、5分以上、好ましくは約2〜3時間以上乾燥することにより、本発明で用いられる硫化リチウムを得ることができる。
The amount of the organic solvent used for washing is not particularly limited, and the number of times of washing is not particularly limited, but is preferably 2 or more. Cleaning is preferably performed under an inert gas such as nitrogen or argon.
The washed lithium sulfide is dried at a temperature equal to or higher than the boiling point of the organic solvent used for washing for 5 minutes or more, preferably about 2 to 3 hours or more under an inert gas stream such as nitrogen under normal pressure or reduced pressure. Thus, lithium sulfide used in the present invention can be obtained.

本発明の硫化物系電解質粉体は、好ましくは乾燥窒素雰囲気下、昇温速度10℃/min、20〜400℃における示差走査熱量測定(DSC)で検出される発熱ピークが200〜300℃の間で実質的に1つである。
本発明の硫化物系電解質粉体の発熱ピークが200〜300℃の間で実質的に1つである場合、DSC後の硫化物系電解質粉体は結晶相を含んでおり、均質な組成の結晶性ガラス状態となる。
The sulfide-based electrolyte powder of the present invention preferably has an exothermic peak of 200 to 300 ° C. detected by differential scanning calorimetry (DSC) at a heating rate of 10 ° C./min and 20 to 400 ° C. in a dry nitrogen atmosphere. There is substantially one in between.
When the exothermic peak of the sulfide-based electrolyte powder of the present invention is substantially one between 200 and 300 ° C., the sulfide-based electrolyte powder after DSC contains a crystalline phase and has a homogeneous composition. It becomes a crystalline glass state.

尚、本発明において、「発熱ピークが200〜300℃の間で実質的に1つである」とは、全温度領域(20〜400℃)において、200〜300℃に最大発熱量を有するピークに対し、その他の発熱ピークが最大発熱量の10%以下の発熱量である微小ピークである場合を言う。   In the present invention, the phrase “substantially one exothermic peak is between 200 and 300 ° C.” means a peak having a maximum calorific value at 200 to 300 ° C. in the entire temperature range (20 to 400 ° C.). On the other hand, the other exothermic peak is a minute peak having a calorific value of 10% or less of the maximum calorific value.

本発明の硫化物系電解質粉体は、例えば、メカニカルミリング法(MM法)を用いることにより製造できる。
MM法による場合、成分(A)及び(B)又は成分(A)〜(C)を所定量乳鉢にて混合し、メカニカルミリング法にて所定時間反応させることにより、ガラス化した硫化物系電解質粉体が得られる。
上記原料を用いたメカニカルミリング法は、室温で反応を行うことができる。MM法によれば、室温で硫化物系電解質粉体を製造できるため、原料の熱分解が起らず、仕込み組成の硫化物系電解質粉体を得ることができるという利点がある。
また、MM法では、硫化物系電解質粉体の製造と同時に、硫化物系電解質粉体を微粉末化できるという利点もある。
MM法は種々の形式を用いることができるが、例えば遊星ボールミル、振動ミル、ジェットミル等の機械式ミルを使用することができる。
The sulfide electrolyte powder of the present invention can be produced by using, for example, a mechanical milling method (MM method).
In the case of the MM method, a predetermined amount of components (A) and (B) or components (A) to (C) are mixed in a mortar and reacted for a predetermined time by a mechanical milling method, thereby vitrifying sulfide-based electrolyte. A powder is obtained.
The mechanical milling method using the above raw materials can be reacted at room temperature. According to the MM method, since the sulfide-based electrolyte powder can be produced at room temperature, there is an advantage that the raw material is not thermally decomposed and a sulfide-based electrolyte powder having a charged composition can be obtained.
Further, the MM method has an advantage that the sulfide-based electrolyte powder can be finely powdered simultaneously with the production of the sulfide-based electrolyte powder.
Although various types can be used for the MM method, for example, a mechanical mill such as a planetary ball mill, a vibration mill, or a jet mill can be used.

比較的小さなエネルギーで長時間MM処理を施すと、DSCの発熱ピークが実質的に1つになる。具体的には、所定量の成分(A)及び(B)、又は成分(A)〜(C)を露点−40℃以下の乾燥雰囲気下で、0.02〜1kJ/kg・sを60時間〜280時間加えて粉砕することにより本発明の硫化物系電解質粉体を製造することができる。   When the MM treatment is performed for a long time with relatively small energy, the DSC exothermic peak becomes substantially one. Specifically, a predetermined amount of components (A) and (B), or components (A) to (C), in a dry atmosphere with a dew point of −40 ° C. or less, 0.02 to 1 kJ / kg · s for 60 hours. The sulfide electrolyte powder of the present invention can be produced by pulverizing for 280 hours.

本発明の硫化物系電解質成形体は、本発明の硫化物系電解質粉体からなり、粉体同士が互いに融着している。
上記成形体は、例えば、本発明の硫化物系電解質粉体を所定の圧力で成形し、所定の温度で熱処理することにより製造することができる。このように圧力を印加し、熱処理することで、硫化物系電解質粉体は高密度で互いに融着し、広範囲のイオン伝導パスを形成することができる。
尚、硫化物系電解質粉体が融着していることは、得られた硫化物系電解質成形体を走査型電子顕微鏡を用いて観察し、硫化物系電解質粉体同士の界面の境目が観察できないことにより確認できる。
The sulfide-based electrolyte molded body of the present invention is composed of the sulfide-based electrolyte powder of the present invention, and the powders are fused to each other.
The molded body can be produced, for example, by molding the sulfide-based electrolyte powder of the present invention at a predetermined pressure and heat-treating at a predetermined temperature. Thus, by applying pressure and heat-treating, the sulfide-based electrolyte powders can be fused to each other at a high density, and a wide range of ion conduction paths can be formed.
The fact that the sulfide-based electrolyte powder is fused is observed by using a scanning electron microscope to observe the obtained sulfide-based electrolyte compact, and the boundary between the sulfide-based electrolyte powders is observed. It can be confirmed by what cannot be done.

上記硫化物系電解質成形体の成形圧力は、通常、2〜10MPaである。
熱処理温度としては、通常、150℃〜360℃である。熱処理温度が150℃より低いと、高イオン伝導性の結晶ガラスが得られにくい場合があり、360℃より高いとイオン伝導性の低い結晶構造となる恐れがある。
また、熱処理時間は、例えば0.5〜10時間である。
The molding pressure of the sulfide-based electrolyte molded body is usually 2 to 10 MPa.
As heat processing temperature, it is 150 to 360 degreeC normally. If the heat treatment temperature is lower than 150 ° C., it may be difficult to obtain a crystal glass with high ion conductivity, and if it is higher than 360 ° C., a crystal structure with low ion conductivity may be formed.
The heat treatment time is, for example, 0.5 to 10 hours.

成形体の密度が高いほど、イオン伝導パスをより多く確保できることから、本発明の硫化物系電解質成形体の算出密度は、好ましくは1.45〜2.00g/cmであり、さらに好ましくは1.5〜2.00g/cmである。
尚、算出密度とは、本発明の硫化物系電解質粉体のみからなる成形体を、黒鉛5mg及び本発明の硫化物系電解質粉体5mgの混合粉体からなる電極2枚で挟持した成形体の理論上の密度をいい、具体的には下記式を用いて算出することができる。
算出密度=((5mg+5mg)×2+成形体に用いた硫化物系電解質粉体の質量)/成形体の体積
例えば、LiS及びPのみからなる硫化物系電解質粉体を硫化物系電解質成形体の製造に用いた場合、算出密度の理論上限値(空隙0)は2.00となる。
Since the higher the density of the molded body is, the more ion conduction paths can be secured, the calculated density of the sulfide-based electrolyte molded body of the present invention is preferably 1.45 to 2.00 g / cm 3 , more preferably. 1.5 to 2.00 g / cm 3 .
The calculated density means a molded body in which a molded body composed only of the sulfide-based electrolyte powder of the present invention is sandwiched between two electrodes composed of a mixed powder of 5 mg of graphite and 5 mg of the sulfide-based electrolyte powder of the present invention. The specific density can be calculated using the following formula.
Calculated density = ((5 mg + 5 mg) × 2 + mass of the sulfide-based electrolyte powder used in the molded body) / volume of the molded body For example, a sulfide-based electrolyte powder composed only of Li 2 S and P 2 S 5 is sulfided. When used for the production of a system electrolyte molded body, the theoretical upper limit of the calculated density (void 0) is 2.00.

本発明の硫化物系電解質成形体のイオン伝導度は、好ましくは4.5×10−3S/cm以上、より好ましくは5×10−3S/cm以上である。成形体がこのようなイオン伝導度を有することにより、本発明の硫化物系電解質成形体を用いた全固体電池は、高出力を実現できる。 The ionic conductivity of the sulfide-based electrolyte molded body of the present invention is preferably 4.5 × 10 −3 S / cm or more, more preferably 5 × 10 −3 S / cm or more. Since the molded body has such ionic conductivity, the all-solid-state battery using the sulfide-based electrolyte molded body of the present invention can achieve high output.

図1は本発明に係る全固体電池の一実施形態を示す概略断面図である。
全固体電池1は、正極10及び負極30からなる一対の電極間に本発明の硫化物系電解質成形体である固体電解質成形体20が挟持されている。正極10及び負極30にはそれぞれ集電体40及び42が設けられている。
FIG. 1 is a schematic cross-sectional view showing an embodiment of an all-solid battery according to the present invention.
In the all-solid-state battery 1, a solid electrolyte molded body 20 that is a sulfide-based electrolyte molded body of the present invention is sandwiched between a pair of electrodes composed of a positive electrode 10 and a negative electrode 30. Current collectors 40 and 42 are provided on the positive electrode 10 and the negative electrode 30, respectively.

正極10は、正極活物質からなり、好ましくは本発明の硫化物系電解質粉体及び正極活物質の正極合材を加熱処理してなる正極である。正極合材において、硫化物系電解質粉体と正極材の混合比(重量比)は、好ましくは硫化物系電解質粉体:正極活物質=20〜50:80〜50である。加熱条件は特に限定はされないが、通常、加熱温度が100〜350℃、加熱時間が0.1〜10時間である。この条件で加熱することにより高出力電池用正極材料を作製できる。   The positive electrode 10 is made of a positive electrode active material, and is preferably a positive electrode obtained by heat-treating the sulfide-based electrolyte powder of the present invention and the positive electrode mixture of the positive electrode active material. In the positive electrode mixture, the mixing ratio (weight ratio) of the sulfide-based electrolyte powder and the cathode material is preferably sulfide-based electrolyte powder: positive electrode active material = 20-50: 80-50. Although heating conditions are not specifically limited, Usually, heating temperature is 100-350 degreeC and heating time is 0.1 to 10 hours. A positive electrode material for a high-power battery can be produced by heating under these conditions.

正極活物質は、電池分野において正極活物質として使用されているものが使用できる。例えば、硫化物系では、硫化チタン(TiS)、硫化モリブデン(MoS)、硫化鉄(FeS、FeS)、硫化銅(CuS)及び硫化ニッケル(Ni)等が使用できる。好ましくは、TiSが使用できる。
また、酸化物系では、酸化ビスマス(Bi)、鉛酸ビスマス(BiPb)、酸化銅(CuO)、酸化バナジウム(V13)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)等が使用できる。尚、これらを混合して用いることも可能である。好ましくは、コバルト酸リチウムが使用できる。
尚、上記の他にはセレン化ニオブ(NbSe)が使用できる。
What is used as a positive electrode active material in the battery field can be used for a positive electrode active material. For example, in the sulfide system, titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 ), copper sulfide (CuS), nickel sulfide (Ni 3 S 2 ), and the like can be used. Preferably, TiS 2 can be used.
In the oxide system, bismuth oxide (Bi 2 O 3 ), bismuth leadate (Bi 2 Pb 2 O 5 ), copper oxide (CuO), vanadium oxide (V 6 O 13 ), lithium cobalt oxide (LiCoO 2 ) Lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and the like can be used. It is also possible to use a mixture of these. Preferably, lithium cobaltate can be used.
In addition to the above, niobium selenide (NbSe 3 ) can be used.

負極30は、負極活物質からなり、好ましくは硫化物系電解質粉体を含む負極合材を加熱処理してなる負極である。負極合材において、硫化物系電解質粉体と負極材の混合比(重量比)は、好ましくは硫化物系電解質粉体:負極活物質=20〜50:80〜50である。   The negative electrode 30 is a negative electrode made of a negative electrode active material, and preferably a heat-treated negative electrode mixture containing sulfide-based electrolyte powder. In the negative electrode mixture, the mixing ratio (weight ratio) between the sulfide-based electrolyte powder and the negative electrode material is preferably sulfide-based electrolyte powder: negative electrode active material = 20-50: 80-50.

負極活物質は、電池分野において負極活物質として使用されているものが使用できる。例えば、炭素材料、具体的には、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素等が挙げられる。又はその混合物でもよい。好ましくは、人造黒鉛である。
また、金属リチウム、金属インジウム、金属アルミ、金属ケイ素等の金属自体や他の元素、化合物と組合わせた合金を、負極材として用いることができる。
What is used as a negative electrode active material in the battery field can be used for a negative electrode active material. For example, carbon materials, specifically artificial graphite, graphite carbon fiber, resin-fired carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin-fired carbon, polyacene, pitch-based carbon Examples thereof include fibers, vapor-grown carbon fibers, natural graphite, and non-graphitizable carbon. Or it may be a mixture thereof. Preferably, it is artificial graphite.
Also, an alloy in combination with a metal itself such as metallic lithium, metallic indium, metallic aluminum, metallic silicon, or another element or compound can be used as the negative electrode material.

上記正極10及び負極30に、導電助剤として、電子が正極活物質内で円滑に移動するようにするために、電気的に導電性を有す物質を適宜添加してもよい。電気的に導電性を有する物質としては特に限定しないが、アセチレンブラック、カーボンブラック、カーボンナノチューブのような導電性物質又はポリアニリン、ポリアセチレン、ポリピロールのような導電性高分子を単独又は混合して用いることができる。   A material having electrical conductivity may be appropriately added to the positive electrode 10 and the negative electrode 30 as a conductive auxiliary agent so that electrons move smoothly in the positive electrode active material. The electrically conductive substance is not particularly limited, but a conductive substance such as acetylene black, carbon black, or carbon nanotube or a conductive polymer such as polyaniline, polyacetylene, or polypyrrole is used alone or in combination. Can do.

正極及び負極は、上記極材を集電体の少なくとも一部に膜状に形成することで作製できる。製膜方法としては、例えば、ブラスト法、エアロゾルデポジション法、コールドスプレー法、スパッタリング法、気相成長法又は溶射法等が挙げられる。このような方法により製膜することで、極材層の空隙率をより小さくすることができ、イオン伝導度を向上させることができる。
簡便な装置や室温条件下、電解質の結晶状態を変化させない温度範囲で製膜できることから、ブラスト法やエアロゾルデポジション法が好ましい。
The positive electrode and the negative electrode can be produced by forming the electrode material in a film shape on at least a part of the current collector. Examples of the film forming method include a blast method, an aerosol deposition method, a cold spray method, a sputtering method, a vapor phase growth method, and a thermal spraying method. By forming a film by such a method, the porosity of the electrode material layer can be further reduced, and the ionic conductivity can be improved.
Blasting and aerosol deposition are preferred because they can be formed in a temperature range that does not change the crystal state of the electrolyte under simple equipment and room temperature conditions.

固体電解質成形体20は、本発明の硫化物系電解質成形体である。
固体電解質成形体は、上述の方法を用いて製造できるが、例えば粒子状のリチウムイオン伝導性固体物質を、ブラスト法やエアロゾルデポジション法にて製膜することでも製造できる。また、コールドスプレー法、スパッタリング法、気相成長法(Chemical Vapor Deposition:CVD)又は溶射法等でもリチウムイオン伝導性固体物質の製膜が可能である。
さらに、固体電解質と溶媒やバインダー(結着材や高分子化合物等)を混合した溶液を塗布、塗工した後、溶媒を除去し成膜化する方法もある。また、固体電解質自体や固体電解質とバインダー(結着材や高分子化合物等)や支持体(固体電解質層の強度を補強させたり、固体電解質自体の短絡を防ぐための材料や化合物等)を混合・組合した電解質を加圧プレスすることで成膜することも可能である。
簡便な装置や室温条件下、固体電解質の状態を変化させない温度範囲で製膜できることから、ブラスト法やエアロゾルデポジション法が好ましい。
The solid electrolyte molded body 20 is a sulfide-based electrolyte molded body of the present invention.
The solid electrolyte molded body can be manufactured by using the above-described method. For example, it can also be manufactured by forming a particulate lithium ion conductive solid material by a blast method or an aerosol deposition method. Also, a lithium ion conductive solid material can be formed by a cold spray method, a sputtering method, a vapor deposition method (CVD), a thermal spraying method, or the like.
Further, there is a method in which a solution in which a solid electrolyte is mixed with a solvent and a binder (binder, polymer compound, etc.) is applied and applied, and then the solvent is removed to form a film. Also, the solid electrolyte itself, solid electrolyte and binder (binder, polymer compound, etc.) and support (materials and compounds to reinforce the strength of the solid electrolyte layer and prevent short circuit of the solid electrolyte itself) are mixed -It is also possible to form a film by pressing the combined electrolyte under pressure.
Blasting and aerosol deposition are preferred because they can be formed in a temperature range that does not change the state of the solid electrolyte under simple equipment and room temperature conditions.

集電体40,42としては、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、インジウム、リチウム、又はこれらの合金等からなる板状体や箔状体等が使用できる。   As the current collectors 40, 42, a plate-like body or a foil-like body made of copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, indium, lithium, or an alloy thereof is used. Can be used.

本発明の全固体電池は、上述した電池用部材を貼り合せ、接合することで製造できる。接合する方法としては、各部材を積層し、加圧・圧着する方法や、2つのロール間を通して加圧する方法(roll to roll)等がある。接合面にイオン伝導性を有する活物質や、イオン伝導性を阻害しない接着物質を介して接合してもよい。接合においては、固体電解質の結晶構造が変化しない範囲で加熱融着してもよい。   The all solid state battery of the present invention can be manufactured by bonding and joining the battery members described above. As a method of joining, there are a method of laminating each member, pressurizing and pressure bonding, a method of pressing through two rolls (roll to roll) and the like. You may join to a joint surface through the active material which has ion conductivity, and the adhesive material which does not inhibit ion conductivity. In joining, heat fusion may be performed as long as the crystal structure of the solid electrolyte does not change.

また、上記の方法で製造した全固体電池を、さらに加熱処理すると好ましい。加熱条件は、通常、100〜350℃、0.1〜10時間である。加熱することにより高出力の電池が作製できる。尚、全固体電池の加熱処理は、負極、固体電解質成形体及び正極のみからなる電池素子部分だけを加熱処理する場合も含む。また、安全装置、ラッピング等の加熱処理は含まない。   Moreover, it is preferable that the all solid state battery manufactured by the above method is further heat-treated. The heating conditions are usually 100 to 350 ° C. and 0.1 to 10 hours. A battery with high output can be produced by heating. The heat treatment of the all-solid battery includes a case where only the battery element portion including only the negative electrode, the solid electrolyte formed body, and the positive electrode is heat-treated. Also, it does not include heat treatment such as safety devices and lapping.

製造例
(1)硫化リチウム(LiS)の製造
硫化リチウムは、特開平7−330312号公報の第1態様(2工程法)の方法に従って製造した。具体的には、撹拌翼のついた10リットルオートクレーブにN−メチル−2−ピロリドン(NMP)3326.4g(33.6モル)及び水酸化リチウム287.4g(12モル)を仕込み、300rpm、130℃に昇温した。昇温後、液中に硫化水素を3リットル/分の供給速度で2時間吹き込んだ。続いてこの反応液を窒素気流下(200cc/分)昇温し、反応した硫化水素の一部を脱硫化水素化した。昇温するにつれ、上記硫化水素と水酸化リチウムの反応により副生した水が蒸発を始めたが、この水はコンデンサにより凝縮し系外に抜き出した。水を系外に留去すると共に反応液の温度は上昇するが、180℃に達した時点で昇温を停止し、一定温度に保持した。脱硫化水素反応が終了後(約80分)反応を終了し、硫化リチウムを得た。
Production Example (1) Production of Lithium Sulfide (Li 2 S) Lithium sulfide was produced according to the method of the first aspect (two-step method) of JP-A-7-330312. Specifically, N-methyl-2-pyrrolidone (NMP) 3326.4 g (33.6 mol) and lithium hydroxide 287.4 g (12 mol) were charged into a 10 liter autoclave equipped with a stirring blade, and 300 rpm, 130 The temperature was raised to ° C. After the temperature rise, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters / minute for 2 hours. Subsequently, this reaction solution was heated in a nitrogen stream (200 cc / min) to dehydrosulfide a part of the reacted hydrogen sulfide. As the temperature increased, water produced as a by-product due to the reaction between hydrogen sulfide and lithium hydroxide started to evaporate, but this water was condensed by the condenser and extracted out of the system. While water was distilled out of the system, the temperature of the reaction solution rose, but when the temperature reached 180 ° C., the temperature increase was stopped and the temperature was kept constant. After the dehydrosulfurization reaction was completed (about 80 minutes), the reaction was completed to obtain lithium sulfide.

(2)硫化リチウムの精製
上記(1)で得られた500mLのスラリー反応溶液(NMP−硫化リチウムスラリー)中のNMPをデカンテーションした後、脱水したNMP100mLを加え、105℃で約1時間撹拌した。その温度のままNMPをデカンテーションした。さらにNMP100mLを加え、105℃で約1時間撹拌し、その温度のままNMPをデカンテーションし、同様の操作を合計4回繰り返した。デカンテーション終了後、窒素気流下230℃(NMPの沸点以上の温度)で硫化リチウムを常圧下で3時間乾燥した。得られた硫化リチウム中の不純物含有量を測定した。
(2) Purification of lithium sulfide After decanting NMP in the 500 mL slurry reaction solution (NMP-lithium sulfide slurry) obtained in (1) above, 100 mL of dehydrated NMP was added and stirred at 105 ° C. for about 1 hour. . NMP was decanted at that temperature. Further, 100 mL of NMP was added, stirred at 105 ° C. for about 1 hour, NMP was decanted at that temperature, and the same operation was repeated a total of 4 times. After completion of the decantation, lithium sulfide was dried at 230 ° C. (temperature higher than the boiling point of NMP) under a nitrogen stream for 3 hours under normal pressure. The impurity content in the obtained lithium sulfide was measured.

尚、亜硫酸リチウム(LiSO)、硫酸リチウム(LiSO)並びにチオ硫酸リチウム(Li)の各硫黄酸化物、及びN−メチルアミノ酪酸リチウム(LMAB)の含有量は、イオンクロマトグラフ法により定量した。その結果、硫黄酸化物の総含有量は0.13質量%であり、LMABは0.07質量%であった。 Incidentally, lithium sulfite (Li 2 SO 3), the content of each sulfur oxide lithium sulfate (Li 2 SO 4) and lithium thiosulfate (Li 2 S 2 O 3) , and N- methylamino acid lithium (LMAB) Was quantified by ion chromatography. As a result, the total content of sulfur oxides was 0.13% by mass, and LMAB was 0.07% by mass.

実施例1
上記製造例にて製造したLiSとP(アルドリッチ製)を出発原料に用いた。これらを70対30のモル比に調整した250gの混合物を、ジルコニア製ボールを充填したSUS製容器(容量6.7L)に入れ、露点−40℃以下のドライ雰囲気下及び室温下で、200時間振動ミルにより、1kJ/kg・sの機械的エネルギーを加えてメカニカルミリング処理することにより、白黄色粉末の硫化物系電解質粉体を得た。
得られた粉末について、粉末X線回折測定を行った(CuKα:λ=1.5418Å)。得られたチャートを図2に示す。このチャートにより、この硫化物系電解質粉体はガラス化していることが確認された。
Example 1
Li 2 S and P 2 S 5 (manufactured by Aldrich) produced in the above production example were used as starting materials. 250 g of the mixture adjusted to a molar ratio of 70:30 was placed in a SUS container (capacity: 6.7 L) filled with zirconia balls, and 200 hours under a dry atmosphere at a dew point of −40 ° C. or lower and at room temperature. A mechanical milling treatment was performed by applying mechanical energy of 1 kJ / kg · s with a vibration mill to obtain a sulfide-based electrolyte powder of white yellow powder.
Powder X-ray diffraction measurement was performed on the obtained powder (CuKα: λ = 1.5418Å). The obtained chart is shown in FIG. From this chart, it was confirmed that the sulfide-based electrolyte powder was vitrified.

得られた粉末を走査型電子顕微鏡を用いて観察したところ、粒径が0.2〜6μmの微小な粒子が観察され、得られた粉末の平均粒径は1.4μmであることが分かった。   When the obtained powder was observed using a scanning electron microscope, fine particles having a particle size of 0.2 to 6 μm were observed, and the average particle size of the obtained powder was found to be 1.4 μm. .

また、得られた粉末について示差走査熱量測定を行った。得られたチャートを図3に示す。このチャートにより、この硫化物系電解質粉体は、250℃付近に1つの発熱ピークを有することが確認された。尚、示差走査熱量測定はMODEL DSC−7(PerkinElmer社製)を用いて、窒素雰囲気下、10℃/minで行った。   Further, differential scanning calorimetry was performed on the obtained powder. The obtained chart is shown in FIG. From this chart, it was confirmed that the sulfide-based electrolyte powder had one exothermic peak near 250 ° C. Differential scanning calorimetry was performed at 10 ° C./min in a nitrogen atmosphere using MODEL DSC-7 (manufactured by PerkinElmer).

得られた硫化物系電解質粉体を錠剤成形機に充填し、4〜6MPaの圧力を印加して、硫化物系電解質成形体を作製した。さらに、黒鉛5mg及び得られた硫化物系電解質粉体5mgの混合物を成形体の両面に乗せ、再度錠剤成形機にて圧力を加えることで、固体電解質成形体(直径約10mm、厚み約1mm)を作製した。   The obtained sulfide-based electrolyte powder was filled in a tablet molding machine, and a pressure of 4 to 6 MPa was applied to produce a sulfide-based electrolyte molded body. Furthermore, a solid electrolyte molded body (diameter of about 10 mm, thickness of about 1 mm) was obtained by placing a mixture of 5 mg of graphite and 5 mg of the obtained sulfide-based electrolyte powder on both surfaces of the molded body and applying pressure again with a tablet molding machine. Was made.

得られた成形体をガラス瓶に入れ、さらにアルゴン雰囲気のSUS管に入れて密閉し、300℃2時間の焼成処理を施した。この焼成処理して得られた評価用成形体について交流インピーダンス法によりイオン伝導度を測定した。その結果、得られた固体電解質成形体の室温(25℃)でのイオン伝導度は7.3×10−3S/cmであった。また、この成形体の密度を、重量及び厚み測定の結果、及び錠剤成形機の直径より算出したところ、その算出密度は1.58g/cmであった。 The obtained molded body was put in a glass bottle, further put in a SUS tube in an argon atmosphere and sealed, and subjected to a baking treatment at 300 ° C. for 2 hours. The ionic conductivity of the molded article for evaluation obtained by the firing treatment was measured by an alternating current impedance method. As a result, the ionic conductivity of the obtained solid electrolyte molded body at room temperature (25 ° C.) was 7.3 × 10 −3 S / cm. Moreover, when the density of this molded body was calculated from the results of weight and thickness measurement and the diameter of the tablet molding machine, the calculated density was 1.58 g / cm 3 .

また、この成形体の断面を、走査型電子顕微鏡を用いて観察した。成形体の断面写真を図4に示す。この成形体の断面において、粒子同士は融着しており、空隙が少ない成形体であることが確認された。尚、下記表1において、成形体断面における硫化物系電解質粉体の融着の観察は、下記のように評価した。
○:硫化物系電解質粉体同士が融着している。
×:硫化物系電解質粉体同士が融着していない。
Moreover, the cross section of this molded object was observed using the scanning electron microscope. A cross-sectional photograph of the molded body is shown in FIG. In the cross section of this molded body, the particles were fused together, and it was confirmed that the molded body had few voids. In Table 1 below, the observation of the fusion of the sulfide-based electrolyte powder in the cross section of the compact was evaluated as follows.
○: The sulfide electrolyte powders are fused.
X: The sulfide-based electrolyte powder is not fused.

また、この成形体の結晶化度は66%であることが確認された。この結晶化度は、JNM−CMXP302NMR装置(日本電子株式会社製)を用いて、以下の条件で固体31P−NMRスペクトルを測定し、得られた固体31PNMRスペクトルについて、70〜120ppmに観測される共鳴線を、非線形最小二乗法を用いてガウス曲線に分離し、各曲線の面積比から算出した。 Moreover, it was confirmed that the crystallinity of this molded body was 66%. The crystallinity, using JNM-CMXP302NMR apparatus (manufactured by JEOL Ltd.), to measure the solid 31 PNMR spectrum under the following conditions, the obtained solid 31 PNMR spectrum, is observed in 70~120ppm The resonance lines were separated into Gaussian curves using a non-linear least square method and calculated from the area ratio of each curve.

固体31P−NMRスペクトルの測定条件
観測核 :31
観測周波数:121.339MHz
測定温度 :室温
測定法 :MAS法
パルス系列:シングルパルス
90°パルス幅:4μs
マジック角回転の回転数:8600Hz
FID測定後、次のパルス印加までの待ち時間:100〜2000s
(最大のスピン−格子緩和時間の5倍以上になるよう設定)
積算回数 :64回
化学シフトは、外部基準として(NHHPO(化学シフト1.33ppm)を用い決定した。
試料充填時の空気中の水分による変質を防ぐため、乾燥窒素を連続的に流しているドライボックス中で密閉性の試料管に試料を充填した。
Measurement conditions of solid 31 P-NMR spectrum Observation nucleus: 31 P
Observation frequency: 121.339 MHz
Measurement temperature: Room temperature Measurement method: MAS method Pulse sequence: Single pulse 90 ° Pulse width: 4 μs
Magic angle rotation speed: 8600Hz
Wait time until the next pulse application after FID measurement: 100-2000s
(Set to be more than 5 times the maximum spin-lattice relaxation time)
Number of integrations: 64 times Chemical shifts were determined using (NH 4 ) 2 HPO 4 (chemical shift 1.33 ppm) as an external reference.
In order to prevent deterioration due to moisture in the air during sample filling, the sample was filled into a hermetic sample tube in a dry box in which dry nitrogen was continuously flowed.

実施例2
メカニカルミリング処理の時間を120時間にしたほかは、実施例1と同様にして、硫化物系電解質粉体(平均粒径2μm)及びその成形体を作製し、評価した。結果を表1に示す。
Example 2
A sulfide-based electrolyte powder (average particle diameter 2 μm) and a molded body thereof were prepared and evaluated in the same manner as in Example 1 except that the mechanical milling time was 120 hours. The results are shown in Table 1.

比較例1
メカニカルミリング処理の時間を40時間としたほかは、実施例1と同様にして硫化物系電解質粉体(平均粒径1μm)を作製した。
得られた粉末について、粉末X線回折測定を行った(CuKα:λ=1.5418Å)。得られたチャートにより、この硫化物系電解質粉体はガラス化していることが確認された。
また、この硫化物系電解質粉体をアルゴン雰囲気下のSUS管に入れて密閉し、300℃2時間の焼成処理を施した。焼成処理した硫化物系電解質粉体を錠剤成形機に充填し、4〜6MPaの圧力を印加して、硫化物系電解質成形体を作製した。さらに、黒鉛5mg及び焼成処理した硫化物系電解質粉体5mgの混合物を成形体の両面にそれぞれ乗せ、再度錠剤成形機にて圧力を加えることで、評価用成形体(直径約10mm、厚み約1mm)を作製し、評価した。結果を表1に示す。
Comparative Example 1
A sulfide-based electrolyte powder (average particle size 1 μm) was produced in the same manner as in Example 1 except that the mechanical milling time was 40 hours.
Powder X-ray diffraction measurement was performed on the obtained powder (CuKα: λ = 1.5418Å). From the obtained chart, it was confirmed that the sulfide electrolyte powder was vitrified.
In addition, this sulfide-based electrolyte powder was sealed in a SUS tube under an argon atmosphere and subjected to a baking treatment at 300 ° C. for 2 hours. The sulfide-based electrolyte powder subjected to the firing treatment was filled in a tablet molding machine, and a pressure of 4 to 6 MPa was applied to produce a sulfide-based electrolyte molded body. Further, a mixture of 5 mg of graphite and 5 mg of the calcinated sulfide-based electrolyte powder was placed on both sides of the molded body, and pressure was applied again with a tablet molding machine, so that a molded body for evaluation (diameter of about 10 mm, thickness of about 1 mm). ) Were prepared and evaluated. The results are shown in Table 1.

比較例2
実施例1で作製した硫化物系電解質粉体を用いたほかは、比較例1と同様にして評価用成形体を作製し、評価した。結果を表1に示す。
Comparative Example 2
A molded article for evaluation was produced and evaluated in the same manner as in Comparative Example 1 except that the sulfide-based electrolyte powder produced in Example 1 was used. The results are shown in Table 1.

比較例3
上記製造例にて製造したLiSとP(アルドリッチ製)を出発原料に用い、振動ミルを用いて1kJ/kg・sの機械的エネルギーを36時間加えてメカニカルミリング処理した以外は実施例1と同様にして硫化物系電解質粉体(平均粒径1.5μm)を作製した。
Comparative Example 3
Except that Li 2 S and P 2 S 5 (manufactured by Aldrich) produced in the above production example were used as starting materials, and mechanical milling treatment was performed using a vibration mill and applying mechanical energy of 1 kJ / kg · s for 36 hours. In the same manner as in Example 1, a sulfide-based electrolyte powder (average particle size 1.5 μm) was produced.

得られた粉末について実施例1と同様にして示差走査熱量測定を行った。得られたチャートを図5に示す。このチャートにより、この硫化物系電解質粉体は、233℃付近、246℃付近及び265℃付近に3つの発熱ピークを有することが確認された。
また、得られた粉末を用いて実施例1と同様にして評価用成形体を作製し評価した。結果を表1に示す。
The obtained powder was subjected to differential scanning calorimetry in the same manner as in Example 1. The obtained chart is shown in FIG. From this chart, it was confirmed that the sulfide-based electrolyte powder had three exothermic peaks at around 233 ° C., around 246 ° C., and around 265 ° C.
Moreover, the molded object for evaluation was produced and evaluated like Example 1 using the obtained powder. The results are shown in Table 1.

比較例4
実施例1で作製した硫化物系電解質粉体をアルゴン雰囲気下のSUS管に入れて密閉し、300℃2時間の焼成処理を施した。焼成処理した硫化物系電解質粉体を錠剤成形機に充填し、4〜6MPaの圧力を印加して、硫化物系電解質成形体を作製した。さらに、黒鉛5mg及び焼成処理した硫化物系電解質粉体5mgの混合物を成形体の両面に乗せ、再度錠剤成形機にて圧力を加えることで、イオン伝導度測定用の固体電解質成形体(直径約10mm、厚み約1mm)を作製した。
作製した成形体をアルミパックに真空封入し、冷間等方圧加圧法(CIP)にて約1t/cmの圧力をかけ、評価用成形体を作製した。この評価用成形体を評価した。結果を表1に示す。
Comparative Example 4
The sulfide-based electrolyte powder produced in Example 1 was put in a SUS tube under an argon atmosphere and sealed, and subjected to a baking treatment at 300 ° C. for 2 hours. The sulfide-based electrolyte powder subjected to the firing treatment was filled in a tablet molding machine, and a pressure of 4 to 6 MPa was applied to produce a sulfide-based electrolyte molded body. Further, a mixture of 5 mg of graphite and 5 mg of the calcined sulfide-based electrolyte powder was placed on both sides of the molded body, and pressure was applied again with a tablet molding machine, so that a solid electrolyte molded body for measuring ionic conductivity (diameter of about 10 mm and a thickness of about 1 mm).
The produced compact was vacuum-sealed in an aluminum pack, and a pressure of about 1 t / cm 2 was applied by a cold isostatic pressing method (CIP) to produce an evaluation compact. This evaluation molded body was evaluated. The results are shown in Table 1.

比較例4で作製した評価用成形体の断面を、走査型電子顕微鏡を用いて観察した。成形体の断面写真を図6に示す。成形体の算出密度は1.45g/cm以上であったが、この成形体の断面において粒子同士は融着していないことが確認された。 The cross section of the molded article for evaluation produced in Comparative Example 4 was observed using a scanning electron microscope. A cross-sectional photograph of the molded body is shown in FIG. The calculated density of the compact was 1.45 g / cm 2 or more, but it was confirmed that the particles were not fused together in the cross section of the compact.

本発明の実施例1及び2、及び比較例1及び比較例4で製造した評価用成形体のイオン伝導度と算出密度の関係を図7に示す。   FIG. 7 shows the relationship between the ionic conductivity and the calculated density of the molded articles for evaluation produced in Examples 1 and 2 and Comparative Examples 1 and 4 of the present invention.

本発明の硫化物系電解質粉体は、固体電池の高エネルギー密度化及び高出力化を可能にし、リチウム電池の固体電解質用の材料として適している。
さらに、上記の特性を有する本発明の硫化物系電解質粉体を使用した全固体電池は、安全性に優れている。
The sulfide electrolyte powder of the present invention enables high energy density and high output of a solid battery, and is suitable as a material for a solid electrolyte of a lithium battery.
Furthermore, the all-solid-state battery using the sulfide-based electrolyte powder of the present invention having the above characteristics is excellent in safety.

本発明に係る全固体電池の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the all-solid-state battery which concerns on this invention. 実施例1で製造した硫化物系電解質粉体のX線回折スペクトルチャートである。2 is an X-ray diffraction spectrum chart of the sulfide-based electrolyte powder produced in Example 1. FIG. 実施例1で製造した硫化物系電解質粉体のDSCチャートである。2 is a DSC chart of the sulfide-based electrolyte powder produced in Example 1. 実施例1で製造した評価用成形体の断面写真である。2 is a cross-sectional photograph of a molded article for evaluation produced in Example 1. 比較例3で製造した硫化物系電解質粉体のDSCチャートである。6 is a DSC chart of a sulfide-based electrolyte powder produced in Comparative Example 3. 比較例4で製造した評価用成形体の断面写真である。6 is a cross-sectional photograph of a molded article for evaluation produced in Comparative Example 4. 本発明の実施例1及び2、及び比較例1及び比較例4で製造した評価用成形体のイオン伝導度と算出密度の関係を示す図である。It is a figure which shows the relationship between the ionic conductivity and the calculation density of the molded object for evaluation manufactured in Example 1 and 2 of this invention, and Comparative Example 1 and Comparative Example 4. FIG.

符号の説明Explanation of symbols

1 全固体電池
10 正極
20 固体電解質成形体
30 負極
40,42 集電体
DESCRIPTION OF SYMBOLS 1 All-solid-state battery 10 Positive electrode 20 Solid electrolyte molded object 30 Negative electrode 40,42 Current collector

Claims (7)

イオウ元素、リチウム元素、及び
ホウ素、ケイ素、ゲルマニウム、リン及びアルミニウムからなる群から選ばれる少なくとも1つの元素を含み、平均粒径が0.01〜10μmであり、
示差走査熱量測定(乾燥窒素雰囲気下、昇温速度10℃/min、20〜400℃)で検出される発熱ピークが200〜300℃の間で実質的に1つである硫化物系電解質粉体が互いに融着している硫化物系電解質成形体であって、
前記硫化物系電解質紛体が成分(A)硫化リチウム及び成分(B)Pを用いて得られ、
前記成分(A)及び(B)のモル比が、成分(A):成分(B)=65〜75:35〜25であり、
算出密度が1.45〜2.00g/cmであり、
25℃でのイオン伝導度が4.5×10−3S/cm以上である前記硫化物系電解質成形体。
Containing at least one element selected from the group consisting of sulfur element, lithium element, boron, silicon, germanium, phosphorus and aluminum, and an average particle size of 0.01 to 10 μm,
Sulfide-based electrolyte powder whose exothermic peak detected by differential scanning calorimetry (in dry nitrogen atmosphere, heating rate 10 ° C./min, 20 to 400 ° C.) is substantially one between 200 and 300 ° C. Are sulfide-based electrolyte molded bodies fused to each other,
The sulfide electrolyte powder is obtained using component (A) lithium sulfide and component (B) P 2 S 5 ;
The molar ratio of the components (A) and (B) is component (A): component (B) = 65-75: 35-25,
The calculated density is 1.45 to 2.00 g / cm 3 ;
The said sulfide type electrolyte molded object whose ionic conductivity in 25 degreeC is 4.5x10 < -3 > S / cm or more.
前記成分(A)及び(B)のモル比が、成分(A):成分(B)=70:30である請求項1記載の硫化物系電解質成形体。   The sulfide-based electrolyte molded body according to claim 1, wherein the molar ratio of the components (A) and (B) is component (A): component (B) = 70: 30. イオウ元素、リチウム元素、酸素元素、及びSulfur element, lithium element, oxygen element, and
ホウ素、ケイ素、ゲルマニウム、リン及びアルミニウムからなる群から選ばれる少なくとも1つの元素を含み、平均粒径が0.01〜10μmであり、Containing at least one element selected from the group consisting of boron, silicon, germanium, phosphorus and aluminum, and having an average particle size of 0.01 to 10 μm,
示差走査熱量測定(乾燥窒素雰囲気下、昇温速度10℃/min、20〜400℃)で検出される発熱ピークが200〜300℃の間で実質的に1つである硫化物系電解質粉体が互いに融着している硫化物系電解質成形体であって、Sulfide-based electrolyte powder whose exothermic peak detected by differential scanning calorimetry (in dry nitrogen atmosphere, heating rate 10 ° C./min, 20 to 400 ° C.) is substantially one between 200 and 300 ° C. Are sulfide-based electrolyte molded bodies fused to each other,
前記硫化物系電解質紛体が成分(A)硫化リチウム、成分(B)PThe sulfide electrolyte powder is composed of component (A) lithium sulfide and component (B) P. 2 S 5 、及び成分(C)LixMyOzで表される化合物(Mはホウ素、ケイ素、ゲルマニウム、硫黄、リン又はアルミニウムであり、x、y及びzはそれぞれ1〜10の整数である。)を用いて得られ、And a compound represented by component (C) LixMyOz (M is boron, silicon, germanium, sulfur, phosphorus, or aluminum, and x, y, and z are each an integer of 1 to 10). ,
前記成分(A)、(B)及び(C)のモル比が、成分(A):成分(B):成分(C)=63〜69.3:27〜29.7:1〜10であり、The molar ratio of said component (A), (B) and (C) is component (A): component (B): component (C) = 63-69.3: 27-29.7: 1-10. ,
算出密度が1.45〜2.00g/cmCalculated density is 1.45 to 2.00 g / cm 3 であり、And
25℃でのイオン伝導度が4.5×10The ionic conductivity at 25 ° C. is 4.5 × 10 −3-3 S/cm以上である前記硫化物系電解質成形体。The sulfide-based electrolyte molded body having a S / cm or more.
前記算出密度が1.5〜2.00g/cmである請求項1〜のいずれか記載の硫化物系電解質成形体。 The sulfide-based electrolyte molded body according to any one of claims 1 to 3 , wherein the calculated density is 1.5 to 2.00 g / cm 3 . 前記25℃でのイオン伝導度が5×10−3S/cm以上である請求項1〜のいずれか記載の硫化物系電解質成形体。 The sulfide-based electrolyte molded body according to any one of claims 1 to 4 , wherein the ionic conductivity at 25 ° C is 5 x 10-3 S / cm or more. 請求項1〜のいずれかに記載の硫化物系電解質成形体を備える全固体電池。 All-solid-state battery comprising a sulfide-based electrolyte molded article according to any one of claims 1-5. 請求項に記載の全固体電池をさらに加熱処理してなる全固体電池。
An all-solid battery obtained by further heat-treating the all-solid battery according to claim 6 .
JP2007133178A 2007-05-18 2007-05-18 Sulfide-based electrolyte molded body and all-solid battery comprising the same Active JP5348853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133178A JP5348853B2 (en) 2007-05-18 2007-05-18 Sulfide-based electrolyte molded body and all-solid battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133178A JP5348853B2 (en) 2007-05-18 2007-05-18 Sulfide-based electrolyte molded body and all-solid battery comprising the same

Publications (3)

Publication Number Publication Date
JP2008288098A JP2008288098A (en) 2008-11-27
JP2008288098A5 JP2008288098A5 (en) 2010-04-22
JP5348853B2 true JP5348853B2 (en) 2013-11-20

Family

ID=40147622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133178A Active JP5348853B2 (en) 2007-05-18 2007-05-18 Sulfide-based electrolyte molded body and all-solid battery comprising the same

Country Status (1)

Country Link
JP (1) JP5348853B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064288A1 (en) * 2008-12-01 2010-06-10 トヨタ自動車株式会社 Solid electrolyte battery, vehicle, battery-mounted apparatus, and method for production of solid electrolyte battery
JP2010225582A (en) * 2009-02-24 2010-10-07 Idemitsu Kosan Co Ltd Electrical apparatus
JP5376158B2 (en) * 2009-10-16 2013-12-25 住友電気工業株式会社 Method for producing sulfide solid electrolyte and composite
JP2011142007A (en) * 2010-01-07 2011-07-21 Toyota Motor Corp Method of producing solid electrolyte-electrode assembly
JP5833834B2 (en) * 2010-10-01 2015-12-16 出光興産株式会社 Sulfide solid electrolyte, sulfide solid electrolyte sheet and all solid lithium battery
FR2968298B1 (en) * 2010-12-06 2015-11-13 Centre Nat Rech Scient PROCESS FOR OBTAINING VITREOUS MATERIAL AND OPTICALLY TRANSPARENT IN INFRARED, AND OPTICAL DEVICE COMPRISING SUCH MATERIAL
JP5610391B2 (en) * 2010-12-08 2014-10-22 学校法人同志社 Metal silicide thin film manufacturing method
JP5459198B2 (en) * 2010-12-17 2014-04-02 トヨタ自動車株式会社 Sulfide solid electrolyte material, all-solid battery, method for producing sulfide solid electrolyte material, method for producing solid electrolyte layer
WO2012090601A1 (en) 2010-12-28 2012-07-05 住友電気工業株式会社 Method for producing non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP5445527B2 (en) * 2011-07-13 2014-03-19 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material
JP2013232335A (en) * 2012-04-27 2013-11-14 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery manufacturing method and nonaqueous electrolyte battery
JP6092567B2 (en) * 2012-05-31 2017-03-08 トヨタ自動車株式会社 Slurry for positive electrode for sulfide-based solid battery, positive electrode for sulfide-based solid battery and manufacturing method thereof, and sulfide-based solid battery and manufacturing method thereof
WO2014002858A1 (en) 2012-06-28 2014-01-03 株式会社 村田製作所 All-solid-state battery
JP5929748B2 (en) * 2012-12-27 2016-06-08 トヨタ自動車株式会社 Manufacturing method of all solid state battery
JP6309344B2 (en) * 2014-03-19 2018-04-11 出光興産株式会社 Solid electrolyte and battery
JP6759051B2 (en) * 2016-10-25 2020-09-23 日立造船株式会社 All-solid-state lithium-ion secondary battery
CN110537270B (en) * 2017-04-18 2022-09-23 丰田自动车株式会社 All-solid lithium ion secondary battery
JP7199893B2 (en) * 2018-09-26 2023-01-06 古河機械金属株式会社 Sulfide-based inorganic solid electrolyte materials, solid electrolytes, solid electrolyte membranes, and lithium-ion batteries
US20220209286A1 (en) * 2020-12-30 2022-06-30 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Aerosol deposition of solid electrolyte materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177304B2 (en) * 1992-02-18 2001-06-18 三洋電機株式会社 Solid electrolyte and lithium battery using the same
JP2000331707A (en) * 1999-05-24 2000-11-30 Kyocera Corp Lithium battery
JP2001126758A (en) * 1999-10-28 2001-05-11 Kyocera Corp Lithium battery
JP3433173B2 (en) * 2000-10-02 2003-08-04 大阪府 Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery
JP4813767B2 (en) * 2004-02-12 2011-11-09 出光興産株式会社 Lithium ion conductive sulfide crystallized glass and method for producing the same
WO2007015409A1 (en) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. Solid electrolyte sheet

Also Published As

Publication number Publication date
JP2008288098A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP5348853B2 (en) Sulfide-based electrolyte molded body and all-solid battery comprising the same
JP4989183B2 (en) Electrode and solid secondary battery using the same
JP5615551B2 (en) Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same
JP5368711B2 (en) Solid electrolyte membrane, positive electrode membrane, or negative electrode membrane for all solid lithium secondary battery, method for producing the same, and all solid lithium secondary battery
JP5848801B2 (en) Lithium ion conductive solid electrolyte sheet and method for producing the same
JP6085318B2 (en) Electrode material and lithium ion battery using the same
JP2008103204A (en) Cathode active material and secondary battery using it
JP2008103280A (en) Positive electrode plied timber and all-solid secondary battery using it
JP2007311084A (en) Electrolyte, member for battery, electrode, and all-solid secondary battery
JP2008103146A (en) Solid electrolyte and secondary battery using it
JP2008103203A (en) Solid electrolyte and all-solid secondary battery using it
JP2008103229A (en) Manufacturing method of solid electrolyte molded body and full solid battery provided with the same
JP2008103284A (en) All-solid battery
JP2008234843A (en) Electrode and member for all-solid secondary battery
JP2008135287A (en) All-solid battery member and manufacturing method of the member, and all-solid battery
JP2008027581A (en) Electrode material, electrode, and all-solid secondary battery
JP2008103288A (en) All-solid battery
JP5001621B2 (en) Solid electrolyte and solid secondary battery using the same
JP2008021424A (en) Electrolyte, member for battery, electrode, and all-solid secondary battery
JP2010033877A (en) Electrode mixture and all-solid secondary battery using the same
JP5096722B2 (en) Battery material manufacturing method and all solid state battery
JP2008103287A (en) Method for forming inorganic solid electrolyte layer
JP2008103292A (en) All-solid battery for household electric appliance
JP2010146823A (en) Composition for solid electrolyte sheet, solid electrolyte sheet, and solid secondary battery
JP5596900B2 (en) Lithium ion conductive solid electrolyte sheet and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5348853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150