Nothing Special   »   [go: up one dir, main page]

JP5344170B2 - Tungsten recovery process - Google Patents

Tungsten recovery process Download PDF

Info

Publication number
JP5344170B2
JP5344170B2 JP2009197667A JP2009197667A JP5344170B2 JP 5344170 B2 JP5344170 B2 JP 5344170B2 JP 2009197667 A JP2009197667 A JP 2009197667A JP 2009197667 A JP2009197667 A JP 2009197667A JP 5344170 B2 JP5344170 B2 JP 5344170B2
Authority
JP
Japan
Prior art keywords
tungsten
component
leachate
liquid
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009197667A
Other languages
Japanese (ja)
Other versions
JP2011047013A (en
Inventor
正治 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009197667A priority Critical patent/JP5344170B2/en
Publication of JP2011047013A publication Critical patent/JP2011047013A/en
Application granted granted Critical
Publication of JP5344170B2 publication Critical patent/JP5344170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、タングステン含有スラッジからタングステン成分を効率よく回収する処理方法に関する。 The present invention relates to a processing method for efficiently recovering a tungsten component from a tungsten-containing sludge.

近年、電子材料や電極材料としてタングステン含有薄膜が用いられており、成膜用ターゲット原料として高純度タングステンの需要が高まっている。しかし、タングステン原料の資源は限られており、その安定な供給が問題になっている。一方、超硬合金は炭化タングステンなどを含有しており、超硬合金スクラップにはタングステンが含まれているので、このスクラップからタングステンを回収し、有効に利用することが求められている。 In recent years, tungsten-containing thin films have been used as electronic materials and electrode materials, and the demand for high-purity tungsten as a target material for film formation has increased. However, the resources of tungsten raw material are limited, and its stable supply is a problem. On the other hand, cemented carbide contains tungsten carbide and the like, and cemented carbide scrap contains tungsten. Therefore, it is required to recover tungsten from this scrap and use it effectively.

タングステンの回収方法として、従来、以下の方法が知られている。
(イ)超硬合金スクラップを酸化して粉砕し、この粉砕物に苛性ソーダ溶液を加えてタングステンを浸出させ、脱シリカ処理後、該溶液からタングステン酸カルシウムを沈殿させて回収する方法(非特許文献1)。
(ロ)超硬合金スクラップを不活性雰囲気下で亜鉛と混合し、850℃〜950℃に加熱して超硬合金スクラップに含まれているコバルトと亜鉛を合金化し、これを亜鉛の沸点以上に加熱して亜鉛を真空分離することによって炭化タングステン粉末とコバルト粉末の混合物(WC-Co)を回収する方法(亜鉛処理法)。
(ハ)超硬合金スクラップを1800℃〜2300℃に加熱して結合相(Co)中のガス化成分を発泡させてスポンジ状にし、これを粉砕して炭化タングステン粉末とコバルト粉末の混合物を回収する方法(高熱処理法)。
Conventionally, the following methods are known as a method for recovering tungsten.
(B) A method in which cemented carbide scrap is oxidized and pulverized, a caustic soda solution is added to the pulverized product to leach tungsten, and after desilicaization, calcium tungstate is precipitated from the solution and recovered (Non-Patent Document) 1).
(B) Cemented carbide scrap is mixed with zinc in an inert atmosphere and heated to 850 ° C. to 950 ° C. to alloy cobalt and zinc contained in the cemented carbide scrap, and this exceeds the boiling point of zinc. A method of recovering a mixture of tungsten carbide powder and cobalt powder (WC-Co) by heating and vacuum separating zinc (zinc treatment method).
(C) Cemented carbide scrap is heated to 1800 ° C to 2300 ° C to foam the gasified component in the binder phase (Co) to form a sponge, which is pulverized to recover a mixture of tungsten carbide powder and cobalt powder. Method (high heat treatment method).

超硬合金を含有する廃水スラッジに上記(イ)の処理方法を適用すると、該廃水スラッジに含まれる珪藻土のシリカ成分がアルカリ浸出の際にタングステン成分と共に溶出し、pH調整時にシリカ微粒子が析出してタングステンがこの沈殿に取込まれるので、タングステンの損失が多く、かつ濾過性に劣ると云う問題がある。また、上記廃水スラッジに上記(ロ)の亜鉛処理法を適用すると、シリカ成分を十分に除去できないので、WC-Co混合物にシリカ成分が混入し、回収物を再利用するのが難しくなる。また、上記(ハ)の高熱処理法は安価に処理できるが粗大なWC粒子が混在し、しかもシリカ成分を除去できない。 When the above treatment method (a) is applied to wastewater sludge containing cemented carbide, the silica component of diatomaceous earth contained in the wastewater sludge is eluted together with the tungsten component during alkaline leaching, and silica fine particles are precipitated during pH adjustment. Since tungsten is taken into this precipitate, there is a problem that the loss of tungsten is large and the filterability is poor. Further, when the zinc treatment method (b) is applied to the wastewater sludge, the silica component cannot be sufficiently removed, so that the silica component is mixed into the WC-Co mixture, and it becomes difficult to reuse the recovered material. Moreover, although the high heat treatment method (c) can be processed at a low cost, coarse WC particles are mixed and the silica component cannot be removed.

Journal of MMIJ, 123, (2007) No.12Journal of MMIJ, 123, (2007) No.12

本発明は、従来の処理方法における上記課題を解決したものであり、タングステンの損失が少なくシリカ成分を除去することができ、効率よくタングステンを回収することができる処理方法を提供する。 The present invention solves the above-mentioned problems in the conventional processing method, and provides a processing method that can remove the silica component with little loss of tungsten and efficiently recover tungsten.

〔1〕タングステン成分およびシリカ成分を含む原料混合物を酸化焙焼する工程、該酸化焙焼物にアルカリ溶液を加えてタングステン成分およびシリカ成分を浸出する工程、これを固液分離する工程、分離した浸出液に水酸化カルシウムを加えて液中のシリカ成分を沈澱化する工程、これを固液分離してタングステン成分の浸出液を得る工程を有し、該浸出液からタングステンを回収することを特徴とするタングステンの回収処理方法。
〔2〕原料混合物が超硬製品の製造工程から排出される炭化タングステン粉末および珪藻土を含んだスラッジである上記[1]に記載する処理方法。
〔3〕酸化焙焼温度が300℃〜1100℃である上記[1]〜上記[2]の何れかに記載する処理方法。
〔4〕酸化焙焼物のアルカリ浸出工程、浸出液中のシリカ成分の沈澱化工程において、液温が40℃以上である上記[1]〜上記[3]の何れかに記載する処理方法。
〔5〕浸出液中のシリカ成分の沈澱化工程において、浸出液のpHが13以上である上記[1]〜上記[4]の何れかに記載する処理方法。
〔6〕原料混合物が、タングステン成分およびシリカ成分と共にコバルト成分を含む超硬合金含有スラッジであり、酸化焙焼物のアルカリ浸出によってタングステン成分およびシリカ成分を浸出すると共に、コバルト成分を水酸化コバルトにし、固液分離して浸出液から分離する上記[1]〜上記[5]の何れかに記載する処理方法。
〔7〕上記[6]の処理方法において、酸化焙焼物のアルカリ浸出工程の液温が140℃以上である処理方法。
[1] A step of oxidizing and roasting a raw material mixture containing a tungsten component and a silica component, a step of adding an alkaline solution to the oxidized roasted product and leaching the tungsten component and the silica component, a step of separating the solid and liquid, and a separated leachate A step of precipitating the silica component in the liquid by adding calcium hydroxide to the mixture, and a step of obtaining a leaching solution of the tungsten component by solid-liquid separation thereof, and collecting tungsten from the leaching solution. Collection processing method.
[2] The processing method according to the above [1], wherein the raw material mixture is a sludge containing tungsten carbide powder and diatomaceous earth discharged from the manufacturing process of the cemented carbide product.
[3] The processing method according to any one of [1] to [2] above, wherein the oxidation roasting temperature is 300 ° C to 1100 ° C.
[4] The processing method according to any one of [1] to [3] above, wherein the liquid temperature is 40 ° C. or higher in the alkali leaching step of the oxidized roasted product and the precipitation step of the silica component in the leachate.
[5] The processing method according to any one of [1] to [4], wherein the pH of the leachate is 13 or more in the precipitation step of the silica component in the leachate.
[6] The raw material mixture is a cemented carbide-containing sludge containing a cobalt component together with a tungsten component and a silica component. The tungsten component and the silica component are leached by alkali leaching of the oxidized roasted product, and the cobalt component is changed to cobalt hydroxide. The processing method according to any one of [1] to [5] above, wherein the liquid is separated from the leachate by solid-liquid separation.
[7] The processing method according to [6], wherein the liquid temperature in the alkaline leaching step of the oxidized roasted product is 140 ° C. or higher.

本発明の処理方法は、シリカ成分を含有する超硬合金スラッジについて、酸化焙焼物のアルカリ浸出液に消石灰〔Ca(OH)2〕を添加して液中のシリカ成分を沈澱化し、浸出液から容易に除去することができるので、シリカ成分を除去する際にタングステンの損失が殆どなく、従って効率よくタングステンを回収することができる。 In the treatment method of the present invention, for cemented carbide sludge containing a silica component, slaked lime [Ca (OH) 2 ] is added to the alkaline leachate of the oxidized roasted product to precipitate the silica component in the liquor, and easily from the leachate. Since it can be removed, there is almost no loss of tungsten when the silica component is removed, so that tungsten can be recovered efficiently.

さらに、シリカ成分の沈澱化工程後に固液分離して得られる浸出液はシリカ分を実質的に含まないタングステン酸アルカリ溶液(Na2WO4溶液等)であるので、これを酸化タングステンや炭化タングステンの製造原料として利用することができる。 Furthermore, since the leachate obtained by solid-liquid separation after the precipitation step of the silica component is an alkali tungstate solution (Na 2 WO 4 solution, etc.) substantially free of silica, It can be used as a raw material for production.

また、本発明の処理方法は、アルカリ浸出残渣および消石灰添加による沈澱物の濾過性が良く、酸化焙焼からNa2WO4溶液等を得るまでの処理が容易であるので、従来は有効にリサイクルされていない超硬合金スラッジを原料としてタングステンを回収することができる。 Further, the treatment method of the present invention has good filterability of precipitates due to the addition of alkali leaching residue and slaked lime, and the treatment from oxidation roasting to obtaining Na 2 WO 4 solution and the like is easy. Tungsten can be recovered from untreated cemented carbide sludge.

本発明の処理方法の概略工程図Schematic process diagram of the processing method of the present invention

本発明の処理方法の概略を図1に示す。図示するように、本発明の処理方法は、タングステン成分(W成分)およびシリカ成分(SiO2成分)を含む原料混合物を酸化焙焼する工程、該酸化焙焼物にアルカリ溶液を加えてタングステン成分およびシリカ成分を浸出する工程、これを固液分離する工程、分離した浸出液に水酸化カルシウムを加えて液中のシリカ成分を沈澱化する工程、これを固液分離してタングステン成分の浸出液を得る工程を有し、該浸出液からタングステンを回収することを特徴とするタングステンの回収処理方法である。 An outline of the treatment method of the present invention is shown in FIG. As shown in the figure, the treatment method of the present invention includes a step of oxidizing and roasting a raw material mixture containing a tungsten component (W component) and a silica component (SiO 2 component), adding an alkaline solution to the oxidized roasted product, The step of leaching the silica component, the step of solid-liquid separation of this, the step of adding calcium hydroxide to the separated leachate to precipitate the silica component in the liquid, the step of solid-liquid separation to obtain the leachate of the tungsten component And recovering tungsten from the leaching solution.

〔原料混合物〕
W成分およびSiO2成分を含む原料混合物としては、超硬製品の製造工程から排出される超硬合金を含むスラッジなどが用いられる。超硬合金を含むスラッジには炭化タングステン(WC)や結合材成分のコバルト(Co)が含まれている。また、その廃水スラッジには濾過性を高めるために珪藻土が添加されており、珪藻土のシリカ成分が含まれている。
[Raw material mixture]
As the raw material mixture containing the W component and the SiO 2 component, sludge containing cemented carbide discharged from the production process of the cemented carbide product is used. Sludge containing cemented carbide contains tungsten carbide (WC) and the binder component cobalt (Co). In addition, diatomaceous earth is added to the wastewater sludge in order to improve filterability, and the silica component of diatomaceous earth is included.

〔酸化焙焼工程〕
上記原料混合物を大気下(酸化雰囲気)で焙焼する。原料混合物を酸化焙焼することによって、付着している有機物が分解して除去される。また、次式[1]に示すように、原料混合物に含まれている炭化タングステンは酸化して三酸化タングステン(WO3)になり、炭素は炭酸ガスになって系外に出る。また、コバルトが含有されている場合には、コバルトはタングステンの一部と化合してタングステン酸コバルト(CoWO4)になる。酸化焙焼物にはこれらの三酸化タングステン、タングステン酸コバルト、および上記シリカが含まれている。一般に上記廃水スラッジを酸化焙焼すると、焙焼物には概ねWO3が25〜35wt%、CoWO4が15〜20wt%、SiO2が25〜50wt%含まれている。
[Oxidation roasting process]
The raw material mixture is roasted in the air (oxidizing atmosphere). By oxidizing and baking the raw material mixture, the adhering organic substances are decomposed and removed. Further, as shown in the following formula [1], tungsten carbide contained in the raw material mixture is oxidized to tungsten trioxide (WO 3 ), and carbon becomes carbon dioxide gas and goes out of the system. When cobalt is contained, cobalt is combined with a part of tungsten to be cobalt tungstate (CoWO 4 ). The oxidized roasted product contains these tungsten trioxide, cobalt tungstate, and the silica. In general, oxidation roasting the waste sludge, approximately WO 3 is 25~35Wt% in roasting thereof, CoWO 4 is 15~20wt%, SiO 2 is contained 25-50%.

WC + 5/2O2 → WO3 + CO2 … [1]
WC + Co + 3O2 → CoWO4 + CO2 … [2]
WC + 5 / 2O 2 → WO 3 + CO 2 … [1]
WC + Co + 3O 2 → CoWO 4 + CO 2 … [2]

酸化焙焼の焙焼温度は300℃〜1100℃が適当であり、600℃〜900℃が好ましい。焙焼温度が300℃より低いとタングステンの酸化に長時間を必要とし、一方、1100℃より高くても酸化時間はあまり変わらず加熱コストが嵩む。 The roasting temperature for oxidation roasting is suitably 300 ° C to 1100 ° C, preferably 600 ° C to 900 ° C. If the roasting temperature is lower than 300 ° C., it takes a long time to oxidize tungsten. On the other hand, if it is higher than 1100 ° C., the oxidation time does not change so much and the heating cost increases.

〔アルカリ浸出工程〕
酸化焙焼物を解砕し、アルカリ溶液を添加してタングステン成分を溶出させる。アルカリ溶液としては水酸化ナトリウム溶液などを用いることができる。アルカリ溶液の添加量は焙焼物に含まれるタングステン成分を溶出させるのに十分な量が好ましい。アルカリ浸出の液温は、CoWO4が含まれていない場合には40℃以上でよく、CoWO4が含まれている場合にはその分解を促すために140℃以上が好ましい。
[Alkaline leaching process]
The oxidized roast is crushed and an alkaline solution is added to elute the tungsten component. As the alkaline solution, a sodium hydroxide solution or the like can be used. The addition amount of the alkaline solution is preferably an amount sufficient to elute the tungsten component contained in the baked product. The liquid temperature of the alkali leaching may in case 40 ° C. or more does not contain CoWO 4, if it contains CoWO 4 is preferably at least 140 ° C. to promote its degradation.

酸化焙焼物に含まれるWO3は、次式[3]に示すように、水酸化ナトリウムと反応してタングステン酸ナトリウム(Na2WO4)になり、液中に溶出する。また、酸化焙焼物に含まれるCoWO4は、次式[4]に示すように、水酸化ナトリウムと反応してタングステン酸ナトリウム(Na2WO4)と水酸化コバルト(Co(OH)2)を生成する。また、酸化焙焼物に含まれるシリカ(SiO2)は水酸化ナトリウムと反応して珪酸ナトリウム(Na2SiO3)を生成し、液中に溶出する。 WO 3 contained in the oxidized roasted product reacts with sodium hydroxide to become sodium tungstate (Na 2 WO 4 ) as shown in the following formula [3], and is eluted in the liquid. Further, CoWO 4 contained in the oxidized roasted product reacts with sodium hydroxide to form sodium tungstate (Na 2 WO 4 ) and cobalt hydroxide (Co (OH) 2 ) as shown in the following formula [4]. Generate. Silica (SiO 2 ) contained in the oxidized roasted product reacts with sodium hydroxide to produce sodium silicate (Na 2 SiO 3 ), which is eluted in the liquid.

WO3 + 2NaOH → Na2WO4 + H2O … [3]
CoWO4 + 2NaOH → Na2WO4 + Co(OH)2 … [4]
WO 3 + 2NaOH → Na 2 WO 4 + H 2 O… [3]
CoWO 4 + 2NaOH → Na 2 WO 4 + Co (OH) 2 … [4]

〔固液分離工程〕
上記アルカリ浸出物を固液分離して、固形分の水酸化コバルトを分離し、タングステン酸ナトリウムとシリカを液中に含む浸出液を回収する。
[Solid-liquid separation process]
The alkaline leachate is subjected to solid-liquid separation to separate solid cobalt hydroxide, and a leachate containing sodium tungstate and silica in the liquid is recovered.

〔シリカ沈澱化工程〕
上記固液分離した浸出液に消石灰(Ca(OH)2)を添加する。消石灰は液中のシリカと反応して、CaO・SiO2・H2Oを生成する。この生成した酸化カルシウムとシリカの混合物は濾過性が良いので、容易に濾過して浸出液から分離することができる。タングステン酸ナトリウムは消石灰と反応せずに液中に残る。
[Silica precipitation step]
Slaked lime (Ca (OH) 2 ) is added to the leachate obtained by solid-liquid separation. Slaked lime reacts with silica in the liquid to produce CaO · SiO 2 · H 2 O. Since the resulting mixture of calcium oxide and silica has good filterability, it can be easily filtered and separated from the leachate. Sodium tungstate remains in the liquid without reacting with slaked lime.

上記沈澱化工程において、浸出液はpH13以上の強アルカリ性が好ましい。また、液温は室温以上が適当であり、上記沈澱物の生成を速めるには40℃以上が好ましい。消石灰の添加量は液中のシリカ量に対して当量であれば良い。 In the precipitation step, the leachate is preferably strongly alkaline with a pH of 13 or higher. The liquid temperature is suitably room temperature or higher, and preferably 40 ° C. or higher for speeding up the formation of the precipitate. The amount of slaked lime added may be equivalent to the amount of silica in the liquid.

〔固液分離工程〕
消石灰を添加した浸出液を濾過してカルシウムおよびシリカを含む上記混合沈殿物を分離する。この濾液はシリカを実質的に含まないタングステン酸ナトリウム溶液であるので、これをタングステン回収の原料液として用いることができる。
[Solid-liquid separation process]
The leachate added with slaked lime is filtered to separate the mixed precipitate containing calcium and silica. Since this filtrate is a sodium tungstate solution substantially free of silica, it can be used as a raw material liquid for tungsten recovery.

〔Na2WO4溶液の処理工程〕
回収したタングステン酸ナトリウム(Na2WO4)溶液を用い、タングステン酸アンモニウム〔(NH4)2WO4〕を経て酸化タングステン粉(WO3粉)を製造し、あるいは該酸化タングステンの水素還元によってタングステン粉を製造し、これを炭化処理して炭化タングステン粉(WC粉)を製造することができる。
[Na 2 WO 4 solution treatment process]
The recovered sodium tungstate (Na 2 WO 4 ) solution is used to produce tungsten oxide powder (WO 3 powder) via ammonium tungstate [(NH 4 ) 2 WO 4 ], or tungsten is reduced by hydrogen reduction of the tungsten oxide. Powder can be manufactured and this can be carbonized to produce tungsten carbide powder (WC powder).

具体的には、例えば、Na2WO4溶液にカルシウム源を添加してタングステン酸カルシウム(CaWO4)沈殿を生成させ、これを回収し、酸分解してタングステン酸(H2WO4)を製造し、これをアンモニアに溶解してタングステン酸アンモニウム〔(NH4)2WO4〕溶液とし、この溶液からパラタングステン酸アンモニウム〔5(NH4)2O・12WO3・5H2O〕を晶析させる。これを焼成して酸化タングステン粉とした後に水素還元してタングステン粉(W粉)を得ることができ、さらに炭化処理して炭化タングステン粉(WC粉)を得ることができる。 Specifically, for example, a calcium source is added to a Na 2 WO 4 solution to form a calcium tungstate (CaWO 4 ) precipitate, which is recovered and acid decomposed to produce tungstic acid (H 2 WO 4 ). This was dissolved in ammonia to obtain an ammonium tungstate [(NH 4 ) 2 WO 4 ] solution, and ammonium paratungstate [5 (NH 4 ) 2 O · 12WO 3 · 5H 2 O] was crystallized from this solution. Let This can be fired to obtain tungsten oxide powder, which can then be hydrogen reduced to obtain tungsten powder (W powder), and further carbonized to obtain tungsten carbide powder (WC powder).

本発明の実施例を以下に示す。
〔実施例1〕
タングステン(W)45wt%、クリストバライトを主成分とするシリコン(Si)14wt%を含有するスラッジ1kgを、大気中にて700℃で2時間焙焼した。この焙焼物を濃度160g/Lの苛性ソーダ溶液5Lに混合し、80℃で2時間浸漬した。このスラリーを濾過し、固形分として残る水酸化コバルトを分離した。次に、この固液分離した濾洗液7Lに消石灰371gを加え、室温下で20時間反応させ、生成した沈澱を濾過して分離し、濾液としてW濃度39g/L、Si濃度0.13g/Lのタングステン酸ナトリウム溶液8.2Lを得た。Wの回収率は71%であり、Si濃度はパラタングステン酸アンモニウムを製造するうえで問題のないレベルであった。
Examples of the present invention are shown below.
[Example 1]
1 kg of sludge containing 45 wt% tungsten (W) and 14 wt% silicon (Si) containing cristobalite as a main component was roasted at 700 ° C. for 2 hours in the air. This roasted product was mixed with 5 L of caustic soda solution having a concentration of 160 g / L and immersed at 80 ° C. for 2 hours. This slurry was filtered to separate the remaining cobalt hydroxide as a solid content. Next, 371 g of slaked lime is added to 7 L of the filtered washing liquid separated into solid and liquid and reacted at room temperature for 20 hours, and the formed precipitate is separated by filtration. As a filtrate, W concentration 39 g / L, Si concentration 0.13 g / 8.2 L of sodium tungstate solution was obtained. The W recovery was 71%, and the Si concentration was at a level causing no problem in producing ammonium paratungstate.

〔実施例2〜4〕
表1に示すスラッジを用い、表1に示す条件の他は実施例1と同様にして、タングステン酸ナトリウム溶液を得た。この結果を表1に示した。
[Examples 2 to 4]
Using the sludge shown in Table 1, a sodium tungstate solution was obtained in the same manner as in Example 1 except for the conditions shown in Table 1. The results are shown in Table 1.

Figure 0005344170
Figure 0005344170

Claims (7)

タングステン成分およびシリカ成分を含む原料混合物を酸化焙焼する工程、該酸化焙焼物にアルカリ溶液を加えてタングステン成分およびシリカ成分を浸出する工程、これを固液分離する工程、分離した浸出液に水酸化カルシウムを加えて液中のシリカ成分を沈澱化する工程、これを固液分離してタングステン成分の浸出液を得る工程を有し、該浸出液からタングステンを回収することを特徴とするタングステンの回収処理方法。 A step of oxidizing and roasting a raw material mixture containing a tungsten component and a silica component, a step of adding an alkaline solution to the oxidized roasted product and leaching the tungsten component and the silica component, a step of separating the solid and liquid, and a hydroxylation of the separated leachate A method for recovering tungsten, comprising: adding calcium to precipitate a silica component in the liquid; and solid-liquid separation to obtain a tungsten component leachate, and collecting tungsten from the leachate. . 原料混合物が超硬製品の製造工程から排出される炭化タングステン粉末および珪藻土を含んだスラッジである請求項1に記載する処理方法。 The processing method according to claim 1, wherein the raw material mixture is a sludge containing tungsten carbide powder and diatomaceous earth discharged from the manufacturing process of the cemented carbide product. 酸化焙焼温度が300℃〜1100℃である請求項1〜請求項2の何れかに記載する処理方法。 The treatment method according to claim 1, wherein the oxidation roasting temperature is 300 ° C. to 1100 ° C. 3. 酸化焙焼物のアルカリ浸出工程、浸出液中のシリカ成分の沈澱化工程において、液温が40℃以上である請求項1〜請求項3の何れかに記載する処理方法。 The treatment method according to any one of claims 1 to 3, wherein the liquid temperature is 40 ° C or higher in the alkali leaching step of the oxidized roasted product and the precipitation step of the silica component in the leachate. 浸出液中のシリカ成分の沈澱化工程において、浸出液のpHが13以上である請求項1〜請求項4の何れかに記載する処理方法。 The processing method according to any one of claims 1 to 4, wherein the pH of the leachate is 13 or more in the step of precipitating the silica component in the leachate. 原料混合物が、タングステン成分およびシリカ成分と共にコバルト成分を含む超硬合金含有スラッジであり、酸化焙焼物のアルカリ浸出によってタングステン成分およびシリカ成分を浸出すると共に、コバルト成分を水酸化コバルトにし、固液分離して浸出液から分離する請求項1〜請求項5の何れかに記載する処理方法。 The raw material mixture is cemented carbide-containing sludge containing a cobalt component together with a tungsten component and a silica component. The tungsten component and the silica component are leached by alkali leaching of the oxidized roasted product, and the cobalt component is converted to cobalt hydroxide to separate into solid and liquid. The processing method according to any one of claims 1 to 5, wherein the treatment is separated from the leachate. 請求項6の処理方法において、酸化焙焼物のアルカリ浸出工程の液温が140℃以上である処理方法。 The processing method according to claim 6, wherein the liquid temperature in the alkali leaching step of the oxidized roasted product is 140 ° C. or higher.
JP2009197667A 2009-08-28 2009-08-28 Tungsten recovery process Active JP5344170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009197667A JP5344170B2 (en) 2009-08-28 2009-08-28 Tungsten recovery process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197667A JP5344170B2 (en) 2009-08-28 2009-08-28 Tungsten recovery process

Publications (2)

Publication Number Publication Date
JP2011047013A JP2011047013A (en) 2011-03-10
JP5344170B2 true JP5344170B2 (en) 2013-11-20

Family

ID=43833634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197667A Active JP5344170B2 (en) 2009-08-28 2009-08-28 Tungsten recovery process

Country Status (1)

Country Link
JP (1) JP5344170B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3933058A4 (en) * 2019-02-25 2023-03-22 Mitsubishi Materials Corporation Tungsten recovery method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151190A1 (en) * 2012-04-27 2013-10-10 京セラ株式会社 Method for collecting tungsten compounds
KR101452179B1 (en) * 2014-03-11 2014-10-24 한국지질자원연구원 Recovery method of vanadium and tungsten from leaching solution of spent catalyst of denitrification
WO2016158878A1 (en) 2015-03-31 2016-10-06 Jx金属株式会社 Tungsten carbide production method
EP3279345B1 (en) 2015-03-31 2020-02-12 JX Nippon Mining & Metals Corporation Tungsten production method
JP6532734B2 (en) 2015-03-31 2019-06-19 Jx金属株式会社 Recovery method of valuables including tungsten
KR101709487B1 (en) * 2015-08-07 2017-02-23 한국지질자원연구원 A Method for Crushing Hard Tungsten Carbide Scraps
CN110144466B (en) * 2019-05-14 2021-07-20 荆门德威格林美钨资源循环利用有限公司 Method for efficiently separating and recycling tungsten from alkaline leaching tungsten slag
CN114934169B (en) * 2022-05-13 2023-08-22 中南大学 Method for recycling tungsten-containing waste
CN117206531B (en) * 2023-11-07 2024-02-27 崇义章源钨业股份有限公司 Crushing method of waste solid hard alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395804A (en) * 1977-02-01 1978-08-22 Nippon Tungsten Separating and recovering of valuable metal
JP2004002927A (en) * 2002-05-31 2004-01-08 Mitsui Mining & Smelting Co Ltd Method for processing super hard alloy scrap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3933058A4 (en) * 2019-02-25 2023-03-22 Mitsubishi Materials Corporation Tungsten recovery method

Also Published As

Publication number Publication date
JP2011047013A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5344170B2 (en) Tungsten recovery process
JP5344154B2 (en) Tungsten recovery process
JP5702453B2 (en) Process for treating slag for silica and magnesia extraction
CN108368564B (en) Method for fixing arsenic and arsenic-containing glass solidified body
EP2450312A1 (en) Recovery of tungsten from waste material by ammonium leaching
CN103950984B (en) The tungstenic grinding material that gives up is utilized to produce the method for sodium tungstate solution and sodium wolframate
KR101441421B1 (en) Collection method of precursor material using disposed lithum-ion battery
WO2017127936A1 (en) Recovery of cesium from epithermal mineral deposits
KR101581860B1 (en) Method for preparing high-purity ammonium paratungstate using waste super hard metal scrap
CN111020234A (en) Method for preparing APT (ammonium paratungstate) by utilizing tungsten-containing waste
JP2014025141A (en) METHOD OF RECOVERING GALLIUM FROM InGa WASTE MATERIAL
AU2008231270B2 (en) Titaniferous ore beneficiation
TW200936508A (en) Method of reclaiming ruthenium from waste containing ruthenium
KR101266437B1 (en) Method of preparing manganese sulfate with high purity
JP7016463B2 (en) How to collect tellurium
JP6317864B2 (en) Method for treating tungsten-containing material
CN103194604A (en) Method for recovering tantalum, silver and manganese in waste and old tantalum capacitor
JP2010138490A (en) Method of recovering zinc
JP4016680B2 (en) Method for dissolving selenium platinum group element-containing material
KR101143566B1 (en) Recovery of tungsten and cobalt from hardmetal alloy sludge by the hydrometallurgical process using aqua regia
KR101718440B1 (en) Method for preparing magnesium compound from Fe-Ni slag
WO2011049218A1 (en) Method of molybdenum refining
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
KR20160143198A (en) slag treatment method for extracting silic and magnesia
JP6374285B2 (en) Method for recovering tungsten compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5344170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250