Nothing Special   »   [go: up one dir, main page]

JP5343528B2 - Negative electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Negative electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP5343528B2
JP5343528B2 JP2008299488A JP2008299488A JP5343528B2 JP 5343528 B2 JP5343528 B2 JP 5343528B2 JP 2008299488 A JP2008299488 A JP 2008299488A JP 2008299488 A JP2008299488 A JP 2008299488A JP 5343528 B2 JP5343528 B2 JP 5343528B2
Authority
JP
Japan
Prior art keywords
electrode
active material
negative electrode
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008299488A
Other languages
Japanese (ja)
Other versions
JP2010129194A (en
Inventor
嘉也 牧村
尊夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008299488A priority Critical patent/JP5343528B2/en
Publication of JP2010129194A publication Critical patent/JP2010129194A/en
Application granted granted Critical
Publication of JP5343528B2 publication Critical patent/JP5343528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery.

従来、リチウムイオン二次電池としては、LiCoO2の一次粒子を凝集させ、球状とすることにより電極上に塗布・プレスさせたときのX線回折の(110)/(003)のピーク強度を0.1以上とする、即ち配向性を低減させることにより内部抵抗を低減し、大電流放電時の容量を向上させるものが提案されている(例えば、特許文献1参照)。また、リチウム金属酸化物を活物質とする正極とLi2Ti37で表されるリチウムチタン酸化物を活物質とする負極とを備え、リチウム金属酸化物の実容量に対するリチウムチタン酸化物の実容量の比を0.8以下とすることにより、充放電の繰り返しによる正極活物質の結晶構造の破壊を抑制し充放電サイクルの寿命特性を高めたものが提案されている(例えば、特許文献2参照)。更に、ラムスデライト構造を有するリチウムチタン酸化物を用い、正極と負極との容量比を負極/正極=1〜7にした電気化学キャパシタが提案されている(例えば、特許文献3参照)。この電気化学キャパシタは、電気化学キャパシタと電池とを並列につなぐことにより、高容量且つ長寿命なハイブリッド電源になるとされている。
特開2002−279985号公報 特開2000−12090号公報 特開2004−221523号公報
Conventionally, as a lithium ion secondary battery, the peak intensity of (110) / (003) of X-ray diffraction when LiCoO 2 primary particles are agglomerated and spherically coated and pressed on an electrode is 0. It has been proposed that the internal resistance is reduced by reducing the orientation, that is, the orientation is reduced, and the capacity during large current discharge is improved (for example, see Patent Document 1). In addition, a positive electrode using a lithium metal oxide as an active material and a negative electrode using a lithium titanium oxide represented by Li 2 Ti 3 O 7 as an active material are provided. By setting the ratio of the actual capacity to 0.8 or less, a material that suppresses the destruction of the crystal structure of the positive electrode active material due to repeated charge / discharge and has improved the life characteristics of the charge / discharge cycle has been proposed (for example, Patent Documents) 2). Furthermore, an electrochemical capacitor has been proposed in which lithium titanium oxide having a ramsdellite structure is used and the capacity ratio between the positive electrode and the negative electrode is set to negative electrode / positive electrode = 1 to 7 (see, for example, Patent Document 3). This electrochemical capacitor is said to be a high-capacity and long-life hybrid power source by connecting an electrochemical capacitor and a battery in parallel.
JP 2002-279985 A JP 2000-12090 A JP 2004-221523 A

このように、特許文献1〜3に記載されたリチウムイオン二次電池などでは、負極活物質の配向性の検討や、負極活物質としてのリチウムチタン酸化物の検討などにより、高容量化を図り、繰返充放電におけるサイクル特性を向上させていた。しかしながら、まだ十分でなく、サイクル特性及び負荷特性をより高めることが望まれていた。   As described above, in the lithium ion secondary batteries described in Patent Documents 1 to 3, the capacity is increased by examining the orientation of the negative electrode active material and the lithium titanium oxide as the negative electrode active material. The cycle characteristics in repeated charge / discharge were improved. However, it is still not sufficient, and it has been desired to further improve the cycle characteristics and the load characteristics.

本発明は、このような課題に鑑みなされたものであり、サイクル特性及び負荷特性をより高めることができるリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを主目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the negative electrode for lithium ion secondary batteries and lithium ion secondary battery which can improve cycling characteristics and load characteristics more.

上述した目的を達成するために鋭意研究したところ、本発明者らは、ラムスデライト構造を有するチタン化合物を含む負極活物質において、電極のX線回折測定を行ったときの各回折面のピーク面積を用いて求めた値Rintが所定の好適な範囲にあると、サイクル特性及び負荷特性をより高めることができることを見いだし、本発明を完成するに至った。 As a result of diligent research to achieve the above-described object, the present inventors have found that in a negative electrode active material containing a titanium compound having a ramsdellite structure, the peak area of each diffraction surface when X-ray diffraction measurement of the electrode is performed. It has been found that the cycle characteristic and the load characteristic can be further improved when the value R int obtained by using is within a predetermined preferable range, and the present invention has been completed.

即ち、本発明のリチウムイオン二次電池用負極は、
ラムスデライト型構造を有するチタン化合物を含む負極活物質を備え、電極のX線回折測定を行ったときの(101)面の回折ピークの面積をI(101)、(200)面の回折ピークの面積をI(200)、(201)面の回折ピークの面積をI(201)、(301)面の回折ピークの面積をI(301)とし回折ピークの面積強度比をRint=I(101)/[I(200)+I(201)+I(301)]としたときに、Rint≧3.0を満たすものである。
That is, the negative electrode for a lithium ion secondary battery of the present invention is
A negative electrode active material containing a titanium compound having a ramsdellite structure is provided, and the area of the diffraction peak of the (101) plane when the X-ray diffraction measurement of the electrode is performed is the diffraction peak of the I (101) and (200) planes. The area of the diffraction peak of the (201) plane is I (201), the area of the diffraction peak of the (301) plane is I (301), and the area intensity ratio of the diffraction peaks is R int = I (101 ) / [I (200) + I (201) + I (301)], R int ≧ 3.0 is satisfied.

また、本発明のリチウムイオン二次電池は、
リチウムを吸蔵・放出可能な正極活物質を有する正極と、
上述のリチウムイオン二次電池用負極と、
前記正極と前記リチウムイオン二次電池用負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、
を備えたものである。
The lithium ion secondary battery of the present invention is
A positive electrode having a positive electrode active material capable of inserting and extracting lithium;
A negative electrode for a lithium ion secondary battery as described above;
An ion conduction medium that is interposed between the positive electrode and the negative electrode for a lithium ion secondary battery and conducts lithium ions;
It is equipped with.

このリチウムイオン二次電池用負極及びリチウムイオン二次電池では、サイクル特性及び負荷特性をより高めることができる。ここで、従来では電極内での活物質の配向は、例えばリチウムイオンのアクセスする方向が限定されるため望ましくないものとされているのに対し、本発明では電極内で活物質が(101)で配向することによりサイクル特性及び負荷特性を向上させることができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、ラムスデライト構造内では、リチウムイオンの通り道が一次元のトンネルとなっており、配向することにより電極内でこのトンネルがリチウムイオンの輸送に効果的に配列し、負荷特性が向上したものと考えられる。また、電極内で活物質が配向することにより充放電時の結晶構造の膨張・収縮が効果的に抑制されたため、サイクル特性が向上したものと推察される。なお、サイクル特性としては、繰り返し充放電を行ったときの放電容量の維持率としてもよい。また、負荷特性としては、低電流(例えば0.1C)による放電容量に対する高電流(例えば2C)による放電容量の比による評価としてもよい。   In the negative electrode for lithium ion secondary battery and the lithium ion secondary battery, cycle characteristics and load characteristics can be further improved. Here, the orientation of the active material in the electrode is conventionally undesirable because, for example, the access direction of lithium ions is limited, whereas in the present invention, the active material is (101) in the electrode. Cycle characteristics and load characteristics can be improved by orienting at. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, in the ramsdellite structure, the path of lithium ions is a one-dimensional tunnel, and by aligning this tunnel, the tunnel is effectively arranged for transport of lithium ions in the electrode, and the load characteristics are improved. Conceivable. In addition, it is presumed that the cycle characteristics were improved because the expansion and contraction of the crystal structure during charge / discharge was effectively suppressed by the orientation of the active material in the electrode. The cycle characteristics may be the discharge capacity maintenance rate when repeated charge / discharge is performed. Further, the load characteristics may be evaluated by a ratio of a discharge capacity by a high current (for example, 2C) to a discharge capacity by a low current (for example, 0.1C).

本発明のリチウムイオン二次電池は、リチウムを吸蔵・放出可能な正極活物質を有する正極と、リチウムを吸蔵・放出可能な負極活物質を有する負極と、正極と負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、を備えている。   The lithium ion secondary battery of the present invention includes a positive electrode having a positive electrode active material capable of occluding and releasing lithium, a negative electrode having a negative electrode active material capable of occluding and releasing lithium, and a lithium ion interposed between the positive electrode and the negative electrode. An ion conduction medium that conducts ions.

本発明のリチウムイオン二次電池の正極は、例えば正極活物質に導電材及びバインダーを混合し、適当な溶剤を加えてペースト状の正極合材としたものを、正極集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。正極活物質としては、リチウムと遷移金属元素とを含む酸化物、又はポリアニオン系化合物を用いることができる。具体的には、例えばリチウムコバルト複合酸化物(Li(1-n)CoO2など(0<n<1、以下同じ))、リチウムニッケル複合酸化物(Li(1-n)NiO2など)、リチウムマンガン複合酸化物(Li(1-n)MnO2、Li(1-n)Mn24など)、リチウム鉄複合リン酸化物(LiFePO4など)、リチウムバナジウム複合酸化物(LiV23など)などが挙げられる。正極集電体としては、導電性材料で形成されたものであれば特に限定されないが、例えば、アルミニウムや銅、ステンレス鋼、ニッケルメッキ鋼などの金属で形成されている箔やメッシュを用いることができる。バインダーは、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴムなどの含フッ素樹脂、或いはポリプロピレン、ポリエチレンなどの熱可塑性樹脂などを用いることができる。導電材は、正極の電気伝導性を確保するためのものであり、例えばカーボンブラック、アセチレンブラック、天然黒鉛、人造黒鉛、コークス類などの炭素物質粉末状体の1種又は2種以上を混合したものを用いることができる。正極活物質、導電材、バインダーを分散させる溶剤としては、例えばN−メチル−2−ピロリドンなどの有機溶剤を用いることができる。 The positive electrode of the lithium ion secondary battery of the present invention is, for example, obtained by mixing a positive electrode active material with a conductive material and a binder and adding a suitable solvent to form a paste-like positive electrode mixture on the surface of the positive electrode current collector. It can be dried and compressed to increase the electrode density as needed. As the positive electrode active material, an oxide containing lithium and a transition metal element or a polyanionic compound can be used. Specifically, for example, lithium cobalt composite oxide (Li (1-n) CoO 2 etc. (0 <n <1, the same applies hereinafter)), lithium nickel composite oxide (Li (1-n) NiO 2 etc.), Lithium manganese composite oxide (Li (1-n) MnO 2 , Li (1-n) Mn 2 O 4 etc.), lithium iron composite phosphorous oxide (LiFePO 4 etc.), lithium vanadium composite oxide (LiV 2 O 3) Etc.). The positive electrode current collector is not particularly limited as long as it is formed of a conductive material. For example, a foil or mesh formed of a metal such as aluminum, copper, stainless steel, or nickel-plated steel may be used. it can. The binder plays a role of connecting the active material particles and the conductive material particles. For example, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene is used. be able to. The conductive material is for ensuring the electrical conductivity of the positive electrode. For example, one or more of carbon powder materials such as carbon black, acetylene black, natural graphite, artificial graphite, and cokes are mixed. Things can be used. As the solvent for dispersing the positive electrode active material, the conductive material, and the binder, for example, an organic solvent such as N-methyl-2-pyrrolidone can be used.

本発明のリチウムイオン二次電池の負極は、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。本発明の負極は、ラムスデライト型構造を有するチタン化合物を含む負極活物質を備えている。このラムスデライト型構造を有するチタン化合物は、TiO2、LiTi24及びLi2Ti37(Li1.14Ti1.714)のうち1以上の基本組成を有するものとしてもよい。なお、「基本組成」とは、負極活物質に他の元素などを含むものとしてもよい趣旨である。例えば、ラムスデライト型構造を有するチタン化合物は、TiO2や一般式LixyTiz4で表されるものとしてもよい。ここで、Aは、遷移金属、周期律表の1族、2族及び3族元素のうち少なくとも1以上であり、0≦x≦2、0≦y≦1、1≦z≦2を満たすものとする。このラムスデライト型構造を有するチタン化合物としては、例えば、LiCrTiO4、LiFeTiO4、Li3Cr3Ti414などが挙げられる。この負極は、電極のX線回折測定を行ったときの(101)面の回折ピークの面積をI(101)、(200)面の回折ピークの面積をI(200)、(201)面の回折ピークの面積をI(201)、(301)面の回折ピークの面積をI(301)とし、回折ピークの面積強度比をRint=I(101)/[I(200)+I(201)+I(301)]としたときに、Rint≧3.0を満たしている。ここで、電極のRintが3.0以上というのは、ラムスデライト型構造を有するチタン化合物が、(101)面で配向していることを意味する。こうすれば、電極内で活物質が効果的に配向することにより、サイクル特性及び負荷特性をより高めることができる。これは、ラムスデライト構造による1次元トンネルがリチウム輸送に効果的に配列したり、充放電時の膨張・収縮が効果的に抑制されたりするためであると推察される。このRint比は、4.0以上を満たしていることがより好ましい。また、Rint比は、10以下であることが配向特性の限界からみて好ましい。また、この負極活物質は、その密度が2.0g/cm3以上2.3g/cm3以下であることが好ましい。活物質密度が2.0g/cm3以上では活物質同士の接触がより高まり電池性能が向上し、2.3g/cm3以下では、電極に空隙が十分あり電極内に電解液が行き渡りやすく、電池性能が向上しやすい。この範囲では、リチウムイオン二次電池のサイクル特性及び負荷特性をより高めることができる。 The negative electrode of the lithium ion secondary battery of the present invention is prepared by mixing a negative electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like negative electrode material on the surface of the current collector. It may be formed by coating and drying, and compressing to increase the electrode density as necessary. The negative electrode of the present invention includes a negative electrode active material containing a titanium compound having a ramsdellite structure. The titanium compound having the ramsdellite structure may have one or more basic compositions of TiO 2 , LiTi 2 O 4 and Li 2 Ti 3 O 7 (Li 1.14 Ti 1.71 O 4 ). The “basic composition” means that the negative electrode active material may contain other elements. For example, the titanium compound having a ramsdellite type structure may be represented by TiO 2 or a general formula Li x A y Ti z O 4 . Here, A is at least one of transition metal, group 1, group 2 and group 3 elements of the periodic table, and satisfies 0 ≦ x ≦ 2, 0 ≦ y ≦ 1, and 1 ≦ z ≦ 2. And Examples of the titanium compound having this ramsdellite structure include LiCrTiO 4 , LiFeTiO 4 , Li 3 Cr 3 Ti 4 O 14, and the like. In this negative electrode, when the X-ray diffraction measurement of the electrode is performed, the area of the diffraction peak of the (101) plane is I (101), the area of the diffraction peak of the (200) plane is that of the I (200), (201) plane. The area of the diffraction peak is I (201), the area of the diffraction peak of the (301) plane is I (301), and the area intensity ratio of the diffraction peak is R int = I (101) / [I (200) + I (201) + I (301)], R int ≧ 3.0 is satisfied. Here, because R int electrode 3.0 or more, a titanium compound having a ramsdellite structure, which means that is oriented in (101) plane. By doing so, the active material is effectively oriented in the electrode, whereby cycle characteristics and load characteristics can be further improved. This is presumably because the one-dimensional tunnel with the ramsdellite structure is effectively arranged for lithium transport, and the expansion / contraction during charge / discharge is effectively suppressed. The R int ratio more preferably satisfies 4.0 or more. In addition, the R int ratio is preferably 10 or less in view of the limit of orientation characteristics. The negative electrode active material preferably has a density of 2.0 g / cm 3 or more and 2.3 g / cm 3 or less. When the active material density is 2.0 g / cm 3 or more, the contact between the active materials is further increased, and the battery performance is improved. When the active material density is 2.3 g / cm 3 or less, there are sufficient gaps in the electrode, and the electrolyte easily spreads in the electrode. Battery performance is likely to improve. In this range, the cycle characteristics and load characteristics of the lithium ion secondary battery can be further improved.

また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。負極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、正極と同様のものを用いることができる。   In addition, as the conductive material, binder, solvent, and the like used for the negative electrode, those exemplified for the positive electrode can be used. The negative electrode current collector includes copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as improved adhesion, conductivity and reduction resistance. For the purpose, for example, a copper surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. The shape of the current collector can be the same as that of the positive electrode.

本発明のリチウムイオン二次電池において、イオン伝導媒体は、支持塩を有機溶媒に溶かした非水電解液やイオン性液体、ゲル電解質、固体電解質などを用いることができる。このうち、非水電解液であることが好ましい。支持塩としては、例えば、LiPF6,LiClO4,LiAsF6,LiBF4,Li(CF3SO22N,Li(CF3SO3),LiN(C25SO22などの公知の支持塩を用いることができる。支持塩の濃度としては、0.1〜2.0Mであることが好ましく、0.8〜1.2Mであることがより好ましい。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ−ブチロラクトン(γ−BL)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)など従来の二次電池やキャパシタに使われる有機溶媒が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。また、イオン性液体としては、特に限定されるものではないが、1−メチル−3−プロピルイミダゾリウムビス(トリフルオロスルホニル)イミドや1−エチル−3−ブチルイミダゾリウムテトラフルオロボレートなどを用いることができる。ゲル電解質としては、特に限定されるものではないが、例えば、ポリフッ化ビニリデンやポリエチレングリコール、ポリアクリロニトリルなどの高分子類またはアミノ酸誘導体やソルビトール誘導体などの糖類に、支持塩を含む電解液を含ませてなるゲル電解質が挙げられる。固体電解質としては、無機固体電解質や有機固体電解質などが挙げられる。無機固体電解質としては、例えば、Liの窒化物、ハロゲン化物、酸素酸塩などがよく知られている。なかでも、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4−(1−x)Li4SiO4、Li2SiS3、Li3PO4−Li2S−SiS2、硫化リン化合物などが挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。有機固体電解質としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリホスファゼン、ポリエチレンスルフィド、ポリヘキサフルオロプロピレンなどやこれらの誘導体が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。 In the lithium ion secondary battery of the present invention, the ion conduction medium may be a non-aqueous electrolyte solution, an ionic liquid, a gel electrolyte, a solid electrolyte, or the like in which a supporting salt is dissolved in an organic solvent. Of these, a non-aqueous electrolyte is preferable. Examples of the supporting salt include LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N, Li (CF 3 SO 3 ), and LiN (C 2 F 5 SO 2 ) 2. The supporting salt can be used. The concentration of the supporting salt is preferably 0.1 to 2.0M, and more preferably 0.8 to 1.2M. As an organic solvent, for example, ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (γ-BL), diethyl carbonate (DEC), dimethyl carbonate (DMC) and the like are used for conventional secondary batteries and capacitors. An organic solvent is mentioned. These may be used alone or in combination. Further, the ionic liquid is not particularly limited, but 1-methyl-3-propylimidazolium bis (trifluorosulfonyl) imide, 1-ethyl-3-butylimidazolium tetrafluoroborate, or the like is used. Can do. The gel electrolyte is not particularly limited. For example, a polymer such as polyvinylidene fluoride, polyethylene glycol, or polyacrylonitrile, or a saccharide such as an amino acid derivative or sorbitol derivative is added with an electrolyte containing a supporting salt. And a gel electrolyte. Examples of the solid electrolyte include inorganic solid electrolytes and organic solid electrolytes. Well-known inorganic solid electrolytes include, for example, Li nitrides, halides, oxyacid salts, and the like. Among them, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, xLi 3 PO 4 - (1-x) Li 4 SiO 4, Li 2 SiS 3, Li 3 PO 4 -Li 2 S-SiS 2, sulfide Examples thereof include phosphorus compounds. These may be used alone or in combination. Examples of the organic solid electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinylidene fluoride, polyphosphazene, polyethylene sulfide, polyhexafluoropropylene, and derivatives thereof. These may be used alone or in combination.

本発明のリチウムイオン二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウムイオン二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   The lithium ion secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as the composition can withstand the use range of the lithium ion secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a thin olefin resin such as polyethylene or polypropylene is used. A microporous membrane is mentioned. These may be used alone or in combination.

本発明のリチウムイオン二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。このリチウムイオン二次電池の一例を図1に示す。図1は、コイン型電池20の構成の概略を表す断面図である。このコイン型電池20は、カップ形状の電池ケース21と、正極活物質を有しこの電池ケース21の下部に設けられた正極22と、負極活物質を有し正極22に対してセパレータ24を介して対向する位置に設けられた負極23と、絶縁材により形成されたガスケット25と、電池ケース21の開口部に配設されガスケット25を介して電池ケース21を密封する封口板26と、を備えている。ここでは、負極23は、ラムスデライト型構造を有するチタン化合物を負極活物質として備え、電極のX線回折によるRint比が3.0以上を満たしている。 The shape of the lithium ion secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing used for an electric vehicle etc. An example of this lithium ion secondary battery is shown in FIG. FIG. 1 is a cross-sectional view schematically showing the configuration of the coin-type battery 20. The coin-type battery 20 includes a cup-shaped battery case 21, a positive electrode 22 having a positive electrode active material provided at a lower portion of the battery case 21, and a negative electrode active material having a positive electrode 22 via a separator 24. A negative electrode 23 provided at a position facing each other, a gasket 25 formed of an insulating material, and a sealing plate 26 disposed in an opening of the battery case 21 and sealing the battery case 21 via the gasket 25. ing. Here, the negative electrode 23 includes a titanium compound having a ramsdellite structure as a negative electrode active material, and the R int ratio of the electrode by X-ray diffraction satisfies 3.0 or more.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、リチウム電池を具体的に作製した例を、実施例として説明する。   Below, the example which produced the lithium battery concretely is demonstrated as an Example.

[ラムスデライト型チタン酸化物:TiO2,LiTi24,Li2Ti37
ラムスデライト型LiTi24の合成では、出発原料として、Li[Li1/3Ti5/3]O4、TiO2(和光純薬工業製、ルチル型)、Ti金属粉末(高純度化学研究所製)を用いた。このLi[Li1/3Ti5/3]O4は、LiOH・H2O(和光純薬工業製)とTiO2(和光純薬工業製、アナターゼ型)を所定のモル比で秤量、混合後、直径2cm、厚さ5mmのペレットに30MPaで加圧成型し、窒素雰囲気下800℃、12時間焼成することにより合成した。次に、LiTi24,1molあたりLi[Li1/3Ti5/3]O4を0.75mol、TiO2を0.5mol、Ti金属粉末を0.25molとなるように秤量し、これらを乳鉢で混合した。混合粉末を直径2cm、厚さ5mm程度のペレットに30MPaで加圧成型し、焼成時にこの成型体が空気酸化されるのを避けるよう作製したペレットを銅箔に包んだ。これをアルゴン雰囲気下1000℃で16時間焼成することによりラムスデライト型LiTi24を得た。また、ラムスデライト型TiO2の合成では、この合成したLiTi24を1M塩酸水溶液中に投入し3日間攪拌後、濾過し、80℃で12時間乾燥させることによりラムスデライト型TiO2を得た。また、Li2Ti37の合成では、出発原料としてLi[Li1/3Ti5/3]O4、TiO2(ルチル型)、Ti金属粉末を用い、Li2Ti37]1molあたりLi[Li1/3Ti5/3]O4を1.5mol、TiO2を0.5molとなるように秤量し、LiTi24と同様の合成工程により混合・焼成することにより、ラムスデライト型Li2Ti37を得た。
[Ramsdellite type titanium oxide: TiO 2, LiTi 2 O 4 , Li 2 Ti 3 O 7]
In the synthesis of ramsdellite type LiTi 2 O 4 , Li [Li 1/3 Ti 5/3 ] O 4 , TiO 2 (made by Wako Pure Chemical Industries, Rutile type), Ti metal powder (high purity chemical research) Used). This Li [Li 1/3 Ti 5/3 ] O 4 is prepared by weighing and mixing LiOH.H 2 O (manufactured by Wako Pure Chemical Industries) and TiO 2 (manufactured by Wako Pure Chemical Industries, anatase type) at a predetermined molar ratio. Then, it pressure-molded at 30 MPa to the pellet of diameter 2cm and thickness 5mm, and synthesize | combined by baking at 800 degreeC and 12 hours in nitrogen atmosphere. Next, Li [Li 1/3 Ti 5/3 ] O 4 per liter of LiTi 2 O 4 , 0.75 mol of TiO 2 , 0.5 mol of TiO 2 , and 0.25 mol of Ti metal powder were weighed, and these Were mixed in a mortar. The mixed powder was press-molded into a pellet having a diameter of about 2 cm and a thickness of about 5 mm at 30 MPa, and the pellet prepared so as to avoid air oxidation of the molded body during firing was wrapped in copper foil. This was calcined at 1000 ° C. for 16 hours in an argon atmosphere to obtain ramsdellite-type LiTi 2 O 4 . In the synthesis of ramsdellite TiO 2, the synthesized LiTi 2 O 4 was put into a 1M hydrochloric acid aqueous solution, stirred for 3 days, filtered, and dried at 80 ° C. for 12 hours to obtain ramsdellite TiO 2 . It was. In the synthesis of Li 2 Ti 3 O 7 , Li [Li 1/3 Ti 5/3 ] O 4 , TiO 2 (rutile type), Ti metal powder is used as a starting material, and Li 2 Ti 3 O 7 ] 1 mol By weighing Li [Li 1/3 Ti 5/3 ] O 4 at 1.5 mol and TiO 2 at 0.5 mol per unit, and mixing and firing by the same synthesis process as LiTi 2 O 4 , Delite type Li 2 Ti 3 O 7 was obtained.

[実施例1]
(塗工電極の作製)
ラムスデライト型TiO2を85重量%、導電材としてカーボンブラックを5重量%、結着材としてポリフッ化ビニリデンを10重量%混合し、分散剤としてN−メチル−2−ピロリドンを適量添加し、スラリー状の合材とした。この合材スラリーを20μm厚のアルミニウム箔集電体に均一に塗布し、加熱乾燥して塗布シートを作製した。シート中に含まれる活物質の密度が2.1g/cm3となるように電極をプレス処理し、2.05cm2の面積に打ち抜いて円盤状の電極を作製した。活物質密度の測定は、以下の手法により行った。まず、作成した円盤状の電極の重量から同面積のアルミニウム箔集電体の重量を差し引き、それに電極内での活物質の割合(85重量%)を積算したものを活物質重量とした。次に、円盤状電極の厚さを測定し、そこからアルミニウム箔集電体の厚さ(20μm)を差し引いたものを電極の厚さとした。この電極の厚さ及び面積から求めた体積で上記活物質重量を除算した値を活物質密度(g/cm3)とした。
[Example 1]
(Preparation of coated electrode)
85% by weight of ramsdellite type TiO 2 , 5% by weight of carbon black as a conductive material, 10% by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone as a dispersing agent is added to the slurry. In the form of a composite material. This mixed material slurry was uniformly applied to an aluminum foil current collector having a thickness of 20 μm and dried by heating to prepare a coated sheet. The electrode was pressed so that the density of the active material contained in the sheet was 2.1 g / cm 3, and punched out to an area of 2.05 cm 2 to produce a disk-shaped electrode. The active material density was measured by the following method. First, the weight of the aluminum foil current collector of the same area was subtracted from the weight of the prepared disc-shaped electrode, and the weight of the active material in the electrode (85% by weight) was integrated to obtain the active material weight. Next, the thickness of the disk-shaped electrode was measured, and the thickness obtained by subtracting the thickness of the aluminum foil current collector (20 μm) was taken as the electrode thickness. A value obtained by dividing the weight of the active material by the volume determined from the thickness and area of the electrode was defined as the active material density (g / cm 3 ).

(X線回折測定によるRint比の算出)
この実施例1の電極をX線回折装置(リガク社製RINT−2200)を用いて測定した。測定条件は、Cu−Kα線により40kV−30mAで15°〜30°までスキャンするものとした。実施例1のX線回折の測定結果を図2に示す。この測定結果を用いて、(101)面の回折ピークの面積をI(101)、(200)面の回折ピークの面積をI(200)、(201)面の回折ピークの面積をI(201)、(301)面の回折ピークの面積をI(301)とし、回折ピークの面積強度比をRint=I(101)/[I(200)+I(201)+I(301)]として求めた。この結果、実施例1のRintは、4.5であった。なお、このX線回折測定及びRint比の算出は、後述する実施例2〜10、比較例1〜10の電極についても同様に行った。
(Calculation of R int ratio by X-ray diffraction measurement)
The electrode of Example 1 was measured using an X-ray diffractometer (RINT-2200 manufactured by Rigaku Corporation). Measurement conditions were set to scan from 15 ° to 30 ° at 40 kV-30 mA with Cu-Kα rays. The measurement result of the X-ray diffraction of Example 1 is shown in FIG. Using this measurement result, the area of the diffraction peak of the (101) plane is I (101), the area of the diffraction peak of the (200) plane is I (200), and the area of the diffraction peak of the (201) plane is I (201). ), The area of the diffraction peak of the (301) plane was defined as I (301), and the area intensity ratio of the diffraction peak was determined as R int = I (101) / [I (200) + I (201) + I (301)]. . As a result, R int of Example 1 was 4.5. The X-ray diffraction measurement and the calculation of the R int ratio were similarly performed for the electrodes of Examples 2 to 10 and Comparative Examples 1 to 10 described later.

(二極式評価セルの作製)
エチレンカーボネートとジエチルカーボネートとを体積比で3:7となるように混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解した非水電解液(イオン伝導媒体)を作製した。上記実施例1の電極を作用極とし、リチウム金属箔(厚さ300μm)を対極として、両電極の間に、上記非水電解液を含浸させたセパレータ(東燃タピルス)を挟んで作製した二極式評価セルを実施例1の評価セルとした。
(Preparation of bipolar evaluation cell)
A non-aqueous electrolyte solution (ion conductive medium) was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7. A bipolar electrode prepared using the electrode of Example 1 as a working electrode, a lithium metal foil (thickness: 300 μm) as a counter electrode, and sandwiching a separator (Tonen Tapils) impregnated with the non-aqueous electrolyte between both electrodes. The formula evaluation cell was used as the evaluation cell of Example 1.

(充放電試験)
作製した実施例1の二極式評価セルを用い、0.1C(0.3mA)で1.0Vまで還元(充電)したのち、0.1C(0.3mA)で3.0Vまで酸化(放電)させた。この充放電操作を3回繰り返して放電状態にしたものを初期状態とした。次に、20℃の温度環境下で、初期状態の二極式評価セルを0.1C(0.3mA)で充電させ、0.1C(0.3mA)で放電させたときの放電容量Q(0.1C)に対する2C(6.0mA)での放電容量Q(2C)の割合Rrate(%)=[(Q(2C)/Q(0.1C))×100]を負荷特性の指標とした。その後、0.2C(0.6mA)で50サイクル充放電を行い、初期状態の放電容量Q1(0.1C)に対する50サイクル後の0.1C(0.3mA)での放電容量Q50(0.1c)の割合Rcyc(%)=[(Q50(0.1c)/Q1(0.1C))×100]を用いてサイクル特性を評価した。
(Charge / discharge test)
Using the prepared bipolar evaluation cell of Example 1, after reducing (charging) to 0.1 V at 0.1 C (0.3 mA), oxidation (discharging) to 3.0 V at 0.1 C (0.3 mA) ) This charging / discharging operation was repeated three times to obtain a discharged state as an initial state. Next, under a temperature environment of 20 ° C., the discharge capacity Q (2 ) when the bipolar evaluation cell in the initial state is charged at 0.1 C (0.3 mA) and discharged at 0.1 C (0.3 mA). 2C for 0.1 C) and (ratio R rate of discharge capacity at 6.0mA) Q (2C) (% ) = [(Q (2C) / Q (0.1C)) × 100] was used as an index of the load characteristics. Thereafter, 50 cycles of charge and discharge are performed at 0.2 C (0.6 mA), and the discharge capacity Q 50 (0.1 mA) at 0.1 C (0.3 mA) after 50 cycles with respect to the discharge capacity Q 1 (0.1 C) in the initial state. The cycle characteristics were evaluated using the ratio R cyc (%) = [(Q 50 (0.1c) / Q 1 ( 0.1C ) ) × 100] of c) .

[実施例2]
実施例1で作製した塗工電極の代わりに以下に示す方法で作製した圧粉電極を用いた以外は実施例1と同様の工程を経て得られた電極及び二極式評価セルを実施例2とした。圧粉電極の作製は、ラムスデライト型TiO2を75重量%、導電材としてカーボンブラックを15重量%、結着材としてポリフッ化ビニリデンを10重量%混合し、分散剤としてN−メチル−2−ピロリドンを適量添加し、スラリー状の合材とした。この合材スラリーをガラス板上に滴下させ、120℃で減圧乾燥して混合粉末を作製し、それを加圧成型して面積2.05cm2の圧粉電極を作製した。このとき、Rint比が3.1、成型体内に含まれる活物質の密度が2.1g/cm3となるように圧粉電極の成型圧力を調整した。
[Example 2]
Example 2 shows an electrode and a bipolar evaluation cell obtained through the same steps as in Example 1 except that a dust electrode produced by the method shown below was used instead of the coated electrode produced in Example 1. It was. Preparation of the powder electrode a ramsdellite TiO 2 75 wt%, 15 wt% of carbon black as a conductive material, polyvinylidene fluoride were mixed 10 wt% as a binder, as a dispersing agent N- methyl-2 An appropriate amount of pyrrolidone was added to form a slurry composite. This mixed material slurry was dropped on a glass plate and dried under reduced pressure at 120 ° C. to produce a mixed powder, which was pressure-molded to produce a powder electrode having an area of 2.05 cm 2 . At this time, the molding pressure of the powder electrode was adjusted so that the R int ratio was 3.1 and the density of the active material contained in the molded body was 2.1 g / cm 3 .

[比較例1,2]
実施例2で作製した圧粉電極のRint比が2.9、活物質の密度が2.1g/cm3となるように成型圧力を調整した以外は実施例2と同様の工程を経て得られた電極及び二極式評価セルを比較例1とした。また、圧粉電極のRint比が2.1、活物質の密度が2.0g/cm3となるように成型圧力を調整した以外は実施例2と同様の工程を経て得られた電極及び二極式評価セルを比較例2とした。
[Comparative Examples 1 and 2]
Obtained through the same steps except that R int ratio of the produced powder electrodes 2.9, density of the active material was adjusted molding pressure so that 2.1 g / cm 3 and Example 2 in Example 2 The obtained electrode and bipolar evaluation cell were designated as Comparative Example 1. Also, R int ratio of the powder electrode 2.1, density of 2.0 g / cm 3 and so as to except that the molding pressure was adjusted electrodes obtained through the same process as in Example 2 and the active material The bipolar evaluation cell was designated as Comparative Example 2.

ラムスデライト型TiO2を用い、Rint比を検討した実施例1,2及び比較例1,2の電極形成方法、Rint比、活物質密度、負荷特性Rrate、サイクル特性Rcycをまとめて表1に示す。図3は、Rint比に対する負荷特性Rrate及びサイクル特性Rcycの関係を表す図である。表1及び図3に示すように、ラムスデライト型TiO2電極は、Rint比が3を境に負荷特性、サイクル特性が屈曲的に変化することが明らかとなった。このRint比が3以上であるラムスデライト型TiO2電極は、負荷特性、サイクル特性共に優れていることがわかった。なお、活物質密度が2.1g/cm3以外であっても、この傾向を示すものと類推される。最もRint比が大きい4.5を示す実施例1の場合、特にその特性が高かった。圧粉電極ではRint比を調整するために導電材を15重量%としているのに対し、塗工電極では5重量%である。通常であれば導電材が少ないと導電性が低く、電池性能も低くなるが、この塗工電極では、導電材を減らしているにもかかわらず導電性の高い圧粉電極よりも負荷特性、サイクル特性が優れており、ラムスデライト型TiO2の配向の効果が顕著に表れていることがわかった。 The electrode formation method, R int ratio, active material density, load characteristic R rate , and cycle characteristic R cyc of Examples 1 and 2 and Comparative Examples 1 and 2 in which R int ratio was examined using rams delite type TiO 2 were summarized. Table 1 shows. FIG. 3 is a diagram illustrating the relationship between the load characteristic R rate and the cycle characteristic R cyc with respect to the R int ratio. As shown in Table 1 and FIG. 3, it became clear that the load characteristics and the cycle characteristics of the ramsdellite type TiO 2 electrode change flexibly with an R int ratio of 3. It was found that the Ramsdelite type TiO 2 electrode having an R int ratio of 3 or more is excellent in both load characteristics and cycle characteristics. It is assumed that even if the active material density is other than 2.1 g / cm 3 , this tendency is shown. In the case of Example 1 showing 4.5 with the largest R int ratio, the characteristics were particularly high. In the dust electrode, the conductive material is 15% by weight in order to adjust the R int ratio, whereas in the coated electrode, it is 5% by weight. Usually, if there is little conductive material, the conductivity will be low and the battery performance will be low, but with this coated electrode, even though the conductive material is reduced, the load characteristics and cycle are higher than the highly conductive powder electrode It was found that the characteristics were excellent and the effect of orientation of the ramsdellite type TiO 2 appeared remarkably.

Figure 0005343528
Figure 0005343528

[実施例3,4]
塗工電極の活物質の密度が2.0g/cm3となるように成型圧力を調整した以外は実施例1と同様の工程を経て得られた電極及び二極式評価セルを実施例3とした。なお、実施例3のRint比は4.3であった。また、塗工電極の活物質の密度が2.3g/cm3となるように成型圧力を調整した以外は実施例1と同様の工程を経て得られた電極及び二極式評価セルを実施例4とした。なお、実施例4のRint比は4.6であった。
[Examples 3 and 4]
An electrode and a bipolar evaluation cell obtained through the same steps as in Example 1 except that the molding pressure was adjusted so that the density of the active material of the coated electrode was 2.0 g / cm 3 were the same as in Example 3. did. The R int ratio of Example 3 was 4.3. Further, an electrode and a bipolar evaluation cell obtained through the same steps as in Example 1 except that the molding pressure was adjusted so that the density of the active material of the coated electrode was 2.3 g / cm 3 It was set to 4. The R int ratio of Example 4 was 4.6.

[比較例3,4]
塗工電極の活物質の密度が1.9g/cm3となるように成型圧力を調整した以外は実施例1と同様の工程を経て得られた電極及び二極式評価セルを比較例3とした。なお、比較例3のRint比は4.3であった。また、塗工電極の活物質の密度が2.4g/cm3となるように成型圧力を調整した以外は実施例1と同様の工程を経て得られた電極及び二極式評価セルを比較例4とした。なお、比較例4のRint比は4.6であった。
[Comparative Examples 3 and 4]
The electrode and bipolar evaluation cell obtained through the same steps as in Example 1 except that the molding pressure was adjusted so that the density of the active material of the coated electrode was 1.9 g / cm 3 were compared with those in Comparative Example 3. did. The R int ratio of Comparative Example 3 was 4.3. Moreover, the electrode and bipolar evaluation cell which were obtained through the process similar to Example 1 except having adjusted the shaping | molding pressure so that the density of the active material of a coating electrode might be 2.4 g / cm < 3 > are comparative examples. It was set to 4. The R int ratio of Comparative Example 4 was 4.6.

ラムスデライト型TiO2を用い、活物質密度を検討した実施例1,3,4及び比較例3,4の電極形成方法、Rint比、活物質密度、負荷特性Rrate、サイクル特性Rcycをまとめて表2に示す。ここでは、Rint比が3を大きく上回る塗工電極において活物質密度を種々変化させたときの負荷特性及びサイクル特性を示した。電極内の活物質密度が2.0g/cm3以上2.3g/cm3以下の範囲に含まれるときに特に負荷特性、サイクル特性が優れていることがわかった。 The electrode forming method, R int ratio, active material density, load characteristic R rate , and cycle characteristic R cyc in Examples 1, 3, and 4 and Comparative Examples 3 and 4 in which the active material density was examined using rams delite type TiO 2 These are summarized in Table 2. Here, the load characteristic and the cycle characteristic when the active material density is variously changed in the coated electrode having a R int ratio greatly exceeding 3 are shown. It was found that when the active material density in the electrode is in the range of 2.0 g / cm 3 or more and 2.3 g / cm 3 or less, the load characteristics and the cycle characteristics are particularly excellent.

Figure 0005343528
Figure 0005343528

[実施例5〜7]
実施例2で作製した圧粉電極の負極活物質をラムスデライト型LiTi24とし、Rint比を3.1とし、活物質密度を2.1g/cm3とした以外は実施例2と同様の工程を経て得られた電極及び二極式評価セルを実施例5とした。また、実施例1で作製した塗工電極の活物質をラムスデライト型LiTi24とし、活物質密度が2.0g/cm3となるように成型圧力を調整した以外は実施例1と同様の工程を経て得られた電極及び二極式評価セルを実施例6とした。なお、実施例6のRint比は4.4であった。また、塗工電極の活物質をラムスデライト型LiTi24とし、活物質密度が2.3g/cm3となるように成型圧力を調整した以外は実施例1と同様の工程を経て得られた電極及び二極式評価セルを実施例7とした。なお、実施例7のRint比は4.5であった。
[Examples 5 to 7]
Example 2 except that the negative electrode active material of the compacted electrode prepared in Example 2 was Ramsdelite type LiTi 2 O 4 , the R int ratio was 3.1, and the active material density was 2.1 g / cm 3. An electrode and a bipolar evaluation cell obtained through the same steps were taken as Example 5. Further, except that the active material of the coating electrode prepared in Example 1 and ramsdellite LiTi 2 O 4, the active material density was adjusted molded pressure so that 2.0 g / cm 3 as in Example 1 An electrode and a bipolar evaluation cell obtained through the steps were designated as Example 6. The R int ratio of Example 6 was 4.4. Moreover, it obtained through the process similar to Example 1 except having made the active material of the coating electrode into ramsdellite type LiTi 2 O 4 and adjusting the molding pressure so that the active material density was 2.3 g / cm 3. The electrode and the bipolar evaluation cell were designated as Example 7. The R int ratio of Example 7 was 4.5.

[比較例5〜7]
実施例5で作製した圧粉電極のRint比を2.9とし、活物質密度を2.1g/cm3とした以外は実施例5と同様の工程を経て得られた電極及び二極式評価セルを比較例5とした。また、実施例6で作製した塗工電極の活物質の密度が1.9g/cm3となるように成型圧力を調整した以外は実施例6と同様の工程を経て得られた電極及び二極式評価セルを比較例6とした。なお、比較例6のRint比は4.4であった。また、塗工電極の活物質密度が2.4g/cm3となるように成型圧力を調整した以外は実施例7と同様の工程を経て得られた電極及び二極式評価セルを比較例7とした。なお、比較例7のRint比は4.5であった。
[Comparative Examples 5 to 7]
The R int ratio of the powder electrode prepared in Example 5 and 2.9, the active material density 2.1 g / cm 3 and with other than the can obtained by the same process as in Example 5 electrodes and bipolar The evaluation cell was designated as Comparative Example 5. Further, an electrode and a bipolar electrode obtained through the same steps as in Example 6 except that the molding pressure was adjusted so that the density of the active material of the coated electrode produced in Example 6 was 1.9 g / cm 3. The formula evaluation cell was designated as Comparative Example 6. The R int ratio of Comparative Example 6 was 4.4. Moreover, the electrode and bipolar evaluation cell which were obtained through the process similar to Example 7 except having adjusted the shaping | molding pressure so that the active material density of a coating electrode might be 2.4 g / cm < 3 > were compared with Comparative Example 7. It was. The R int ratio of Comparative Example 7 was 4.5.

ラムスデライト型LiTi24を用いた評価結果を表3に示す。表3の実施例5及び比較例5に示すように、Rint比が3以上で、負荷特性及びサイクル特性が優れていることがわかった。また、実施例6,7及び比較例6,7に示すように、電極内の活物質密度が2.0g/cm3以上2.3g/cm3以下の範囲に含まれるときに特に負荷特性、サイクル特性が優れていることがわかった。 Table 3 shows the evaluation results using ramsdellite type LiTi 2 O 4 . As shown in Example 5 and Comparative Example 5 in Table 3, it was found that the Rint ratio was 3 or more and the load characteristics and cycle characteristics were excellent. Further, as shown in Examples 6 and 7 and Comparative Examples 6 and 7, particularly when the active material density in the electrode is included in a range of 2.0 g / cm 3 or more and 2.3 g / cm 3 or less, load characteristics, It was found that the cycle characteristics were excellent.

Figure 0005343528
Figure 0005343528

[実施例8〜10]
実施例2で作製した圧粉電極の負極活物質をラムスデライト型Li2Ti37とし、Rint比を3.1とし、活物質密度を2.1g/cm3とした以外は実施例2と同様の工程を経て得られた電極及び二極式評価セルを実施例8とした。また、実施例1で作製した塗工電極の活物質をラムスデライト型Li2Ti37とし、活物質密度が2.0g/cm3となるように成型圧力を調整した以外は実施例1と同様の工程を経て得られた電極及び二極式評価セルを実施例9とした。なお、実施例9のRint比は4.6であった。また、塗工電極の活物質をラムスデライト型Li2Ti37とし、活物質密度が2.3g/cm3となるように成型圧力を調整した以外は実施例1と同様の工程を経て得られた電極及び二極式評価セルを実施例10とした。なお、実施例10のRint比は4.7であった。
[Examples 8 to 10]
Example except that the negative electrode active material of the dust electrode produced in Example 2 was Ramsdelite type Li 2 Ti 3 O 7 , the R int ratio was 3.1, and the active material density was 2.1 g / cm 3. An electrode and a bipolar evaluation cell obtained through the same steps as in Example 2 were referred to as Example 8. Example 1 except that the active material of the coated electrode produced in Example 1 was Ramsdelite type Li 2 Ti 3 O 7 and the molding pressure was adjusted so that the active material density was 2.0 g / cm 3. An electrode and a bipolar evaluation cell obtained through the same steps as in Example 9 were designated as Example 9. The R int ratio of Example 9 was 4.6. Further, the same process as in Example 1 was performed except that the active material of the coating electrode was ramsdellite-type Li 2 Ti 3 O 7 and the molding pressure was adjusted so that the active material density was 2.3 g / cm 3. The obtained electrode and bipolar evaluation cell were determined as Example 10. The R int ratio of Example 10 was 4.7.

[比較例8〜10]
実施例8で作製した圧粉電極のRint比を2.9とし、活物質密度を2.1g/cm3とした以外は実施例8と同様の工程を経て得られた電極及び二極式評価セルを比較例8とした。また、実施例9で作製した塗工電極の活物質の密度が1.9g/cm3となるように成型圧力を調整した以外は実施例9と同様の工程を経て得られた電極及び二極式評価セルを比較例9とした。なお、比較例9のRint比は4.6であった。また、塗工電極の活物質密度が2.4g/cm3となるように成型圧力を調整した以外は実施例10と同様の工程を経て得られた電極及び二極式評価セルを比較例10とした。なお、比較例10のRint比は4.7であった。
[Comparative Examples 8 to 10]
The R int ratio of the powder electrode prepared in Example 8 and 2.9, the active material density 2.1 g / cm 3 and with other than the can obtained by the same process as in Example 8 electrodes and bipolar The evaluation cell was Comparative Example 8. Further, an electrode and a bipolar electrode obtained through the same steps as in Example 9 except that the molding pressure was adjusted so that the density of the active material of the coated electrode produced in Example 9 was 1.9 g / cm 3. The formula evaluation cell was designated as Comparative Example 9. The R int ratio of Comparative Example 9 was 4.6. Moreover, the electrode and bipolar evaluation cell which were obtained through the process similar to Example 10 except having adjusted the shaping | molding pressure so that the active material density of a coating electrode might be 2.4 g / cm < 3 > were compared with Comparative Example 10. It was. The R int ratio of Comparative Example 10 was 4.7.

ラムスデライト型Li2Ti37を用いた評価結果を表4に示す。表4の実施例8及び比較例8に示すように、Rint比が3を上回ると、負荷特性及びサイクル特性が優れていることがわかった。また、実施例9,10及び比較例9,10に示すように、電極内の活物質密度が2.0g/cm3以上2.3g/cm3以下の範囲に含まれるときに特に負荷特性、サイクル特性が優れていることがわかった。 Table 4 shows the results of evaluation using ramsdellite type Li 2 Ti 3 O 7 . As shown in Example 8 and Comparative Example 8 in Table 4, it was found that when the R int ratio exceeded 3, load characteristics and cycle characteristics were excellent. Further, as shown in Examples 9 and 10 and Comparative Examples 9 and 10, particularly when the active material density in the electrode is included in the range of 2.0 g / cm 3 or more and 2.3 g / cm 3 or less, It was found that the cycle characteristics were excellent.

Figure 0005343528
Figure 0005343528

コイン型電池20の構成の概略を表す断面図である。2 is a cross-sectional view illustrating a schematic configuration of a coin-type battery 20. FIG. 実施例1のX線回折の測定結果である。2 is a measurement result of X-ray diffraction of Example 1. int比に対する負荷特性Rrate及びサイクル特性Rcycの関係を表す図である。Is a diagram showing the relationship between the load characteristics R rate and cycle characteristics R cyc for R int ratio.

符号の説明Explanation of symbols

20 コイン型電池、21 電池ケース、22 正極、23 負極、24 セパレータ、25 ガスケット、26 封口板。   20 coin-type battery, 21 battery case, 22 positive electrode, 23 negative electrode, 24 separator, 25 gasket, 26 sealing plate.

Claims (2)

ラムスデライト型構造を有するチタン化合物を含む負極活物質を備え、電極のX線回折測定を行ったときの(101)面の回折ピークの面積をI(101)、(200)面の回折ピークの面積をI(200)、(201)面の回折ピークの面積をI(201)、(301)面の回折ピークの面積をI(301)とし回折ピークの面積強度比をRint=I(
101)/[I(200)+I(201)+I(301)]としたときに、Rint≧3.
0を満たし、
前記負極活物質は、TiO2及びLiTi24のうち1以上の基本組成を有する前記チ
タン化合物を含んでおり、
電極に含まれる前記負極活物質の密度が2.1g/cm3以上2.3g/cm 3 以下である、
リチウムイオン二次電池用負極。
A negative electrode active material containing a titanium compound having a ramsdellite structure is provided, and the area of the diffraction peak of the (101) plane when the X-ray diffraction measurement of the electrode is performed is the diffraction peak of the I (101) and (200) planes. The area of the diffraction peak on the (201) plane is I (201), the area of the diffraction peak on the (301) plane is I (301), and the area intensity ratio of the diffraction peaks is R int = I (
101) / [I (200) + I (201) + I (301)], R int ≧ 3.
Meets 0,
The negative electrode active material includes the titanium compound having one or more basic compositions of TiO 2 and LiTi 2 O 4 ,
The density of the negative electrode active material contained in the electrode is 2.1 g / cm 3 or more and 2.3 g / cm 3 or less .
Negative electrode for lithium ion secondary battery.
リチウムを吸蔵・放出可能な正極活物質を有する正極と、
請求項1に記載のリチウムイオン二次電池用負極と、
前記正極と前記リチウムイオン二次電池用負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、
を備えたリチウムイオン二次電池。
A positive electrode having a positive electrode active material capable of inserting and extracting lithium;
A negative electrode for a lithium ion secondary battery according to claim 1 ;
An ion conduction medium that is interposed between the positive electrode and the negative electrode for a lithium ion secondary battery and conducts lithium ions;
Lithium ion secondary battery equipped with.
JP2008299488A 2008-11-25 2008-11-25 Negative electrode for lithium ion secondary battery and lithium ion secondary battery Expired - Fee Related JP5343528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299488A JP5343528B2 (en) 2008-11-25 2008-11-25 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299488A JP5343528B2 (en) 2008-11-25 2008-11-25 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2010129194A JP2010129194A (en) 2010-06-10
JP5343528B2 true JP5343528B2 (en) 2013-11-13

Family

ID=42329463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299488A Expired - Fee Related JP5343528B2 (en) 2008-11-25 2008-11-25 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5343528B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644273B2 (en) * 2010-08-31 2014-12-24 独立行政法人産業技術総合研究所 Titanium oxide, method for producing the same, and electrochemical device using the same as member
JP2012084358A (en) * 2010-10-08 2012-04-26 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary battery anode material and manufacturing method thereof and lithium secondary battery using the same
EP2736093B1 (en) * 2011-07-20 2018-01-10 LG Chem, Ltd. Separator, manufacturing method thereof, and electrochemical device employing same
JP6362838B2 (en) * 2013-08-28 2018-07-25 テイカ株式会社 Ramsdelite type lithium titanate, lithium ion secondary battery and lithium ion capacitor using this ramsdelite type lithium titanate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095179B2 (en) * 2006-11-10 2012-12-12 株式会社東芝 Nonaqueous electrolyte battery, lithium titanium composite oxide and battery pack

Also Published As

Publication number Publication date
JP2010129194A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
EP1720211B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5370937B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
CN103891034B (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
JP6096985B1 (en) Nonaqueous electrolyte battery and battery pack
JP5271975B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
KR20130035911A (en) Positive electrode material, lithium ion secondary battery using thereof, and manufacturing method of positive electrode material
JP7042426B2 (en) Solid electrolytes and batteries
KR101319380B1 (en) Solid electrolyte, rechargeable lithium battery comprising the same, method for preparing solid electrolyte particles and solid electrolyte particles
KR20140090097A (en) Nonaqueous electrolyte secondary battery
JP5417978B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5451681B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP2004356048A (en) Electrode material for lithium secondary battery, electrode structure having the electrode material and lithium secondary battery having the electrode structure
JP5391832B2 (en) Secondary battery and manufacturing method thereof
JP5343528B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN101222043B (en) Negative electrode active material for rechargeable lithium battery and rechargeable lithium battery thereof
JP5017010B2 (en) Lithium secondary battery
KR20180028797A (en) Anode with improved swelling phenomenon and Lithium secondary battery comprising the anode
JP5463208B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP3732654B2 (en) Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP5463222B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
CN118315577A (en) Lithium supplementing material, positive electrode, electrochemical device and electric equipment
KR102436440B1 (en) Cathode, method for manufacturing the same, and rechargeable lithium battery comprising the same
JP2007207461A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R151 Written notification of patent or utility model registration

Ref document number: 5343528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees