Nothing Special   »   [go: up one dir, main page]

JP5229508B2 - Oxygen partial pressure control apparatus and solid electrolyte recovery method for oxygen partial pressure control - Google Patents

Oxygen partial pressure control apparatus and solid electrolyte recovery method for oxygen partial pressure control Download PDF

Info

Publication number
JP5229508B2
JP5229508B2 JP2010132569A JP2010132569A JP5229508B2 JP 5229508 B2 JP5229508 B2 JP 5229508B2 JP 2010132569 A JP2010132569 A JP 2010132569A JP 2010132569 A JP2010132569 A JP 2010132569A JP 5229508 B2 JP5229508 B2 JP 5229508B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
partial pressure
oxygen
oxygen partial
pressure control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010132569A
Other languages
Japanese (ja)
Other versions
JP2010216017A (en
Inventor
直樹 白川
伸一 池田
勝秀 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010132569A priority Critical patent/JP5229508B2/en
Publication of JP2010216017A publication Critical patent/JP2010216017A/en
Application granted granted Critical
Publication of JP5229508B2 publication Critical patent/JP5229508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

この発明は、0.2〜10-30atmの範囲で酸素分圧を制御したガスを供給可能な酸素分圧制御装置に関し、特に、低材料コストかつ低操業コストの条件のもと、処理装置の雰囲気ガス等の酸素分圧を0.2〜10-30atmの範囲で制御しうる電気化学的な酸素分圧制御装置、並びにその酸素分圧制御装置の長寿命化のための固体電解質の回復方法に関する。 The present invention relates to an oxygen partial pressure control apparatus capable of supplying a gas whose oxygen partial pressure is controlled in the range of 0.2 to 10 -30 atm, and in particular, under the conditions of low material cost and low operation cost, the atmosphere of the processing apparatus The present invention relates to an electrochemical oxygen partial pressure control device capable of controlling an oxygen partial pressure of gas or the like in a range of 0.2 to 10 -30 atm, and a solid electrolyte recovery method for extending the life of the oxygen partial pressure control device.

従来、固体電解質を含む電気化学的な酸素ポンプにより、酸素分圧を制御した雰囲気ガスを用いて、単結晶試料を作成する方法が知られている。具体的には、扁平な円筒状の固体電解質の両端部をシールするとともに、該円筒周面部の内外両面に白金よりなるネット状の電極を設けた、密閉した円筒状固体電解質を酸素ポンプとして、該固体電解質内に不活性ガスを供給し、前記両電極に電圧を印加することにより、前記不活性ガス中の酸素を固体電解質外に排除し、不活性ガス中の酸素分圧を低減する技術である。(特許文献1参照。)   Conventionally, a method of producing a single crystal sample using an atmospheric gas whose oxygen partial pressure is controlled by an electrochemical oxygen pump containing a solid electrolyte is known. Specifically, while sealing both ends of a flat cylindrical solid electrolyte, a sealed cylindrical solid electrolyte provided with net-like electrodes made of platinum on the inner and outer surfaces of the cylindrical peripheral surface portion as an oxygen pump, A technique for reducing the partial pressure of oxygen in the inert gas by supplying an inert gas into the solid electrolyte and applying a voltage to both electrodes to exclude oxygen in the inert gas from the solid electrolyte. It is. (See Patent Document 1.)

さらに、本発明者は、その改良技術として、廃ガスを再生利用するための機構として、試料作成装置からのリターン経路にコンダクタンス手段と排気速度可変手段を設け、その間を陽圧に保つことにより、外気等の混入による汚染を防止する技術を提案している。(特願2003−42403号の願書に添付された明細書及び図面参照。)   Furthermore, the present inventor, as an improved technique, provides a conductance means and an exhaust speed variable means in the return path from the sample preparation device as a mechanism for recycling waste gas, and maintains a positive pressure therebetween, Proposes a technology to prevent contamination caused by outside air. (Refer to the description and drawings attached to the application for Japanese Patent Application No. 2003-42403.)

また、ストロンチウムドープ・ランタニウム・マンガネート等の固体電解質材料からなり、ハニカム等のシリンダ構造を有し、さらに損傷防止のためにセンサからの酸素分圧値に基づいて操作電圧等をフィードバック制御して、高圧から極低酸素までの雰囲気ガスを製造する酸素ポンプが知られている。(特許文献2参照。)   In addition, it is made of solid electrolyte material such as strontium-doped, lanthanum, manganate, etc., has a cylinder structure such as honeycomb, and feedback control of operation voltage etc. based on oxygen partial pressure value from the sensor to prevent damage. An oxygen pump for producing atmospheric gas from high pressure to extremely low oxygen is known. (See Patent Document 2.)

複数のガス供給回路を並列に接続し、それぞれにマスフローコントローラを設けることにより、広範囲に雰囲気を変更可能とし、蒸気圧変動に対処できるようにしたフローティングゾーン装置が知られている。(特許文献3参照。)   There is known a floating zone device in which a plurality of gas supply circuits are connected in parallel, and a mass flow controller is provided for each of them so that the atmosphere can be changed over a wide range and the vapor pressure fluctuation can be dealt with. (See Patent Document 3)

一方、内燃機関の排気ガスを監視する電気化学的な酸素センサにおいて、飽和電圧以上の電圧を印加して酸素センサを再生する方法が知られている。(特許文献4参照。)   On the other hand, in an electrochemical oxygen sensor that monitors exhaust gas from an internal combustion engine, a method for regenerating the oxygen sensor by applying a voltage equal to or higher than a saturation voltage is known. (See Patent Document 4)

特開2002−326887号公報JP 2002-326887 A 特表平10−500450号公報JP 10-500450 gazette 特開2001−114589号公報JP 2001-114589 A 特表2003−510588号公報Special table 2003-510588 gazette

ところが、前記特許文献1の改良技術である、特願2003−42403号の願書に添付した明細書及び図面に記載された循環機構付きの酸素ポンプを含むシステムでは、酸素分圧を10-30atm付近まで低減できるものの、こうした極低酸素状況で連続運転した場合、1週間から10日程度で固体電解質であるジルコニア管が破損するという問題があることが判明した。 However, in the system including the oxygen pump with the circulation mechanism described in the specification and drawings attached to the application of Japanese Patent Application No. 2003-42403, which is an improvement technique of the above-mentioned Patent Document 1, the oxygen partial pressure is set to 10 -30 atm. Although it can be reduced to the vicinity, it has been found that there is a problem that the zirconia tube, which is a solid electrolyte, breaks in about one week to 10 days when operated continuously in such extremely low oxygen conditions.

また、酸素分圧を10-30atm付近の極低酸素分圧域での操業を想定した場合、例えば、特願2003−42403号の明細書及び図面に例示される循環機構付きの酸素ポンプを含むシステムとなることが想定され、酸素ポンプ用のジルコニア管1本のほかに、酸素分圧制御用の酸素センサ用として2本のジルコニア管が必要とされ、ジルコニア管にかかる材料費が嵩む上、それぞれのジルコニア管にそれぞれ一つずつ固体電解質としての作動温度への昇温のための加熱炉が必要となるため、装置コストや操業コストが嵩むという問題がある。 Further, when assuming an operation in an extremely low oxygen partial pressure region near 10 -30 atm, for example, an oxygen pump with a circulation mechanism exemplified in the specification and drawings of Japanese Patent Application No. 2003-42403 is used. In addition to one zirconia tube for the oxygen pump, two zirconia tubes are required for the oxygen sensor for controlling the oxygen partial pressure, which increases the material cost for the zirconia tube. Since each zirconia tube requires a heating furnace for raising the temperature to the operating temperature as a solid electrolyte, there is a problem that the apparatus cost and the operation cost increase.

しかも、ジルコニア管への気密配管を考えると、Oリングやベローズといったシール機構を気密保持可能な接着剤により取り付ける必要があるが、これらは何れも耐熱性が十分ではないことから、ジルコニア管を長くして、加熱炉から張り出し露出部を長くとり、低温領域でシールする必要がある。従って、ジルコニア管の長大化による更なる材料コストの増大と、装置の大型化を招くという問題もある。   Moreover, considering airtight piping to the zirconia pipe, it is necessary to attach a sealing mechanism such as an O-ring or bellows with an adhesive that can keep the airtightness, but since these are not sufficiently heat resistant, the zirconia pipe is lengthened. Thus, it is necessary to take a long exposed portion from the heating furnace and seal it in a low temperature region. Accordingly, there are problems that the material cost is further increased due to the lengthening of the zirconia pipe and the size of the apparatus is increased.

一方、前記特許文献2にも例示されるとおり、使用されるガスの酸素分圧を所定の精度もって制御するために、通常の酸素ポンプ操業においても、酸素センサの出力に基づくフィードバック制御が行われることが望ましいものの、PID制御方式の酸素ポンプの駆動制御への採用は、本発明者らによって初めてなされたものであるばかりか、その操業に際して必要とされる酸素分圧レベルは、0.2〜10-30atmと広く、しかもその制御系は酸素分圧に依存する特有のゲインカーブ特性を示すため、従来のPID定数固定式のPID制御装置を酸素ポンプに単に組み込むだけでは、制御性が十分でなく、操業コストを増大させる一因となっていた。また、個々の操業条件に応じた、このゲインカーブ特性を割り出すこと自体も多大な労力を要する作業であった。 On the other hand, as exemplified in Patent Document 2, in order to control the oxygen partial pressure of the gas used with a predetermined accuracy, feedback control based on the output of the oxygen sensor is performed even in normal oxygen pump operation. Although it is desirable, the adoption of the PID control type oxygen pump for the drive control is not only made by the present inventors, but the oxygen partial pressure level required for the operation is 0.2 to 10 −. Since the control system has a wide gain characteristic of 30 atm and its characteristic gain curve depends on the oxygen partial pressure, simply incorporating a conventional PID constant-fixed PID controller into the oxygen pump does not provide sufficient controllability. , Which contributed to increase operating costs. Also, determining the gain curve characteristics according to the individual operating conditions itself is a work that requires a great deal of labor.

しかも、これまでの酸素分圧制御装置は、1l未満の内容積を持つ処理装置を想定していることから、大量のガスが要求される、半導体機器等の量産製品の製造工程には不向きである。前記特許文献3に例示されるとおり、相当台数の酸素分圧制御装置を並列に接続して供給能力を充足させることも考えられるが、設備コスト並びに操業コストは多大になることが想定される。   Moreover, since the conventional oxygen partial pressure control devices are assumed to be processing devices having an internal volume of less than 1 liter, they are not suitable for manufacturing processes for mass-produced products such as semiconductor devices that require a large amount of gas. is there. As exemplified in Patent Document 3, it is conceivable to connect a considerable number of oxygen partial pressure control devices in parallel to satisfy the supply capacity. However, it is assumed that the equipment cost and the operation cost become enormous.

一方、前記特許文献4に例示される固体電解質の回復方法は、あくまでも酸素センサの性能低下に対処するためのものに過ぎず、かかる方法を過還元された酸素ポンプに適用した場合、より短寿命化を招くものであり、設備コスト等の低減に寄与するものではない。   On the other hand, the method for recovering the solid electrolyte exemplified in Patent Document 4 is only for dealing with a decrease in the performance of the oxygen sensor. When this method is applied to an over-reduced oxygen pump, the lifetime is shorter. It does not contribute to the reduction of equipment costs.

本発明者らは、前記種々の課題を解決すべく、酸素ポンプ等の装置構成並びに操業方法の両面から改良を加え、実用操業レベルの高い処理能力と低コスト性を実現しうる発明を創出するに至った。本発明は次の技術的事項により特定される発明である。   In order to solve the above-mentioned various problems, the present inventors have made improvements from both the apparatus configuration such as an oxygen pump and the operation method, and create an invention capable of realizing a high practical operation level and low cost. It came to. The present invention is an invention specified by the following technical matters.

本発明(1)は、固体電解質の作動温度に加熱保持可能な加熱炉の内部に、空気又は純酸素が供給されるとともに、管状構造の固体電解質を含む少なくとも1つの酸素ポンプと管状構造の固体電解質を含む少なくとも2つの酸素センサが収納され、
前記少なくとも1つの酸素ポンプと前記少なくとも2つの酸素センサは、前記空気又は純酸素を各固体電解質の管外パージガスとするように互いに並行して配置されるとともに、それら各固体電解質の管内を共通の処理ガスが流通可能に連結し、
さらに、前記2つの酸素センサが検出した酸素分圧に基づいて前記酸素ポンプの作動を制御する酸素ポンプ作動制御手段と電気的に接続することを特徴とする、酸素分圧制御装置である。
本発明(2)は、前記酸素ポンプの管状構造の固体電解質の両端を、前記加熱炉の外部に張り出し、加熱炉から張り出した管の両端面をシール手段によって、管内を気密とするとともに、該シール手段を冷却する冷却手段をさらに設けたことを特徴とする、本発明(1)の酸素分圧制御装置である。
本発明(3)は、前記酸素センサは、管内全面に設けた多孔質電極と管外周に帯状に設けた多孔質電極とを含み、該両電極間に生じる電位差を検出することにより酸素分圧を測定するものであることを特徴とする、本発明(1)又は本発明(2)の何れか1発明の酸素分圧制御装置である。
本発明(4)は、前記酸素ポンプ作動制御手段は、そのPID定数が前記酸素分圧の関数としてそれぞれ定義され、前記酸素センサより酸素分圧の現在値がサンプリングされる都度、該関数に応じた値にそれぞれ自動調整され、該調整された後のPID定数に基づいて前記酸素ポンプの作動をPID制御するものであることを特徴とする、本発明(1)〜本発明(3)の何れか1発明の酸素分圧制御装置である。
本発明(5)は、前記加熱炉は、少なくとも1つの円柱状の抵抗発熱体を含み、前記各固体電解質に対して互いに並行して配置され、かつその固体電解質の本数と抵抗発熱体の本数の比が1/2〜6であることを特徴とする、本発明(1)〜本発明(4)の何れか1発明の酸素分圧制御装置である。
本発明(6)は、前記抵抗発熱体と前記固体電解質の軸線方向にみて、前記抵抗発熱体の軸心を中心とするハニカム構造の各頂点の位置に、各固体電解質の軸心がそれぞれ位置するように、均等な間隔をもって配置されていることを特徴とする、本発明(5)の酸素分圧制御装置である。
本発明(7)は、少なくとも2つの空間を離隔する固体電解質を少なくとも1つ含む加熱炉を、前記固体電解質の作動温度に昇温する工程、
前記固体電解質の表裏に設けられた電極間に電圧を印加し、前記何れか一方の空間におけるガスから他方の空間のガスに、前記固体電解質を介して酸素を排出する工程、
酸素分圧が低減されたガスと接触していた側の固体電解質表面に、大気圧の純酸素又は空気を導入し、該固体電解質表面を再酸化する工程、
前記加熱炉を前記固体電解質作動温度から降温する工程を少なくとも含むことを特徴とする、酸素分圧制御用固体電解質の回復方法である。
本発明(8)は、前記昇温する工程における平均昇温速度が3〜6℃/分であり、かつ前記降温する工程における平均降温速度が3〜6℃/分であることを特徴とする、本発明(7)の酸素分圧制御用固定電解質の回復方法である。
In the present invention (1), air or pure oxygen is supplied into a heating furnace capable of being heated and held at the operating temperature of the solid electrolyte, and at least one oxygen pump including a solid electrolyte having a tubular structure and a solid having a tubular structure are provided. Contains at least two oxygen sensors containing electrolyte,
The at least one oxygen pump and the at least two oxygen sensors are arranged in parallel to each other so that the air or pure oxygen is used as an extra-purge gas for each solid electrolyte, and the inside of each solid electrolyte pipe is shared. Process gas is connected to be able to distribute
Furthermore, the oxygen partial pressure control device is characterized in that it is electrically connected to oxygen pump operation control means for controlling the operation of the oxygen pump based on the oxygen partial pressures detected by the two oxygen sensors.
According to the present invention (2), both ends of the solid electrolyte having a tubular structure of the oxygen pump are extended to the outside of the heating furnace, and both ends of the pipe protruding from the heating furnace are hermetically sealed by sealing means, The oxygen partial pressure control device according to the present invention (1), further comprising a cooling means for cooling the sealing means.
According to the present invention (3), the oxygen sensor includes a porous electrode provided on the entire surface of the tube and a porous electrode provided in a strip shape on the outer periphery of the tube, and detects an oxygen partial pressure by detecting a potential difference generated between the two electrodes. It is an oxygen partial pressure control device according to any one of the present invention (1) and the present invention (2), characterized in that
According to the present invention (4), each time the oxygen pump operation control means has its PID constant defined as a function of the oxygen partial pressure and the current value of the oxygen partial pressure is sampled by the oxygen sensor, Any one of the present invention (1) to the present invention (3), wherein the operation of the oxygen pump is PID controlled based on the PID constant after the adjustment. 1 is an oxygen partial pressure control device of the invention.
In the present invention (5), the heating furnace includes at least one cylindrical resistance heating element, and is arranged in parallel to each of the solid electrolytes, and the number of the solid electrolytes and the number of the resistance heating elements. The oxygen partial pressure control device according to any one of the present invention (1) to the present invention (4) is characterized in that the ratio of the above is 1 / 2-6.
In the present invention (6), the axial center of each solid electrolyte is positioned at each vertex of the honeycomb structure centering on the axial center of the resistance heating element as viewed in the axial direction of the resistance heating element and the solid electrolyte. Thus, the oxygen partial pressure control device according to the present invention (5) is characterized by being arranged at equal intervals.
The present invention (7) includes a step of heating a heating furnace including at least one solid electrolyte separating at least two spaces to an operating temperature of the solid electrolyte,
Applying a voltage between the electrodes provided on the front and back of the solid electrolyte, and discharging oxygen from the gas in one of the spaces to the gas in the other space through the solid electrolyte;
Introducing a pure oxygen or air at atmospheric pressure into the solid electrolyte surface on the side that has been in contact with the gas having a reduced oxygen partial pressure, and reoxidizing the solid electrolyte surface;
A method of recovering a solid electrolyte for controlling oxygen partial pressure, comprising at least a step of lowering the temperature of the heating furnace from the solid electrolyte operating temperature.
The present invention (8) is characterized in that an average rate of temperature increase in the step of increasing temperature is 3 to 6 ° C./min, and an average rate of temperature decrease in the step of decreasing temperature is 3 to 6 ° C./min. This is a method for recovering a fixed electrolyte for controlling oxygen partial pressure according to the present invention (7).

なお、処理ガスの酸素分圧水準として、一層の極低酸素分圧が要求される場合の装置構成としては、管状の固体電解質を含む第2酸素ポンプを収納する第2加熱炉をさらに備え、該第2酸素ポンプの固体電解質は、前記酸素ポンプと前記酸素センサとの間に接続するとともに、その管外パージガスとして酸素分圧を制御された不活性ガスとするものであることを特徴とする、本発明(1)の酸素分圧制御装置や、前記酸素ポンプの管状構造は、外側管と同軸の内側管とからなる2重管構造であって、内側管と外側管の間の空間で、外側管の固体電解質によって酸素分圧を低減された処理ガスを、内側管内の空間に導き、内側管の固体電解質によってさらに酸素分圧を低減するものであることを特徴とする、本発明(1)の酸素分圧制御装置が本発明として採用されうる。   In addition, as an apparatus configuration in which a very low oxygen partial pressure is required as the oxygen partial pressure level of the processing gas, the apparatus further includes a second heating furnace that houses a second oxygen pump including a tubular solid electrolyte, The solid electrolyte of the second oxygen pump is connected between the oxygen pump and the oxygen sensor, and serves as an inert gas whose oxygen partial pressure is controlled as its extra-purge gas. The tubular structure of the oxygen partial pressure control device of the present invention (1) and the oxygen pump is a double tube structure including an outer tube and an inner tube coaxial with each other, and is formed in a space between the inner tube and the outer tube. The present invention is characterized in that the processing gas whose oxygen partial pressure is reduced by the solid electrolyte in the outer tube is guided to the space in the inner tube, and the oxygen partial pressure is further reduced by the solid electrolyte in the inner tube ( 1) Oxygen partial pressure control device It may be employed as an invention.

本発明にかかる酸素分圧制御装置の概要を示す図The figure which shows the outline | summary of the oxygen partial pressure control apparatus concerning this invention 本発明にかかる酸素センサの電極構造と固体電解質端部のシール構造を示す図The figure which shows the electrode structure of the oxygen sensor concerning this invention, and the sealing structure of a solid electrolyte edge part 本発明にかかる酸素分圧制御装置によって処理されたガスの酸素分圧挙動の一例を示す図The figure which shows an example of the oxygen partial pressure behavior of the gas processed by the oxygen partial pressure control apparatus concerning this invention 本発明にかかる酸素ポンプ併設時のレイアウトを示す図The figure which shows the layout at the time of oxygen pump installation concerning this invention 本発明にかかる酸素分圧制御装置において採用された、酸素分圧に応じたPID定数のプロフィールを示す図The figure which shows the profile of the PID constant according to the oxygen partial pressure employ | adopted in the oxygen partial pressure control apparatus concerning this invention. 本発明にかかる酸素分圧制御装置においてPID定数を固定した場合に観測される酸素分圧変動履歴の一例を示す図The figure which shows an example of the oxygen partial pressure fluctuation | variation log | history observed when the PID constant is fixed in the oxygen partial pressure control apparatus concerning this invention.

図1に、本発明にかかる酸素分圧制御装置の概要、特に、加熱炉周りの装置断面図を示す。図1の左側は、固体電解質の軸線方向にみた装置側面の断面図であり、一方、右側は装置正面の断面図であり、それぞれの切断面は、他方の図の一点鎖線を付した箇所での切断面を示している。   FIG. 1 shows an outline of an oxygen partial pressure control apparatus according to the present invention, in particular, an apparatus cross-sectional view around a heating furnace. The left side of FIG. 1 is a cross-sectional view of the side of the device as viewed in the axial direction of the solid electrolyte, while the right side is a cross-sectional view of the front of the device, and each cut surface is a point marked with a dashed line in the other figure. The cut surface is shown.

ここで、管状の加熱炉1内には、酸素ポンプ、第1酸素センサ及び第2酸素センサ用の固体電解質管2を、均等の間隔をもって並行にフランジ3をもって配置され、各固定電解質管の両端が、加熱炉外に張り出して取り付けられる。   Here, in the tubular heating furnace 1, a solid electrolyte pipe 2 for an oxygen pump, a first oxygen sensor, and a second oxygen sensor is disposed with flanges 3 in parallel at equal intervals, and both ends of each fixed electrolyte pipe. However, it sticks out of the heating furnace.

図1では、両端が大気に開放した構成を採用したが、密閉型とすることもできる。その場合、フランジ側面中央にパージガス導入孔を設け、該導入孔から、純酸素又は空気からなる供給パージガス流を導入し、加熱炉1内の前記固体電解質管の外部雰囲気が一定に保たれるように、加熱炉内を掃引し他端のフランジに設けたパージガス排出孔から排気パージガス流を排気する構成を採用できる。パージガスの流量は、加熱炉容積1l当たり2300〜3400sccmであることが望ましい。   In FIG. 1, a configuration in which both ends are open to the atmosphere is adopted, but a sealed type may be used. In that case, a purge gas introduction hole is provided in the center of the flange side surface, and a supply purge gas flow made of pure oxygen or air is introduced from the introduction hole so that the external atmosphere of the solid electrolyte tube in the heating furnace 1 is kept constant. In addition, it is possible to employ a configuration in which the inside of the heating furnace is swept and the exhaust purge gas flow is exhausted from the purge gas discharge hole provided in the flange at the other end. The flow rate of the purge gas is desirably 2300 to 3400 sccm per 1 l of the heating furnace volume.

ここで、上記の酸素ポンプを構成する固体電解質としては、例えば、一般式(ZrO21-x-y(In23x(Y23y(0<x<0.20、0<y<0.20、0.08<x+y<0.20)で表されるジルコニア系を利用できる。そのほか、例えば、BaおよびInを含む複合B酸化物であって、この複合酸化物のBaの一部をLaで固溶置換したもの、特に、原子数比{La/(Ba+La)}を0.3以上としたものや、さらにInの一部をGaで置換したものや、一般式{Ln1-xSrxGa1-(y+z)MgyCoz3、ただし、Ln=La,Ndの1種または2種、x=0.05〜0.3、y=0〜0.29、z=0.01〜0.3、y+z=0.025〜0.3}で示されるものや、一般式{Ln(1-x)xGa(1-y-z)B1yB2z3-d、ただし、Ln=La,Ce,Pr,Nd,Smの1種または2種以上、A=Sr,Ca,Baの1種または2種以上、B1=Mg,Al,Inの1種または2種以上、B2=Co,Fe,Ni,Cuの1種または2種以上}で示されるものや、一般式{Ln2-xMxGe1-yLyO5、ただし、Ln=La,Ce,Pr,Sm,Nd,Gd,Yd,Y,Sc、M=Li,Na,K,Rb,Ca,Sr,Baの1種もしくは2種以上、L=Mg,Al,Ga,In,Mn,Cr,Cu,Znの1種もしくは2種以上}や、一般式{La(1-x)SrxGa(1-y-z)MgyAl23、ただし、0<x≦0.2、0<y≦0.2、0<z<0.4}や、一般式{Ln(1-x)xGa(1-y-z)B1yB2z3、 ただし、Ln=La,Ce,Pr,Sm,Ndの1種もしくは2種以上、A=Sr,Ca,Baの1種もしくは2種以上、B1=Mg,Al,Inの1種もしくは2種以上、B2=Co,Fe,Ni,Cuの1種もしくは2種以上、x=0.05〜0.3、y=0〜0.29、z=0.01〜0.3、y+z= 0.025〜0.3}等が採用できる。このような酸化物イオン伝導体を有する固体電解質を備える電気化学的な酸素ポンプは単独で用いてもよいが、例えば、ゲッタ材と組み合わせることによって、酸素分圧の制御を促進するようにしてもよい。 Here, as the solid electrolyte constituting the oxygen pump, for example, the general formula (ZrO 2 ) 1-xy (In 2 O 3 ) x (Y 2 O 3 ) y (0 <x <0.20, 0 <y <0.20, 0.08 <x + y <0.20) can be used. In addition, for example, a composite B oxide containing Ba and In, in which a part of Ba of this composite oxide is replaced by solid solution with La, in particular, the atomic ratio {La / (Ba + La)} and those with 0.3 or more, and those further substituted for part of in in Ga, formula {Ln 1-x Sr x Ga 1- (y + z) Mg y Co z O 3, however, Ln = La, One or two of Nd, x = 0.05 to 0.3, y = 0 to 0.29, z = 0.01 to 0.3, y + z = 0.025 to 0.3}, or a general formula {Ln (1-x) A x Ga (1-yz) B1 y B2 z O 3-d, however, Ln = La, Ce, Pr , Nd, 1 or more kinds of Sm, a = Sr, Ca, 1 kind of Ba or two above, B1 = Mg, Al, 1 or more kinds of in, B2 = Co, Fe, Ni, and those represented by one or more of Cu}, the formula {Ln 2-x MxGe 1- y LyO 5 , t However, Ln = La, Ce, Pr, Sm, Nd, Gd, Yd, Y, Sc, M = Li, Na, K, Rb, Ca, Sr, Ba, or more, L = Mg, Al , Ga, in, Mn, Cr , Cu, 1 kind or 2 or more kinds of Zn} and formula {La (1-x) Sr x Ga (1-yz) Mg y Al 2 O 3, where 0 < x ≦ 0.2, 0 <y ≦ 0.2, 0 <z <0.4} and the general formula {Ln (1-x) A x Ga (1-yz) B1 y B2 z O 3 , where Ln = La, Ce, One or more of Pr, Sm, Nd, one or more of A = Sr, Ca, Ba, one or more of B1 = Mg, Al, In, B2 = Co, Fe, Ni , Cu or one or more of them, x = 0.05 to 0.3, y = 0 to 0.29, z = 0.01 to 0.3, y + z = 0.025 to 0.3} and the like can be employed. An electrochemical oxygen pump including such a solid electrolyte having an oxide ion conductor may be used alone, but for example, by combining with a getter material, control of oxygen partial pressure may be promoted. Good.

また、かかる材質よりなる管状の固体電解質には、その内外周面に白金等よりなるネット状等の電極が設けてあり、該電極に直流電源から電流を流すことにより、固体電解質管内のガスに含まれる酸素分子が固体電解質によって電気的に還元され、酸素イオン化して固体電解質中に取り込まれる一方、固体電解質管の外表面から酸素分子として放出され、管外を流れるパージガスにより系外に排出される。   In addition, a tubular solid electrolyte made of such a material is provided with a net-like electrode made of platinum or the like on the inner and outer peripheral surfaces thereof, and a current from a DC power source is passed through the electrode to generate gas in the solid electrolyte tube. The contained oxygen molecules are electrically reduced by the solid electrolyte, oxygen ionized and taken into the solid electrolyte, while being released as oxygen molecules from the outer surface of the solid electrolyte tube and discharged out of the system by the purge gas flowing outside the tube. The

なお、酸素ポンプや酸素センサの固体電解質管2の材料コストを低減するために、加熱炉から張り出す長さを7cm短くし、固体電解質管の長さを20cmとした。これにより、固体電解質を通じての熱伝導により管端部が高温となることから、その対策として、管端部のシール機構を冷却するための空冷ファン8を固体電解質管近傍に設けた。図2には、酸素センサの固体電解質管の周辺構成について模式図を示す。ここでは、空冷方式を採用したが、その他の冷却手段も採用できる。   In order to reduce the material cost of the solid electrolyte tube 2 of the oxygen pump or oxygen sensor, the length of the solid electrolyte tube extending from the heating furnace was shortened by 7 cm, and the length of the solid electrolyte tube was 20 cm. As a result, since the tube end becomes high temperature due to heat conduction through the solid electrolyte, an air cooling fan 8 for cooling the tube end seal mechanism is provided in the vicinity of the solid electrolyte tube. FIG. 2 shows a schematic diagram of the peripheral configuration of the solid electrolyte tube of the oxygen sensor. Here, the air cooling method is adopted, but other cooling means can also be adopted.

また、酸素センサの固体電解質管2の内外面に設けた白金電極4,5は、固体電解質として動作しているジルコニア管の高温部分内での温度勾配の影響を除くために、図2のとおり、内面については、全面に白金ペーストを塗布して焼き付け処理を行い、内面全体を内面多孔質電極4とし、白金線6を接着するのに対し、外面については、固体電解質管2の中央付近に幅1〜2cm程度の帯状領域のみに白金ペーストを塗布して焼き付け外面多孔質電極5として、該外面電極5に絶縁硝子管に挿管された白金線7を接着して、炉外に引き出して前記白金線6との間の電位差を計測する構成とすることが望ましい。これにより、酸素センサ毎に較正作業を行う必要がなくなり、熱力学に基づくネルンストの式により直接酸素分圧を計算できる。   Further, the platinum electrodes 4 and 5 provided on the inner and outer surfaces of the solid electrolyte tube 2 of the oxygen sensor are as shown in FIG. 2 in order to eliminate the influence of the temperature gradient in the high temperature portion of the zirconia tube operating as the solid electrolyte. The inner surface is coated with a platinum paste and baked, and the entire inner surface is made into the inner surface porous electrode 4 and the platinum wire 6 is bonded, while the outer surface is near the center of the solid electrolyte tube 2. A platinum paste is applied only to a belt-like region having a width of about 1 to 2 cm and baked to form an outer surface porous electrode 5, and a platinum wire 7 inserted into an insulating glass tube is bonded to the outer surface electrode 5. It is desirable that the potential difference with the platinum wire 6 be measured. Thereby, it is not necessary to perform calibration work for each oxygen sensor, and the oxygen partial pressure can be directly calculated by the Nernst equation based on thermodynamics.

[実施例1]
本実施例では、特に、酸素ポンプの固体電解質管2と、第1酸素センサの固体電解質2と、第2酸素センサの固体電解質2を、正三角形の各頂点に各固体電解質管2の軸心がそれぞれ合致するように並列に配置した。フランジ3が開放型であるため、酸素ポンプ、第1酸素センサ及び第2酸素センサが設置される雰囲気が共通となる。
[Example 1]
In this embodiment, in particular, the solid electrolyte tube 2 of the oxygen pump, the solid electrolyte 2 of the first oxygen sensor, and the solid electrolyte 2 of the second oxygen sensor are arranged at the vertices of an equilateral triangle with the axis of each solid electrolyte tube 2. Are arranged in parallel so that they match each other. Since the flange 3 is an open type, the atmosphere in which the oxygen pump, the first oxygen sensor, and the second oxygen sensor are installed is common.

そして、酸素ポンプの固体電解質管2内にはアルゴンガスを200sccmで導入した。該酸素ポンプの固体電解質2の内外の電極間にフィードバックゲインに応じて-2〜2Vを印加した。なお、本実施例の加熱炉では、開放型を採用し空気中で実施しているが、密閉型にし、パージガスとして純酸素を用いることもできる。   Then, argon gas was introduced at 200 sccm into the solid electrolyte tube 2 of the oxygen pump. A voltage of −2 to 2 V was applied between the inner and outer electrodes of the solid electrolyte 2 of the oxygen pump according to the feedback gain. In the heating furnace of this embodiment, an open type is adopted and carried out in the air. However, a closed type can be used and pure oxygen can be used as a purge gas.

続いて、酸素ポンプの固体電解質管2を通過し、酸素分圧を低減されたアルゴンガスを第1酸素センサの固体電解質管2内に導き、該アルゴンガス中の酸素分圧を測定した。なお、酸素分圧の測定には、該固体電解質管2の内外の酸素分圧差に伴う濃淡電池反応による起電力を用いた。酸素分圧の経時変化を図3に示す。約2時間で10-26atm程度を示し、約20時間運転後に安定して10-30atmの酸素分圧値を示した。 Subsequently, the argon gas having passed through the solid electrolyte tube 2 of the oxygen pump and having a reduced oxygen partial pressure was introduced into the solid electrolyte tube 2 of the first oxygen sensor, and the oxygen partial pressure in the argon gas was measured. For measuring the oxygen partial pressure, an electromotive force due to the concentration cell reaction accompanying the difference in oxygen partial pressure inside and outside the solid electrolyte tube 2 was used. The change with time in the oxygen partial pressure is shown in FIG. It showed about 10-26 atm in about 2 hours, and showed stable oxygen partial pressure value of 10-30 atm after about 20 hours of operation.

[実施例2]
次に、酸素分圧制御ガスの量産化ニーズに応えるために、本発明の加熱炉を集約する設計をさらに押し進めて、1つの加熱炉内に、固体電解質管2を複数配置する態様を実施した。
[Example 2]
Next, in order to meet the needs for mass production of oxygen partial pressure control gas, the design for consolidating the heating furnace of the present invention was further advanced, and a mode in which a plurality of solid electrolyte tubes 2 were arranged in one heating furnace was implemented. .

固体電解質管2と抵抗発熱体9を、図4のように並列配置した。すなわち、各固体電解質2の軸心を、円筒状の抵抗発熱体9の軸心を中心とするハニカム構造の各頂点にそれぞれ配置した。これにより、各固体電解質管2の温度ムラを1℃未満に抑えることが可能になった。   The solid electrolyte tube 2 and the resistance heating element 9 were arranged in parallel as shown in FIG. That is, the axis of each solid electrolyte 2 was disposed at each apex of the honeycomb structure centered on the axis of the cylindrical resistance heating element 9. As a result, the temperature unevenness of each solid electrolyte tube 2 can be suppressed to less than 1 ° C.

ここで、図4のレイアウトはこの本数に留まるものではなく、このレイアウトをさらに拡げることができることはもちろんのこと、固体電解質管2と抵抗発熱体9の本数比率は、1/3〜6の範囲で自由に変更可能である。なお、図4では、各固体電解質管は、酸素ポンプ用の固体電解質2として記載されているもののうち何れか2本を選択して、第1乃至第2の酸素センサ用の固体電解質管とするものである。   Here, the layout in FIG. 4 is not limited to this number, and the layout ratio can be further expanded, and the number ratio of the solid electrolyte tube 2 and the resistance heating element 9 is in the range of 1 / 3-6. Can be changed freely. In FIG. 4, each solid electrolyte tube is selected as one of the solid electrolyte tubes for the oxygen pump by selecting any two of those described as the solid electrolyte 2 for the oxygen pump. Is.

[実施例3]
一方、本実施例では、0.2〜10-30atmという、実操業における広範な雰囲気ガスの酸素分圧ニーズに応えるために、次のようなPID制御を行い、制御目標分圧への迅速な制御を実現し、結果として操業コストの低減を実現した。
[Example 3]
On the other hand, in this embodiment, in order to meet the oxygen partial pressure needs of a wide range of atmospheric gases in actual operation of 0.2 to 10 -30 atm, the following PID control is performed to quickly control to the control target partial pressure. As a result, the operation cost was reduced.

具体的には、図5(特に右側)に例示されるとおり、その時々の酸素分圧に応じて、PID定数を滑らかにかつ自動的に可変設定できる構成を採用した。なお、酸素分圧レベルに対する各定数の値の目安として、図5の左側に示した表の値とした。但し、この表は、多段階に変更することを示すものではなく、実操業では各定数は、酸素分圧に基づく連続関数として定義される。   Specifically, as illustrated in FIG. 5 (particularly on the right side), a configuration is adopted in which the PID constant can be variably set automatically and smoothly according to the oxygen partial pressure at that time. In addition, as a standard of the value of each constant with respect to the oxygen partial pressure level, the values in the table shown on the left side of FIG. 5 were used. However, this table does not indicate that the change is made in multiple stages. In actual operation, each constant is defined as a continuous function based on the oxygen partial pressure.

なお、この図5のPID定数は、加熱炉内容積が0.03l、ジルコニア管は長さ200mm×直径10mm、作動温度600-700℃の装置構成を前提としたものである。但し、PID定数は、採用する装置構成に合わせて、修正を加えることが望ましい。なお、参考として、図6に、酸素分圧が10-20atmで最適となるPID定数で固定した装置に純アルゴンガスを導入した場合における、酸素分圧が10-10atmまで下がった後の酸素分圧挙動を示す。このように固定のPID定数による制御では、酸素分圧が周期的に大きく振動し、安定した酸素分圧が得られるまでに長時間を要するようになる。前掲の図3のPID定数を可変とした場合の挙動と顕著に相違する。 The PID constant in FIG. 5 is based on the premise that the heating furnace has an internal volume of 0.03 l, the zirconia tube has a length of 200 mm × diameter of 10 mm, and an operating temperature of 600 to 700 ° C. However, it is desirable to modify the PID constant according to the apparatus configuration to be adopted. For reference, FIG. 6 shows the result after the oxygen partial pressure is lowered to 10 -10 atm when pure argon gas is introduced into a device fixed at an optimum PID constant at an oxygen partial pressure of 10 -20 atm. Oxygen partial pressure behavior is shown. As described above, in the control using the fixed PID constant, the oxygen partial pressure oscillates greatly periodically, and it takes a long time to obtain a stable oxygen partial pressure. This is significantly different from the behavior when the PID constant in FIG. 3 is variable.

[実施例4]
酸素ポンプ内酸素分圧が〜10-30atm、温度600〜700℃という過酷な環境下での使用を考えると、ジルコニア管の延命を図るためには、準備における昇温速度と終了時の降温速度を操業効率の許す範囲で小さくすることが望ましく、また、長時間極低酸素分圧下で使用されたことにより部分還元された固体電解質の内表面の回復措置を講ずることが望ましい。
[Example 4]
Considering the use in harsh environments where the oxygen partial pressure in the oxygen pump is ~ 10 -30 atm and the temperature is 600 ~ 700 ° C, in order to extend the life of the zirconia tube, the temperature increase rate during preparation and the temperature decrease at the end It is desirable to reduce the speed within the range allowed by the operation efficiency, and it is also desirable to take measures for recovering the inner surface of the solid electrolyte partially reduced by being used under an extremely low oxygen partial pressure for a long time.

そこで、室温と作動温度600〜700℃との間を2〜3hrかけて緩やかに昇温・降温を行うように平均昇温速度・平均降温速度が3〜6℃/分とする温度管理を行うとともに、酸素ポンプを稼働した後に、降温を始める前に、酸素ポンプ等の固体電解質内に1atmの純酸素又は空気を流入させる工程を付加した。具体的には、各固体電解質管に、供給純酸素又は空気流を流入させるための配管と、該管内を流通した後に、系外へと排気純酸素又は空気流を流出させるための配管とを設けて、固体電解質を稼働した後に純酸素又は空気で、超低酸素分圧下で部分還元した固体電解質管内表面を再酸化することが望ましい。   Therefore, temperature control is performed so that the average temperature rise rate / average temperature drop rate is 3-6 ° C / min so that the temperature rises and falls slowly between room temperature and operating temperature 600-700 ° C over 2-3 hours. At the same time, after starting the oxygen pump, before starting to lower the temperature, a process of flowing 1 atm of pure oxygen or air into the solid electrolyte such as an oxygen pump was added. Specifically, a pipe for flowing supplied pure oxygen or air flow into each solid electrolyte pipe, and a pipe for flowing exhaust pure oxygen or air flow out of the system after flowing through the pipe. It is desirable to reoxidize the inner surface of the solid electrolyte tube that has been partially reduced with pure oxygen or air after operation of the solid electrolyte under ultra-low oxygen partial pressure.

これにより、通常の1週間〜10日程度の連続操業で破損していたジルコニア管が、実験開始から5ヶ月以上経った現在もなお一例の破損も報告されていないまでに延命化を図ることができた。   As a result, the zirconia tube that had been damaged in the normal continuous operation for about one week to 10 days can be extended in life until no damage has been reported yet even after 5 months from the start of the experiment. did it.

本発明は、固体電解質のパージガスを酸素ポンプと酸素センサとで共用とすることで、固体電解質を一つの加熱炉中にコンパクトに収納することを可能とし、設備コストの低減とともに操業コストも低減した酸素分圧制御装置を提供するものである。   In the present invention, the solid electrolyte purge gas is shared by the oxygen pump and the oxygen sensor, so that the solid electrolyte can be compactly accommodated in one heating furnace, which reduces the equipment cost and the operation cost. An oxygen partial pressure control device is provided.

一方、本発明は、酸素分圧制御装置の操業時における、固体電解質に対する負荷の小さい操業方法や後処理工程を採用することにより、固体電解質の長寿命化を図り、メインテナンスコストを低減した酸素分圧制御装置用固体電解質の回復方法を提供するものである。   On the other hand, the present invention adopts an operation method and a post-treatment process with a small load on the solid electrolyte during operation of the oxygen partial pressure control device, thereby extending the life of the solid electrolyte and reducing the maintenance cost. A method for recovering a solid electrolyte for a pressure control device is provided.

1 加熱炉
2 ジルコニア管
3 フランジ
4 内面多孔質電極
5 外面多孔質電極
6 内面電極用白金線
7 外面電極用白金線
8 冷却手段
9 抵抗加熱体

Fin 外部処理装置ガス給気管
Fout 外部処理装置ガス排気管
Gin 供給Arガス流
Gout 排気Arガス流
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Zirconia pipe 3 Flange 4 Inner surface porous electrode 5 Outer surface porous electrode 6 Platinum wire for inner surface electrode 7 Platinum wire for outer surface electrode 8 Cooling means 9 Resistance heating body

Fin External processor gas supply pipe Fout External processor gas exhaust pipe Gin supply Ar gas flow Gout exhaust Ar gas flow

Claims (2)

少なくとも2つの空間を離隔する固体電解質を少なくとも1つ含む加熱炉を、前記固体電解質の作動温度に昇温する工程、
前記固体電解質の表裏に設けられた電極間に電圧を印加し、前記何れか一方の空間におけるガスから他方の空間のガスに、前記固体電解質を介して酸素を排出する工程、
酸素分圧が低減されたガスと接触していた側の固体電解質表面に、大気圧の純酸素又は空気を導入し、該固体電解質表面を再酸化する工程、
前記加熱炉を前記固体電解質作動温度から降温する工程を少なくとも含むことを特徴とする、酸素分圧制御用固体電解質の回復方法。
Heating a heating furnace including at least one solid electrolyte separating at least two spaces to an operating temperature of the solid electrolyte;
Applying a voltage between the electrodes provided on the front and back of the solid electrolyte, and discharging oxygen from the gas in one of the spaces to the gas in the other space through the solid electrolyte;
Introducing a pure oxygen or air at atmospheric pressure into the solid electrolyte surface on the side that has been in contact with the gas having a reduced oxygen partial pressure, and reoxidizing the solid electrolyte surface;
A method for recovering a solid electrolyte for controlling oxygen partial pressure, comprising at least a step of lowering the temperature of the heating furnace from the solid electrolyte operating temperature.
前記昇温する工程における平均昇温速度が3〜6℃/分であり、かつ前記降温する工程における平均降温速度が3〜6℃/分であることを特徴とする請求項1記載の酸素分圧制御用固定電解質の回復方法。   2. The oxygen content according to claim 1, wherein an average temperature increase rate in the temperature increasing step is 3 to 6 ° C./min, and an average temperature decrease rate in the temperature decreasing step is 3 to 6 ° C./min. Recovery method for pressure control fixed electrolyte.
JP2010132569A 2010-06-10 2010-06-10 Oxygen partial pressure control apparatus and solid electrolyte recovery method for oxygen partial pressure control Expired - Lifetime JP5229508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010132569A JP5229508B2 (en) 2010-06-10 2010-06-10 Oxygen partial pressure control apparatus and solid electrolyte recovery method for oxygen partial pressure control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010132569A JP5229508B2 (en) 2010-06-10 2010-06-10 Oxygen partial pressure control apparatus and solid electrolyte recovery method for oxygen partial pressure control

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004149281A Division JP2005331339A (en) 2004-05-19 2004-05-19 Oxygen partial pressure control device and recovery method of solid electrolyte for oxygen partial pressure control

Publications (2)

Publication Number Publication Date
JP2010216017A JP2010216017A (en) 2010-09-30
JP5229508B2 true JP5229508B2 (en) 2013-07-03

Family

ID=42975143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010132569A Expired - Lifetime JP5229508B2 (en) 2010-06-10 2010-06-10 Oxygen partial pressure control apparatus and solid electrolyte recovery method for oxygen partial pressure control

Country Status (1)

Country Link
JP (1) JP5229508B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634832B2 (en) * 2010-11-15 2014-12-03 キヤノンマシナリー株式会社 Oxygen partial pressure control method
JP5550530B2 (en) * 2010-11-15 2014-07-16 キヤノンマシナリー株式会社 Oxygen partial pressure control method
JP5545227B2 (en) * 2011-01-11 2014-07-09 住友電気工業株式会社 Gas decomposition apparatus and power generation apparatus
JP6144532B2 (en) 2013-05-01 2017-06-07 株式会社デンソー Brazing sheet brazing method and heat exchanger manufacturing method
JP5946027B2 (en) * 2014-03-20 2016-07-05 住友電気工業株式会社 Gas decomposition apparatus and power generation apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352194A (en) * 1976-10-22 1978-05-12 Toray Industries Oxygen concentration measuring apparatus
JPS55136101A (en) * 1979-04-09 1980-10-23 Toray Ind Inc Solid electrolyte oxygen pump
JPS60187854A (en) * 1984-03-07 1985-09-25 Shinya Otsuka Oxygen concentration measuring apparatus
JPS62138745A (en) * 1985-12-13 1987-06-22 Toray Ind Inc Method for regenerating oxygen pump electrode of oxygen analyzing instrument
JP4283686B2 (en) * 2003-02-20 2009-06-24 株式会社日本自動車部品総合研究所 Gas sensor element and control method and manufacturing method of gas sensor element.

Also Published As

Publication number Publication date
JP2010216017A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5229508B2 (en) Oxygen partial pressure control apparatus and solid electrolyte recovery method for oxygen partial pressure control
US20070054170A1 (en) Oxygen ion conductors for electrochemical cells
JP2005331339A (en) Oxygen partial pressure control device and recovery method of solid electrolyte for oxygen partial pressure control
CN106222753B (en) A kind of miniature rapid temperature rise and drop annealing furnace
WO1991006691A1 (en) Solid state oxygen compressor
JP5634832B2 (en) Oxygen partial pressure control method
JP5424286B2 (en) Oxygen partial pressure control device and oxygen partial pressure measuring instrument
Ciacchi et al. Tubular zirconia–yttria electrolyte membrane technology for oxygen separation
CN106596685A (en) Perovskite solid electrolyte current-type NO2 sensor and preparation method thereof
JP5071809B2 (en) Solid electrolyte type oxygen partial pressure control method
CN216646336U (en) Small-size limiting current type zirconia oxygen sensor core
KR20180059578A (en) Gas sensor for measuring different gases, and corresponding production method
JP3091689B2 (en) Manufacturing method of electrochemical device
JP5000572B2 (en) Oxygen pump and oxygen pump recovery method
KR20130076247A (en) Tubular solid oxide fuel cell module and producing method thereof
JP4412560B2 (en) Gas pump
JP5483043B2 (en) Extremely low moisture gas generating device, inert gas, processing device, and method for measuring moisture content in gas
US20240151467A1 (en) Systems and methods for manufacturing solid oxide cells
JP5550530B2 (en) Oxygen partial pressure control method
US20170062847A1 (en) Fuel cell with oxygen transport membrane
JP2006085923A (en) Cell characteristics estimation device
RU2694275C1 (en) Electrochemical device for oxygen dosing in gas medium and simultaneous control of oxygen content of gas at inlet and outlet of oxygen pump
Yamaji et al. ELECTRONIC CONDUCTIVITY OF La 0.8 Sr 0.2 Ga 0.8 Mg 0.2− x Co x O 3− δ ELECTROLYTES (II)
JP2008231466A (en) Very-low oxygen concentration gas generating apparatus
JP2006258624A (en) Method of controlling oxygen supply device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250