JP5228020B2 - Cheese, gelled food and method for producing the same - Google Patents
Cheese, gelled food and method for producing the same Download PDFInfo
- Publication number
- JP5228020B2 JP5228020B2 JP2010219325A JP2010219325A JP5228020B2 JP 5228020 B2 JP5228020 B2 JP 5228020B2 JP 2010219325 A JP2010219325 A JP 2010219325A JP 2010219325 A JP2010219325 A JP 2010219325A JP 5228020 B2 JP5228020 B2 JP 5228020B2
- Authority
- JP
- Japan
- Prior art keywords
- milk
- mmol
- mcl
- chlorine
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 235000013351 cheese Nutrition 0.000 title claims description 43
- 235000013305 food Nutrition 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 235000013336 milk Nutrition 0.000 claims description 178
- 210000004080 milk Anatomy 0.000 claims description 178
- 239000008267 milk Substances 0.000 claims description 175
- 239000007787 solid Substances 0.000 claims description 147
- 238000010438 heat treatment Methods 0.000 claims description 79
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 78
- 235000013861 fat-free Nutrition 0.000 claims description 75
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 48
- 239000000460 chlorine Substances 0.000 claims description 48
- 229910052801 chlorine Inorganic materials 0.000 claims description 48
- 238000003756 stirring Methods 0.000 claims description 40
- 239000002994 raw material Substances 0.000 claims description 38
- 150000001450 anions Chemical class 0.000 claims description 34
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 30
- 239000000839 emulsion Substances 0.000 claims description 30
- 239000011574 phosphorus Substances 0.000 claims description 30
- 229910052698 phosphorus Inorganic materials 0.000 claims description 30
- 239000007788 liquid Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 20
- 235000013365 dairy product Nutrition 0.000 claims description 14
- 238000000926 separation method Methods 0.000 claims description 9
- 235000020185 raw untreated milk Nutrition 0.000 claims description 3
- 230000001112 coagulating effect Effects 0.000 claims 2
- 239000000243 solution Substances 0.000 description 23
- 235000013350 formula milk Nutrition 0.000 description 22
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000005342 ion exchange Methods 0.000 description 14
- 239000000843 powder Substances 0.000 description 13
- 239000006071 cream Substances 0.000 description 12
- 235000020183 skimmed milk Nutrition 0.000 description 12
- 108010046377 Whey Proteins Proteins 0.000 description 11
- 102000007544 Whey Proteins Human genes 0.000 description 11
- 239000002253 acid Substances 0.000 description 10
- 239000003957 anion exchange resin Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 9
- 239000005862 Whey Substances 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 9
- 235000014633 carbohydrates Nutrition 0.000 description 9
- 150000001720 carbohydrates Chemical class 0.000 description 9
- 239000003925 fat Substances 0.000 description 9
- 235000019197 fats Nutrition 0.000 description 9
- 239000004310 lactic acid Substances 0.000 description 9
- 235000014655 lactic acid Nutrition 0.000 description 9
- 150000002632 lipids Chemical class 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 239000011591 potassium Substances 0.000 description 9
- 229910052700 potassium Inorganic materials 0.000 description 9
- 229940108461 rennet Drugs 0.000 description 9
- 108010058314 rennet Proteins 0.000 description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 8
- 238000009835 boiling Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 229910052708 sodium Inorganic materials 0.000 description 8
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 7
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 7
- 239000001110 calcium chloride Substances 0.000 description 7
- 229910001628 calcium chloride Inorganic materials 0.000 description 7
- 239000003456 ion exchange resin Substances 0.000 description 7
- 229920003303 ion-exchange polymer Polymers 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 6
- 238000001879 gelation Methods 0.000 description 6
- 239000003349 gelling agent Substances 0.000 description 6
- 125000000129 anionic group Chemical group 0.000 description 5
- 239000005018 casein Substances 0.000 description 5
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 5
- 235000021240 caseins Nutrition 0.000 description 5
- 238000005345 coagulation Methods 0.000 description 5
- 230000015271 coagulation Effects 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 229930014626 natural product Natural products 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 229920001429 chelating resin Polymers 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 235000011962 puddings Nutrition 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- 235000021056 liquid food Nutrition 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 235000008939 whole milk Nutrition 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 235000014121 butter Nutrition 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 238000011033 desalting Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 etc. Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000021067 refined food Nutrition 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 235000021119 whey protein Nutrition 0.000 description 2
- 235000013618 yogurt Nutrition 0.000 description 2
- 235000019737 Animal fat Nutrition 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010013911 Dysgeusia Diseases 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 101710202011 Protein 1.8 Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 235000009499 Vanilla fragrans Nutrition 0.000 description 1
- 244000263375 Vanilla tahitensis Species 0.000 description 1
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000011950 custard Nutrition 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000021243 milk fat Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 239000012492 regenerant Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 235000011496 sports drink Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000004326 stimulated echo acquisition mode for imaging Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011410 subtraction method Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
Images
Landscapes
- Dairy Products (AREA)
Description
本発明は、チーズやゲル状食品の製造方法と、該製造方法で得られたチーズおよびゲル状食品に関する。 The present invention relates to a method for producing cheese or gel food, and the cheese and gel food obtained by the production method.
牛乳などの乳は、飲用に供される他に数多くの加工食品の原料として用いられる。このような加工食品の1つとしてチーズがあり、チーズ製造時に副産物として得られるホエイも、そのまま食品原料として利用されたり、ホエイタンパク質や乳糖などの原料として幅広く利用されたりしている。
また、乳は、酸添加や発酵などの方法によりゲル化することから、プリンやヨーグルトなどの原料としても用いられている。
Milk such as milk is used as a raw material for many processed foods in addition to being used for drinking. One of such processed foods is cheese, and whey obtained as a by-product during cheese manufacture is also used as a raw material for food as it is, or widely used as a raw material for whey protein, lactose and the like.
Milk is also used as a raw material for purines and yogurts because it is gelled by methods such as acid addition and fermentation.
従来、乳からチーズ(カゼイン)およびホエイを作る方法は、非特許文献1〜3、特許文献1などに示されるように多数存在するが、その中でも代表的なものとして、(1)レンネット・乳酸菌法、(2)酸添加(酸カゼイン、酸ホエイ)、(3)塩化カルシウムを添加し加熱する方法(共沈カゼイン)などをあげることが出来る。 Conventionally, there are many methods for making cheese (casein) and whey from milk as shown in Non-Patent Documents 1 to 3, Patent Document 1, and the like. Among them, as a typical one, (1) Rennet Examples include lactic acid bacteria method, (2) acid addition (acid casein, acid whey), (3) method of adding calcium chloride and heating (co-precipitated casein).
しかしながら、レンネット・乳酸菌法(上記(1))は、手間やコストがかかるうえ、レンネットや乳酸菌という天然由来の成分を用いる方法であるため、得られる製品の品質が安定しなかった。
また、酸添加(上記(2))では、得られる製品の風味に影響を及ぼすことがあり、消費者の嗜好によっては好まれない場合もある。
一方、共沈カゼイン(上記(3))で得られる製品は、特許文献1にも示されているように、膠臭が強く、非常に風味が悪いと言われている。さらに、塩化カルシウムを加えて製造するという方法に由来して、調製粉乳原料や病人用食品(流動食など)に用いるにはミネラル含量が多すぎるという欠点がある。
However, the rennet / lactic acid bacteria method (above (1)) is time-consuming and costly, and is a method using natural components such as rennet and lactic acid bacteria, so the quality of the product obtained is not stable.
In addition, acid addition (above (2)) may affect the flavor of the product obtained, and may not be preferred depending on consumer preference.
On the other hand, the product obtained with co-precipitated casein (above (3)) is said to have a strong foul odor and very bad taste, as shown in Patent Document 1. Furthermore, there is a drawback that the mineral content is too high to be used for the raw material of formula milk and foods for the sick (liquid foods, etc.) due to the method of manufacturing by adding calcium chloride.
また最近の消費者の嗜好傾向として、保存料や着色料などの添加剤を含まない無添加食材が、健康志向などの理由から好まれつつある。ところが、市販のプリンや流動食などのようなゲル状食品は、ゲル化剤などの添加剤が利用されて製造されていることがほとんどである。 In addition, as a recent consumer preference, additive-free ingredients that do not contain additives such as preservatives and coloring agents are being favored for health-oriented reasons. However, gel foods such as commercially available puddings and liquid foods are mostly manufactured using additives such as gelling agents.
本発明は上記を鑑みてなされたもので、レンネットや乳酸菌のような天然物や、酸、塩化カルシウムなどを使用することなく、加熱するだけでチーズを製造でき、また、乳化剤やゲル化剤などを利用することなく、加熱するだけでゲル状食品を製造できる、チーズおよびゲル状食品の製造方法と、該製造方法で製造されたチーズおよびゲル状食品の提供を課題とする。 The present invention has been made in view of the above, and can produce cheese by heating without using natural products such as rennet and lactic acid bacteria, acid, calcium chloride, etc., and emulsifiers and gelling agents. It is an object of the present invention to provide a method for producing cheese and gel-like food, which can produce a gel-like food simply by heating, and the cheese and gel-like food produced by the production method.
本発明のチーズの製造方法は、原料乳液を塩素型陰イオン交換体で処理して得られる調整乳、又は、該調整乳と乳製品との混合物のいずれかを撹拌下で加熱して凝固させる撹拌加熱工程を有し、前記調整乳は、無脂乳固形分100g当たりの塩素のモル量が48〜90mmol、クエン酸のモル量が0.2〜3.3mmol、リンのモル量が17〜35.9mmolであり、該撹拌加熱工程で加熱される前記調整乳又は前記混合物は、無脂乳固形分濃度x(質量%)が6≦x≦15である場合には下記式(1)を満足し、前記無脂乳固形分濃度が15<x≦35である場合には下記式(2)を満足し、かつ、前記無脂乳固形分濃度x=20である場合には、[(6Mct+Mp)/Mcl]≦0.85を満足し、前記無脂乳固形分濃度x=25である場合には、[(6Mct+Mp)/Mcl]≦0.90を満足することを特徴とする。
[(6Mct+Mp)/Mcl]≦0.037x+0.27・・・(1)
[(6Mct+Mp)/Mcl]≦0.015x+0.60・・・(2)
(ただし、式中、Mctは無脂乳固形分100g当たりのクエン酸のモル量、Mpは無脂乳固形分100g当たりのリンのモル量、Mclは無脂乳固形分100g当たりの塩素のモル量を示す。)
チーズを製造する上で、凝固に問題が無い範囲で、糖類、香料、又は油脂類等の各素材を適宜追加して添加することが可能である。
前記撹拌加熱工程で生成した生成物を固液分離する固液分離工程を有することが好適である。
In the cheese production method of the present invention, either the prepared milk obtained by treating the raw material emulsion with a chlorine-type anion exchanger or a mixture of the adjusted milk and the dairy product is heated and solidified under stirring. The prepared milk has a stirring and heating step, the molar amount of chlorine per 100 g of nonfat milk solid content is 48 to 90 mmol, the molar amount of citric acid is 0.2 to 3.3 mmol, and the molar amount of phosphorus is 17 to When the non-fat milk solid content concentration x (mass%) is 6 ≦ x ≦ 15, the adjusted milk or the mixture heated in the stirring and heating step is 35.9 mmol. When the non-fat milk solid content concentration is 15 <x ≦ 35, the following formula (2) is satisfied , and when the non-fat milk solid content concentration x = 20, [( 6Mct + Mp) / Mcl] ≦ 0.85, and the non-fat milk solid content concentration x = 2 If it is is characterized by satisfying the [(6Mct + Mp) / Mcl ] ≦ 0.90.
[(6Mct + Mp) / Mcl] ≦ 0.037x + 0.27 (1)
[(6Mct + Mp) / Mcl] ≦ 0.015x + 0.60 (2)
(Where Mct is the molar amount of citric acid per 100 g of nonfat milk solids, Mp is the molar amount of phosphorus per 100 g of nonfat milk solids, and Mcl is the mol of chlorine per 100 g of nonfat milk solids. Indicates the amount.)
When manufacturing cheese, it is possible to add materials such as sugars, fragrances, and fats and oils as appropriate, within a range where there is no problem in coagulation .
It is preferable to have a solid-liquid separation step for solid-liquid separation of the product produced in the stirring and heating step.
本発明のゲル状食品の製造方法は、原料乳液を塩素型陰イオン交換体で処理して得られる調整乳、又は、該調整乳と乳製品との混合物のいずれかを非撹拌下で加熱して凝固させる非撹拌加熱工程を有し、前記調整乳は、無脂乳固形分100g当たりの塩素のモル量が44〜90mmol、クエン酸のモル量が0.2〜3.5mmol、リンのモル量が17〜36mmolであり、該非撹拌加熱工程で加熱される前記調整乳又は前記混合物は、無脂乳固形分濃度x(質量%)が6≦x≦20である場合には下記式(3)を満足し、かつ、前記無脂乳固形分濃度x=15である場合には、[(6Mct+Mp)/Mcl]≦0.85を満足することを特徴とする。
[(6Mct+Mp)/Mcl]≦0.066x−0.05・・・(3)
(ただし、式中、Mctは無脂乳固形分100g当たりのクエン酸のモル量、Mpは無脂乳固形分100g当たりのリンのモル量、Mclは無脂乳固形分100g当たりの塩素のモル量を示す。)
ゲル状食品を製造する上で、ゲル化に問題が無い範囲で、糖類、香料、又は油脂類等の各素材を適宜追加して添加することが可能である。
本発明のチーズおよびゲル状食品は、前記製造方法により製造される。
The method for producing a gel-like food according to the present invention comprises heating either raw milk obtained by treating a raw emulsion with a chlorine-type anion exchanger or a mixture of the fresh milk and a dairy product without stirring. A non-stirred heating step for coagulation, wherein the adjusted milk has a molar amount of chlorine of 44 to 90 mmol, a molar amount of citric acid of 0.2 to 3.5 mmol, and a molar amount of phosphorus per 100 g of nonfat milk solid content. When the amount is 17 to 36 mmol and the adjusted milk or the mixture heated in the non-stirring heating step has a nonfat milk solid content concentration x (mass%) of 6 ≦ x ≦ 20, the following formula (3 ) And the non-fat milk solid content concentration x = 15, [(6Mct + Mp) / Mcl] ≦ 0.85 is satisfied .
[(6Mct + Mp) / Mcl] ≦ 0.066x−0.05 (3)
(Where Mct is the molar amount of citric acid per 100 g of nonfat milk solids, Mp is the molar amount of phosphorus per 100 g of nonfat milk solids, and Mcl is the mol of chlorine per 100 g of nonfat milk solids. Indicates the amount.)
When producing a gel food, it is possible to add materials such as sugars, fragrances, or fats and oils as appropriate as long as there is no problem with gelation .
The cheese and the gel food of the present invention are manufactured by the above manufacturing method.
本発明によれば、レンネットや乳酸菌のような天然物や、酸、塩化カルシウムなどを使用することなく、加熱するだけでチーズを製造でき、また、乳化剤やゲル化剤などを利用することなく、加熱するだけでゲル状食品を製造できる。 According to the present invention, it is possible to produce cheese only by heating without using natural products such as rennet and lactic acid bacteria, acid, calcium chloride, etc., and without using an emulsifier or a gelling agent. A gel food can be produced simply by heating.
以下、本発明を詳細に説明する。
本発明で使用される原料乳液としては、全脂乳、部分脱脂乳、脱脂乳等が好適に利用でき、中でも部分脱脂乳、脱脂乳などが特に好適に例示できる。このように全脂乳(脂肪を取り除いていない乳)から少なくとも一部の脂肪を除去した乳を用いると、塩素型陰イオン交換体への脂肪付着を予防する点で好適である。
原料乳液としては、これらをそのまま用いてもよいし、希釈または濃縮により固形分濃度を調整して用いてもよい。乳としては、牛、山羊、羊などの乳を用いることができる。
また、原料乳液は、噴霧乾燥法や凍結乾燥法などで粉末化された乳、部分脱脂粉乳、脱脂粉乳などを水などで還元したものでもよい。
また、常法により殺菌を行ったものも使用できるが、好ましくは、殺菌されていない未殺菌乳か、低温殺菌品(ローヒート品)を用いる。ここで低温殺菌品とは、例えば、上述の非特許文献1の278頁に記載されているように、未変性乳清タンパク質含量(WPNI)が6.0以上のものである。
Hereinafter, the present invention will be described in detail.
As the raw material emulsion used in the present invention, full fat milk, partially skimmed milk, skimmed milk and the like can be suitably used, among which partially skimmed milk and skim milk can be particularly preferably exemplified. Thus, using milk from which at least a part of fat has been removed from whole fat milk (milk from which fat has not been removed) is preferable in terms of preventing fat adhesion to the chlorine-type anion exchanger.
As the raw material emulsion, these may be used as they are, or the solid concentration may be adjusted by dilution or concentration. As milk, milk such as cows, goats and sheep can be used.
In addition, the raw material emulsion may be obtained by reducing milk powdered by spray drying or freeze drying, partially skimmed milk powder, skimmed milk powder or the like with water or the like.
Moreover, although what was sterilized by the conventional method can be used, Preferably, unsterilized unsterilized milk or pasteurized products (low heat products) are used. Here, the pasteurized product is one having a native whey protein content (WPNI) of 6.0 or more, as described, for example, on page 278 of Non-Patent Document 1 described above.
本発明では、まず、原料乳液を塩素型陰イオン交換体に通液させ、接触させる方法により、原料乳液をイオン交換し、クエン酸濃度が低減され、リン濃度が低減又は維持され、塩素濃度が増大された調整乳を得る。
ここで使用される塩素型陰イオン交換体としては、市販の塩素型陰イオン交換樹脂が挙げられ、これを使用してもよいし、塩素型以外の陰イオン交換樹脂を食塩水、塩酸などにより塩素型にしたものを使用してもよい。
このように塩素型陰イオン交換体で原料乳液を処理することによって、得られる調整乳は熱安定性が低下し、加熱により固まりやすくなる。
なお、一般的に使用されているような水酸基(OH−)型の陰イオン交換体を用いて原料乳液を処理した場合は、処理後の調整乳は塩基性となり、中和剤等を添加してpHを中性域に調整しなければならなかった。特に調整乳が塩基性である場合は、そのまま食品として供するには好ましくなく、中和剤によるpH調整は不可欠であった。
これに対し、塩素型陰イオン交換体を用いる本発明では、水酸基(OH−)型の陰イオン交換体を用いる場合とは異なり、中和剤を添加する必要がなく、処理後の調整乳を直接加熱して、安全にかつ簡便にチーズやゲル状食品を製造できる点で、従来の一般的な陰イオン交換処理に比して有利な効果を有するものである。
In the present invention, first, the raw material emulsion is ion-exchanged by passing the raw material emulsion through a chlorine-type anion exchanger, and the citric acid concentration is reduced, the phosphorus concentration is reduced or maintained, and the chlorine concentration is reduced. Get increased formula milk.
Examples of the chlorine type anion exchanger used here include commercially available chlorine type anion exchange resins, which may be used, and anion exchange resins other than the chlorine type may be used with saline, hydrochloric acid, or the like. You may use the thing made into the chlorine type.
By treating the raw material emulsion with the chlorine-type anion exchanger in this way, the resulting prepared milk has reduced thermal stability and is likely to be hardened by heating.
In addition, when the raw material emulsion is processed using a hydroxyl group (OH-) type anion exchanger as commonly used, the adjusted milk after processing becomes basic, and a neutralizing agent or the like is added. The pH had to be adjusted to the neutral range. In particular, when the prepared milk is basic, it is not preferable to be used as a food as it is, and pH adjustment with a neutralizing agent has been indispensable.
On the other hand, in the present invention using a chlorine type anion exchanger, unlike the case of using a hydroxyl group (OH-) type anion exchanger, it is not necessary to add a neutralizing agent, It is advantageous in comparison with conventional general anion exchange treatment in that cheese and gel food can be produced safely and simply by direct heating.
原料乳液を塩素型陰イオン交換体に通液する際の通液条件は、目的とする調整乳の熱安定性などに応じて決定される。熱安定性の指標としては、[(6Mct+Mp)/Mcl]の値を採用できる。ただし、[(6Mct+Mp)/Mcl]中、Mct、Mp、Mclは、塩素型陰イオン交換体で処理して得られる調整乳の無脂乳固形分100g当たりのクエン酸のモル量、リンのモル量、塩素のモル量をそれぞれ示す。
[(6Mct+Mp)/Mcl]の値が小さくなるほど、得られる調整乳の熱安定性は低下して、加熱により固まりやすくなる。
なお、調整乳をチーズの原料とする場合には、調整乳の[(6Mct+Mp)/Mcl]の値は1.1以下であることが望ましい。
また、調整乳をゲル状食品の原料とする場合には、調整乳の[(6Mct+Mp)/Mcl]の値は1.3以下であることが望ましい。
例えば一般の脱脂乳における[(6Mct+Mp)/Mcl]の値は、2.5〜3.3である。
ここで、原料乳液を塩素型陰イオン交換体に通液する際の通液条件は、このように調整乳に求められる熱安定性を考慮する他、塩素型陰イオン交換体に通液する際のイオン交換効率、微生物増殖の抑制なども勘案して適宜決定される。
The condition for passing the raw material emulsion through the chlorine-type anion exchanger is determined according to the thermal stability of the target adjusted milk. As the thermal stability index, a value of [(6Mct + Mp) / Mcl] can be adopted. However, in [(6Mct + Mp) / Mcl], Mct, Mp, and Mcl are the molar amount of citric acid and the molar amount of phosphorus per 100 g of nonfat milk solid content of the adjusted milk obtained by treatment with a chlorine-type anion exchanger. Amount and molar amount of chlorine are shown respectively.
The smaller the value of [(6Mct + Mp) / Mcl], the lower the thermal stability of the resulting adjusted milk, and it tends to harden by heating.
In addition, when adjusting milk is used as the raw material of cheese, it is desirable that the value of [(6Mct + Mp) / Mcl] of the adjusting milk is 1.1 or less.
In addition, when adjusted milk is used as a raw material for gel food, the value of [(6Mct + Mp) / Mcl] of the adjusted milk is preferably 1.3 or less.
For example, the value of [(6Mct + Mp) / Mcl] in general skim milk is 2.5 to 3.3.
Here, in addition to considering the thermal stability required for the adjusted milk, the liquid passage conditions when the raw material emulsion is passed through the chlorine type anion exchanger are as follows. The ion exchange efficiency is appropriately determined in consideration of the suppression of microbial growth.
好適な通液条件としては、例えば、原料乳液の固形分濃度は4〜35質量%、特に7〜25質量%の範囲が好ましい。空間速度(SV)は2〜12、特に4〜9の範囲が好ましい。原料乳液の温度は2〜50℃の範囲が例示でき、微生物増殖を抑えるためには、原料乳液の温度は10℃以下とすることが特に好ましい。これらの条件内において、乳糖を析出させることがない範囲で通液させることが好ましい。 As a suitable liquid passing condition, for example, the solid content concentration of the raw material emulsion is preferably 4 to 35% by mass, particularly preferably 7 to 25% by mass. The space velocity (SV) is preferably in the range of 2 to 12, particularly 4 to 9. The temperature of the raw material emulsion can be exemplified by a range of 2 to 50 ° C. In order to suppress the growth of microorganisms, the temperature of the raw material emulsion is particularly preferably 10 ° C. or less. Within these conditions, it is preferable to let the liquid flow as long as lactose is not precipitated.
一般には、SVおよび固形分濃度がともに小さい方がイオン交換効率は上昇する。そのため、得られる調整乳の[(6Mct+Mp)/Mcl]の値は、SVおよび固形分濃度がともに小さい方が低くなる傾向にある。また、塩素型陰イオン交換体の単位交換容量あたりの、原料乳液の乳固形分の通液量が少ない程、塩素の増加量と、クエン酸やリンの除去量とが増加し、[(6Mct+Mp)/Mcl]の値は低くなる傾向にある。
例えば、本発明のチーズの製造方法において、固形分濃度が10質量%の原料乳液をSV6.5、温度10℃で通液する場合、塩素型陰イオン交換体のイオン交換容量1eqあたり、原料乳液の乳固形分の通液量が3.1kg程度以下であれば、得られる調整乳の[(6Mct+Mp)/Mcl]の値は1.1以下となる。ここでのeqとは、塩素型陰イオン交換体のイオン交換容量を表し、1eqは、1mol分の電荷を交換出来ることを表す。
また、本発明のゲル状食品の製造方法において、固形分濃度が10質量%の原料乳液をSV6.5、温度10℃で通液する場合、塩素型陰イオン交換体のイオン交換容量1eqあたり、原料乳液の乳固形分の通液量が3.6kg程度以下であれば、得られる調整乳の[(6Mct+Mp)/Mcl]の値は1.3以下となる。
なお、原料乳液を塩素型陰イオン交換体に通液させる回数は、1回でも複数回でもよく、目的とする[(6Mct+Mp)/Mcl]の値に応じて決定できる。
In general, the ion exchange efficiency increases as the SV and the solid concentration are both smaller. Therefore, the value of [(6Mct + Mp) / Mcl] of the prepared milk tends to be lower when both the SV and the solid content concentration are smaller. In addition, the smaller the amount of the milk solid content of the raw material emulsion per unit exchange capacity of the chlorine-type anion exchanger, the more the amount of chlorine increased and the amount of citric acid and phosphorus removed, [[6Mct + Mp ) / Mcl] tends to be low.
For example, in the cheese production method of the present invention, when a raw material emulsion having a solid content concentration of 10% by mass is passed at SV6.5 and a temperature of 10 ° C., the raw material emulsion per ion exchange capacity 1 eq of the chlorine-type anion exchanger If the amount of milk solids to be passed is about 3.1 kg or less, the value of [(6Mct + Mp) / Mcl] of the obtained adjusted milk will be 1.1 or less. Here, eq represents the ion exchange capacity of the chlorine-type anion exchanger, and 1 eq represents that 1 mol of charge can be exchanged.
In addition, in the method for producing a gel food according to the present invention, when a raw material emulsion having a solid content concentration of 10% by mass is passed at SV6.5 at a temperature of 10 ° C., per 1 eq of the ion exchange capacity of the chlorine type anion exchanger, If the flow rate of the milk solid content of the raw material emulsion is about 3.6 kg or less, the value of [(6Mct + Mp) / Mcl] of the obtained adjusted milk is 1.3 or less.
The number of times the raw material emulsion is passed through the chlorine-type anion exchanger may be one time or a plurality of times, and can be determined according to the target value of [(6Mct + Mp) / Mcl].
このようにして塩素型陰イオン交換体に通液することにより、クエン酸のモル量は低減され、リンのモル量は低減又は維持され、塩素のモル量は高められた調整乳が得られる。ただし、リンの除去量は塩素型陰イオン交換体のイオン交換容量あたりの原料乳液の乳固形分の通液量が多くなるにつれて、顕著に減少し、[(6Mct+Mp)/Mcl]の値が0.8を超える段階では、ほぼゼロとなり、調整乳中のリン含量は原料乳液とほぼ同じ値もしくは、リークにより原料乳液より多少高い値を示す。得られた調整乳のクエン酸のモル量が0.2〜3.3mmol/100g無脂乳固形、リンのモル量が17〜35mmol/100g無脂乳固形、塩素のモル含量が48〜90mmol/100g無脂乳固形であると、本発明の製造方法により、チーズがより得られやすい。ここで[/100g無脂乳固形]とは、「無脂乳固形分100g当たり」を意味する。
また、得られた調整乳のクエン酸のモル量が0.2〜3.5mmol/100g無脂乳固形、リンのモル量が17〜36mmol/100g無脂乳固形、塩素のモル含量が44〜90mmol/100g無脂乳固形であると、本発明の製造方法により、ゲル状食品がより得られやすい。
By passing the liquid through the chlorine-type anion exchanger in this way, a adjusted milk in which the molar amount of citric acid is reduced, the molar amount of phosphorus is reduced or maintained, and the molar amount of chlorine is increased is obtained. However, the amount of phosphorus removed decreases significantly as the amount of milk solids in the raw material emulsion per ion exchange capacity of the chlorine-type anion exchanger increases, and the value of [(6Mct + Mp) / Mcl] is 0. At a stage exceeding .8, it becomes almost zero, and the phosphorus content in the adjusted milk is almost the same value as that of the raw material emulsion or slightly higher than that of the raw material emulsion due to leakage. The obtained prepared milk has a molar amount of citric acid of 0.2 to 3.3 mmol / 100 g of non-fat milk solid, a molar amount of phosphorus of 17 to 35 mmol / 100 g of non-fat milk solid, and a molar content of chlorine of 48 to 90 mmol / Cheese is more easily obtained by the manufacturing method of this invention as it is 100g non-fat milk solid. Here, “/ 100 g nonfat milk solid” means “per 100 g nonfat milk solid”.
Moreover, the molar amount of the citric acid of the obtained adjusted milk is 0.2-3.5 mmol / 100g non-fat milk solid, the molar amount of phosphorus is 17-36 mmol / 100g non-fat milk solid, and the molar content of chlorine is 44- When it is 90 mmol / 100 g non-fat milk solid, a gel-like food is more easily obtained by the production method of the present invention.
塩素型陰イオン交換体によりイオン交換された調整乳は、熱安定性が低下し、加熱するだけで凝固やゲル化が起こりやすい。そのため、このような調整乳を原料とすることによって、レンネットや乳酸菌のような天然物や、酸、塩化カルシウムなどを使用することなく、加熱するだけでチーズを製造したり、乳化剤やゲル化剤などを利用することなく、加熱するだけでゲル状食品を製造したりできる。
[(6Mct+Mp)/Mcl]の値の好適な下限値は、調整乳の製造効率の観点から0.3であることが好ましい。
Conditioned milk that has been ion-exchanged with a chlorine-type anion exchanger has low thermal stability, and is easily coagulated or gelled only by heating. Therefore, by using such modified milk as a raw material, without using natural products such as rennet and lactic acid bacteria, acid, calcium chloride, etc., cheese can be produced simply by heating, emulsifiers and gelation. A gel-like food can be produced simply by heating without using an agent.
The suitable lower limit of the value of [(6Mct + Mp) / Mcl] is preferably 0.3 from the viewpoint of the production efficiency of the adjusted milk.
従来、乳製品などにおいて、塩素(塩化物イオン)は除去することが好ましい場合がある。
例えば、「牛乳・乳製品(養賢堂)」の245頁には、ホエー(ホエイ)の脱塩において、陰イオン交換樹脂により塩素を除去することが記載されている。また、「乳製品製造II(朝倉書店)」の353頁にも、塩素はイオン交換により除去されるものとして記載されている。そのため、従来、脱塩などを目的として陰イオン交換樹脂が使用される場合には、塩素型の陰イオン交換樹脂が使用されることはなく、水酸基型の陰イオン交換樹脂が一般に使用されてきた。このことは、「乳製品製造II(朝倉書店)」の353頁に、陰イオン交換樹脂の再生剤として水酸化ナトリウムを使用することが記載されている点や、特開2001−275562号公報の段落0024に例示されているアニオン交換樹脂(陰イオン交換樹脂)は、水酸基型である点からも裏づけられる。
Conventionally, it may be preferable to remove chlorine (chloride ions) in dairy products and the like.
For example, page 245 of “Milk / dairy products (Yokendo)” describes that chlorine is removed by an anion exchange resin in desalting whey. Further, page 353 of “Dairy Product Manufacturing II (Asakura Shoten)” describes that chlorine is removed by ion exchange. Therefore, conventionally, when an anion exchange resin is used for the purpose of desalination, a chlorine type anion exchange resin is not used, and a hydroxyl type anion exchange resin has been generally used. . This is because, on page 353 of “Dairy Product Manufacture II (Asakura Shoten)”, it is described that sodium hydroxide is used as a regenerant for anion exchange resins, and in JP-A-2001-275562. The anion exchange resin (anion exchange resin) exemplified in paragraph 0024 is supported by the point that it is a hydroxyl group type.
本発明は、このような従来の技術に反して、原料乳液を塩素型陰イオン交換体で処理して、クエン酸濃度を低減させ、リン濃度が低減又は維持され、塩素濃度を増大させた調整乳を原料とすることにより、酸、塩化カルシウム、乳化剤、ゲル化剤などを用いなくても、また、例えば脱塩処理などの他の処理をせずにそのまま加熱するだけで、チーズやゲル状食品を製造できることを見出したものである。 In the present invention, contrary to such conventional technology, the raw material emulsion is treated with a chlorine-type anion exchanger to reduce the citric acid concentration, reduce or maintain the phosphorus concentration, and adjust the chlorine concentration to be increased. By using milk as a raw material, without using acid, calcium chloride, emulsifier, gelling agent, etc. It has been found that food can be produced.
チーズを製造する場合には、上述のようにして塩素型陰イオン交換体で処理して得られる調整乳を撹拌下で加熱して凝固させる撹拌加熱工程を行う。このような撹拌加熱工程で調整乳が凝固する結果、カード(固形分)が生成し、固形分と固形分以外の液体(ホエイ)に分かれる。よって、固形分と固形分以外の液体とを固液分離する固液分離工程を行うことにより、チーズを得ることができる。
なお、撹拌加熱工程における撹拌とは、その後の固液分離工程においてカードとホエイとが固液分離できる程度にカードが生じる条件で行う撹拌のことを言う。
When manufacturing cheese, the stirring heating process which heats under control and coagulates the adjustment milk obtained by processing with a chlorine type anion exchanger as mentioned above is performed. As a result of the coagulation of the adjusted milk in such a stirring and heating step, a curd (solid content) is generated and separated into a solid content and a liquid (whey) other than the solid content. Therefore, cheese can be obtained by performing the solid-liquid separation process which carries out solid-liquid separation of solid content and liquids other than solid content.
The agitation in the agitation heating step refers to agitation performed under conditions that cause curd to such an extent that the curd and whey can be solid-liquid separated in the subsequent solid-liquid separation step.
撹拌加熱工程では、熱安定性の指標となる[(6Mct+Mp)/Mcl]の値と、無脂乳固形分濃度x(質量%)とが、xが6≦x≦15である場合には下記式(1)を満足し、xが15<x≦35である場合には下記式(2)を満足する調整乳を撹拌下で加熱する。
[(6Mct+Mp)/Mcl]≦0.037x+0.27・・・(1)
[(6Mct+Mp)/Mcl]≦0.015x+0.60・・・(2)
ただし、式中、Mctは無脂乳固形分100g当たりのクエン酸のモル量、Mpは無脂乳固形分100g当たりのリンのモル量、Mclは無脂乳固形分100g当たりの塩素のモル量を示す。
In the stirring and heating step, the value of [(6Mct + Mp) / Mcl] serving as an index of thermal stability and the nonfat milk solid content concentration x (mass%) are as follows when x is 6 ≦ x ≦ 15: When the formula (1) is satisfied and x is 15 <x ≦ 35, the adjusted milk satisfying the following formula (2) is heated with stirring.
[(6Mct + Mp) / Mcl] ≦ 0.037x + 0.27 (1)
[(6Mct + Mp) / Mcl] ≦ 0.015x + 0.60 (2)
Where Mct is the molar amount of citric acid per 100 g of nonfat milk solids, Mp is the molar amount of phosphorus per 100 g of nonfat milk solids, and Mcl is the molar amount of chlorine per 100 g of nonfat milk solids. Indicates.
[(6Mct+Mp)/Mcl]の値と無脂乳固形分濃度x(質量%)とが、式(1)または(2)を満足する調整乳を用いることによって、カードが生成する。
例えば、式(1)または(2)を満足する調整乳であって、[(6Mct+Mp)/Mcl]の値が0.5未満の調整乳の場合には、約75℃以上でカードが生成し始める。また、[(6Mct+Mp)/Mcl]の値が0.5以上0.75未満の調整乳の場合には約80℃以上で、0.75以上の調整乳の場合には約85℃以上でカードが生成し始める。そして、カードが発生し始める温度以上の温度で1〜5分間程度保持することで、カードの発生が終了する。
発生するカードの性状は、撹拌加熱工程に供する調整乳の無脂乳固形分濃度や、加熱条件、撹拌条件などに依存する。よって、目的とするカードの性状に応じて、無脂乳固形分濃度を6〜35質量%の範囲内で設定するとともに、加熱条件および撹拌条件も決定すればよい。
The curd is produced by using the adjusted milk in which the value of [(6Mct + Mp) / Mcl] and the non-fat milk solid content concentration x (mass%) satisfy the formula (1) or (2).
For example, in the case of the adjusted milk satisfying the formula (1) or (2) and the value of [(6Mct + Mp) / Mcl] is less than 0.5, the curd is generated at about 75 ° C. or more. start. In the case of the adjusted milk having a value of [(6Mct + Mp) / Mcl] of 0.5 or more and less than 0.75, it is about 80 ° C. or more, and in the case of the adjusted milk of 0.75 or more, the card at about 85 ° C. or more Begins to generate. And generation | occurrence | production of a card | curd is complete | finished by hold | maintaining about 1 to 5 minutes at the temperature more than the temperature which a card | curd begins to generate | occur | produce.
The property of the card | curd to generate | occur | produce depends on the nonfat milk solid content density | concentration of the adjustment milk | loop used for a stirring heating process, heating conditions, stirring conditions, etc. Therefore, the non-fat milk solid content concentration may be set within the range of 6 to 35% by mass, and the heating condition and stirring condition may be determined according to the properties of the target card.
無脂乳固形分濃度が6質量%未満の調整乳の場合、加熱しても十分に凝固せず、カードが生成しにくいか、生成するとしても、高温での加熱や長時間の加熱が必要となり、好ましくない。一方、無脂乳固形分濃度が35質量%を超えた調整乳は、粘度が高く、取扱いに困難を伴う点で好ましくない。
なお、無脂乳固形分濃度が6〜35質量%の範囲内であって、かつ、式(1)または(2)を満足する調整乳であれば、加熱により効果的にカードが発生し、特に高温での加熱や長時間の加熱を必要とせずに本発明の効果が享受される。
In the case of prepared milk having a non-fat milk solid content concentration of less than 6% by mass, it does not coagulate sufficiently even when heated, and it is difficult to produce a card or even if it is produced, heating at a high temperature or heating for a long time is required. This is not preferable. On the other hand, adjusted milk having a non-fat milk solid content concentration exceeding 35% by mass is not preferable in terms of high viscosity and difficulty in handling.
In addition, if the non-fat milk solid content concentration is within the range of 6 to 35% by mass and the adjusted milk satisfies the formula (1) or (2), the curd is effectively generated by heating, In particular, the effects of the present invention can be enjoyed without requiring heating at a high temperature or heating for a long time.
撹拌加熱工程に供する調整乳は、塩素型陰イオン交換体で処理された後に減圧濃縮などで濃縮されたものでも、一旦粉末化後、水などで還元された溶液でもよく、撹拌加熱工程に供する時点において、[(6Mct+Mp)/Mcl]の値と無脂乳固形分濃度xとが、式(1)または(2)を満足するものであればよい。
さらに、式(1)または(2)を満足する調整乳と、満足しない調整乳とを複数種混合し、その結果、式(1)または(2)を満足するように調整された調整乳を用いてもよい。
The prepared milk to be subjected to the stirring and heating step may be a solution that has been treated with a chlorine-type anion exchanger and then concentrated by vacuum concentration or the like, or may be a solution once powdered and then reduced with water or the like. It suffices if the value of [(6Mct + Mp) / Mcl] and the nonfat milk solid content concentration x satisfy the formula (1) or (2) at the time.
Further, a plurality of kinds of the adjusted milk satisfying the formula (1) or (2) and the unsatisfactory adjusted milk are mixed, and as a result, the adjusted milk adjusted to satisfy the expression (1) or (2) is obtained. It may be used.
粉末化方法としては、噴霧乾燥法、凍結乾燥法などが例示でき、特に制限はないが、この調整乳は加熱により固形分を生成しやすい。そのため、例えば噴霧乾燥法など、加熱を伴う粉末化方法を採用する場合には、固形分の生成しない条件で行うことが好ましい。加熱時の温度が低いほど、また、加熱時の無脂乳固形分濃度が低いほど、固形分は生成しにくい傾向にある。 Examples of the powdering method include a spray drying method and a freeze drying method, and there is no particular limitation. However, this adjusted milk easily generates a solid content by heating. Therefore, for example, when adopting a pulverization method that involves heating, such as a spray drying method, it is preferable to carry out under conditions that do not produce a solid content. The lower the temperature at the time of heating and the lower the non-fat milk solid content concentration at the time of heating, the less the solid content tends to be generated.
撹拌加熱工程後の固液分離工程での固液分離の具体的方法には特に制限はなく、例えば、200メッシュ程度のフィルターを用いたろ過法などを例示できる。 There is no restriction | limiting in particular in the specific method of the solid-liquid separation in the solid-liquid separation process after a stirring heating process, For example, the filtration method using a filter of about 200 mesh etc. can be illustrated.
このような方法によれば、通常のチーズの製造時に必要とされる乳酸菌やレンネットを加えることなく、加熱するだけでチーズを得ることができる。そのため、乳酸菌やレンネットのような天然物を使用したことに起因する製品品質のばらつきや、これらを使用することによるコストなども低減することができる。
また、こうして得られた本発明のチーズは、通常のチーズに比べて、歩留まりが高く、経済的に有利である。
本発明のチーズは、フレッシュチーズとして食することが可能であり、また食品原料などその他の用途に使用することもできる。
なお、本発明の製造方法により製造したチーズは、そのままカゼインとして利用することも可能である。
According to such a method, cheese can be obtained only by heating without adding lactic acid bacteria and rennet, which are required at the time of production of ordinary cheese. Therefore, it is possible to reduce variations in product quality resulting from the use of natural products such as lactic acid bacteria and rennet, and the costs due to the use of these.
Moreover, the cheese of this invention obtained in this way has a high yield compared with normal cheese, and is economically advantageous.
The cheese of the present invention can be eaten as fresh cheese, and can also be used for other uses such as food ingredients.
In addition, the cheese manufactured by the manufacturing method of this invention can also be utilized as casein as it is.
ゲル状食品を製造する場合には、塩素型陰イオン交換体で処理して得られる調整乳を撹拌せずに、すなわち、非撹拌下で静置して加熱して凝固させる非撹拌加熱工程を行う。
そして、その際、上述したチーズの製造の場合と同様に、熱安定性の指標となる[(6Mct+Mp)/Mcl]の値と、無脂乳固形分濃度x(質量%)とが、6≦x≦20および下記式(3)を満足する調整乳を用い、これを非撹拌下で加熱する。
[(6Mct+Mp)/Mcl]≦0.066x−0.05・・・(3)
[(6Mct+Mp)/Mcl]の値と無脂乳固形分濃度x(質量%)とが、式(3)を満足する調整乳を非撹拌下で加熱することによって、高温で加熱したり長時間加熱したりしなくても、ゲルが生成する。
そして、生成したゲルを崩すことなくそのままの状態で、または崩して、ゲル状食品とすることができる。
In the case of producing a gel food, a non-stirring heating step of solidifying the milk prepared by treatment with a chlorine-type anion exchanger without stirring, that is, by standing still under non-stirring and heating. Do.
At that time, the value of [(6Mct + Mp) / Mcl], which is an index of thermal stability, and the non-fat milk solid content concentration x (mass%) are 6 ≦, as in the case of the cheese production described above. Using adjusted milk satisfying x ≦ 20 and the following formula (3), this is heated under non-stirring.
[(6Mct + Mp) / Mcl] ≦ 0.066x−0.05 (3)
The value of [(6Mct + Mp) / Mcl] and the nonfat milk solid content concentration x (mass%) are heated at a high temperature for a long time by heating the adjusted milk satisfying the formula (3) without stirring. A gel is formed without heating.
And the produced | generated gel can be made into a gel-like food as it is, without breaking down, or breaking down.
無脂乳固形分濃度が6質量%未満の調整乳の場合、加熱しても十分にゲル化せず、ゲル化するとしても、高温での加熱や長時間の加熱が必要となり、好ましくない。
なお、無脂乳固形分濃度が6〜20質量%の範囲内であって、かつ、式(3)を満足する調整乳であれば、加熱により効果的にゲル化し、特に高温での加熱や長時間の加熱を必要とせずに本発明の効果が享受される。
In the case of adjusted milk having a non-fat milk solid content concentration of less than 6% by mass, even when heated, it does not gel sufficiently, and even when gelled, heating at a high temperature or prolonged heating is required, which is not preferable.
In addition, if the non-fat milk solid content concentration is in the range of 6 to 20% by mass and the adjusted milk satisfies the formula (3), the gel is effectively gelled by heating, particularly at high temperatures. The effect of the present invention can be enjoyed without requiring long-time heating.
ゲル状食品の製造の場合でも、非撹拌加熱工程に供する調整乳は、塩素型陰イオン交換体で処理された後に減圧濃縮などで濃縮されたものでも、一旦粉末化後、水などで還元された溶液でもよく、非撹拌加熱工程に供する時点において、式(3)を満足するものであればよい。さらに、式(3)を満足する調整乳と、満足しない調整乳とを複数種混合し、その結果、式(3)を満足するように調整された調整乳を用いてもよい。 Even in the production of gel food, the conditioned milk used in the non-stirred heating process is processed with a chlorine-type anion exchanger and then concentrated under reduced pressure, etc. Any solution may be used as long as it satisfies the formula (3) when it is subjected to the non-stirring heating step. Further, a plurality of types of adjusted milk satisfying the expression (3) and unsatisfactory adjusted milk may be mixed, and as a result, the adjusted milk adjusted to satisfy the expression (3) may be used.
このような方法によれば、乳化剤、ゲル化剤などを利用することなく、また、例えば脱塩処理などの他の処理をせずにそのまま加熱するだけで、ゲル状食品を製造することができる。加熱温度や加熱方式(直接加熱、間接加熱)などの加熱条件は、調整乳の無脂乳固形分濃度などに応じて決定できる。 According to such a method, it is possible to produce a gel-like food without using an emulsifier, a gelling agent, or the like and by heating as it is without performing other treatment such as a desalting treatment. . The heating conditions such as the heating temperature and heating method (direct heating, indirect heating) can be determined according to the nonfat milk solid content concentration of the adjusted milk.
以上説明した態様では、塩素型陰イオン交換体で処理した調整乳を撹拌加熱工程または非撹拌加熱工程に供し、チーズまたはゲル状食品を製造したが、次に説明する本発明の別の態様では、調整乳に乳製品を混合した混合物を撹拌加熱工程または非撹拌加熱工程に供する。乳製品としては、バター、クリーム、生乳(全脂乳)、脱脂乳、脱脂粉乳などが挙げられる。 In the embodiment described above, the adjusted milk treated with the chlorine-type anion exchanger was subjected to a stirring heating step or a non-stirring heating step to produce a cheese or gel food, but in another embodiment of the present invention described below, The mixture obtained by mixing dairy products with the adjusted milk is subjected to a stirring / heating step or a non-stirring heating step. Examples of dairy products include butter, cream, raw milk (whole milk), skim milk, and skim milk powder.
この態様の場合には、調整乳に乳製品を混合した後の混合物が、前記式(1)若しくは(2)又は(3)を満足するものであることが必要である。例えば、調整乳に分離クリーム(生クリーム)を混合した混合物を用いる場合、分離クリームもクエン酸、リン、塩素を通常は含有する。そのため、分離クリームに含まれるこれらの無脂乳固形分100gあたりのモル量と、調整乳に含まれるこれらの無脂乳固形分100gあたりのモル量の合計から、混合物としての[(6Mct+Mp)/Mcl]の値を算出し、この値と、混合物としての無脂乳固形分濃度xとが、上記式(1)若しくは(2)又は(3)を満足することが必要である。 In the case of this embodiment, it is necessary that the mixture after mixing the dairy product with the adjusted milk satisfies the above formula (1), (2) or (3). For example, when using a mixture obtained by mixing separated cream (fresh cream) with adjusted milk, the separated cream usually contains citric acid, phosphorus, and chlorine. Therefore, from the sum of the molar amount per 100 g of these non-fat milk solids contained in the separated cream and the molar amount per 100 g of these non-fat milk solids contained in the prepared milk, [(6Mct + Mp) / The value of Mcl] is calculated, and it is necessary that this value and the nonfat milk solid content concentration x as the mixture satisfy the above formula (1), (2) or (3).
また、特に、原料乳液として、例えば、全脂乳から少なくとも一部が除去された乳を使用し、これを塩素型陰イオン交換体で処理した調整乳を用いる場合などには、調整乳に対して、脂肪、すなわち、分離クリーム(生クリーム)、バターなどの乳脂肪、植物性脂肪、動物性脂肪から選ばれる1種以上の脂肪を添加して、脂肪量を調整した混合物を加熱して、チーズやゲル状食品を製造してもよい。さらに、凝固やゲル化に影響のない範囲で、原料液に砂糖等の糖類や香料等の各種食品添加物を適宜添加してもよい。 In particular, as raw material emulsion, for example, when using milk from which at least a part has been removed from whole milk and using adjusted milk treated with a chlorine type anion exchanger, Then, by adding one or more fats selected from fat, that is, milk fat such as separated cream (fresh cream), butter, vegetable fat, animal fat, and heating the mixture in which the amount of fat is adjusted, Cheese or gel food may be produced. Furthermore, various food additives such as sugars such as sugar and fragrances may be appropriately added to the raw material liquid within a range that does not affect coagulation or gelation.
また、例えばゲル状食品としては、プリン、ヨーグルト、流動食、嚥下困難者用食品、ゲル状スポーツ飲料などを製造できるが、この際、砂糖、香料などのその他の成分を調整乳に適宜混合してから加熱してもよい。さらに、添加後のゲル状食品のpHが4.6以下とならない範囲で、果汁を追加して添加できる。なお、この場合の具体的な加熱条件としては、混合物を160℃のオーブンで湯煎しながら、撹拌せずに20分間加熱する条件が例示できる。 In addition, for example, pudding, yogurt, liquid food, food for persons with difficulty in swallowing, gel-like sports drinks, etc. can be manufactured as gel foods. It may be heated after that. Furthermore, fruit juice can be additionally added as long as the pH of the gelled food after the addition does not fall below 4.6. As specific heating conditions in this case, there can be exemplified conditions in which the mixture is heated for 20 minutes in a 160 ° C. oven without being stirred.
以上説明したように、塩素型陰イオン交換体での処理により、クエン酸濃度が低減され、リン濃度が低減又は維持され、塩素濃度が増大された調整乳に対して、必要に応じて上述した濃縮を行ったり、粉末化後、水などで還元したりし、さらに、乳製品の添加を行ってから、これを出発原料として加熱することによって、レンネットや乳酸菌のような天然物や、酸、塩化カルシウムなどを使用したり、乳化剤やゲル化剤などを利用したりすることなく、チーズおよびゲル状食品を製造することができる。 As described above, the treatment with the chlorine type anion exchanger reduces the citric acid concentration, reduces or maintains the phosphorus concentration, and increases the chlorine concentration as described above as necessary. After concentrating or powdering, reducing with water, etc., adding dairy products, and then heating this as a starting material, natural products such as rennet and lactic acid bacteria, acid Cheese and gel food can be produced without using calcium chloride or using an emulsifier or gelling agent.
以下本発明について、実施例を挙げて具体的に説明する。
なお、各例中、「%」は「質量%」を意味する。
Hereinafter, the present invention will be specifically described with reference to examples.
In each example, “%” means “mass%”.
[実施例1]
脱脂粉乳(森永乳業(株)製、森永脱脂粉乳(ローヒート)、タンパク質34.9%、脂質0.7%、炭水化物50.7%、灰分7.8%、水分5.9%、ナトリウム18.0mmol/100g固形、カリウム44.0mmol/100g固形、カルシウム32.4mmol/100g固形、マグネシウム4.8mmol/100g固形、リン33.8mmol/100g固形、塩素31.5mmol/100g固形、クエン酸9.3mmol/100g固形、[(6Mct+Mp)/Mcl]=2.9)3kgを水22kgに溶解したものを約10℃まで冷却した。なお、[/100g固形]とは、「固形分100g当たり」を意味する。
この溶液を塩素型にした強アニオン性イオン交換樹脂(アンバーライトIRA402BL)1LにSV6で通液し、イオン交換液を経時的に8kgずつ3つのフラクションに分けて、採取した。
なお、この通液条件では、塩素型陰イオン交換体のイオン交換容量1eqあたり、原料乳液の乳固形分の通液量は、2.4kgである。
これらの調製乳をそれぞれ凍結乾燥して3種類の粉末を得て、これらの3種類の粉末について、塩素型にした強アニオン性イオン交換樹脂からの溶出順にサンプル1、2、3とした。
また、サンプル1〜3を混合し、サンプル4(サンプル1:サンプル2=3:2(質量比))、サンプル5(サンプル2:サンプル3=3:1(質量比))、サンプル6(サンプル2:サンプル3=1:1(質量比))を調製した。
それぞれのサンプルについての各種値を表1に示す。なお、表に記載のリン、塩素、クエン酸の濃度は、無脂乳固形分100gあたりに換算した値である。
[Example 1]
Nonfat dry milk (Morinaga Milk Industry Co., Ltd., Morinaga nonfat dry milk (low heat), protein 34.9%, lipid 0.7%, carbohydrates 50.7%, ash 7.8%, moisture 5.9%,
This solution was passed through 1 L of a strong anionic ion exchange resin (Amberlite IRA402BL) made into a chlorine type by SV6, and the ion exchange solution was divided into 3 fractions of 8 kg over time and collected.
Note that, under this liquid flow condition, the flow rate of the milk solid content of the raw material emulsion is 2.4 kg per 1 eq of the ion exchange capacity of the chlorine-type anion exchanger.
These prepared milks were freeze-dried to obtain three kinds of powders, and these three kinds of powders were designated as
Samples 1 to 3 are mixed, and sample 4 (sample 1:
Various values for each sample are shown in Table 1. In addition, the density | concentration of phosphorus, chlorine, and a citric acid shown in a table | surface is the value converted per 100 g of non-fat milk solid content.
なお、各例成分分析は、以下により行った。
タンパク質:ミクロケルダール法
脂質:レーゼ・ゴットリーブ法
炭水化物:差し引き法
灰分:550℃で加熱し、残留物質量を測定
水分:乾燥減量法
ナトリウム、カリウム、カルシウム、マグネシウム、リン:ICP法
クエン酸:HPLC法
塩素:電位差滴定法
In addition, each example component analysis was performed by the following.
Protein: Micro Kjeldahl method Lipid: Rose-Gottlieb method Carbohydrate: Subtraction method Ash content: Heat at 550 ° C and measure the amount of residual substances Moisture: Drying loss method Sodium, potassium, calcium, magnesium, phosphorus: ICP method Citric acid: HPLC method Chlorine: potentiometric titration method
得られた各サンプル1〜6を表2に示すように、7%、10%、15%、20%、25%、30%の無脂乳固形分濃度になるように水に溶解し、各溶液を撹拌しながら90℃達温まで沸騰浴中で加熱し、凝固が起こるかどうかを目視評価した。その結果を表2に示す。
一方、各溶液をオートクレーブで、撹拌せずに、121℃、1分加熱(静置加熱)し、ゲル化が起こるかどうかを目視評価した。その結果を表3に示す。
As shown in Table 2, each of the obtained samples 1 to 6 was dissolved in water to have a nonfat milk solid content concentration of 7%, 10%, 15%, 20%, 25%, 30%, The solution was heated in a boiling bath with stirring to a temperature of 90 ° C. to visually evaluate whether coagulation occurred. The results are shown in Table 2.
On the other hand, each solution was heated in an autoclave without stirring and at 121 ° C. for 1 minute (stationary heating) to visually evaluate whether gelation occurred. The results are shown in Table 3.
なお、沸騰浴中での加熱は、ガラス製試験管に各サンプルを8g分注後、Panasonic KZ−PH30PのIHヒーターを用いて92℃前後(±2℃)まで加熱した湯浴中で、穏やかに撹拌しながら行った。
一方、オートクレーブでの加熱は、ガラス製試験管に各サンプルを8g分注後、それぞれのガラス製試験管を1Lのガラス製ビーカーの中にこぼれないように静置し、ビーカーの口をアルミホイルで覆った後、株式会社トミー精工製のHIGH−PRESSURE STEAM STERILIZER BS−245を用いて121℃、1分間の加熱条件にて行った。また、この際、撹拌は行わなかった。
In addition, heating in a boiling bath is performed in a hot water bath heated to around 92 ° C. (± 2 ° C.) using an IH heater of Panasonic KZ-PH30P after dispensing 8 g of each sample into a glass test tube. With stirring.
On the other hand, the heating in the autoclave is to dispense 8g of each sample into a glass test tube, and then place each glass test tube still so that it does not spill into a 1L glass beaker. Then, using a HIGH-PRESSURE STEAM STERILIZER BS-245 manufactured by Tommy Seiko Co., Ltd., heating was performed at 121 ° C. for 1 minute. At this time, stirring was not performed.
表2および表3の結果より、式(1)若しくは(2)又は(3)を満足する調整乳であれば、加熱により固まることが明確となった。
なお、図1に、式(1)または式(2)を満足する領域を斜線で示した。また、図2に式(3)を満足する領域を斜線で示した。
なお、図1、図2に、種々の無脂乳固形分濃度xと[(6Mct+Mp)/Mcl]の値とを有する多数の調整乳(実施例1と同様に塩素型陰イオン交換体で処理した種々の調整乳。)についてプロットした。その際、図1では凝固を、図2ではゲル化を目視確認できたものを「○」とした。一方、凝固およびゲル化を目視確認できなかったものを「×」で示した。
沸騰浴中、オートクレーブ中での加熱条件は実施例1と同じ条件とした。
式(1)若しくは(2)又は(3)は、このように図1および図2にプロットした多数のデータから導いた。
From the results of Tables 2 and 3, it was clarified that the prepared milk satisfying the formula (1), (2) or (3) is hardened by heating.
In FIG. 1, a region satisfying the formula (1) or the formula (2) is indicated by hatching. In FIG. 2, a region satisfying the expression (3) is indicated by hatching.
1 and 2, a large number of adjusted milks having various nonfat milk solid content concentrations x and values of [(6Mct + Mp) / Mcl] (treated with a chlorine-type anion exchanger as in Example 1). Various adjusted milk.) Plotted. At that time, in FIG. 1, solidification was confirmed, and in FIG. On the other hand, the solidification and gelation that could not be visually confirmed were indicated by “x”.
The heating conditions in the boiling bath and the autoclave were the same as in Example 1.
Equation (1) or (2) or (3) was thus derived from a number of data plotted in FIGS.
一方、得られたサンプル1を100.1g計量し、水300.1gを加えて無脂乳固形分濃度25%の溶液を調整した。
この溶液を撹拌しながら、沸騰浴に浸漬し、液温が90℃になるまで加熱した所、カードが発生した。このカードを集めて、目開き425μmのザル(フィルター)で濾過した所、チーズ205.2gとホエイ154.8g(Brix20.0%)を得ることが出来た。当該チーズは、カッテージチーズ様の形態をしていた。
得られたチーズ及びホエイを凍結乾燥機(共和真空技術株式会社製、RL−B04)により各々凍結乾燥し、2種類の粉末を得た。
チーズを凍結乾燥したものは、タンパク質49.7%、脂質0.9%、炭水化物37.5%、灰分7.7%、水分4.2%、ナトリウム13.9mmol/100g固形、カリウム33.1mmol/100g固形、カルシウム42.2mmol/100g固形、マグネシウム4.8mmol/100g固形、リン36.4mmol/100g固形、塩素48.0mmol/100g固形の組成であった。
ホエイを乾燥したものは、タンパク質7.1%、脂質0.4%、炭水化物81.3%、灰分7.4%、水分3.8%、ナトリウム28.6mmol/100g固形、カリウム68.9mmol/100g固形、カルシウム8.0mmol/100g固形、マグネシウム2.6mmol/100g固形、リン9.4mmol/100g固形、塩素103.8mmol/100g固形の組成であった。
On the other hand, 100.1 g of the obtained sample 1 was weighed, and 300.1 g of water was added to prepare a solution having a nonfat milk solid content concentration of 25%.
This solution was immersed in a boiling bath with stirring, and heated until the liquid temperature reached 90 ° C., a card was generated. When this card | curd was collected and it filtered with the monkey (filter) with an opening of 425 micrometers, cheese 205.2g and whey 154.8g (Brix20.0%) were able to be obtained. The cheese was in the form of cottage cheese.
The obtained cheese and whey were each lyophilized with a freeze dryer (RL-B04, manufactured by Kyowa Vacuum Technology Co., Ltd.) to obtain two types of powders.
The freeze-dried cheese was 49.7% protein, 0.9% lipid, 37.5% carbohydrate, 7.7% ash, 4.2% moisture, 13.9 mmol / 100 g solid sodium, 33.1 mmol potassium. / 100 g solid, calcium 42.2 mmol / 100 g solid, magnesium 4.8 mmol / 100 g solid, phosphorus 36.4 mmol / 100 g solid, chlorine 48.0 mmol / 100 g solid.
The dried whey is composed of 7.1% protein, 0.4% lipid, 81.3% carbohydrate, 7.4% ash, 3.8% water, 28.6 mmol / 100 g solid, 68.9 mmol / solid potassium. The composition was 100 g solid, calcium 8.0 mmol / 100 g solid, magnesium 2.6 mmol / 100 g solid, phosphorus 9.4 mmol / 100 g solid, and chlorine 103.8 mmol / 100 g solid.
[実施例2]
脱脂粉乳(森永乳業(株)製、森永脱脂粉乳(ローヒート)、タンパク質34.6%、脂質0.8%、炭水化物52.7%、灰分7.6%、水分4.3%、ナトリウム19.7mmol/100g固形、カリウム47.3mmol/100g固形、カルシウム34.7mmol/100g固形、マグネシウム5.3mmol/100g固形、リン35.8mmol/100g固形、塩素30.4mmol/100g固形、クエン酸10.9mmol/100g固形、[(6Mct+Mp)/Mcl]=3.3)2.5kgを水17.5kgに溶解し、約10℃に冷却した。
この溶液を塩素型にした強アニオン性イオン交換樹脂(アンバーライトIRA402BL)1LにSV6で通液し、イオン交換液を経時的に4kgずつ5つのフラクションに分けて、採取した。
なお、この通液条件では、塩素型陰イオン交換体のイオン交換容量1eqあたり、原料乳液の乳固形分の通液量は、2.0kgである。
これらの液をそれぞれ凍結乾燥して、5種類の粉末を得た。
これらの5種類の粉末について、イオン交換樹脂からの溶出順に、サンプル7、8、9、10、11とし、それぞれのサンプルについての各種値を表4に示す。
[Example 2]
Nonfat dry milk (Morinaga Milk Industry Co., Ltd., Morinaga nonfat dry milk (low heat), protein 34.6%, lipid 0.8%, carbohydrate 52.7%, ash 7.6%, moisture 4.3%, sodium 19. 7 mmol / 100 g solid, potassium 47.3 mmol / 100 g solid, calcium 34.7 mmol / 100 g solid, magnesium 5.3 mmol / 100 g solid, phosphorus 35.8 mmol / 100 g solid, chlorine 30.4 mmol / 100 g solid, citric acid 10.9 mmol / 100 g solid, [(6Mct + Mp) / Mcl] = 3.3) 2.5 kg was dissolved in 17.5 kg of water and cooled to about 10 ° C.
This solution was passed through 1 L of a strong anionic ion exchange resin (Amberlite IRA402BL) in the form of chlorine at SV6, and the ion exchange solution was sampled by dividing into 4 fractions of 4 kg over time.
Note that, under this liquid flow condition, the flow rate of the milk solid content of the raw material emulsion is 2.0 kg per 1 eq of the ion exchange capacity of the chlorine-type anion exchanger.
These liquids were freeze-dried to obtain 5 types of powders.
About these five types of powder, it was set as the
得られたサンプル10を7.3g計量し、水29.4gを加えて無脂乳固形分濃度20%の溶液を調整した。さらに、カスタードフレーバー0.04g、バニラエッセンス0.06g、砂糖3.2gを加え、良く混合した後、ガラス製容器(50mlビーカー)に30g分注した。アルミホイルでガラス製容器に蓋をした後、1Lビーカーに入れてさらにアルミホイルで覆い、オートクレーブ(株式会社トミー精工製 HIGH−PRESSURE STEAM STERILIZER BS−245)で、非撹拌下で、121℃、1分間加熱した。オートクレーブが80℃以下になった後、ガラス製容器を取り出し、さらに常温でしばらく冷却したところ、プリン様のゲル状のものが出来ていた。これを試食したところ、滑らかで食感の良いプリンができており、風味もよく非常に美味であった。
7.3 g of the obtained
一方、サンプル7、8、9をそれぞれ水に溶解して、無脂乳固形分濃度25%の溶液を3種調製した。ついで、各溶液に脂肪分45%の生クリーム(森永乳業(株)製、タンパク質1.8%、脂質46.1%、炭水化物5.1%、灰分0.3%、水分46.7%、ナトリウム1.9mmol/100g固形、カリウム4.3mmol/100g固形、カルシウム2.4mmol/100g固形、マグネシウム0.4mmol/100g固形、リン3.3mmol/100g固形、塩素3.1mmol/100g固形、クエン酸1.0mmol/100g固形、[(6Mct+Mp)/Mcl]=3.0)を質量基準でそれぞれ0%(生クリーム添加なし)、10%(サンプル12.6g+生クリーム1.4g)、20%(サンプル11.2g+生クリーム2.8g)配合となるように添加して液状の混合物を得て、この混合物を撹拌しながら90℃達温まで沸騰浴中で加熱した。
なお、沸騰浴中での加熱は、ガラス製試験管に各サンプルを8g分注後、Panasonic KZ−PH30PのIHヒーターを用いて92℃前後(±2℃)まで加熱した湯浴中で、穏やかに撹拌しながら加熱実験を行った。
サンプル7、8、9に生クリームを添加した混合物の無脂乳固形分濃度xと[(6Mct+Mp)/Mcl]の値を表5に示す。
加熱実験の結果、サンプル7、8、9を用いた各混合物は、いずれも凝固した。
また、各混合物は、式(2)を満足していた。
On the other hand,
In addition, heating in a boiling bath is performed in a hot water bath heated to around 92 ° C. (± 2 ° C.) using an IH heater of Panasonic KZ-PH30P after dispensing 8 g of each sample into a glass test tube. The heating experiment was conducted with stirring.
Table 5 shows the non-fat milk solid content concentration x and the value of [(6Mct + Mp) / Mcl] of the mixture obtained by adding fresh cream to
As a result of the heating experiment, each
Moreover, each mixture was satisfying Formula (2).
[比較例1]
サンプル10からプリンを製造した上記実施例2の比較として、本比較例1を行った。
具体的には、サンプル10の代わりに、脱脂粉乳(森永乳業(株)製、森永脱脂粉乳(ローヒート)、[(6Mct+Mp)/Mcl]=3.3)を使用して、無脂乳固形分濃度20%の溶液を調製した以外は、実施例2と同様にして、オートクレーブを用いた非撹拌下での加熱を行った。
オートクレーブが80℃以下になった後、ガラス製容器を取り出し、さらに常温でしばらく冷却したが、ガラス製容器に流し込まれた液体は、加熱後であっても液体状態を保っていて、ゲル化が認められなかった。
[Comparative Example 1]
As a comparison with Example 2 in which pudding was produced from
Specifically, non-fat milk solid content using skim milk powder (manufactured by Morinaga Milk Industry Co., Ltd., Morinaga skim milk powder (low heat), [(6Mct + Mp) / Mcl] = 3.3) instead of
After the autoclave became 80 ° C. or lower, the glass container was taken out and further cooled at room temperature for a while, but the liquid poured into the glass container was kept in a liquid state even after heating, and gelation was not possible. I was not able to admit.
[実施例3]
分離脱脂乳(殺菌)(森永乳業製(ただし測定値は凍結乾燥品とする)、タンパク質36.9%、脂質0.6%、炭水化物52.5%、灰分8.1%、水分1.9%、ナトリウム18.8mmol/100g固形、カリウム43.8mmol/100g固形、カルシウム31.5mmol/100g固形、マグネシウム4.9mmol/100g固形、リン33.9mmol/100g固形、塩素31.3mmol/100g固形、クエン酸9.4mmol/100g固形、[(6Mct+Mp)/Mcl]=2.9)33kgをまずは約10℃まで冷却した。
ついで、この溶液を塩素型陰イオン交換樹脂(塩素型にした強アニオン性イオン交換樹脂(アンバーライトIRA402BL))1LにSV約8で通液し、イオン交換液を経時的に6kgずつ5つのフラクションに分けて採取した。
なお、この通液条件では、塩素型陰イオン交換体のイオン交換容量1eq(樹脂量約0.8L)あたり、原料乳液の乳固形分の通液量は、約2.5kgである。
これらの液をそれぞれ凍結乾燥して、5種類の粉末を得た。
これらの5種類の粉末について、イオン交換樹脂からの溶出順に、サンプル12、13、14、15、16(表6)とした。
各サンプル12〜15を表7に示すように、7%、10%、15%、20%、25%、30%の無脂乳固形分濃度になるように水に溶解し、各溶液を撹拌しながら90℃達温まで沸騰浴中で加熱した。その結果を表7に示す。
一方、各溶液をオートクレーブで、攪拌せずに、121℃、1分加熱(静置加熱)した結果を表8に示す。
[Example 3]
Separated skim milk (sterilized) (manufactured by Morinaga Milk Industry (measured value is lyophilized)), protein 36.9%, lipid 0.6%, carbohydrate 52.5%, ash 8.1%, moisture 1.9 %, Sodium 18.8 mmol / 100 g solid, potassium 43.8 mmol / 100 g solid, calcium 31.5 mmol / 100 g solid, magnesium 4.9 mmol / 100 g solid, phosphorus 33.9 mmol / 100 g solid, chlorine 31.3 mmol / 100 g solid, Citric acid 9.4 mmol / 100 g solid, [(6Mct + Mp) / Mcl] = 2.9) 33 kg was first cooled to about 10 ° C.
Next, this solution was passed through 1 L of chlorine-type anion exchange resin (chlorine-type strong anionic ion-exchange resin (Amberlite IRA402BL)) at SV of about 8, and the ion-exchange solution was divided into 5 fractions each 6 kg over time. Collected separately.
Note that, under this liquid flow condition, the flow rate of the milk solid content of the raw material emulsion is about 2.5 kg per ion exchange capacity 1 eq (resin amount: about 0.8 L) of the chlorine type anion exchanger.
These liquids were freeze-dried to obtain 5 types of powders.
About these 5 types of powder, it was set as the
As shown in Table 7, each
On the other hand, Table 8 shows the results obtained by heating each solution in an autoclave without stirring and at 121 ° C. for 1 minute (stationary heating).
[実施例4]
脱脂粉乳(森永乳業(株)製、森永脱脂粉乳(ローヒート)、タンパク質34.8%、脂質0.7%、炭水化物51.1%、灰分7.7%、水分5.7%、ナトリウム18.4mmol/100g固形、カリウム43.9mmol/100g固形、カルシウム30.2mmol/100g固形、マグネシウム4.9mmol/100g固形、リン32.3mmol/100g固形、塩素30.8mmol/100g固形、クエン酸9.7mmol/100g固形、[(6Mct+Mp)/Mcl]=2.9)7.0kgを水55.0kgに溶解した後、約10℃に冷却した。
ついで、この溶液を塩素型にした強アニオン性イオン交換樹脂(アンバーライトIRA402BL)2.5LにSV約6で通液し、50kgのイオン交換乳を得た。
得られた調整乳のうち、5kgを凍結乾燥機(共和真空技術株式会社製、RL−B04)により凍結乾燥して、粉末(タンパク質36.6%、脂質0.7%、炭水化物53.3%、灰分8.1%、水分1.3%、ナトリウム18.9mmol/100g固形、カリウム44.6mmol/100g固形、カルシウム28.8mmol/100g固形、マグネシウム4.1mmol/100g固形、リン31.7mmol/100g固形、塩素58.3mmol/100g固形、クエン酸1.8mmol/100g固形、[(6Mct+Mp)/Mcl]=0.73)0.6kgを得た。
このサンプルを用いて、無脂乳固形分濃度20%の溶液250gを調整した。
この溶液を撹拌しながら、沸騰浴に浸漬し、液温が90℃になるまで加熱した所、カードが発生した。このカードを目開き425μmのザル(フィルター)で濾過して集めた後、ろ紙で挟んで軽く吸水した。この工程で得られたチーズ20gにクエン酸(三)ナトリウムを1g添加し、ビーカーに入れて約90℃の湯浴で6分間加熱し、溶融した。溶融したチーズを冷蔵庫で冷却し、プロセスチーズを作製した。
[Example 4]
Nonfat dry milk (Morinaga Milk Industry Co., Ltd., Morinaga nonfat dry milk (low heat), protein 34.8%, lipid 0.7%, carbohydrates 51.1%, ash 7.7%, moisture 5.7%,
Next, this solution was passed through 2.5 L of a strong anionic ion exchange resin (Amberlite IRA402BL) made into a chlorine type at SV of about 6 to obtain 50 kg of ion exchange milk.
Of the prepared milk, 5 kg was freeze-dried by a freeze dryer (RL-B04, manufactured by Kyowa Vacuum Technology Co., Ltd.) to obtain a powder (protein 36.6%, lipid 0.7%, carbohydrate 53.3%). Ash 8.1%, moisture 1.3%, sodium 18.9 mmol / 100 g solid, potassium 44.6 mmol / 100 g solid, calcium 28.8 mmol / 100 g solid, magnesium 4.1 mmol / 100 g solid, phosphorus 31.7 mmol / 100 g solid, chlorine 58.3 mmol / 100 g solid, citric acid 1.8 mmol / 100 g solid, [(6Mct + Mp) / Mcl] = 0.73) 0.6 kg were obtained.
Using this sample, 250 g of a solution having a nonfat milk solid content concentration of 20% was prepared.
This solution was immersed in a boiling bath with stirring, and heated until the liquid temperature reached 90 ° C., a card was generated. The card was collected by filtration through a colander (filter) having an opening of 425 μm, and then lightly absorbed by being sandwiched between filter papers. 1 g of sodium citrate (3) was added to 20 g of cheese obtained in this step, placed in a beaker, heated in a hot water bath at about 90 ° C. for 6 minutes, and melted. The melted cheese was cooled in a refrigerator to produce process cheese.
Claims (5)
前記調整乳は、無脂乳固形分100g当たりの塩素のモル量が48〜90mmol、クエン酸のモル量が0.2〜3.3mmol、リンのモル量が17〜35.9mmolであり、
該撹拌加熱工程で加熱される前記調整乳又は前記混合物は、無脂乳固形分濃度x(質量%)が6≦x≦15である場合には下記式(1)を満足し、前記無脂乳固形分濃度が15<x≦35である場合には下記式(2)を満足し、かつ、前記無脂乳固形分濃度x=20である場合には、[(6Mct+Mp)/Mcl]≦0.85を満足し、前記無脂乳固形分濃度x=25である場合には、[(6Mct+Mp)/Mcl]≦0.90を満足することを特徴とするチーズの製造方法。
[(6Mct+Mp)/Mcl]≦0.037x+0.27・・・(1)
[(6Mct+Mp)/Mcl]≦0.015x+0.60・・・(2)
(ただし、式中、Mctは無脂乳固形分100g当たりのクエン酸のモル量、Mpは無脂乳固形分100g当たりのリンのモル量、Mclは無脂乳固形分100g当たりの塩素のモル量を示す。) Having a stirring and heating step of coagulating by heating any of the adjusted milk obtained by treating the raw material emulsion with a chlorine type anion exchanger, or a mixture of the adjusted milk and the dairy product,
The adjusted milk has a molar amount of chlorine per 100 g of non-fat milk solids of 48 to 90 mmol, a molar amount of citric acid of 0.2 to 3.3 mmol, and a molar amount of phosphorus of 17 to 35.9 mmol.
When the non-fat milk solid content concentration x (mass%) is 6 ≦ x ≦ 15, the adjusted milk or the mixture heated in the stirring and heating step satisfies the following formula (1), and the non-fat When the milk solid content concentration is 15 <x ≦ 35, the following formula (2) is satisfied , and when the non-fat milk solid content concentration x = 20, [(6Mct + Mp) / Mcl] ≦ A cheese manufacturing method characterized by satisfying [(6Mct + Mp) / Mcl] ≦ 0.90 when 0.85 is satisfied and the non-fat milk solid content concentration x = 25 .
[(6Mct + Mp) / Mcl] ≦ 0.037x + 0.27 (1)
[(6Mct + Mp) / Mcl] ≦ 0.015x + 0.60 (2)
(Where Mct is the molar amount of citric acid per 100 g of nonfat milk solids, Mp is the molar amount of phosphorus per 100 g of nonfat milk solids, and Mcl is the mol of chlorine per 100 g of nonfat milk solids. Indicates the amount.)
前記調整乳は、無脂乳固形分100g当たりの塩素のモル量が44〜90mmol、クエン酸のモル量が0.2〜3.5mmol、リンのモル量が17〜36mmolであり、
該非撹拌加熱工程で加熱される前記調整乳又は前記混合物は、無脂乳固形分濃度x(質量%)が6≦x≦20である場合には下記式(3)を満足し、かつ、前記無脂乳固形分濃度x=15である場合には、[(6Mct+Mp)/Mcl]≦0.85を満足することを特徴とするゲル状食品の製造方法。
[(6Mct+Mp)/Mcl]≦0.066x−0.05・・・(3)
(ただし、式中、Mctは無脂乳固形分100g当たりのクエン酸のモル量、Mpは無脂乳固形分100g当たりのリンのモル量、Mclは無脂乳固形分100g当たりの塩素のモル量を示す。) A non-stirred heating step of coagulating the raw milk obtained by treating the raw emulsion with a chlorine-type anion exchanger, or a mixture of the prepared milk and the dairy product under non-stirring,
The adjusted milk has a molar amount of chlorine per 100 g of nonfat milk solids of 44 to 90 mmol, a molar amount of citric acid of 0.2 to 3.5 mmol, and a molar amount of phosphorus of 17 to 36 mmol,
The adjusted milk or the mixture heated in the non-stirring heating step satisfies the following formula (3) when the non-fat milk solid content concentration x (mass%) is 6 ≦ x ≦ 20 , and When the non-fat milk solid content concentration x = 15, the method for producing a gelled food satisfying [(6Mct + Mp) / Mcl] ≦ 0.85 .
[(6Mct + Mp) / Mcl] ≦ 0.066x−0.05 (3)
(Where Mct is the molar amount of citric acid per 100 g of nonfat milk solids, Mp is the molar amount of phosphorus per 100 g of nonfat milk solids, and Mcl is the mol of chlorine per 100 g of nonfat milk solids. Indicates the amount.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010219325A JP5228020B2 (en) | 2010-09-29 | 2010-09-29 | Cheese, gelled food and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010219325A JP5228020B2 (en) | 2010-09-29 | 2010-09-29 | Cheese, gelled food and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012070701A JP2012070701A (en) | 2012-04-12 |
JP5228020B2 true JP5228020B2 (en) | 2013-07-03 |
Family
ID=46167259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010219325A Active JP5228020B2 (en) | 2010-09-29 | 2010-09-29 | Cheese, gelled food and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5228020B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5205432B2 (en) * | 2010-09-29 | 2013-06-05 | 森永乳業株式会社 | Adjusted milk and method for producing adjusted milk |
JP6709661B2 (en) * | 2016-03-31 | 2020-06-17 | 森永乳業株式会社 | Fermented milk product manufacturing method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH658773A5 (en) * | 1984-05-22 | 1986-12-15 | Nestle Sa | PROCESS FOR THE PREPARATION OF A SKIMMED MILK. |
JPH0248218B2 (en) * | 1986-10-14 | 1990-10-24 | Snow Brand Milk Prod Co Ltd | CHIIZUKAADONOCHOSEIHO |
JP2986108B2 (en) * | 1989-08-07 | 1999-12-06 | 雪印乳業株式会社 | Method for producing fibrous cheese from powdered milk |
JP2908834B2 (en) * | 1989-10-25 | 1999-06-21 | 雪印乳業株式会社 | Method for producing cheese-like food and mature molded cheese using powdered milk as raw material |
NZ511095A (en) * | 2001-04-12 | 2003-06-30 | New Zealand Dairy Board | Subjecting a milk protein concentrate to cation exchange depleting the calcium content to produce a gel |
JP5205432B2 (en) * | 2010-09-29 | 2013-06-05 | 森永乳業株式会社 | Adjusted milk and method for producing adjusted milk |
-
2010
- 2010-09-29 JP JP2010219325A patent/JP5228020B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012070701A (en) | 2012-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5252352A (en) | Process of preparing an extra lowfat spread | |
US7192619B2 (en) | Modified milk protein concentrates and their use in making gels and dairy products | |
JP4734476B2 (en) | Method for producing desalted milk, desalted milk | |
EP2437614B1 (en) | Calcium fortified processed cheese without emulsifying salts, and process for preparing same | |
RU2358435C2 (en) | Obtaining method of concentrated milk-white ingredient and following processed cheese production | |
JP2011512816A (en) | Milk protein gel | |
JP2019505233A (en) | Dairy products and processing | |
JPH02308756A (en) | Cheese curd containing whey protein and preparation of cheese using the curd as raw material | |
AU2007336286A1 (en) | A method for producing cheese | |
US5358730A (en) | Process for coagulating or gelling a nondenatured protein and product thereof | |
KR20060125679A (en) | Production of protein composition from a dairy stream and its use as an ingredient in the manufacture of a cheese | |
JP5228020B2 (en) | Cheese, gelled food and method for producing the same | |
JPH03160945A (en) | Dairy products | |
JP5205432B2 (en) | Adjusted milk and method for producing adjusted milk | |
JPH0994063A (en) | Cheese and its production | |
JP5774823B2 (en) | Process cheeses | |
JP3894912B2 (en) | Molten salt-free cheese and method for producing the same | |
JP7420538B2 (en) | new yogurt | |
JP7372791B2 (en) | Low-fat fresh cheese and its production method | |
JP7117851B2 (en) | cream cheese | |
JP4544625B2 (en) | Cheese and method for producing the same | |
JP6195201B2 (en) | Production method of milk tofu | |
SU1642980A1 (en) | Process for making creamy cottage-cheese desserts | |
KR20210055266A (en) | Method for producing cheese and cheese goods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5228020 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160322 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |