JP5227194B2 - Laminated electrode - Google Patents
Laminated electrode Download PDFInfo
- Publication number
- JP5227194B2 JP5227194B2 JP2008556108A JP2008556108A JP5227194B2 JP 5227194 B2 JP5227194 B2 JP 5227194B2 JP 2008556108 A JP2008556108 A JP 2008556108A JP 2008556108 A JP2008556108 A JP 2008556108A JP 5227194 B2 JP5227194 B2 JP 5227194B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- platinum
- electrode
- thickness
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 145
- 239000010409 thin film Substances 0.000 claims description 107
- 229910052697 platinum Inorganic materials 0.000 claims description 72
- 229910052751 metal Inorganic materials 0.000 claims description 65
- 239000002184 metal Substances 0.000 claims description 65
- 239000002245 particle Substances 0.000 claims description 33
- 239000000758 substrate Substances 0.000 claims description 31
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 30
- 229910052719 titanium Inorganic materials 0.000 claims description 30
- 239000010936 titanium Substances 0.000 claims description 30
- 239000006185 dispersion Substances 0.000 claims description 26
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 20
- 229910052804 chromium Inorganic materials 0.000 claims description 20
- 239000011651 chromium Substances 0.000 claims description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 14
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 239000010949 copper Substances 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 239000010408 film Substances 0.000 description 32
- 238000004544 sputter deposition Methods 0.000 description 27
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 22
- 239000010410 layer Substances 0.000 description 22
- 238000005260 corrosion Methods 0.000 description 21
- 230000007797 corrosion Effects 0.000 description 21
- 230000003197 catalytic effect Effects 0.000 description 17
- 239000011521 glass Substances 0.000 description 15
- 239000008151 electrolyte solution Substances 0.000 description 12
- 229940021013 electrolyte solution Drugs 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 239000000446 fuel Substances 0.000 description 10
- 238000001755 magnetron sputter deposition Methods 0.000 description 10
- 238000005868 electrolysis reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 239000003929 acidic solution Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000003637 basic solution Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- -1 iodine ions Chemical class 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- SZTSOGYCXBVMMT-UHFFFAOYSA-N 2,4-dimethyl-1-propylimidazole;hydroiodide Chemical compound [I-].CCC[NH+]1C=C(C)N=C1C SZTSOGYCXBVMMT-UHFFFAOYSA-N 0.000 description 1
- ADSOSINJPNKUJK-UHFFFAOYSA-N 2-butylpyridine Chemical compound CCCCC1=CC=CC=N1 ADSOSINJPNKUJK-UHFFFAOYSA-N 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- MMAADVOQRITKKL-UHFFFAOYSA-N chromium platinum Chemical compound [Cr].[Pt] MMAADVOQRITKKL-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M14/00—Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
- H01M14/005—Photoelectrochemical storage cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
- H01M4/8621—Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2059—Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Hybrid Cells (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Inert Electrodes (AREA)
Description
本発明は、積層電極に関する。さらに詳しくは、色素増感太陽電池、燃料電池、電解質溶液を電気分解する際に用いられる電極などに好適に使用し得る積層電極に関する。 The present invention relates to a laminated electrode. More specifically, the present invention relates to a laminated electrode that can be suitably used for a dye-sensitized solar cell, a fuel cell, an electrode used for electrolyzing an electrolyte solution, and the like.
無尽蔵でクリーンな太陽エネルギーを利用する太陽電池において、シリコン太陽電池に代わる新しいタイプの太陽電池として、製造コストが低く、豊富な原料を使用する色素増感太陽電池が提案されている(例えば、特表平5−504023号公報およびO'Regan, Brian, Graetzel, Michael著、Nature Vol. 353 (1991年)、737頁(Nature Publishing Group社発行)参照)。この色素増感太陽電池では、ガラスやプラスチックなどからなる基板の一面に透明導電膜を形成し、この透明導電膜上に酸化チタンなどの酸化物半導体粒子からなる多孔質半導体膜を形成し、さらにその上に有機色素を担持することにより、光電極が構成されている。一方、この光電極に対向して配置される基板上の光電極側には、白金などの金属膜からなる対向電極が設けられ、この対向電極と前記光電極との間にヨウ素/ヨウ素系イオンなどのレドックス対を含む電解質溶液が封入されている。 In solar cells using inexhaustible and clean solar energy, dye-sensitized solar cells that have a low production cost and use abundant raw materials have been proposed as a new type of solar cell that replaces silicon solar cells (for example, (See Table No. 5-504023 and O'Regan, Brian, Graetzel, Michael, Nature Vol. 353 (1991), page 737 (published by Nature Publishing Group)). In this dye-sensitized solar cell, a transparent conductive film is formed on one surface of a substrate made of glass or plastic, a porous semiconductor film made of oxide semiconductor particles such as titanium oxide is formed on the transparent conductive film, and A photoelectrode is formed by supporting an organic dye thereon. On the other hand, a counter electrode made of a metal film such as platinum is provided on the side of the photo electrode on the substrate disposed opposite to the photo electrode, and iodine / iodine ions are provided between the counter electrode and the photo electrode. An electrolyte solution containing a redox pair such as is enclosed.
また、次世代のクリーンな発電システムとして、燃料電池が各方面で研究され、本格的実用化が待たれている。この燃料電池は、水素と接している白金や炭素などからなる燃料極を負極とし、酸素と接している白金や炭素などからなる空気極を正極とし、この正極と負極との間にリン酸や炭酸リチウム・カリウムまたは陽イオン交換膜などの電解質が挟まれたものであり、この電解質の中で燃料極から空気極の方に水素イオンが移動することにより、電流が流れる。 In addition, as a next-generation clean power generation system, fuel cells have been studied in various fields, and full-scale practical use is awaited. In this fuel cell, a fuel electrode made of platinum or carbon in contact with hydrogen is used as a negative electrode, an air electrode made of platinum or carbon in contact with oxygen is used as a positive electrode, and phosphoric acid or An electrolyte such as lithium carbonate / potassium carbonate or a cation exchange membrane is sandwiched, and a current flows as hydrogen ions move from the fuel electrode to the air electrode in the electrolyte.
さらに、電解質溶液の電気分解は、電子を放出する陽極と電子を受ける陰極とを酸性水溶液、塩基性水溶液または金属塩などの水溶液からなる電解質溶液に浸漬し、この陽極と陰極とをそれぞれ電池の正極と負極につないで電気分解することにより、電極に発生した化合物を化学薬品などの製造に応用するものである。 Further, the electrolysis of the electrolyte solution is performed by immersing an anode that emits electrons and a cathode that receives electrons in an electrolyte solution composed of an aqueous solution such as an acidic aqueous solution, a basic aqueous solution, or a metal salt. The compound generated in the electrode by applying electrolysis by connecting the positive electrode and the negative electrode is applied to the production of chemicals and the like.
このように、色素増感太陽電池、燃料電池または電解質溶液の電気分解などに用いられる電解質溶液には、酸性溶液、塩基性溶液、金属塩溶液、有機溶媒などの腐食性の電解質が含まれている。したがって、これらに用いられる金属電極には、これらの電解質の影響を受けにくい耐食性に優れたものであること、抵抗率が低い材料であること、および電極での電子の授受を促進する触媒活性を示すことが望まれている。 Thus, the electrolyte solution used for the electrolysis of the dye-sensitized solar cell, the fuel cell, or the electrolyte solution includes a corrosive electrolyte such as an acidic solution, a basic solution, a metal salt solution, and an organic solvent. Yes. Therefore, the metal electrodes used for these have excellent corrosion resistance that is not easily affected by these electrolytes, are materials with low resistivity, and have catalytic activity that promotes the transfer of electrons at the electrodes. It is hoped to show.
一般に、電極材料には、電気抵抗が小さく、安価であることから、銅、アルミニウムなどが広く用いられている。しかし、これらの金属材料は、酸性溶液、塩基性溶液、金属塩溶液、有機溶媒などに対して腐食しやすいため、その用途は、腐食などが生じない条件下での使用に限られている。また、抵抗が小さい金属材料として、銀、金などがあるが、これらはいずれも高価であることから、多量に用いることは実用的でない。 In general, copper, aluminum, and the like are widely used as electrode materials because of their low electrical resistance and low cost. However, these metal materials are easily corroded with respect to acidic solutions, basic solutions, metal salt solutions, organic solvents, and the like, and therefore their use is limited to use under conditions where corrosion does not occur. Further, there are silver, gold and the like as metal materials having low resistance, but since these are all expensive, it is not practical to use a large amount.
本発明者らは、酸化還元電解質をヨウ化銅(CuI)の固体電解質を使用することにより、太陽電池としての機械的強度および電池特性が高められた実用可能な全固体型の色素増感太陽電池を提案している(例えば、特開2003−331938号公報参照)。本発明者らは、さらにSPD法を利用した多孔質酸化チタン薄膜の製造方法、酸化チタン薄膜を太陽電池用に応用した高効率の色素増感太陽電池用電極およびその製造方法を提案している(例えば、特開2003−176130号公報および特開2004−079610号公報参照)。これらの方法によって製造された色素増感太陽電池の対向電極は、ガラス基板上またはガラス基板上で形成されたフッ素がドープされた酸化錫の薄膜上に、耐食性に優れ、電気抵抗が小さく、触媒活性を示す白金薄膜を形成することによって形成されている。 The present inventors have used a solid electrolyte of copper iodide (CuI) as a redox electrolyte, thereby enabling practical use of an all-solid-state dye-sensitized solar with improved mechanical strength and battery characteristics as a solar battery. A battery has been proposed (see, for example, JP-A-2003-331938). The present inventors have further proposed a method for manufacturing a porous titanium oxide thin film using the SPD method, a highly efficient dye-sensitized solar cell electrode using the titanium oxide thin film for solar cells, and a method for manufacturing the same. (For example, refer to JP2003-176130A and JP2004-079610A). The counter electrode of the dye-sensitized solar cell manufactured by these methods has excellent corrosion resistance, low electrical resistance, and a catalyst on a glass substrate or a thin film of tin oxide doped with fluorine formed on the glass substrate. It is formed by forming a platinum thin film exhibiting activity.
また、酸素イオン導電性固体電解質が用いられた電気化学素子の電極として、貴金属の白金を主成分として含む金属材料からなる電極を用いることにより、高感度でかつ長寿命を有するNOxセンサが提案されている(例えば、特開平06−258283号公報参照)。また、色素増感太陽電池においては、その対向電極として基板上に形成されたニッケル膜と、該ニッケル膜上に形成された白金膜とからなる積層構造を有する電極が提案されている(例えば、特開2005−56613号公報参照)。 In addition, a highly sensitive and long-life NOx sensor has been proposed by using an electrode made of a metal material containing platinum as a main component as an electrode of an electrochemical element using an oxygen ion conductive solid electrolyte. (For example, refer to Japanese Patent Laid-Open No. 06-258283). Further, in a dye-sensitized solar cell, an electrode having a laminated structure including a nickel film formed on a substrate as a counter electrode and a platinum film formed on the nickel film has been proposed (for example, JP, 2005-56613, A).
以上のように、色素増感太陽電池をはじめ、燃料電池や電解質溶液の電気分解などに使用される電極材料には、高耐食性、低抵抗率および高触媒活性が必要とされ、これらのすべての性質を保有する白金が単層または他の金属と積層することによって使用されている。 As described above, electrode materials used for electrolysis of fuel cells and electrolyte solutions, including dye-sensitized solar cells, require high corrosion resistance, low resistivity, and high catalytic activity. Platinum with properties is used by laminating with a single layer or other metals.
しかしながら、白金は極めて高価であることから、色素増感太陽電池などには、白金の使用量を少なくした電極が求められているが、高耐食性、低抵抗率および触媒活性を有する新たな電極の開発が待ち望まれている。また、電極を白金と他の金属との積層構造とすることにより、白金の使用量を少なくした電極では、白金と組み合わせて使用される金属も高価であることから、安価で高性能を有する電極の開発が望まれている。 However, since platinum is extremely expensive, an electrode with a small amount of platinum used is required for dye-sensitized solar cells and the like. However, a new electrode having high corrosion resistance, low resistivity, and catalytic activity is required. Development is awaited. In addition, by using a laminated structure of platinum and other metals as the electrode, the electrode used in combination with platinum is expensive because the amount of platinum used is reduced. Development is desired.
本発明は、前記従来技術に鑑みてなされたものであり、種々の電極材料、例えば、色素増感太陽電池、燃料電池および電解質溶液の電気分解などの際に用いられる電極として、高耐食性、低抵抗率および触媒特性を有し、安価な積層電極を提供することを課題とする。 The present invention has been made in view of the above prior art, and as an electrode used in various electrode materials, for example, electrolysis of dye-sensitized solar cells, fuel cells and electrolyte solutions, it has high corrosion resistance and low resistance. It is an object to provide an inexpensive laminated electrode having resistivity and catalytic characteristics.
本発明は、
(1)基板上に形成されたクロムおよびチタンからなる群より選ばれた少なくとも1種の金属からなる金属薄膜、および該金属薄膜上に白金粒子を分散させた分散層を有し、金属薄膜の厚さは300nm〜1μmであり、分散層の厚さは3nm〜10nmであり、分散層における白金粒子の平均粒子径は10nm以下であることを特徴とする積層電極(以下、本願発明の一実施形態という)、
(2)基板上に形成されたクロム、アルミニウムおよび銅からなる群より選ばれた少なくとも1種の金属からなる金属薄膜、該金属薄膜上に形成されたチタン薄膜、および該チタン薄膜上に白金粒子が分散した分散層を有し、金属薄膜の厚さは300nm〜1μmであり、チタン薄膜の厚さは100nm〜300nmであり、分散層の厚さは3nm〜10nmであり、分散層における白金粒子の平均粒子径は10nm以下であることを特徴とする積層電極(以下、本願発明の他の実施形態という)
に関する。
The present invention
(1) has a metal thin film made of at least one metal selected from the group consisting of chromium and titanium is formed on the base plate, and a dispersion layer obtained by dispersing platinum particles on the metal thin film, the metal thin film the thickness is 300Nm~1myuemu, the thickness of the dispersion layer is 3 nm to 10 nm, layered electrode wherein the average particle size of the platinum particles in the dispersion layer is 10nm or less (hereinafter, one of the present invention Called embodiment ),
(2) platinum chromium formed on the base plate, a metal thin film made of at least one metal selected from the group consisting of aluminum and copper, titanium thin film formed on the metal thin film, and on the titanium thin It has a dispersion layer in which particles are dispersed, the thickness of the metal thin film is 300 nm to 1 μm, the thickness of the titanium thin film is 100 nm to 300 nm, the thickness of the dispersion layer is 3 nm to 10 nm, and platinum in the dispersion layer A laminated electrode having an average particle diameter of 10 nm or less (hereinafter, referred to as another embodiment of the present invention )
About.
1 基板
2 金属薄膜
3 白金薄膜
4 白金分散層
5 金属薄膜
6 チタン薄膜
1 Substrate 2 Metal
本願発明に用いられる基板としては、とくに限定がなく、例えば、ガラスなどの材質からなる基板があげられる。 The substrate used in the present invention is not particularly limited, and examples thereof include a substrate made of a material such as glass .
本願発明に関係する一参考例(以下、一参考例という)は、基板上に形成されたクロムおよびチタンからなる群より選ばれた少なくとも1種の金属からなる金属薄膜、および該金属薄膜上に形成された白金薄膜を有する積層電極である。一参考例は、このような積層構造を有することから、高耐食性、低抵抗率および触媒特性を有する。 One reference example (hereinafter referred to as one reference example) related to the present invention is a metal thin film made of at least one metal selected from the group consisting of chromium and titanium formed on a substrate, and on the metal thin film. It is a laminated electrode having a platinum thin film formed. Since one reference example has such a laminated structure, it has high corrosion resistance, low resistivity, and catalytic properties.
基板上には、クロムおよびチタンからなる群より選ばれた少なくとも1種の金属からなる金属薄膜が形成される。これらの金属の抵抗率は、いずれも、5〜13×10-8Ωmであり、白金の抵抗値(11×10-8Ωm)とほぼ同等であることから、これらの金属は、白金と同等の導電性を有している。さらに、これらの金属は、酸性溶液、塩基性溶液、金属塩溶液、有機溶剤などに対する耐腐食性に優れ、白金とほぼ同等の抵抗率および耐食性を有することから、低効率が低く、耐食性に優れている。 A metal thin film made of at least one metal selected from the group consisting of chromium and titanium is formed on the substrate. The resistivity of these metals is 5 to 13 × 10 −8 Ωm, which is almost equal to the resistance value of platinum (11 × 10 −8 Ωm), so these metals are equivalent to platinum. It has the conductivity of. In addition, these metals have excellent corrosion resistance against acidic solutions, basic solutions, metal salt solutions, organic solvents, etc., and have almost the same resistivity and corrosion resistance as platinum, so they are low in efficiency and excellent in corrosion resistance. ing.
金属薄膜は、例えば、スパッタリング法などによって基板上に形成することができる。形成される金属薄膜の厚さは、低い抵抗率を確保する観点から、好ましくは300nm〜1μm、より好ましくは500〜900nmである。 The metal thin film can be formed on the substrate by, for example, a sputtering method. The thickness of the formed metal thin film is preferably 300 nm to 1 μm, more preferably 500 to 900 nm, from the viewpoint of securing a low resistivity.
形成された金属薄膜上には、白金薄膜が形成される。白金薄膜は、例えば、スパッタリング法などによって金属薄膜上に形成することができる。形成される白金薄膜の厚さは、経済性を高めるとともに触媒活性を充分に発現させる観点から、好ましくは10〜50nm、より好ましくは10〜30nmである。 A platinum thin film is formed on the formed metal thin film. The platinum thin film can be formed on the metal thin film by, for example, a sputtering method. The thickness of the platinum thin film to be formed is preferably 10 to 50 nm, more preferably 10 to 30 nm, from the viewpoint of enhancing economic efficiency and sufficiently exhibiting catalytic activity.
本願発明の一実施形態は、一参考例で用いられている白金薄膜の代わりに、白金粒子を分散させた分散層が金属薄膜上に形成された積層電極である。この分散層では、白金粒子が個々に分離し、金属薄膜上で島状に分散しているので、高触媒作用を呈する。したがって、本願発明の一実施形態は、一参考例よりもさらに白金の消費量を少なくすることができるという利点がある。 One embodiment of the present invention is a laminated electrode in which a dispersion layer in which platinum particles are dispersed is formed on a metal thin film instead of the platinum thin film used in one reference example . In this dispersion layer, platinum particles are individually separated and dispersed in an island shape on the metal thin film, so that a high catalytic action is exhibited. Therefore, one embodiment of the present invention has an advantage that the consumption of platinum can be further reduced as compared with one reference example .
白金粒子の平均粒子径は、電極での電子の授受を促進する触媒作用を効率よく機能させる観点から、好ましくは10nm以下、より好ましくは5〜10nmである。 The average particle diameter of the platinum particles is preferably 10 nm or less, more preferably 5 to 10 nm, from the viewpoint of efficiently functioning the catalytic action that promotes the transfer of electrons at the electrode.
白金粒子を分散させた分散層は、白金粒子が金属薄膜の面積の20%以上を占有するように形成させることが、触媒作用を十分に発現させる観点から好ましいが、白金粒子が金属薄膜の面積の80%以下を占有するように形成されることが白金の使用量を低減させる観点から好ましい。 The dispersion layer in which the platinum particles are dispersed is preferably formed so that the platinum particles occupy 20% or more of the area of the metal thin film from the viewpoint of sufficiently exhibiting the catalytic action. From the viewpoint of reducing the amount of platinum used, it is preferable to occupy 80% or less.
白金粒子を分散させた分散層は、例えば、スパッタリング法などにより、製膜時間を短く制御することによって形成させることができる。形成した分散層の厚さは、触媒作用が効率よく機能させる観点およびその使用量を必要最少量に抑える観点から、好ましくは3〜10nm、より好ましくは5〜8nmである。また、分散層における白金粒子の密度は、触媒作用が効率よく機能させる観点およびその使用量を必要最少量に抑える観点から、好ましくは1.7×10-6〜6.7×10-6g/cm3、より好ましくは2.5×10-6〜5.0×10-6g/cm3である。 The dispersion layer in which the platinum particles are dispersed can be formed, for example, by controlling the film forming time to be short by sputtering or the like. The thickness of the formed dispersion layer is preferably from 3 to 10 nm, more preferably from 5 to 8 nm, from the viewpoint of allowing the catalytic function to function efficiently and from the viewpoint of suppressing the amount used thereof to the necessary minimum amount. Further, the density of the platinum particles in the dispersion layer is preferably 1.7 × 10 −6 to 6.7 × 10 −6 g from the viewpoint of allowing the catalytic function to function efficiently and the amount used thereof being kept to the minimum necessary amount. / Cm 3 , more preferably 2.5 × 10 −6 to 5.0 × 10 −6 g / cm 3 .
本願発明に関係する他の参考例(以下、他の参考例という)は、基板上に形成されたクロム、アルミニウムおよび銅からなる群より選ばれた少なくとも1種の金属からなる金属薄膜、該金属薄膜上に形成されたチタン薄膜、および該チタン薄膜上に形成された白金薄膜を有する積層電極である。 Another reference example related to the present invention (hereinafter referred to as another reference example) is a metal thin film made of at least one metal selected from the group consisting of chromium, aluminum and copper formed on a substrate, the metal A laminated electrode having a titanium thin film formed on the thin film and a platinum thin film formed on the titanium thin film.
本発明者らは、低コスト化を可能とする電極材料について鋭意研究を重ねた結果、他の参考例の積層電極が、高耐食性、低抵抗率および高触媒作用に優れていることを見出した。 As a result of intensive research on electrode materials that enable cost reduction, the present inventors have found that laminated electrodes of other reference examples are excellent in high corrosion resistance, low resistivity, and high catalytic action. .
基板上には、クロム、アルミニウムおよび銅からなる群より選ばれた少なくとも1種の金属からなる金属薄膜が形成される。 A metal thin film made of at least one metal selected from the group consisting of chromium, aluminum and copper is formed on the substrate.
金属薄膜は、例えば、スパッタリング法などによって基板上に形成することができる。形成される金属薄膜の厚さは、低い抵抗率を確保する観点から、好ましくは300nm〜1μm、より好ましくは500〜900nmである。 The metal thin film can be formed on the substrate by, for example, a sputtering method. The thickness of the formed metal thin film is preferably 300 nm to 1 μm, more preferably 500 to 900 nm, from the viewpoint of securing a low resistivity.
形成された金属薄膜上には、チタン薄膜が形成される。チタン薄膜は、例えば、スパッタリング法などによって金属薄膜上に形成することができる。形成されるチタン薄膜の厚さは、耐食性を付与するとともに経済性を高める観点から、好ましくは100〜300nm、より好ましくは150〜250nmである。 A titanium thin film is formed on the formed metal thin film. The titanium thin film can be formed on the metal thin film by, for example, a sputtering method. The thickness of the titanium thin film to be formed is preferably 100 to 300 nm, more preferably 150 to 250 nm, from the viewpoint of imparting corrosion resistance and improving economy.
つぎに、形成されたチタン薄膜上には、白金薄膜が形成される。白金薄膜は、例えば、スパッタリング法などによってチタン薄膜上に形成することができる。形成される白金薄膜の厚さは、耐食性を付与するとともに経済性を高める観点から、好ましくは10〜50nm、より好ましくは10〜30nmである。 Next, a platinum thin film is formed on the formed titanium thin film. The platinum thin film can be formed on the titanium thin film by, for example, sputtering. The thickness of the formed platinum thin film is preferably 10 to 50 nm, more preferably 10 to 30 nm, from the viewpoint of imparting corrosion resistance and improving economy.
本願発明の他の実施形態は、他の参考例で用いられている白金薄膜の代わりに、白金粒子を分散させた分散層が金属薄膜上に形成された積層電極である。 Another embodiment of the present invention is a laminated electrode in which a dispersion layer in which platinum particles are dispersed is formed on a metal thin film instead of the platinum thin film used in other reference examples .
白金粒子の平均粒子径は、電極での電子の授受を促進する触媒作用を効率よく機能させる観点から、好ましくは10nm以下、より好ましくは5〜10nmである。 The average particle diameter of the platinum particles is preferably 10 nm or less, more preferably 5 to 10 nm, from the viewpoint of efficiently functioning the catalytic action that promotes the transfer of electrons at the electrode.
白金粒子を分散させた分散層は、白金粒子が金属薄膜の面積の20%以上を占有するように形成させることが、触媒作用を十分に発現させる観点から好ましいが、白金粒子が金属薄膜の面積の80%以下を占有するように形成されることが白金の使用量を低減させる観点から好ましい。 The dispersion layer in which the platinum particles are dispersed is preferably formed so that the platinum particles occupy 20% or more of the area of the metal thin film from the viewpoint of sufficiently exhibiting the catalytic action. From the viewpoint of reducing the amount of platinum used, it is preferable to occupy 80% or less.
白金粒子を分散させた分散層は、例えば、スパッタリング法などにより、製膜時間を短く制御することによって形成させることができる。形成した分散層の厚さは、触媒作用が効率よく機能させる観点およびその使用量を必要最少量に抑える観点から、好ましくは3〜10nm、より好ましくは5〜8nmである。また、分散層における白金粒子の密度は、触媒作用が効率よく機能させる観点およびその使用量を必要最少量に抑える観点から、好ましくは1.7×10-6〜6.7×10-6g/cm3、より好ましくは2.5×10-6〜5.0×10-6g/cm3である。 The dispersion layer in which the platinum particles are dispersed can be formed, for example, by controlling the film forming time to be short by sputtering or the like. The thickness of the formed dispersion layer is preferably from 3 to 10 nm, more preferably from 5 to 8 nm, from the viewpoint of allowing the catalytic function to function efficiently and from the viewpoint of suppressing the amount used thereof to the necessary minimum amount. Further, the density of the platinum particles in the dispersion layer is preferably 1.7 × 10 −6 to 6.7 × 10 −6 g from the viewpoint of allowing the catalytic function to function efficiently and the amount used thereof being kept to the minimum necessary amount. / Cm 3 , more preferably 2.5 × 10 −6 to 5.0 × 10 −6 g / cm 3 .
つぎに、本発明の積層電極を図面に基づいて説明する。 Next, the laminated electrode of the present invention will be described with reference to the drawings.
図1は、一参考例の積層電極を示す概略断面図である。図1に示された積層電極は、基板1上に形成されたクロムおよびチタンからなる群より選ばれた少なくとも1種の金属からなる金属薄膜2と、その金属薄膜2の表面上に形成された白金薄膜3によって構成されている。
Figure 1 is a schematic cross-sectional view of a stacked electrodes one reference example. The laminated electrode shown in FIG. 1 was formed on a surface of the metal thin film 2 and a metal thin film 2 made of at least one metal selected from the group consisting of chromium and titanium formed on the
図2は、本願発明の一実施形態の積層電極の一実施態様を示す概略断面図である。図2に示された積層電極は、基板1上に形成されたクロムおよびチタンからなる群より選ばれた少なくとも1種の金属からなる金属薄膜2と、その金属薄膜2上に形成された白金粒子を分散させた分散層4によって構成されている。
FIG. 2 is a schematic cross-sectional view showing one embodiment of the laminated electrode of one embodiment of the present invention . 2 includes a metal thin film 2 made of at least one metal selected from the group consisting of chromium and titanium formed on the
図3は、他の参考例の積層電極を示す概略断面図である。図3に示された積層電極は、基板1上に形成されたクロム、アルミニウムおよび銅からなる群より選ばれた少なくとも1種の金属からなる金属薄膜5と、その金属膜上に形成されたチタン薄膜6と、そのチタン薄膜6上に形成された白金薄膜3によって構成されている。
Figure 3 is a schematic cross-sectional view of a stacked electrodes of another reference example. The laminated electrode shown in FIG. 3 includes a metal
図4は、本願発明の他の実施形態の積層電極の一実施態様を示す概略断面図である。図4に示された積層電極は、基板1上に形成されたクロム、アルミニウムおよび銅からなる群より選ばれた少なくとも1種の金属からなる金属薄膜5と、その金属膜上に形成されたチタン薄膜6と、そのチタン薄膜6上に形成された白金粒子を分散させた分散層4によって構成されている。
FIG. 4 is a schematic cross-sectional view showing one embodiment of a laminated electrode according to another embodiment of the present invention . The laminated electrode shown in FIG. 4 includes a metal
本願発明の一実施形態および他の実施形態の積層電極は、いずれも、図5に示される従来の基板1および白金膜3からなる白金電極よりも白金の使用量が非常に少なく、また白金電極とほぼ同等の抵抗率、耐食性および触媒特性を有するので、白金電極に代わる安価な電極として、色素増感太陽電池、燃料電池、電解質の電気分解用電極などに好適に使用することができる。
The stacked electrodes of one embodiment and other embodiments of the present invention both use much less platinum than the
つぎに本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。 Next, the present invention will be described in more detail based on examples. However, the present invention is not limited to such examples.
実施例1
ガラス基板(コーニング社製、品番:コーニング#1737)上に、スパッタリング法によって厚さ700nmのクロム薄膜を形成させた。スパッタリング法によるクロム薄膜の形成は、RFマグネトロンスパッタ装置〔アネルバ(株)製〕を用い、RF電力200W、アルゴンガス圧力0.2Pa、製膜時間60分間の条件で行った。
Example 1
A chromium thin film having a thickness of 700 nm was formed on a glass substrate (Corning, product number: Corning # 1737) by a sputtering method. The chromium thin film was formed by sputtering using an RF magnetron sputtering apparatus (manufactured by Anerva Co., Ltd.) under the conditions of an RF power of 200 W, an argon gas pressure of 0.2 Pa, and a film forming time of 60 minutes.
つぎに、形成されたクロム薄膜の上に、スパッタリング法によって厚さ10nmの白金薄膜を形成させることにより、一参考例の積層電極を得た。なお、スパッタリング法によるクロム薄膜の形成は、RFマグネトロンスパッタ装置〔アネルバ(株)製〕を用い、RF電力200W、アルゴンガス圧力0.2Pa、製膜時間1分20秒間の条件で行った。 Next, a platinum thin film having a thickness of 10 nm was formed on the formed chromium thin film by a sputtering method to obtain a laminated electrode of one reference example . The chromium thin film was formed by sputtering using an RF magnetron sputtering apparatus (manufactured by Anerva Co., Ltd.) under the conditions of an RF power of 200 W, an argon gas pressure of 0.2 Pa, and a film forming time of 1 minute and 20 seconds.
実施例2
実施例1と同様にしてガラス基板上に、スパッタリング法によって厚さ700nmのクロム薄膜を形成させた。
Example 2
In the same manner as in Example 1, a 700 nm thick chromium thin film was formed on a glass substrate by sputtering.
つぎに、形成されたクロム薄膜の上に、スパッタリング法によって平均粒径が
8nmである白金粒子の分散層(厚さ5nm)を形成させることにより、本願発明の一実施形態の積層電極を得た。なお、スパッタリング法によるクロム薄膜の形成は、RFマグネトロンスパッタ装置〔アネルバ(株)製〕を用い、RF電力200W、アルゴンガス圧力0.2Pa、製膜時間40秒間の条件で行った。
Next, by forming a dispersion layer (
実施例3
実施例1で用いたガラス基板と同じ種類のガラス基板上に、スパッタリング法によって厚さ800nmの銅薄膜を形成させた。スパッタリング法による銅薄膜の形成は、RFマグネトロンスパッタ装置〔アネルバ(株)製〕を用い、RF電力300W、アルゴンガス圧力0.2Pa、製膜時間80分間の条件で行った。
Example 3
A copper thin film having a thickness of 800 nm was formed on the same type of glass substrate as used in Example 1 by sputtering. The copper thin film was formed by sputtering using an RF magnetron sputtering apparatus (manufactured by Anerva Co., Ltd.) under the conditions of an RF power of 300 W, an argon gas pressure of 0.2 Pa, and a film forming time of 80 minutes.
つぎに、形成された銅薄膜上に、スパッタリング法によって厚さ200nmのチタン薄膜を形成させた。チタン薄膜の形成は、RFマグネトロンスパッタ装置〔アネルバ(株)製〕を用い、RF電力200W、アルゴンガス圧力0.2Pa、製膜時間30分間の条件で行った。 Next, a titanium thin film having a thickness of 200 nm was formed on the formed copper thin film by sputtering. The titanium thin film was formed using an RF magnetron sputtering apparatus (manufactured by Anerva Co., Ltd.) under the conditions of an RF power of 200 W, an argon gas pressure of 0.2 Pa, and a film forming time of 30 minutes.
つぎに、形成されたチタン薄膜上に、スパッタリング法によって厚さ20nmの白金薄膜を形成させることにより、他の参考例の積層電極を得た。なお、白金薄膜の形成は、RFマグネトロンスパッタ装置〔アネルバ(株)製〕を用い、RF電力200W、アルゴンガス圧力0.2Pa、製膜時間2分40秒間の条件で行った。 Next, a 20-nm-thick platinum thin film was formed on the formed titanium thin film by a sputtering method to obtain a laminated electrode of another reference example . The platinum thin film was formed using an RF magnetron sputtering apparatus (manufactured by Anerva Co., Ltd.) under the conditions of RF power of 200 W, argon gas pressure of 0.2 Pa, and film formation time of 2 minutes and 40 seconds.
実施例4
実施例1で用いたガラス基板と同じ種類のガラス基板上に、実施例3と同様にしてスパッタリング法によって厚さ800nmの銅薄膜を形成させた。
Example 4
On the same type of glass substrate as used in Example 1, a copper thin film having a thickness of 800 nm was formed by a sputtering method in the same manner as in Example 3.
つぎに、形成された銅薄膜上に、実施例3と同様にしてスパッタリング法によって厚さ200nmのチタン薄膜を形成させた。 Next, a titanium thin film having a thickness of 200 nm was formed on the formed copper thin film by a sputtering method in the same manner as in Example 3.
つぎに、形成されたチタン薄膜上に、スパッタリング法によって平均粒径が6nmである白金粒子の分散層(厚さ5nm)を形成させることにより、本願発明の他の実施形態の積層電極を得た。なお、白金薄膜の形成は、RFマグネトロンスパッタ装置〔アネルバ(株)製〕を用い、RF電力200W、アルゴンガス圧力0.2Pa、製膜時間40秒間の条件で行った。
Next, a multilayer electrode of another embodiment of the present invention was obtained by forming a dispersion layer (
比較例1
実施例1で用いたガラス基板と同じ種類のガラス基板上に、スパッタリング法によって厚さ20nmの白金薄膜を形成させることにより、従来の積層電極を得た。スパッタリング法による白金薄膜の形成は、RFマグネトロンスパッタ装置〔アネルバ(株)製〕を用い、RF電力200W、アルゴンガス圧力0.2Pa、製膜時間2分40分間の条件で行った。
Comparative Example 1
A conventional laminated electrode was obtained by forming a platinum thin film having a thickness of 20 nm on a glass substrate of the same type as the glass substrate used in Example 1 by sputtering. The platinum thin film was formed by sputtering using an RF magnetron sputtering apparatus (manufactured by Anerva Co., Ltd.) under the conditions of RF power of 200 W, argon gas pressure of 0.2 Pa, and film formation time of 2 minutes and 40 minutes.
比較例2
比較例1において、白金薄膜を形成させるときの製膜条件をRF電力200W、アルゴンガス圧力0.2Pa、製膜時間80分間に変更したこと以外は、比較例1と同様の操作を行うことにより、白金薄膜の厚さが600nmである従来の積層電極を得た。
Comparative Example 2
By performing the same operation as in Comparative Example 1 except that the film forming conditions for forming the platinum thin film in Comparative Example 1 were changed to RF power 200 W, argon gas pressure 0.2 Pa, and film forming time 80 minutes. A conventional laminated electrode having a platinum thin film thickness of 600 nm was obtained.
比較例3
実施例1で用いたガラス基板と同じ種類のガラス基板上に、スパッタリング法によって厚さ700nmのクロム薄膜を形成させることにより、従来の積層電極を得た。スパッタリング法によるクロム薄膜の形成は、RFマグネトロンスパッタ装置〔アネルバ(株)製〕を用い、RF電力200W、アルゴンガス圧力0.2Pa、製膜時間60分間の条件で行った。
Comparative Example 3
A conventional laminated electrode was obtained by forming a 700 nm-thick chromium thin film on a glass substrate of the same type as the glass substrate used in Example 1 by sputtering. The chromium thin film was formed by sputtering using an RF magnetron sputtering apparatus (manufactured by Anerva Co., Ltd.) under the conditions of an RF power of 200 W, an argon gas pressure of 0.2 Pa, and a film forming time of 60 minutes.
比較例4
実施例1で用いたガラス基板と同じ種類のガラス基板上に、スパッタリング法によって厚さ800nmの銅薄膜を形成させることにより、従来の積層電極を得た。スパッタリング法による銅薄膜の形成は、RFマグネトロンスパッタ装置〔アネルバ(株)製〕を用い、RF電力200W、アルゴンガス圧力0.2Pa、製膜時間80分間の条件で行った。
Comparative Example 4
A conventional laminated electrode was obtained by forming a copper thin film having a thickness of 800 nm on a glass substrate of the same type as the glass substrate used in Example 1 by sputtering. The copper thin film was formed by sputtering using an RF magnetron sputtering apparatus (manufactured by Anerva Co., Ltd.) under the conditions of an RF power of 200 W, an argon gas pressure of 0.2 Pa, and a film forming time of 80 minutes.
なお、各金属の薄膜の膜厚は、電子顕微鏡による観察および薄膜の製膜速度によって算出した。 In addition, the film thickness of the thin film of each metal was computed by observation with an electron microscope and the film forming speed of the thin film.
つぎに、各実施例および各比較例で得られた積層電極の物性を以下の方法に基づいて評価した。その結果を表1に示す。 Next, the physical properties of the laminated electrodes obtained in each Example and each Comparative Example were evaluated based on the following methods. The results are shown in Table 1.
〔物性の評価方法〕
(1)積層電極の薄膜が形成された面の表面抵抗
積層電極の薄膜が形成された面の表面抵抗は、シート抵抗測定器〔三菱化学(株)製〕による四端子法によって測定した。
[Method for evaluating physical properties]
(1) Surface resistance of the surface on which the thin film of the laminated electrode was formed The surface resistance of the surface on which the thin film of the laminated electrode was formed was measured by a four-terminal method using a sheet resistance measuring instrument [manufactured by Mitsubishi Chemical Corporation].
(2)耐食性
色素増感太陽電池の電解質溶液(0.1mol/Lのヨウ化リチウム、0.05mol/Lのヨウ素、0.6mol/Lのヨウ化ジメチルプロピルイミダゾリウムおよび0.5mol/Lのブチルピリジンを含むメトキシアセトニトリル溶液)中に、各実施例または各比較例で得られた積層電極を1週間浸漬した後、薄膜が形成された面を電子顕微鏡で観察し、腐食状況を調べ、以下の評価基準に基づいて評価した。
(2) Corrosion resistance Dye-sensitized solar cell electrolyte solution (0.1 mol / L lithium iodide, 0.05 mol / L iodine, 0.6 mol / L dimethylpropylimidazolium iodide and 0.5 mol / L In the methoxyacetonitrile solution containing butylpyridine), the laminated electrodes obtained in each Example or each Comparative Example were immersed for 1 week, and then the surface on which the thin film was formed was observed with an electron microscope to examine the corrosion status. Evaluation based on the evaluation criteria.
〔評価基準〕
○:ほとんど変化がなく、腐食が浸漬面の10%未満である。
△:腐食が浸漬面の10%以上80%未満まで進行している。
×:腐食が浸漬面の80%以上進行している。
〔Evaluation criteria〕
○: Almost no change and corrosion is less than 10% of the immersion surface.
Δ: Corrosion has progressed to 10% or more and less than 80% of the immersion surface.
X: Corrosion proceeds at 80% or more of the immersion surface.
(3)光電変換効率
実施例1で用いたガラス基板と同じ種類のガラス基板上に、FTO透明導電膜(膜厚:600nm)と酸化チタン膜(膜厚:15μm)を順次積層し、その酸化チタン膜にルテニウム色素〔ソーラロニックス(Solaronix)社製、品番:N719〕を担持することによって作用電極を作製した。
(3) Photoelectric conversion efficiency An FTO transparent conductive film (film thickness: 600 nm) and a titanium oxide film (film thickness: 15 μm) are sequentially stacked on the same type of glass substrate as used in Example 1, and the oxidation. A working electrode was prepared by supporting a ruthenium dye [manufactured by Solaronix, product number: N719] on a titanium film.
得られた作用電極と、各実施例または各比較例で得られた積層電極を対向電極として貼り合わせ、これに耐食性を調べるときに用いた電解質溶液と同じ組成からなる電解質溶液0.5mLを貼り合わせ面より注入し、表面張力により漏れのない状態で作用電極と積層電極とを電極クリップで挟み、光電極部の有効面積が0.25cm2の色素増感太陽電池セルを作製した。 The obtained working electrode and the laminated electrode obtained in each example or each comparative example were bonded as a counter electrode, and 0.5 mL of an electrolyte solution having the same composition as the electrolyte solution used for examining the corrosion resistance was bonded thereto. Injection was performed from the mating surfaces, and the working electrode and the laminated electrode were sandwiched between electrode clips without leakage due to surface tension, and a dye-sensitized solar cell having an effective area of the photoelectrode portion of 0.25 cm 2 was produced.
得られた色素増感太陽電池セルの光電変換効率を、太陽光シュミレータ〔英弘精機(株)製〕を用いてAM1.5の光照射下で評価した。 The photoelectric conversion efficiency of the obtained dye-sensitized solar cell was evaluated under light irradiation of AM1.5 using a solar simulator [manufactured by Eihiro Seiki Co., Ltd.].
表1に示された結果から、各実施例で得られた積層電極は、白金の膜厚が比較例2で得られた従来の白金単層電極の30分の1以下であるにもかかわらず、比較例2で得られた白金単層電極とほぼ同等のシート抵抗、耐食性および光電変換効率を有することがわかる。 From the results shown in Table 1, the laminated electrodes obtained in each Example were obtained even though the film thickness of platinum was 1/30 or less of the conventional platinum single layer electrode obtained in Comparative Example 2. It can be seen that the platinum single layer electrode obtained in Comparative Example 2 has substantially the same sheet resistance, corrosion resistance, and photoelectric conversion efficiency.
したがって、各実施例で得られた積層電極は、従来の白金単層電極よりも白金の使用量を少なくしても、これと十分に代替することができることがわかる。 Therefore, it can be seen that the laminated electrodes obtained in the respective examples can be sufficiently substituted even if the amount of platinum used is smaller than that of the conventional platinum single layer electrode.
本発明によれば、種々の電極材料、例えば、色素増感太陽電池、燃料電池および電解質溶液の電気分解などの際に用いられる電極として、高耐食性、低抵抗率および触媒特性を有し、安価な積層電極が提供される。 According to the present invention, as an electrode used in various electrode materials, for example, electrolysis of dye-sensitized solar cells, fuel cells and electrolyte solutions, it has high corrosion resistance, low resistivity and catalytic properties, and is inexpensive. A laminated electrode is provided.
Claims (2)
前記金属薄膜の厚さは300nm〜1μmであり、前記分散層の厚さは3nm〜10nmであり、前記分散層における白金粒子の平均粒子径は10nm以下であることを特徴とする積層電極。 A dye sensitizer having a metal thin film made of at least one metal selected from the group consisting of chromium and titanium formed on a substrate, and a dispersion layer formed by separating platinum particles on the metal thin film in an island shape A laminated electrode used as a counter electrode of a solar cell ,
The thickness of the said metal thin film is 300 nm-1 micrometer, The thickness of the said dispersion layer is 3 nm-10 nm, The average particle diameter of the platinum particle in the said dispersion layer is 10 nm or less, The laminated electrode characterized by the above-mentioned.
前記金属薄膜の厚さは300nm〜1μmであり、前記チタン薄膜の厚さは100nm〜300nmであり、前記分散層の厚さは3nm〜10nmであり、前記分散層における白金粒子の平均粒子径は10nm以下であることを特徴とする積層電極。 A metal thin film made of at least one metal selected from the group consisting of chromium, aluminum and copper formed on the substrate, a titanium thin film formed on the metal thin film, and platinum particles on the titanium thin film as islands A laminated electrode used for a counter electrode of a dye-sensitized solar cell having a dispersed layer formed separately ,
The thickness of the metal thin film is 300 nm to 1 μm, the thickness of the titanium thin film is 100 nm to 300 nm, the thickness of the dispersion layer is 3 nm to 10 nm, and the average particle diameter of platinum particles in the dispersion layer is A laminated electrode having a thickness of 10 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008556108A JP5227194B2 (en) | 2007-01-31 | 2008-01-29 | Laminated electrode |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007021663 | 2007-01-31 | ||
JP2007021663 | 2007-01-31 | ||
PCT/JP2008/051310 WO2008093675A1 (en) | 2007-01-31 | 2008-01-29 | Multilayer electrode |
JP2008556108A JP5227194B2 (en) | 2007-01-31 | 2008-01-29 | Laminated electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2008093675A1 JPWO2008093675A1 (en) | 2010-05-20 |
JP5227194B2 true JP5227194B2 (en) | 2013-07-03 |
Family
ID=39673985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008556108A Expired - Fee Related JP5227194B2 (en) | 2007-01-31 | 2008-01-29 | Laminated electrode |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5227194B2 (en) |
WO (1) | WO2008093675A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5679636B2 (en) * | 2009-03-26 | 2015-03-04 | セイコーエプソン株式会社 | Liquid ejecting head and actuator device |
JP4620794B1 (en) * | 2010-03-11 | 2011-01-26 | 大日本印刷株式会社 | Dye-sensitized solar cell |
KR101811887B1 (en) * | 2012-06-21 | 2017-12-22 | 히타치 긴조쿠 가부시키가이샤 | Metal substrate for dye-sensitized solar cell |
US10121602B2 (en) | 2012-06-22 | 2018-11-06 | Hitachi Metals, Ltd. | Metal substrate for dye-sensitized solar cell |
KR101473087B1 (en) * | 2013-01-18 | 2014-12-16 | 서울시립대학교 산학협력단 | Dye-Sensitized Solar Cell using multi-layer electrode |
US9567681B2 (en) * | 2013-02-12 | 2017-02-14 | Treadstone Technologies, Inc. | Corrosion resistant and electrically conductive surface of metallic components for electrolyzers |
JP5716939B2 (en) * | 2014-03-13 | 2015-05-13 | セイコーエプソン株式会社 | Liquid ejecting head, liquid ejecting apparatus, and actuator device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003123855A (en) * | 2001-10-17 | 2003-04-25 | Fujikura Ltd | Electrode for photoelectric conversion element |
JP2005346971A (en) * | 2004-05-31 | 2005-12-15 | Fujikura Ltd | Counter electrode structure of wet solar cell and wet solar cell |
JP2006164697A (en) * | 2004-12-06 | 2006-06-22 | Sharp Corp | Dye-sensitized solar cell and dye-sensitized solar cell module |
-
2008
- 2008-01-29 JP JP2008556108A patent/JP5227194B2/en not_active Expired - Fee Related
- 2008-01-29 WO PCT/JP2008/051310 patent/WO2008093675A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003123855A (en) * | 2001-10-17 | 2003-04-25 | Fujikura Ltd | Electrode for photoelectric conversion element |
JP2005346971A (en) * | 2004-05-31 | 2005-12-15 | Fujikura Ltd | Counter electrode structure of wet solar cell and wet solar cell |
JP2006164697A (en) * | 2004-12-06 | 2006-06-22 | Sharp Corp | Dye-sensitized solar cell and dye-sensitized solar cell module |
Also Published As
Publication number | Publication date |
---|---|
WO2008093675A1 (en) | 2008-08-07 |
JPWO2008093675A1 (en) | 2010-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5227194B2 (en) | Laminated electrode | |
Suzuki et al. | Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells | |
KR102014990B1 (en) | Composite protective layer for photoelectrode structure, photoelectrode structure comprising the composite protective layer for photoelectrode structure and photoelectochemical cell including the same | |
Yen et al. | Metal-free, nitrogen-doped graphene used as a novel catalyst for dye-sensitized solar cell counter electrodes | |
Hsieh et al. | A highly efficient dye-sensitized solar cell with a platinum nanoflowers counter electrode | |
JP5150818B2 (en) | Dye-sensitized solar cell and method for producing the same | |
JP4446011B2 (en) | Method for producing photoelectrode for dye-sensitized solar cell, photoelectrode for dye-sensitized solar cell, and dye-sensitized solar cell | |
KR101297885B1 (en) | Counter electrode with graphene and metal hybrid film for dye sensitized solar cell and dye sensitized solar cell comprising the same | |
JP4620794B1 (en) | Dye-sensitized solar cell | |
Mohamed et al. | Synthesis, characterization and performance as a Counter Electrode for dye-sensitized solar cells of CoCr-decorated carbon nanofibers | |
JP2007073507A (en) | Photoelectrochemical device using carbon nanotubes | |
Rajavedhanayagam et al. | Cu2NiSnS4/graphene nanohybrid as a newer counter electrode to boost-up the photoconversion efficiency of dye sensitized solar cell | |
JP2008053042A (en) | Dye-sensitized solar cell | |
JP2017123471A (en) | Current conducting electrode and method for manufacturing the same | |
JP4945491B2 (en) | Laminated electrode and dye-sensitized solar cell using the same | |
Prasad et al. | Molybdenum induced defective WO3 multifunctional nanostructure as an electrochromic energy storage device: Novel assembled photovoltaic-electrochromic Mo–WO3 film | |
JP2004311354A (en) | Manufacturing method of substrate for electrode | |
JP4788838B2 (en) | Dye-sensitized solar cell | |
Pak et al. | Surface treatment effect of carbon fiber fabric counter electrode in dye sensitized solar cell | |
KR100998146B1 (en) | Dye-sensitized positive cell with titanium tube and sheet structure | |
JP2018515915A (en) | Carbon nanotube-cement composite composition for catalyst on counter electrode of dye-sensitized solar cell | |
JP5593881B2 (en) | Dye-sensitized solar cell | |
KR101048880B1 (en) | Dye-sensitized solar cell with chrome buffer layer | |
Li et al. | Dye-sensitized solar cells with higher J sc by using polyvinylidene fluoride membrane counter electrodes | |
KR100982030B1 (en) | Optical Capacitor Including Internal Electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100519 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100629 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110121 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20120309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5227194 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160322 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |