Nothing Special   »   [go: up one dir, main page]

JP5220456B2 - Decomposition method of atmospheric distillation residue oil - Google Patents

Decomposition method of atmospheric distillation residue oil Download PDF

Info

Publication number
JP5220456B2
JP5220456B2 JP2008088607A JP2008088607A JP5220456B2 JP 5220456 B2 JP5220456 B2 JP 5220456B2 JP 2008088607 A JP2008088607 A JP 2008088607A JP 2008088607 A JP2008088607 A JP 2008088607A JP 5220456 B2 JP5220456 B2 JP 5220456B2
Authority
JP
Japan
Prior art keywords
oil
fraction
catalyst
mass
hydrocracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008088607A
Other languages
Japanese (ja)
Other versions
JP2009242487A (en
Inventor
明 飯野
和浩 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Japan Petroleum Energy Center JPEC filed Critical Idemitsu Kosan Co Ltd
Priority to JP2008088607A priority Critical patent/JP5220456B2/en
Publication of JP2009242487A publication Critical patent/JP2009242487A/en
Application granted granted Critical
Publication of JP5220456B2 publication Critical patent/JP5220456B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、常圧蒸留残渣油の分解方法に関し、詳しくは、原油の常圧蒸留残渣油を水素化分解処理し、得られた生成油を流動接触分解処理する常圧蒸留残渣油の分解方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for decomposing atmospheric distillation residue oil, and more specifically, a method for decomposing atmospheric distillation residue oil by hydrocracking crude oil atmospheric distillation residue oil and subjecting the resulting product oil to fluid catalytic cracking treatment. It is about.

原油の常圧蒸留残渣油は重油直接脱硫装置(以下、「直脱装置」と称する)にて水素化脱硫され、脱硫ナフサ、脱硫灯油、脱硫軽油などの留出油と脱硫重油を生成する。この脱硫重油は、低硫黄C重油として電力用のボイラー燃料などに用いられている。同時に脱硫重油は、流動接触分解(FCC)装置の原料としても使用され、接触分解ガソリン(以下、「FCCガソリン」と称する)、接触分解軽油(以下、「LCO」:ライトサイクルオイルと称する)、LPG留分等の軽質留分が生産されている。
近年、石油精製において使用できる原油は重質化し、重質油を多量に含む原油が多くなる傾向にある。しかも、発電、ボイラー用の重油の需要が減少するなど重質油の利用量は減少しつつある。また、流動接触分解装置からのLCO留分の需要も減少しつつある。一方、ガソリン需要は拡大し、また、プロピレン、ブテン及びベンゼン、トルエン、キシレンなどのBTX等の多数の石油化学製品の原料として使用されるLPG留分やナフサ留分の需要も増大してきている。したがって、常圧蒸留残渣油などの重質油からガソリンやナフサ留分、LPG留分などの軽質留分を多量に製造する技術開発が重要な課題となっている。
Atmospheric distillation residue oil of crude oil is hydrodesulfurized in a heavy oil direct desulfurization apparatus (hereinafter referred to as “direct desulfurization apparatus”) to produce distillate oil and desulfurized heavy oil such as desulfurized naphtha, desulfurized kerosene and desulfurized light oil. This desulfurized heavy oil is used as boiler fuel for electric power as a low sulfur C heavy oil. At the same time, desulfurized heavy oil is also used as a raw material for fluid catalytic cracking (FCC) equipment, catalytic cracking gasoline (hereinafter referred to as “FCC gasoline”), catalytic cracking light oil (hereinafter referred to as “LCO”: light cycle oil), LPG Light fractions such as fractions are produced.
In recent years, crude oil that can be used in oil refining has become heavier, and crude oil containing a large amount of heavy oil tends to increase. In addition, the amount of heavy oil used is decreasing, such as a decrease in demand for heavy oil for power generation and boilers. In addition, the demand for the LCO fraction from the fluid catalytic cracker is also decreasing. On the other hand, demand for gasoline is expanding, and demand for LPG fractions and naphtha fractions used as raw materials for many petrochemical products such as propylene, butene, BTX such as benzene, toluene, and xylene is also increasing. Therefore, technological development for producing a large amount of light fractions such as gasoline, naphtha fraction and LPG fraction from heavy oil such as atmospheric distillation residue oil has become an important issue.

このような状況から、重質油を直脱装置、間脱装置などの水素化脱硫装置にて水素化脱硫処理して得られる脱硫重油、脱硫重質軽油などをさらに分解して、脱硫ナフサ、脱硫灯油、脱硫軽油を増産する水素化分解法が開発されている。また、流動接触分解装置にて前記脱硫重油、脱硫重質軽油を高い分解率で接触分解することにより、LPG留分,FCCガソリン留分、LCO留分などの軽質留分へ転換することが行われている。
例えば、常圧蒸留残渣油を水素化分解処理することにより、脱硫灯軽油留分、脱硫ナフサ留分の得率を増大して脱硫重油を低減し、かつその脱硫重油を流動接触分解装置にてLPG留分、FCCガソリン留分、LCO留分を生産することによって、トータル的に残渣油を低減し、軽質油留分を増大させる方法が提案されている(例えば、特許文献1参照)。
しかしながら、この方法では、常圧蒸留残渣油を水素化分解して得られる脱硫重油の性状が悪く、それを供給原料とする流動接触分解によって得られるLCO留分の得率が高く、LPG留分やFCCガソリン留分など需要の多い軽質留分の得率が十分ではない。
したがって、常圧蒸留残渣油などの重質油を水素化分解処理によって得られる脱硫ナフサ、脱硫灯油、脱硫軽油等の各留分およびこれに続く流動接触分解装置において接触分解によって得られるLPG留分、FCCガソリン留分などの軽質留分を増産できるとともに、需要が少ないLCO留分の生産を抑制できる重質油の分解方法が期待されている。
From such a situation, desulfurized heavy oil, desulfurized heavy gas oil, etc. obtained by hydrodesulfurization treatment of heavy oil in hydrodesulfurization equipment such as direct desulfurization equipment, intermediate desulfurization equipment, etc. are further decomposed, Hydrocracking methods have been developed to increase production of desulfurized kerosene and desulfurized light oil. In addition, the above-mentioned desulfurized heavy oil and desulfurized heavy gas oil are catalytically cracked at a high cracking rate in a fluid catalytic cracking device to convert them into light fractions such as LPG fraction, FCC gasoline fraction, and LCO fraction. It has been broken.
For example, by hydrocracking atmospheric distillation residue oil, the yield of desulfurized kerosene gas oil fraction and desulfurized naphtha fraction is increased to reduce desulfurized heavy oil, and the desulfurized heavy oil is removed by fluid catalytic cracking equipment. There has been proposed a method in which a residual oil is totally reduced and a light oil fraction is increased by producing an LPG fraction, an FCC gasoline fraction, and an LCO fraction (see, for example, Patent Document 1).
However, in this method, the property of desulfurized heavy oil obtained by hydrocracking atmospheric distillation residue oil is poor, the yield of LCO fraction obtained by fluid catalytic cracking using it as a feedstock is high, and the LPG fraction The yield of light fractions with high demand such as FCC gasoline fractions is not sufficient.
Therefore, each fraction of desulfurized naphtha, desulfurized kerosene, desulfurized gas oil, etc. obtained by hydrocracking heavy oil such as atmospheric distillation residue oil, and LPG fraction obtained by catalytic cracking in a fluidized catalytic cracker following this A heavy oil cracking method that can increase production of light fractions such as FCC gasoline fractions and suppress production of LCO fractions with low demand is expected.

特開平5−112785号公報Japanese Patent Laid-Open No. 5-112785

本発明は、このような状況下でなされたものであり、原油の常圧蒸留残渣油を脱硫ナフサ、脱硫灯油、脱硫軽油等の各留分の得率が増大し、脱硫重油の得率が低減するように分解し、さらにその残渣油である脱硫重油をLPG留分やFCCガソリン留分の得率が高くかつLCO留分の得率が低くなるように分解することができる常圧蒸留残渣油の分解方法を提供することを目的とするものである。   The present invention has been made under such circumstances, and the yield of each fraction of crude oil atmospheric distillation residue oil, such as desulfurized naphtha, desulfurized kerosene, desulfurized gas oil, etc. is increased, and the yield of desulfurized heavy oil is increased. Atmospheric distillation residue that can be decomposed to reduce and desulfurized heavy oil that is the residual oil can be decomposed so that the yield of LPG fraction and FCC gasoline fraction is high and the yield of LCO fraction is low It aims at providing the decomposition method of oil.

本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、原油の常圧蒸留残渣油を特定の触媒を用いて水素化分解処理し、さらに前記水素化分解処理して得られた脱硫重油と特定の留出油との混合物を流動接触分解処理に処することによって、前記課題を解決し得ることを見出した。本発明はかかる知見に基づいて完成されたものである。   As a result of intensive research to achieve the above object, the present inventors have obtained a hydrocracking treatment of crude oil atmospheric distillation residue using a specific catalyst, and further obtained by hydrocracking. It has been found that the above problem can be solved by subjecting the mixture of the obtained desulfurized heavy oil and the specific distillate to fluid catalytic cracking. The present invention has been completed based on such findings.

すなわち、本発明は、
〔1〕常圧蒸留残渣油を水素化分解処理し、得られた生成油を流動接触分解処理する常圧蒸留残渣油の分解方法であって、
(a)水素化分解処理に用いる触媒が、結晶性アルミノシリケート45質量%以上70質量%以下と多孔性無機酸化物55質量%以下30質量%以上の混合物からなる担体に金属を担持した触媒であり、かつ
(b)流動接触分解処理の原料が、前記水素化分解処理によって得られる残渣油と沸点120〜400℃の留出油との混合物であり、当該混合物における留出油の混合割合が1〜30容量%である、
ことを特徴とする常圧蒸留残渣油の分解方法、
〔2〕前記水素化分解処理に用いる触媒の細孔分布が、細孔径50〜10,000Åの細孔の総細孔容積に対し、細孔径500〜10,000Åの細孔の総細孔容積が10%以上であり、細孔径100〜200Åの細孔の総細孔容積が25%以上である前記〔1〕に記載の常圧蒸留残渣油の分解方法、
〔3〕結晶性アルミノシリケートが、USYゼオライト又は金属担持USYゼオライトであり、多孔性無機酸化物がアルミナである前記〔1〕又は〔2〕に記載の常圧蒸留残渣油の分解方法、及び
〔4〕結晶性アルミノシリケートが鉄担持USYゼオライトである上記〔1〕〜〔3〕のいずれかに記載の常圧蒸留残渣油の分解方法、
を提供するものである。
That is, the present invention
[1] A method for decomposing atmospheric distillation residue oil by hydrocracking atmospheric distillation residue oil and subjecting the resulting product oil to fluid catalytic cracking treatment,
(A) The catalyst used for the hydrocracking treatment is a catalyst in which a metal is supported on a support composed of a mixture of crystalline aluminosilicate 45 mass% to 70 mass% and porous inorganic oxide 55 mass% to 30 mass%. And (b) the raw material of the fluid catalytic cracking treatment is a mixture of the residual oil obtained by the hydrocracking treatment and a distillate having a boiling point of 120 to 400 ° C., and the mixing ratio of the distillate in the mixture is 1-30% by volume,
A method for decomposing atmospheric distillation residue oil,
[2] The pore distribution of the catalyst used for the hydrocracking treatment is such that the total pore volume of pores having a pore diameter of 500 to 10,000 mm is smaller than the total pore volume of pores having a pore diameter of 50 to 10,000 mm. Is a method for decomposing atmospheric distillation residue oil according to [1], wherein the total pore volume of pores having a pore diameter of 100 to 200 mm is 25% or more,
[3] The method for decomposing atmospheric distillation residue oil according to the above [1] or [2], wherein the crystalline aluminosilicate is USY zeolite or metal-supported USY zeolite, and the porous inorganic oxide is alumina; 4] The method for decomposing atmospheric distillation residue oil according to any one of [1] to [3] above, wherein the crystalline aluminosilicate is an iron-supported USY zeolite,
Is to provide.

本発明によれば、原油の常圧蒸留残渣油を脱硫ナフサ、脱硫灯油、脱硫軽油等の各留分の得率が増大し、脱硫重油の得率が低減するように分解し、さらにその残渣油である脱硫重油をLPG留分やFCCガソリン留分の得率が高くかつLCO留分の得率が低くなるように分解することができる常圧蒸留残渣油の分解方法を提供することができる。   According to the present invention, crude oil atmospheric distillation residue oil is decomposed so that the yield of each fraction of desulfurized naphtha, desulfurized kerosene, desulfurized gas oil, etc. is increased and the yield of desulfurized heavy oil is reduced, and the residue It is possible to provide a method for decomposing atmospheric distillation residue oil that can decompose desulfurized heavy oil, which is an oil, so that the yield of LPG fraction and FCC gasoline fraction is high and the yield of LCO fraction is low. .

本発明は、常圧蒸留残渣油を水素化分解処理し、得られた生成油を流動接触分解処理する常圧蒸留残渣油の分解方法であって、
(a)水素化分解処理に用いる触媒が、結晶性アルミノシリケート45質量%以上70質量%以下と多孔性無機酸化物55質量%以下30質量%以上の混合物からなる担体に金属を担持した触媒であり、かつ
(b)流動接触分解処理の原料が、前記水素化分解処理によって得られる残渣油と沸点120〜400℃の留出油との混合物であり、当該混合物における留出油の混合割合が1〜30容量%であること、を特徴とする。
The present invention is a method for decomposing atmospheric distillation residue oil by hydrocracking atmospheric distillation residue oil and subjecting the resulting product oil to fluid catalytic cracking treatment,
(A) The catalyst used for the hydrocracking treatment is a catalyst in which a metal is supported on a support composed of a mixture of crystalline aluminosilicate 45 mass% to 70 mass% and porous inorganic oxide 55 mass% to 30 mass%. And (b) the raw material of the fluid catalytic cracking treatment is a mixture of the residual oil obtained by the hydrocracking treatment and a distillate having a boiling point of 120 to 400 ° C., and the mixing ratio of the distillate in the mixture is 1 to 30% by volume.

本発明における水素化分解処理は、水素化分解反応と同時に水素化脱硫反応、水素化脱窒素反応、水素化脱メタル反応などが行われ、水素高圧下の条件で行う。このような高圧下での水素化分解反応を実施する装置としては、通常、直脱装置が用いられる。   The hydrocracking treatment in the present invention is carried out under conditions of high pressure of hydrogen by performing hydrodesulfurization reaction, hydrodenitrogenation reaction, hydrodemetallation reaction and the like simultaneously with the hydrocracking reaction. As a device for performing such a hydrocracking reaction under high pressure, a direct desorption device is usually used.

本発明における水素化分解の条件は、特に制限はなく、従来、重質油の水素化分解や水素化脱硫反応で行われている反応条件で行えばよく、通常は反応温度が好ましくは320〜550℃、より好ましくは350〜430℃、水素分圧が好ましくは1〜30MPa、より好ましくは5〜17MPa、水素/油比が好ましくは100〜2000Nm3/キロリットル、より好ましくは300〜1000Nm3/キロリットル、液空間速度(LHSV)が好ましくは0.1〜5h-1、より好ましくは0.2〜2.0h-1の範囲で適宜選定すればよい。
また、減圧残渣油、コーカー油、合成原油、抜頭原油、重質軽油、減圧軽油、LCO、HCO(ヘビーサイクルオイル)、CLO(クラリファイドオイル)、GTL油、ワックス等の重質油を常圧蒸留残渣油と混合して水素化分解処理をすることもできる。
The conditions for hydrocracking in the present invention are not particularly limited, and may be performed under the reaction conditions conventionally used in hydrocracking or hydrodesulfurization of heavy oils. Usually, the reaction temperature is preferably from 320 to 550 ° C., more preferably 350-430 ° C., hydrogen partial pressure is preferably 1-30 MPa, more preferably 5-17 MPa, hydrogen / oil ratio is preferably 100-2000 Nm 3 / kiloliter, more preferably 300-1000 Nm 3 / Kiloliter, liquid hourly space velocity (LHSV) is preferably selected within the range of preferably 0.1 to 5 h −1 , more preferably 0.2 to 2.0 h −1 .
Atmospheric distillation of heavy oil such as vacuum residue oil, coker oil, synthetic crude oil, extracted crude oil, heavy gas oil, vacuum gas oil, LCO, HCO (heavy cycle oil), CLO (clarified oil), GTL oil, wax, etc. It can also be hydrocracked by mixing with residual oil.

本発明の水素化分解処理で用いる触媒は、結晶性アルミノシリケートと多孔性無機酸化物の混合物からなる担体に金属を担持した触媒であることが必要である。
前記結晶性アルミノシリケートとしては、種々のものが使用できるが、例えば、水素型フォージャサイト、USYゼオライト、金属担持USYゼオライトなどが挙げられ、中でもUSYゼオライト、金属担持USYゼオライトが好ましく、特に、金属担持USYゼオライトが好ましい。
当該金属担持USYゼオライトとしては、USYゼオライトに周期表第3〜16族から選ばれる1種または2種以上の金属を担持した金属担持USYゼオライトが好ましく、特に、金属として鉄を担持した鉄担持USYゼオライトが好適である。
The catalyst used in the hydrocracking treatment of the present invention needs to be a catalyst in which a metal is supported on a carrier made of a mixture of crystalline aluminosilicate and porous inorganic oxide.
Various crystalline aluminosilicates can be used, such as hydrogen-type faujasite, USY zeolite, metal-supported USY zeolite, etc. Among them, USY zeolite and metal-supported USY zeolite are preferable. Supported USY zeolite is preferred.
The metal-supported USY zeolite is preferably a metal-supported USY zeolite in which one or more metals selected from Group 3 to 16 of the periodic table are supported on USY zeolite. Zeolite is preferred.

前記USYゼオライト、金属担持USYゼオライトは、例えば、以下の方法によって製造することができる。
USYゼオライトの原料として、アルミナに対するシリカの比率(モル比)、つまりSiO2/Al23が4.5以上、好ましくは5.0以上であり、また、Na2Oが2.4質量%以下、好ましくは1.8質量%以下のY型ゼオライトを用いる。
まず、上記のY型ゼオライトをスチーミング処理してUSYゼオライトとする。ここでスチーミング処理の条件としては様々な状況に応じて適宜選定すればよいが、温度510〜810℃の水蒸気の存在下で処理するのが好ましい。水蒸気は、外部から導入してもよいし、Y型ゼオライトに含まれる物理吸着水や結晶水を使用してもよい。また、スチーミング処理して得られたUSYゼオライトに鉱酸を加え、混合攪拌処理することによって、ゼオライト構造骨格からの脱アルミニウムとスチーミングおよび鉱酸処理により脱落アルミニウムの洗浄除去を行う。
このような鉱酸としては各種のものが挙げられるが、塩酸、硝酸、硫酸などが一般的であり、そのほかリン酸、過塩素酸、ペルオクソ二スルホン酸、二チオン酸、スルファミン酸、ニトロソスルホン酸等の無機酸、ギ酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸などを用いることもできる。添加すべき鉱酸の量は、USYゼオライト1kgあたり0.5〜20モルとし、好ましくは3〜16モルとする。鉱酸濃度は0.5〜50質量%溶液、好ましくは1〜20質量%溶液である。処理温度は、室温〜100℃、好ましくは50〜100℃である。処理時間は0.1〜12時間である。
The USY zeolite and metal-supported USY zeolite can be produced, for example, by the following method.
As a raw material for USY zeolite, the ratio of silica to alumina (molar ratio), that is, SiO 2 / Al 2 O 3 is 4.5 or more, preferably 5.0 or more, and Na 2 O is 2.4% by mass. Hereinafter, Y-type zeolite of 1.8% by mass or less is preferably used.
First, the above Y-type zeolite is steamed to form USY zeolite. Here, the conditions for the steaming treatment may be appropriately selected according to various situations, but the treatment is preferably performed in the presence of water vapor at a temperature of 510 to 810 ° C. Water vapor may be introduced from the outside, or physically adsorbed water or crystal water contained in the Y-type zeolite may be used. Further, by adding a mineral acid to the USY zeolite obtained by the steaming treatment, and mixing and stirring, the aluminum falling from the zeolite structure skeleton is removed and the aluminum dropped off is washed and removed by the steaming and mineral acid treatment.
Examples of such mineral acids include various types of acids such as hydrochloric acid, nitric acid, and sulfuric acid, but also phosphoric acid, perchloric acid, peroxodisulfonic acid, dithionic acid, sulfamic acid, and nitrososulfonic acid. Inorganic acids such as formic acid, trichloroacetic acid, organic acids such as trifluoroacetic acid, and the like can also be used. The amount of mineral acid to be added is 0.5 to 20 mol, preferably 3 to 16 mol, per kg of USY zeolite. The mineral acid concentration is 0.5 to 50% by mass solution, preferably 1 to 20% by mass solution. The treatment temperature is room temperature to 100 ° C, preferably 50 to 100 ° C. The processing time is 0.1 to 12 hours.

続いてこの系に金属塩溶液を加えてUSYゼオライトに金属を担持する。担持する方法としては混合攪拌処理、浸漬法、含浸法が上げられ、混合撹拌処理が好ましい。金属としては周期表第3族のイットリア、ランタン、第4族のジルコニア、チタン、第5族のバナジウム、ニオブ、タリウム、第6族のクロム、モリブデン、タングステン、第7族のマンガン、レニウム、第8族の鉄、ルテニウム、オスミウム、第9族のコバルト、ロジウム、イリジウム、第10族のニッケル、パラジウム、白金、第11族の銅、第12族の亜鉛、カドミウム、第13族のアルミニウム、ガリウム、第14族のスズ、第15族のリン、アンチモン、第16族のセレンなどが上げられる。この中で、チタン、鉄、マンガン、コバルト、ニッケル、パラジウム、白金が好ましく、特に鉄が好ましい。   Subsequently, a metal salt solution is added to the system to support the metal on the USY zeolite. Examples of the supporting method include mixed stirring treatment, dipping method, and impregnation method, and mixed stirring treatment is preferable. Examples of metals include yttria, lanthanum, group 4 zirconia, titanium, group 5 vanadium, niobium, thallium, group 6 chromium, molybdenum, tungsten, group 7 manganese, rhenium, Group 8 iron, ruthenium, osmium, Group 9 cobalt, rhodium, iridium, Group 10 nickel, palladium, platinum, Group 11 copper, Group 12 zinc, cadmium, Group 13 aluminum, gallium , Group 14 tin, Group 15 phosphorus, antimony, Group 16 selenium, and the like. Among these, titanium, iron, manganese, cobalt, nickel, palladium, and platinum are preferable, and iron is particularly preferable.

各種金属の塩としては硫酸塩、硝酸塩が好ましい。金属塩溶液処理を行う場合、状況により異なり一義的に決定することはできないが、通常は処理温度30〜100℃、好ましくは50〜80℃、処理時間0.1〜12時間、好ましくは0.5〜5時間とし、これらの金属の担持はゼオライト構造骨格から脱アルミニウムと同時に行うことが好ましく、pH2.0以下、好ましくは1.5以下の範囲で適宜選定し、実施する。鉄の塩の種類は、硫酸第一鉄、硫酸第二鉄を挙げることができるが、硫酸第二鉄が好ましい。この鉄の硫酸塩はそのまま加えることもできるが、溶液として加えることが好ましい。この際の溶液は鉄塩を溶解するものであればよいが、水、アルコール、エーテル、ケトン等が好ましい。また、加える鉄の硫酸塩の濃度は、通常は0.02〜10.0モル/リットル、好ましくは0.05〜5.0モル/リットルである。
なお、この鉱酸と鉄の硫酸塩を加えて結晶性アルミノシリケートを処理するにあたっては、そのスラリー比、すなわち、処理溶液容量(リットル)/アルミノシリケート重量(kg)は、1〜50の範囲が好都合であり、特に5〜30が好適である。
上述の処理により得られる鉄担持結晶性アルミノシリケートは、さらに必要に応じて水洗、乾燥を行う。
以上のようにして、USYゼオライト、金属担持USYゼオライトを製造することができる。
As the salts of various metals, sulfates and nitrates are preferable. When the metal salt solution treatment is performed, it cannot be determined uniquely depending on the situation, but the treatment temperature is usually 30 to 100 ° C., preferably 50 to 80 ° C., the treatment time is 0.1 to 12 hours, preferably 0. The loading of these metals is preferably carried out simultaneously with dealumination from the zeolite structure skeleton, and is appropriately selected and carried out within a pH range of 2.0 or less, preferably 1.5 or less. Examples of the iron salt include ferrous sulfate and ferric sulfate, and ferric sulfate is preferable. Although this iron sulfate can be added as it is, it is preferably added as a solution. The solution at this time may be any solution that dissolves the iron salt, but water, alcohol, ether, ketone and the like are preferable. The concentration of iron sulfate to be added is usually 0.02 to 10.0 mol / liter, preferably 0.05 to 5.0 mol / liter.
In addition, when the crystalline aluminosilicate is treated by adding the mineral acid and iron sulfate, the slurry ratio, that is, the treatment solution volume (liter) / aluminosilicate weight (kg) is in the range of 1-50. Convenient, 5-30 is particularly preferred.
The iron-supporting crystalline aluminosilicate obtained by the above-described treatment is further washed and dried as necessary.
As described above, USY zeolite and metal-supported USY zeolite can be produced.

一方、結晶性アルミノシリケートと混合して担体を構成する多孔性無機酸化物としては、アルミナ、シリカ−アルミナ、アルミナ−ボリア、アルミナ−ジルコニア、アルミナ−チタニアが挙げられ、アルミナとしてはベーマイトゲル、アルミナゾルまたはこれらから製造されるアルミナが用いられる。中でも活性金属が高分散担持できる点でアルミナが好適である。   On the other hand, examples of the porous inorganic oxide mixed with the crystalline aluminosilicate to constitute the carrier include alumina, silica-alumina, alumina-boria, alumina-zirconia, and alumina-titania. As alumina, boehmite gel, alumina sol Or the alumina manufactured from these is used. Of these, alumina is preferable in that the active metal can be supported in a highly dispersed manner.

本発明の水素化分解工程に使用する触媒の担体は、前記のUSYゼオライトおよび金属担持USYゼオライトなどの結晶性アルミノシリケートと多孔性無機酸化物を混合したものを用いる。また、その混合割合は、結晶性アルミノシリケート45質量%以上70質量%以下と多孔性無機酸化物55質量%以下30質量%以上であることが必要である。結晶性アルミノシリケートと多孔性無機酸化物との混合において結晶性アルミノシリケートの割合が少なすぎると、所望の分解率、軽質留分や中間留分を得るのに高い反応温度を必要とし、その結果、触媒の寿命に悪影響を与える。また、結晶性アルミノシリケートの割合が多すぎると、分解活性は向上するが、過分解によりガス分が多くなり所望の軽質留分や中間留分の選択性が下がる。
一方、アルミナなどの多孔性無機酸化物は担持される活性金属を高度に分散させるため、多孔性無機酸化物の割合が多いと水素化活性が高く、脱硫活性、脱窒素活性、脱残炭活性、脱アスファルテン活性、脱メタル活性が向上するが、結晶性アルミノシリケートの割合が少なくなり、所望の分解率、軽質留分や中間留分を得るのが困難になる。また、多孔性無機酸化物の割合が少ないと脱硫活性、脱窒素活性、脱残炭活性、脱アスファルテン活性、脱メタル活性などの水素化活性が低下する。そのため結晶性アルミノシリケートを含む触媒と多孔性無機酸化物の混合割合は、結晶性アルミノシリケート45〜65質量%と多孔性無機酸化物55〜35質量%からなるものがより好適であり、特に結晶性アルミノシリケート45〜55質量%と多孔性無機酸化物55〜45質量%からなるものが好適である。
The catalyst carrier used in the hydrocracking step of the present invention is a mixture of crystalline aluminosilicate and porous inorganic oxide such as the above-mentioned USY zeolite and metal-supported USY zeolite. The mixing ratio is required to be 45% by mass or more and 70% by mass or less of crystalline aluminosilicate and 55% by mass or less and 30% by mass or more of the porous inorganic oxide. If the proportion of crystalline aluminosilicate in the mixture of crystalline aluminosilicate and porous inorganic oxide is too small, a high reaction temperature is required to obtain the desired decomposition rate, light fraction and middle fraction, and as a result Adversely affects the life of the catalyst. On the other hand, if the proportion of crystalline aluminosilicate is too high, the decomposition activity is improved, but the gas content increases due to overdecomposition and the selectivity of the desired light fraction and middle fraction is lowered.
On the other hand, porous inorganic oxides such as alumina disperse the active metal supported to a high degree, so if the proportion of porous inorganic oxide is large, the hydrogenation activity is high, and desulfurization activity, denitrogenation activity, decarburization activity Although the deasphaltenic activity and the demetallizing activity are improved, the proportion of crystalline aluminosilicate is reduced, and it becomes difficult to obtain a desired decomposition rate, light fraction and middle fraction. Moreover, when the ratio of a porous inorganic oxide is small, hydrogenation activities, such as a desulfurization activity, a denitrification activity, a decarburization activity, a deasphalten activity, a demetalization activity, will fall. Therefore, the mixing ratio of the catalyst containing crystalline aluminosilicate and the porous inorganic oxide is more preferably composed of 45 to 65% by mass of crystalline aluminosilicate and 55 to 35% by mass of porous inorganic oxide. What consists of 45-55 mass% of porous aluminosilicate and 55-45 mass% of porous inorganic oxides is suitable.

また、本発明の水素化分解処理に使用する触媒の担体を製造するためには、上記USYゼオライトおよび金属担持USYゼオライトなどの結晶性アルミノシリケートは水洗後の水を含有したスラリー状態として使用することが好ましい。そして、上記結晶性アルミノシリケートと多孔性無機酸化物を十分な水分量のもとにニーダー(混練機)にて十分に混合する。
多孔性無機酸化物はゲル状又はゾル状であるが、結晶性アルミノシリケートと同じように水を加えてスラリー状として結晶性アルミノシリケートと混合する。それぞれのスラリー状態での水分量は、結晶性アルミノシリケートスラリーでは30〜80質量%が好ましく、40〜70質量%がより好ましい。多孔性無機酸化物スラリーでは50〜90質量%が好ましく、55〜85質量%がより好ましい。
上記の結晶性アルミノシリケートと多孔性無機酸化物を混合捏和したのち、1/12インチ〜1/32インチの径、長さ1.5mm〜6mmに成型し、円柱状、三つ葉型、四葉型の形状の成型物を得る。成型物は30〜200℃、0.1〜24時間乾燥させ、次いで、300〜750℃(好ましくは450〜700℃)で、1〜10時間(好ましくは2〜7時間)焼成し担体とする。
In addition, in order to produce a catalyst carrier for use in the hydrocracking treatment of the present invention, crystalline aluminosilicates such as the above USY zeolite and metal-supported USY zeolite should be used as a slurry containing water after washing with water. Is preferred. Then, the crystalline aluminosilicate and the porous inorganic oxide are sufficiently mixed with a kneader (kneader) under a sufficient water content.
The porous inorganic oxide is in the form of a gel or sol, but is mixed with the crystalline aluminosilicate in the form of a slurry by adding water in the same manner as in the crystalline aluminosilicate. The water content in each slurry state is preferably 30 to 80% by mass, more preferably 40 to 70% by mass in the crystalline aluminosilicate slurry. In the porous inorganic oxide slurry, 50 to 90% by mass is preferable, and 55 to 85% by mass is more preferable.
After mixing and kneading the above crystalline aluminosilicate and porous inorganic oxide, it is molded into a diameter of 1/12 inch to 1/32 inch and a length of 1.5 mm to 6 mm, cylindrical, three-leaf type, four-leaf type A molded product of the shape is obtained. The molded product is dried at 30 to 200 ° C. for 0.1 to 24 hours, and then calcined at 300 to 750 ° C. (preferably 450 to 700 ° C.) for 1 to 10 hours (preferably 2 to 7 hours) to obtain a carrier. .

次に、この担体に、周期表第6族、第8族、第9族、第10族金属のうち少なくとも一種の金属を担持する。ここで周期表第6族に属する金属としては、モリブデン、タングステンが好ましく、また第8〜10族に属する金属としては、ニッケル、コバルトが好ましい。二種類の金属の組合せとしては、ニッケル−モリブデン、コバルト−モリブデン、ニッケル−タングステン、コバルト−タングステンなどが挙げられ、なかでもコバルト−モリブデン、ニッケル−モリブデンが好ましく、特に、ニッケル−モリブデンが好ましい。
上記活性成分である金属の担持量は、特に制限はなく原料油の種類や、所望するナフサ留分の得率などの各種条件に応じて適宜選定すればよいが、通常は第6族の金属は触媒全体の0.5〜30質量%、好ましくは5〜20質量%、第8〜10族の金属は、触媒全体の0.1〜20質量%、好ましくは1〜10質量%である。
Next, at least one metal of Group 6, Group 8, Group 9, and Group 10 metals is supported on the carrier. Here, the metal belonging to Group 6 of the periodic table is preferably molybdenum or tungsten, and the metal belonging to Groups 8 to 10 is preferably nickel or cobalt. Examples of the combination of the two kinds of metals include nickel-molybdenum, cobalt-molybdenum, nickel-tungsten, cobalt-tungsten, etc., among which cobalt-molybdenum and nickel-molybdenum are preferable, and nickel-molybdenum is particularly preferable.
The supported amount of the metal as the active ingredient is not particularly limited and may be appropriately selected according to various conditions such as the type of the raw material oil and the desired yield of the naphtha fraction. Is 0.5-30% by mass of the total catalyst, preferably 5-20% by mass, and Group 8-10 metals are 0.1-20% by mass, preferably 1-10% by mass of the total catalyst.

上記金属成分を担体に担持する方法については特に制限はなく、例えば、含浸法,混練法,共沈法などの公知の方法を採用することができる。
上記の金属成分を担体に担持したものは、通常30〜200℃で、0.1〜24時間乾燥し、次いで、250〜700℃(好ましくは300〜650℃)で、1〜10時間(好ましくは2〜7時間)焼成して、触媒として仕上げられる。
The method for supporting the metal component on the carrier is not particularly limited, and for example, known methods such as an impregnation method, a kneading method, and a coprecipitation method can be employed.
The above metal component supported on a carrier is usually dried at 30 to 200 ° C. for 0.1 to 24 hours, and then at 250 to 700 ° C. (preferably 300 to 650 ° C.) for 1 to 10 hours (preferably Is calcined for 2-7 hours and finished as a catalyst.

本発明の水素化分解に用いる触媒は、以下の要件を満たすものが好ましい。
(1)細孔容積
本発明に用いる水素化分解触媒は、細孔径50〜10,000Åの細孔の総細孔容積に対し、細孔径500〜10,000Åの細孔の細孔容積が10%以上であることが好ましい。また、細孔径100〜200Åの細孔の細孔容積が、細孔径50〜10,000Åの細孔の総細孔容積に対し25%以上であることが好ましく、細孔径50〜500Åの細孔の細孔容積に対し50%以上であることがより好ましい。
このような細孔分布を有する触媒は、残渣油中のアスファルテン分等の高分子量炭化水素を拡散しやすく制御でき、重質油の水素化および分解を行い易くすることができる。
なお、細孔容積は、水銀ポロシメーターを用い、水銀圧入法により求めた値である。
(2)比表面積
本発明に用いる水素化分解触媒は、比表面積が200〜600m2/gであるものが好ましく、350〜500m2/gがより好ましい。比表面積が200m2/g以上であれば、重質油分解に適した分解活性点の充分な量を触媒表面に配置でき、600m2/g以下であれば、重質油分子の拡散に充分大きな細孔を有することができる。なお、比表面積は、窒素ガスによるBET1点法により測定した値である。
(3)全細孔容量
また、当該触媒の窒素ガス吸着法による全細孔容量は0.4cc/g以上であることが好ましく、0.5cc/g以上がより好ましい。全細孔容量が0.4cc/g以上であれば重質油分子の拡散を高めることができる。
The catalyst used for the hydrocracking of the present invention preferably satisfies the following requirements.
(1) Pore Volume The hydrocracking catalyst used in the present invention has a pore volume of 10 to 10 pores with a pore size of 500 to 10,000 pores with respect to the total pore volume of pores of 50 to 10,000 pores. % Or more is preferable. The pore volume of pores having a pore diameter of 100 to 200 mm is preferably 25% or more with respect to the total pore volume of pores having a pore diameter of 50 to 10,000 mm, and pores having a pore diameter of 50 to 500 mm More preferably, it is 50% or more of the pore volume.
The catalyst having such a pore distribution can easily control high molecular weight hydrocarbons such as asphaltenes in the residual oil, and can facilitate hydrogenation and decomposition of heavy oil.
The pore volume is a value obtained by mercury porosimetry using a mercury porosimeter.
(2) hydrocracking catalysts used in the specific surface area present invention preferably has a specific surface area of 200~600m 2 / g, 350~500m 2 / g is more preferable. If the specific surface area is 200 m 2 / g or more, a sufficient amount of decomposition active sites suitable for heavy oil decomposition can be arranged on the catalyst surface, and if it is 600 m 2 / g or less, it is sufficient for diffusion of heavy oil molecules. Can have large pores. In addition, a specific surface area is the value measured by the BET 1 point method by nitrogen gas.
(3) Total pore volume The total pore volume of the catalyst according to the nitrogen gas adsorption method is preferably 0.4 cc / g or more, and more preferably 0.5 cc / g or more. If the total pore volume is 0.4 cc / g or more, the diffusion of heavy oil molecules can be enhanced.

上記製造法および物性範囲にて得られた水素化分解触媒は、水素化活性が向上し、残渣油(343℃以上の沸点を持つ留分)の分解活性が高く、且つ脱残炭活性をはじめ、脱硫活性、脱窒素活性、脱アスファルテン活性、脱メタル活性が高く、重質油留分の軽質化に好適であり、生成する脱硫ナフサ留分、脱硫灯軽油留分の収率も増加する。   The hydrocracking catalyst obtained in the above production method and physical property range has improved hydrogenation activity, high cracking activity of residual oil (a fraction having a boiling point of 343 ° C. or higher), and decarburization activity. It has high desulfurization activity, denitrogenation activity, deasphaltenic activity and demetallization activity and is suitable for lightening heavy oil fractions, and the yield of desulfurized naphtha fraction and desulfurized kerosene oil oil fraction to be produced is also increased.

本発明の水素化分解処理では、本発明の触媒を単独で用いてもよいが、一般の水素化処理触媒と組み合わせたものを用いてもよい。組み合わせのパターンとしては、例えば全触媒充填量に対して第一段目に脱メタル触媒を10〜40容量%、第二段目に脱硫触媒を0〜50容量%、第三段目に本発明の水素化分解触媒を10〜70容量%、第四段目にフィニシングの脱硫触媒として0〜40容量%の充填パターンが好ましい。これらは原料油の性状等によっては種々の充填パターンとすることができる。第一段目の脱メタル触媒の前に原料油中に含まれる鉄粉、無機酸化物等のスケールを除去する脱スケール触媒を充填しても良い。   In the hydrocracking treatment of the present invention, the catalyst of the present invention may be used alone, or a combination with a general hydrotreating catalyst may be used. As a combination pattern, for example, the demetalization catalyst is 10 to 40% by volume in the first stage, the desulfurization catalyst is 0 to 50% by volume in the second stage, and the present invention is in the third stage with respect to the total catalyst charge. The hydrocracking catalyst is preferably 10 to 70% by volume, and the fourth stage is preferably a filling pattern of 0 to 40% by volume as the finishing desulfurization catalyst. These can have various filling patterns depending on the properties of the feedstock. A descaling catalyst for removing scales such as iron powder and inorganic oxide contained in the raw material oil may be filled before the first stage demetallation catalyst.

本発明においては、このような触媒を用いて常圧蒸留残渣油を水素化分解処理し、得られた生成油の残渣油と留出油との混合油を原料とし、流動接触分解処理する。
この場合、留出油としては、沸点120〜400℃の留出油が好適である。沸点が120℃未満の留出油では、良好な沸点範囲の分解生成物が得られず、一方沸点が400℃を越える留出油では留出油を混合する効果やFCCガソリンなどを増量する効果が十分ではないことがある。したがって、留出油としては、沸点範囲が150〜350℃のものがより好ましい。
また、流動接触分解処理の原料における留出油の混合割合は、1〜30容量%であることが必要である。留出油の混合割合が、1容量%未満では、LPG留分やFCCガソリン留分を増量する効果が十分ではなく、一方、30容量%を超えるとLPG留分やFCCガソリン留分の収率が低くなり、ガス分が多くなってしまう恐れがある。好ましい混合割合は、3〜20容量%である。
また、留出油を残渣油に混合する方法としては、残渣油を流動接触分解装置に導入する配管で混合しても良いし、直脱装置の蒸留設備において上記留出油を残渣油にカットバックしても良い。
In the present invention, the atmospheric distillation residue oil is hydrocracked using such a catalyst, and fluid catalytic cracking treatment is performed using a mixed oil of the obtained residual oil and distillate as a raw material.
In this case, a distillate having a boiling point of 120 to 400 ° C. is suitable as the distillate. Distillate with a boiling point of less than 120 ° C does not yield a decomposition product with a good boiling range, while distillate with a boiling point of more than 400 ° C has the effect of mixing the distillate and the effect of increasing FCC gasoline, etc. May not be enough. Therefore, as the distillate oil, those having a boiling range of 150 to 350 ° C are more preferable.
Moreover, the mixing ratio of the distillate oil in the raw material of fluid catalytic cracking process needs to be 1-30 volume%. If the mixing ratio of the distillate is less than 1% by volume, the effect of increasing the LPG fraction or FCC gasoline fraction is not sufficient. On the other hand, if it exceeds 30% by volume, the yield of the LPG fraction or FCC gasoline fraction is insufficient. There is a risk that the gas content will increase. A preferable mixing ratio is 3 to 20% by volume.
In addition, as a method of mixing the distillate oil with the residual oil, the residual oil may be mixed with a pipe for introducing into the fluid catalytic cracking apparatus, or the distillate oil may be cut into the residual oil in the distillation equipment of the direct desorption apparatus. You may back.

本発明は、上記の原料を用いて接触分解処理を行う。当該接触分解処理は、特に制限はなく、公知の方法、条件で行えばよい。例えば、シリカ−アルミナ、シリカ−マグネシアなどのアモルファス触媒や、フォージャサイト型結晶アルミノシリケートなどのゼオライト触媒を用い、反応温度450〜650℃、好ましくは480〜580℃、再生温度550〜760℃、反応圧力0.02〜5MPa、好ましくは0.2〜2MPaの範囲で適宜選定すればよい。   In the present invention, the catalytic cracking treatment is performed using the above raw materials. The catalytic cracking treatment is not particularly limited and may be performed by a known method and conditions. For example, using an amorphous catalyst such as silica-alumina or silica-magnesia or a zeolite catalyst such as faujasite type crystal aluminosilicate, the reaction temperature is 450 to 650 ° C, preferably 480 to 580 ° C, the regeneration temperature is 550 to 760 ° C, The reaction pressure may be appropriately selected within the range of 0.02 to 5 MPa, preferably 0.2 to 2 MPa.

本発明の常圧蒸留残渣油の分解処理では、最終工程である流動接触分解の生成油が、燃料や石油化学製品の原料として有用な、FCCガソリン留分およびLPG留分の割合を高く、需要が少ないLCO留分の割合を低くすることができる。
さらに、中間工程である直脱装置などによる水素化分解生成物におけるいわゆる中間留分である灯軽油留分や軽質留分であるフサ留分などの得率が高く、燃料や石油化学製品の原料として活用できる。
In the cracking treatment of atmospheric distillation residue oil of the present invention, the product of the fluid catalytic cracking, which is the final step, is useful as a raw material for fuel and petrochemical products, and the proportion of FCC gasoline fraction and LPG fraction is high. The ratio of the LCO fraction with a small amount can be reduced.
In addition, the yield of kerosene oil fraction, which is a so-called middle distillate, and fusa fraction, which is a light distillate, is high in the hydrocracking products such as direct desulfurization equipment that is an intermediate process. Can be used as

次に、本発明を実施例により具体的に説明するが、これらの実施例になんら制限されるものではない。
なお、実施例、比較例では、原料として第1表に示す性状、留分分布を有するアラビアンライトの常圧蒸留残渣油を用いた。
EXAMPLES Next, although an Example demonstrates this invention concretely, it is not restrict | limited to these Examples at all.
In Examples and Comparative Examples, Arabianite atmospheric distillation residue oil having the properties and fraction distribution shown in Table 1 was used as a raw material.

Figure 0005220456
Figure 0005220456

また、実施例で用いた水素化分解触媒の調製及びその物性の評価は、以下のようにして行った。
1.触媒の調製
〔水素化分解触媒I〕
(1)結晶性アルミノシリケートの調製
Na−Y型ゼオライト(Na2O含量:13.3質量%,SiO2/Al23(モル比):5.0)をアンモニウムイオン交換し、NH4−Yゼオライト(Na2O含量:1.3質量%)を得た。これを650℃でスチーミング処理してスチーミングY型ゼオライトとした。10kgのスチーミングY型ゼオライトを純水115リットルに懸濁させた後、該懸濁液を75℃に昇温し30分間攪拌した。次いでこの懸濁液に10質量%硫酸溶液63.7kgを35分間で添加し、更に濃度0.57モル/リットルの硫酸第二鉄溶液11.5kgを10分間で添加し、添加後更に30分間攪拌した後、濾過、洗浄し、固形分濃度30.5質量%の鉄担持USYゼオライトスラリーIを得た。X線回折法により求めた格子定数は24.30Åであった。
(2)アルミナスラリーの調製
アルミン酸ナトリウム溶液(Al23換算濃度:5.0質量%)80kg及び50質量%のグルコン酸溶液240gを容器に入れ、60℃に加熱した。次いで硫酸アルミニウム溶液(Al23換算濃度:2.5質量%)88kgを別容器に準備し、15分間でpH7.2になるように該硫酸アルミニウム溶液を添加し水酸化アルミニウムスラリーを得た。60℃に保ったまま、60分間熟成した。次いで、水酸化アルミニウムスラリーをろ過脱水し、アンモニア水で洗浄し、アルミナケーキとした。該アルミナケーキの一部を純水と15質量%のアンモニア水を用い、アルミナ濃度12.0質量%、pH10.5のスラリーを得た。このスラリーを熟成タンクに入れ攪拌しながら95℃で8時間熟成した。次いで、この熟成スラリーに純水を加え、アルミナ濃度9.0質量%に希釈した後、攪拌機付オートクレーブに移し、145℃で5時間熟成した。更にAl23換算濃度で20質量%となるように加熱濃縮すると同時に脱アンモニアし、アルミナスラリーAを得た。
Moreover, the preparation of the hydrocracking catalyst used in the examples and the evaluation of its physical properties were performed as follows.
1. Preparation of catalyst [hydrocracking catalyst I]
(1) Preparation of crystalline aluminosilicate Na—Y zeolite (Na 2 O content: 13.3 mass%, SiO 2 / Al 2 O 3 (molar ratio): 5.0) was subjected to ammonium ion exchange, and NH 4 -Y zeolite (Na 2 O content: 1.3% by mass) was obtained. This was steamed at 650 ° C. to obtain a steaming Y-type zeolite. After 10 kg of steamed Y-type zeolite was suspended in 115 liters of pure water, the suspension was heated to 75 ° C. and stirred for 30 minutes. Next, 63.7 kg of 10 mass% sulfuric acid solution was added to this suspension over 35 minutes, and 11.5 kg of ferric sulfate solution having a concentration of 0.57 mol / liter was added over 10 minutes. After stirring, the mixture was filtered and washed to obtain an iron-supported USY zeolite slurry I having a solid content concentration of 30.5% by mass. The lattice constant determined by the X-ray diffraction method was 24.30 Å.
(2) Preparation of Alumina Slurry 80 kg of sodium aluminate solution (Al 2 O 3 equivalent concentration: 5.0 mass%) and 240 g of 50 mass% gluconic acid solution were put in a container and heated to 60 ° C. Next, 88 kg of aluminum sulfate solution (Al 2 O 3 equivalent concentration: 2.5 mass%) was prepared in a separate container, and the aluminum sulfate solution was added so that the pH became 7.2 in 15 minutes to obtain an aluminum hydroxide slurry. . Aging was performed for 60 minutes while maintaining the temperature at 60 ° C. Next, the aluminum hydroxide slurry was filtered and dehydrated and washed with aqueous ammonia to obtain an alumina cake. A part of the alumina cake was purified water and 15% by mass of ammonia water to obtain a slurry having an alumina concentration of 12.0% by mass and a pH of 10.5. The slurry was placed in an aging tank and aged at 95 ° C. for 8 hours with stirring. Next, pure water was added to the aging slurry, diluted to an alumina concentration of 9.0% by mass, transferred to an autoclave equipped with a stirrer, and aged at 145 ° C. for 5 hours. Further, the mixture was heated and concentrated so that the concentration in terms of Al 2 O 3 was 20% by mass, and deammoniated at the same time to obtain alumina slurry A.

(3)触媒の調製
1,230gの鉄担持USYゼオライトスラリーI(30.5質量%濃度)と1,875.8gのアルミナスラリーA(20質量%濃度)をニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四つ葉型ペレット状に押し出し成形した。次いで、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄担持USYゼオライト/アルミナ(固形分換算質量比)で50/50の担体Iを得た。
次いで、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱し、次いでリンゴ酸を加え溶解させた。この溶解液を担体Iにそれぞれ触媒全体に対してMoO3として10.0質量%、NiOとして4.25質量%になるように含浸し、次いで乾燥させ、550℃で3時間焼成し、水素化分解触媒Iを得た。この触媒は比表面積473m2/g、全細孔容量0.61cc/gであった。また、水銀ポロシメーターによる、細孔径50〜10,000Åの細孔容積に対し細孔径500〜10,000Åの細孔容積が11%であった。さらに、細孔径100〜200Åの細孔容積が細孔径50〜10,000Åの細孔容積の59%であり、細孔径50〜500Åの細孔容積の65%であった。触媒の組成及び物性を第2表に示す。
(3) Preparation of catalyst 1,230 g of iron-supported USY zeolite slurry I (30.5 mass% concentration) and 1,875.8 g of alumina slurry A (20 mass% concentration) were added to a kneader while heating and stirring. After concentration to an extrudable concentration, it was extruded into a four-leaf type pellet of 1/18 inch size. Subsequently, after drying at 110 degreeC for 16 hours, it baked at 550 degreeC for 3 hours, and obtained the support | carrier I of 50/50 by the iron carrying | support USY zeolite / alumina (solid content conversion mass ratio).
Next, a suspension of molybdenum trioxide and nickel carbonate in pure water was heated to 90 ° C., and then malic acid was added and dissolved. The solution I was impregnated on the support I so that the total amount of the catalyst was 10.0% by mass as MoO 3 and 4.25% by mass as NiO, then dried, calcined at 550 ° C. for 3 hours, and hydrogenated. A cracking catalyst I was obtained. This catalyst had a specific surface area of 473 m 2 / g and a total pore volume of 0.61 cc / g. Moreover, the pore volume with a pore diameter of 500-10,000 to 11% was 11% with respect to the pore volume with a pore diameter of 50 to 10,000 with a mercury porosimeter. Furthermore, the pore volume with a pore diameter of 100 to 200 59 was 59% of the pore volume with a pore diameter of 50 to 10,000 、 and 65% of the pore volume with a pore diameter of 50 to 500 Å. The composition and physical properties of the catalyst are shown in Table 2.

〔水素化分解触媒II〕
水素化分解触媒Iの触媒の調製において、鉄担持USYゼオライトスラリーI(30.5質量%濃度)を1,476gとし、アルミナスラリーA(20質量%濃度)を1,500gとしてニーダーに加えた以外は同様に調製し、鉄担持USYゼオライト/アルミナ(固形分換算質量比)で60/40の担体IIを得た。
引き続き、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱し、次いでリンゴ酸を加え溶解させた。この溶解液を担体IIにそれぞれ触媒全体に対してMoO3として10.0質量%、NiOとして4.25質量%になるように含浸し、次いで乾燥させ、550℃で3時間焼成し、水素化分解触媒IIを得た。この触媒は比表面積517m2/g、全細孔容量0.56cc/gであった。水銀ポロシメーターによる、細孔径50〜10,000Åの細孔容積に対し細孔径500〜10,000Åの細孔容積が32%であった。さらに、細孔径100〜200Åの細孔容積が細孔径50〜10,000Åの細孔容積の43%であり、細孔径50〜500Åの細孔容積の63%であった。触媒の組成及び物性を第2表に示す。
[Hydrocracking catalyst II]
In preparation of the hydrocracking catalyst I, the iron-supported USY zeolite slurry I (30.5% by mass concentration) was 1,476 g, and the alumina slurry A (20% by mass concentration) was 1,500 g, which was added to the kneader. Was prepared in the same manner to obtain 60/40 carrier II of iron-supported USY zeolite / alumina (solid content equivalent mass ratio).
Subsequently, a suspension of molybdenum trioxide and nickel carbonate in pure water was heated to 90 ° C., and then malic acid was added and dissolved. This solution was impregnated on the carrier II so that the total amount of the catalyst was 10.0% by mass as MoO 3 and 4.25% by mass as NiO, then dried, calcined at 550 ° C. for 3 hours, and hydrogenated. Cracking catalyst II was obtained. This catalyst had a specific surface area of 517 m 2 / g and a total pore volume of 0.56 cc / g. According to the mercury porosimeter, the pore volume with a pore diameter of 500 to 10,000 kg was 32% with respect to the pore volume with a pore diameter of 50 to 10,000 kg. Furthermore, the pore volume with a pore diameter of 100 to 200 43 was 43% of the pore volume with a pore diameter of 50 to 10,000 、 and 63% of the pore volume with a pore diameter of 50 to 500 Å. The composition and physical properties of the catalyst are shown in Table 2.

Figure 0005220456
Figure 0005220456

2.触媒の物性の評価方法
〔鉄担持USYゼオライトの物性測定〕
(1)格子定数:鉄担持USYゼオライトを乾燥させたものとシリコン内部標準粉末をよく混合、粉砕し、X線粉末回折用サンプルホルダーに充填した。これをCu管球、印加電圧40KV、印加電流40mAにてステップスキャンで測定し、得られたピーク角度より鉄担持USYゼオライトの格子定数(UD)を算出した。
〔触媒の物性測定〕
(1)細孔容積:水銀ポロシメーターを用い、水銀圧入法により触媒の細孔分布および細孔容積を求めた。
(2)比表面積および全細孔容量:比表面積は、窒素ガス吸着によるBET1点法により測定した。全細孔容量は、液体窒素温度における窒素ガスの飽和蒸気圧P0に対する窒素ガスの平衡蒸気圧P(P/P0)が0.99の時の窒素吸着量から測定した。
2. Evaluation method of physical properties of catalyst [Measurement of physical properties of iron-supported USY zeolite]
(1) Lattice constant: The dried iron-supported USY zeolite and the silicon internal standard powder were mixed well, pulverized, and filled into a sample holder for X-ray powder diffraction. This was measured by a step scan with a Cu tube, an applied voltage of 40 KV, and an applied current of 40 mA, and the lattice constant (UD) of the iron-supported USY zeolite was calculated from the obtained peak angle.
[Measurement of physical properties of catalyst]
(1) Pore volume: The pore distribution and pore volume of the catalyst were determined by mercury porosimetry using a mercury porosimeter.
(2) Specific surface area and total pore volume: The specific surface area was measured by the BET one-point method by nitrogen gas adsorption. The total pore volume was measured from the amount of nitrogen adsorbed when the equilibrium vapor pressure P (P / P 0 ) of nitrogen gas relative to the saturated vapor pressure P 0 of nitrogen gas at the liquid nitrogen temperature was 0.99.

〔触媒の水素化分解活性評価〕
成形した触媒のペレットを高圧固定床反応器に充填し、硫化処理した後、アラビアンライトの常圧蒸留残渣油を原料油として、反応温度はWAT(Weight Average Temparature:重量平均温度)で395℃、液空間速度(LHSV)0.2h-1、水素分圧12.8MPa、水素/油比900Nm3/キロリットルの条件で水素化分解処理を行った。
得られた生成油を蒸留ガスクロマトグラフィー法により分析を行い、沸点343+℃留分(343℃より高い沸点の留分)分解率、中間留分として灯軽油留分(沸点範囲150〜343℃留分)収率を求め、常圧蒸留残渣油の水素化分解活性を評価した。
[Evaluation of hydrocracking activity of catalyst]
The molded catalyst pellets were charged into a high-pressure fixed bed reactor and subjected to sulfurization treatment. Then, the reaction temperature was 395 ° C. in terms of weight average temperature (WAT) using Arabianlite atmospheric distillation residue as a raw material oil. Hydrocracking treatment was performed under the conditions of a liquid space velocity (LHSV) of 0.2 h −1 , a hydrogen partial pressure of 12.8 MPa, and a hydrogen / oil ratio of 900 Nm 3 / kiloliter.
The resulting product oil is analyzed by a distillation gas chromatography method, the boiling point is 343 + ° C. fraction (fraction having a boiling point higher than 343 ° C.) decomposition rate, the kerosene oil fraction (boiling point range 150 to 343 ° C.) as the middle fraction The yield was determined and the hydrocracking activity of the atmospheric distillation residue was evaluated.

実施例1
(1)一段目に市販の脱メタル触媒(CDS−DM5C:触媒化成工業製)を24容量%、二段目に市販の脱硫触媒A(CDS−R25N:触媒化成工業製)を20容量%、三段目に水素化分解触媒Iを28容量%、四段目に市販の脱硫触媒B(CDS−R35N:触媒化成工業製)を28容量%の順に直列4段に充填し、合計250ccを高圧固定床反応器に充填し、硫化処理した後、アラビアンライトの常圧蒸留残渣油を原料油として、以下の条件で水素化分解処理を行い、脱硫灯軽油留分(沸点範囲150〜343℃留分)の得率(質量%)を測定した。結果を第3表に示す。
水素化分解条件
反応温度(WAT) 395℃
液空間速度(LHSV) 0.2h-1
水素分圧 12.5MPa(128kg/cm2
水素/油比 900Nm3/キロリットル
なお、各触媒層の反応温度は、一段目386℃、二段目383℃、三段目401℃、四段目406℃とした。
Example 1
(1) 24% by volume of a commercially available demetallized catalyst (CDS-DM5C: manufactured by Catalytic Chemical Industry) in the first stage, and 20% by volume of a commercially available desulfurization catalyst A (CDS-R25N: manufactured by Catalysts Chemical Industry) in the second stage. The hydrocracking catalyst I is packed in 28 stages by volume in the third stage, and the commercially available desulfurization catalyst B (CDS-R35N: produced by Catalyst Kasei Kogyo Co., Ltd.) in the fourth stage in the order of 28 volume% in series in four stages. After charging into a fixed bed reactor and sulfiding, hydrocracking treatment is performed under the following conditions using Arabianlite atmospheric distillation residue oil as a raw material oil, and desulfurized kerosene oil fraction (boiling point range: 150-343 ° C distillation) Minute) yield (mass%) was measured. The results are shown in Table 3.
Hydrocracking conditions Reaction temperature (WAT) 395 ° C
Liquid space velocity (LHSV) 0.2h -1
Hydrogen partial pressure 12.5 MPa (128 kg / cm 2 )
Hydrogen / oil ratio 900 Nm 3 / kiloliter The reaction temperature of each catalyst layer was 386 ° C. for the first stage, 383 ° C. for the second stage, 401 ° C. for the third stage, and 406 ° C. for the fourth stage.

(2)(1)の水素化分解処理によって得られた生成油をJIS K 2601の理論段数15段の精留塔を用いた蒸留試験方法に基づき蒸留し、ガス分(C4 -)、脱硫ナフサ留分(沸点範囲C5〜150℃)、脱硫灯油留分(沸点範囲150〜250℃)、脱硫軽油留分(沸点範囲250〜343℃)及び残渣油である脱硫重油留分(343+℃)に分留した。
次いで、これらの留分のうち、脱硫重油及び脱硫軽油留分(沸点範囲250〜343℃)との混合物(脱硫軽油留分の混合割合が5容量%)を原料とし、市販平衡触媒を使用して、反応温度530℃、触媒/原料油比=5.0(質量比)の条件下で流動接触分解処理を行った。
流動接触分解処理の反応生成物について、ガスクロ蒸留にてガス分、PP留分(プロパン、プロピレン)、BB留分(ブタン、ブチレン)、FCCガソリン留分(沸点範囲C5〜185℃の留分)、LCO留分(沸点範囲185〜370℃留分)、及び残渣油留分(分解重油:HCO+CLO)の収率(容量%)を測定した。結果を第3表に示す。
なお、HCOはヘビーサイクルオイル、CLOはクラリファイドオイルである。
(2) The product oil obtained by the hydrocracking treatment of (1) is distilled based on a distillation test method using a rectifying tower with 15 theoretical plates of JIS K 2601, and the gas content (C 4 ) is desulfurized. Naphtha fraction (boiling range C 5 to 150 ° C.), desulfurized kerosene fraction (boiling range 150 to 250 ° C.), desulfurized gas oil fraction (boiling range 250 to 343 ° C.) and desulfurized heavy oil fraction (343 + (Centigrade).
Next, among these fractions, a mixture of desulfurized heavy oil and desulfurized gas oil fraction (boiling range: 250 to 343 ° C.) (mixing ratio of desulfurized gas oil fraction is 5% by volume) is used as a raw material, and a commercially available equilibrium catalyst is used. The fluid catalytic cracking treatment was performed under the conditions of a reaction temperature of 530 ° C. and a catalyst / raw material ratio = 5.0 (mass ratio).
About the reaction product of fluid catalytic cracking treatment, gas fraction by gas chromatography, PP fraction (propane, propylene), BB fraction (butane, butylene), FCC gasoline fraction (boiling point C 5 -185 ° C fraction) ), LCO fraction (boiling range: 185-370 ° C. fraction), and residual oil fraction (cracked heavy oil: HCO + CLO) yield (volume%) was measured. The results are shown in Table 3.
HCO is heavy cycle oil and CLO is clarified oil.

実施例2
実施例1において脱硫軽油留分(沸点範囲250〜343℃)の混合割合を3容量%とした以外は実施例1と同様にして水素化分解処理および流動接触分解処理を行った。結果を第3表に示す。
Example 2
Hydrocracking treatment and fluid catalytic cracking treatment were performed in the same manner as in Example 1 except that the mixing ratio of the desulfurized gas oil fraction (boiling range: 250 to 343 ° C.) was 3% by volume in Example 1. The results are shown in Table 3.

実施例3
実施例1において脱硫軽油留分(沸点範囲250〜343℃)の混合割合を15容量%とした以外は実施例1と同様にして水素化分解処理および流動接触分解処理を行った。結果を第3表に示す。
Example 3
Hydrocracking treatment and fluid catalytic cracking treatment were carried out in the same manner as in Example 1 except that the mixing ratio of the desulfurized gas oil fraction (boiling range: 250 to 343 ° C.) was 15 vol% in Example 1. The results are shown in Table 3.

実施例4
実施例1において水素化分解触媒Iを水素化分解触媒IIに変えた以外は実施例1と同様にして、水素化分解処理および流動接触分解処理を行った。結果を第3表に示す。
Example 4
Hydrocracking treatment and fluid catalytic cracking treatment were performed in the same manner as in Example 1 except that the hydrocracking catalyst I was changed to the hydrocracking catalyst II in Example 1. The results are shown in Table 3.

比較例1
本発明の実施例1において、三段目の触媒を、水素化分解触媒Iを充填せずに二段目と同じ脱硫触媒Aに変えた以外は実施例1と同様にして水素化分解処理および流動接触分解処理を行った。結果を第3表に示す。
Comparative Example 1
In Example 1 of the present invention, the hydrocracking treatment and the hydrocracking treatment were performed in the same manner as in Example 1 except that the third stage catalyst was changed to the same desulfurization catalyst A as the second stage without charging the hydrocracking catalyst I. Fluidized catalytic cracking treatment was performed. The results are shown in Table 3.

比較例2
本発明の実施例1において、脱硫軽油留分(沸点範囲250〜343℃)を混合せずに、残渣油のみを用いたこと以外は、実施例1と同様にして水素化分解処理及び流動接触分解処理を行った。結果を第3表に示す。
Comparative Example 2
In Example 1 of the present invention, hydrocracking treatment and fluid contact in the same manner as in Example 1 except that only the residual oil was used without mixing the desulfurized gas oil fraction (boiling range: 250 to 343 ° C.). Decomposition was performed. The results are shown in Table 3.

比較例3
本発明の実施例1において、脱硫軽油留分(沸点範囲250〜343℃)の混合割合を40容量%とした以外は実施例1と同様にして水素化分解処理および流動接触分解処理を行った。結果を第3表に示す。
Comparative Example 3
In Example 1 of the present invention, hydrocracking treatment and fluid catalytic cracking treatment were performed in the same manner as in Example 1 except that the mixing ratio of the desulfurized gas oil fraction (boiling range: 250 to 343 ° C.) was 40% by volume. . The results are shown in Table 3.

Figure 0005220456
Figure 0005220456

第3表より、本発明の常圧蒸留残渣油の分解方法(実施例1〜4)は、本発明の水素化分解触媒を用いない比較例1の方法に比べて、水素化分解処理による中間留分(脱硫灯軽油留分)の得率が高いことが分かる。また、流動接触分解処理による生成油では、FCCガソリン留分、LPG留分の収率が高く、かつLCO留分の得率が低い。
これに対し、比較例2の方法のように、流動接触分解処理の原料として、留出油を混合せずに、残渣油のみを用いた場合や比較例3の方法のように、流動接触分解の原料として留出留分の割合を多くし40容量%にした場合は、いずれもFCCガソリン留分の得率が低く、LCO留分の得率が高くなる。
From Table 3, the decomposition method (Examples 1 to 4) of the atmospheric distillation residue oil of the present invention is an intermediate by hydrocracking treatment as compared with the method of Comparative Example 1 that does not use the hydrocracking catalyst of the present invention. It can be seen that the yield of the fraction (desulfurized kerosene fraction) is high. Further, in the oil produced by fluid catalytic cracking treatment, the yield of FCC gasoline fraction and LPG fraction is high, and the yield of LCO fraction is low.
On the other hand, as in the method of Comparative Example 2, as a raw material for fluid catalytic cracking treatment, when using only residual oil without mixing distillate oil, or as in the method of Comparative Example 3, fluid catalytic cracking When the ratio of the distillate fraction is increased to 40% by volume as the raw material, the yield of the FCC gasoline fraction is low and the yield of the LCO fraction is high.

本発明の常圧蒸留残渣油の分解方法によれば、水素化分解において中間留分である灯軽油留分の生成割合が高く、かつ流動接触分解において軽質留分であるFCCガソリン留分やLPG留分を増産できるとともに、LCO留分の生産を減少することができる。したがって、ガソリン燃料に使用されるガソリン基材や石油化学製品の基礎原料を増産することができる方法として有効に利用することができる。   According to the cracking method of atmospheric distillation residue oil of the present invention, the production ratio of kerosene oil fraction, which is a middle distillate in hydrocracking, is high, and FCC gasoline fraction or LPG which is a light fraction in fluid catalytic cracking. The production of the fraction can be increased and the production of the LCO fraction can be reduced. Therefore, it can be effectively used as a method capable of increasing the production of gasoline base materials and basic raw materials for petrochemical products used for gasoline fuel.

Claims (4)

常圧蒸留残渣油を水素化分解処理し、得られた生成油を流動接触分解処理する常圧蒸留残渣油の分解方法であって、
(a)水素化分解処理に用いる触媒が、結晶性アルミノシリケート45質量%以上70質量%以下と多孔性無機酸化物55質量%以下30質量%以上の混合物からなる担体に金属を担持した触媒であり、かつ
(b)流動接触分解処理の原料が、前記水素化分解処理によって得られる残渣油と沸点120〜400℃の留出油との混合物であり、当該混合物における留出油の混合割合が1〜30容量%である、
ことを特徴とする常圧蒸留残渣油の分解方法。
A method for decomposing atmospheric distillation residue oil by hydrocracking atmospheric distillation residue oil and subjecting the resulting product oil to fluid catalytic cracking treatment,
(A) The catalyst used for the hydrocracking treatment is a catalyst in which a metal is supported on a support composed of a mixture of crystalline aluminosilicate 45 mass% to 70 mass% and porous inorganic oxide 55 mass% to 30 mass%. And (b) the raw material of the fluid catalytic cracking treatment is a mixture of the residual oil obtained by the hydrocracking treatment and a distillate having a boiling point of 120 to 400 ° C., and the mixing ratio of the distillate in the mixture is 1-30% by volume,
A method for decomposing atmospheric distillation residue oil characterized by the above.
前記水素化分解処理に用いる触媒の細孔分布が、細孔径50〜10,000Åの細孔の総細孔容積に対し、細孔径500〜10,000Åの細孔の総細孔容積が10%以上
であり、細孔径100〜200Åの細孔の総細孔容積が25%以上である請求項1に記載の常圧蒸留残渣油の分解方法。
The pore distribution of the catalyst used for the hydrocracking treatment is 10% of the total pore volume of the pores having a pore diameter of 500 to 10,000 to the total pore volume of the pores having a pore diameter of 50 to 10,000 The method for decomposing atmospheric distillation residue oil according to claim 1, wherein the total pore volume of pores having a pore diameter of 100 to 200 mm is 25% or more.
結晶性アルミノシリケートが、USYゼオライト又は金属担持USYゼオライトであり、多孔性無機酸化物がアルミナである請求項1又は2に記載の常圧蒸留残渣油の分解方法。   The method for decomposing atmospheric distillation residue oil according to claim 1 or 2, wherein the crystalline aluminosilicate is USY zeolite or metal-supported USY zeolite, and the porous inorganic oxide is alumina. 結晶性アルミノシリケートが鉄担持USYゼオライトである請求項1〜3のいずれかに記載の常圧蒸留残渣油の分解方法。   The method for decomposing atmospheric distillation residue oil according to any one of claims 1 to 3, wherein the crystalline aluminosilicate is an iron-supported USY zeolite.
JP2008088607A 2008-03-28 2008-03-28 Decomposition method of atmospheric distillation residue oil Expired - Fee Related JP5220456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088607A JP5220456B2 (en) 2008-03-28 2008-03-28 Decomposition method of atmospheric distillation residue oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088607A JP5220456B2 (en) 2008-03-28 2008-03-28 Decomposition method of atmospheric distillation residue oil

Publications (2)

Publication Number Publication Date
JP2009242487A JP2009242487A (en) 2009-10-22
JP5220456B2 true JP5220456B2 (en) 2013-06-26

Family

ID=41304780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088607A Expired - Fee Related JP5220456B2 (en) 2008-03-28 2008-03-28 Decomposition method of atmospheric distillation residue oil

Country Status (1)

Country Link
JP (1) JP5220456B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5852892B2 (en) * 2012-01-20 2016-02-03 出光興産株式会社 Heavy oil hydroprocessing method
CN103769196B (en) * 2012-10-26 2016-12-21 中国石油化工股份有限公司 A kind of residual oil hydrocatalyst, its preparation method and application thereof
JP6536958B2 (en) * 2016-01-25 2019-07-03 出光興産株式会社 Fuel oil processing system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850675B2 (en) * 1979-06-11 1983-11-11 千代田化工建設株式会社 Heavy oil decomposition method
JPS564687A (en) * 1979-06-22 1981-01-19 Nippon Oil Co Ltd Fluidization catalytic cracking of heavy petroleum oil
JPH07108983B2 (en) * 1986-06-18 1995-11-22 出光興産株式会社 Process for producing middle distillate hydrocarbons
JP2980436B2 (en) * 1991-10-18 1999-11-22 出光興産株式会社 Treatment method for heavy hydrocarbon oil
WO2001000750A1 (en) * 1999-06-23 2001-01-04 China Petrochemical Corporation Catalytic converting process for producing prolifically diesel oil and liquefied gas
KR20070084402A (en) * 2004-11-22 2007-08-24 이데미쓰 고산 가부시키가이샤 Iron-containing crystalline aluminosilicate, hydrocracking catalyst comprising the aluminosilicate, and method 0f hydrocracking with the catalyst

Also Published As

Publication number Publication date
JP2009242487A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5547923B2 (en) Heavy oil hydrocracking catalyst and method for hydrotreating heavy oil using the same
US10030202B2 (en) Mesoporous composite of molecular sieves for hydrocracking of heavy crude oils and residues
JPWO2009119390A1 (en) Heavy oil hydrocracking catalyst
EP1600491A1 (en) Catalytic hydrorefining process for crude oil
JP5396008B2 (en) Method for producing alkylbenzenes
JP2008297471A (en) Method for production of catalytically reformed gasoline
JP5330056B2 (en) Method for producing monocyclic aromatic hydrocarbons
JP5420826B2 (en) Method for producing ultra-low sulfur fuel oil
JP5231735B2 (en) Iron-containing crystalline aluminosilicate, hydrocracking catalyst containing the aluminosilicate, and hydrocracking method using the catalyst
JP5220456B2 (en) Decomposition method of atmospheric distillation residue oil
KR20070059044A (en) Hydrogenation of aromatics and olefins using a mesoporous catalyst
JP4969754B2 (en) Hydrodesulfurization method for gas oil fraction and reactor for hydrodesulfurization
JP6267414B2 (en) Crystalline aluminosilicate, heavy oil hydrocracking catalyst and process for producing the same
JPH08501113A (en) Hydrocracking process for middle distillates
JP2013249385A (en) Hydrotreatment method of heavy oil
JP6038708B2 (en) Production method of petroleum products
JP5296404B2 (en) Method for producing ultra-low sulfur fuel oil and apparatus for producing the same
JP6565048B2 (en) Heavy oil hydroprocessing method
JP5852892B2 (en) Heavy oil hydroprocessing method
JP2008297436A (en) Manufacturing method of ultralow-sulfur fuel oil and manufacturing apparatus therefor
JP2000073072A (en) Production of high cetane number, low sulfur diesel gas oil
JP7583538B2 (en) Catalyst system, method for hydrocracking feedstock oil containing heavy gas oil fraction using the same, and hydrocracking apparatus
JP5298329B2 (en) Method for processing petroleum hydrocarbons
JP2010221117A (en) Catalyst for use in hydrogenation purification, method of producing the same, and method of hydrogenating/purifying hydrocarbon oil
JP2013213107A (en) Hydrodesulfurization apparatus using hydrocracking catalyst and hydroprocessing method of heavy oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5220456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees