Nothing Special   »   [go: up one dir, main page]

JP5217014B2 - Power conversion device and manufacturing method thereof - Google Patents

Power conversion device and manufacturing method thereof Download PDF

Info

Publication number
JP5217014B2
JP5217014B2 JP2008005938A JP2008005938A JP5217014B2 JP 5217014 B2 JP5217014 B2 JP 5217014B2 JP 2008005938 A JP2008005938 A JP 2008005938A JP 2008005938 A JP2008005938 A JP 2008005938A JP 5217014 B2 JP5217014 B2 JP 5217014B2
Authority
JP
Japan
Prior art keywords
surface electrode
semiconductor element
solder
electrode
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008005938A
Other languages
Japanese (ja)
Other versions
JP2009170596A (en
Inventor
豊 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008005938A priority Critical patent/JP5217014B2/en
Publication of JP2009170596A publication Critical patent/JP2009170596A/en
Application granted granted Critical
Publication of JP5217014B2 publication Critical patent/JP5217014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

本発明は、電力変換装置およびその製造方法に関する。   The present invention relates to a power conversion device and a manufacturing method thereof.

従来技術として、電極および半導体素子を基板に実装する技術は多数開発されている。例えば、半導体素子と電極とで形成した空間にハンダ材を流し込んで接合する技術が提案されている(特許文献1を参照されたい)。図12に、従来の半導体素子実装技術を示す図である。図に示すように、本構造は、基板上にハンダ付け実装されている半導体素子に対して、開口部と下側への凸部形状を有する上面電極を押し当て、そして、半導体素子の主面電極と、上面電極とで形成される空間に、この開口部からハンダ材を充填するといったものである。なお、下側への凸部形状が半導体素子主面電極に押圧されている為に、この空間が形成できると共に、充填したハンダ材は半導体素子の外側へ漏れることを防止している。その後、リフロー工程等により、主面電極と上面電極とを充填したハンダ材にて接合する。
特開2000-323534号公報
As a conventional technique, many techniques for mounting electrodes and semiconductor elements on a substrate have been developed. For example, a technique has been proposed in which a solder material is poured into a space formed by a semiconductor element and electrodes (see Patent Document 1). FIG. 12 shows a conventional semiconductor element mounting technique. As shown in the figure, this structure presses a top surface electrode having an opening and a convex shape downward to a semiconductor element soldered and mounted on a substrate, and the main surface of the semiconductor element The space formed by the electrode and the upper surface electrode is filled with the solder material from this opening. In addition, since the downward convex shape is pressed by the semiconductor element main surface electrode, this space can be formed and the filled solder material is prevented from leaking outside the semiconductor element. Then, it joins with the solder material with which the main surface electrode and the upper surface electrode were filled by the reflow process etc.
JP 2000-323534 A

しかしながら、この従来技術は、半導体素子に対して上面電極を押圧し、その内部空間にハンダ材を充填する構成となっていた為、下記問題があった。   However, this conventional technique has the following problems because it has a configuration in which the upper surface electrode is pressed against the semiconductor element and the internal space is filled with the solder material.

まず、ハンダ材の流出を確実に防止することが難しいといった問題がある。半導体素子主面電極の端部全周に渡って、上面電極を確実に押圧することは必ずしも容易でない。特にハンダ付け時の温度上昇に伴う各部材の熱膨張影響により、隙間が生じる懸念がある。また何らかのジグで押圧を維持するならば、そのジグの熱容量によってハンダ付け温度が十分に上らない懸念もある。   First, there is a problem that it is difficult to reliably prevent the solder material from flowing out. It is not always easy to reliably press the upper surface electrode over the entire circumference of the end of the semiconductor element main surface electrode. In particular, there is a concern that a gap may occur due to the thermal expansion effect of each member accompanying the temperature rise during soldering. Moreover, if pressing is maintained with some jig, there is a concern that the soldering temperature may not be sufficiently increased due to the heat capacity of the jig.

さらなる問題は、例えば、共通の1つの上面電極で複数の半導体素子の接続をする場合、確実な接合をし難いということである。即ち、上面電極の曲げ加工を繰り返して、複雑な形状を為しても、隙間が全く生じないほどの精度実現は困難である。特に半導体素子の厚さが異なる場合は、曲げ加工形状が複雑になってしまい、困難度が増す。さらに、ハンダ付け時の温度上昇による上面電極の膨張や反りの発生も考慮すると、甚だ困難である。   A further problem is that, for example, when a plurality of semiconductor elements are connected by a common upper surface electrode, it is difficult to perform reliable bonding. That is, even if the upper surface electrode is repeatedly bent to form a complicated shape, it is difficult to achieve accuracy that does not cause any gap. In particular, when the thicknesses of the semiconductor elements are different, the bending shape becomes complicated and the difficulty increases. Furthermore, it is extremely difficult to take into account the expansion and warpage of the upper surface electrode due to the temperature rise during soldering.

そこで、本発明の目的は、電極および半導体素子を基板に実装するときに、電極と半導体素子との電気的接続をハンダ材で容易かつ確実に実行し、ハンダ材の流れ出しも防止させた電力変換装置およびその製造方法を提供することである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to perform power conversion in which electrical connection between an electrode and a semiconductor element is easily and reliably performed with a solder material and the solder material is prevented from flowing out when the electrode and the semiconductor element are mounted on a substrate. An apparatus and a method for manufacturing the same are provided.

上述した諸課題を解決すべく、本発明による電力変換装置の製造方法は、
ハンダを注入すべき複数の開口部(貫通孔)が設けられ、周縁に絶縁部が設けられた上面電極の端部(即ち、絶縁部)と、半導体素子の少なくとも側面とを絶縁性接着剤で接合して半導体ブロックを形成する工程と、
前記半導体ブロックの上面電極の絶縁部および半導体素子の裏面と、基板の主面とをハンダで接合するハンダ付け接合工程と、
前記上面電極に設けられている複数の開口部の少なくとも1つから、前記上面電極の裏面と前記半導体素子の主面と、前記絶縁部とで囲まれた空間にハンダを供給してハンダ付けするハンダ付け工程と、
を有する。
In order to solve the above-described problems, a method for manufacturing a power conversion device according to the present invention includes:
A plurality of openings (through holes) into which solder is to be injected are provided, and an end portion (that is, an insulating portion) of the upper surface electrode provided with an insulating portion on the periphery and at least a side surface of the semiconductor element are formed with an insulating adhesive. Forming a semiconductor block by bonding;
A soldering joining step of joining the insulating portion of the upper surface electrode of the semiconductor block and the back surface of the semiconductor element and the main surface of the substrate with solder;
Solder is supplied and soldered to a space surrounded by the back surface of the upper surface electrode, the main surface of the semiconductor element, and the insulating portion from at least one of the plurality of openings provided in the upper surface electrode. Soldering process,
Have

本発明によれば、電極および半導体素子を基板に実装するときに、電極と半導体素子との電気的接続をハンダ材で容易かつ確実に実行し、ハンダ材の流れ出しも防止させることができる。   According to the present invention, when the electrode and the semiconductor element are mounted on the substrate, the electrical connection between the electrode and the semiconductor element can be easily and reliably performed with the solder material, and the solder material can be prevented from flowing out.

本発明の一実施態様によれば、本製造方法は、前記基板の裏面を絶縁物を介して第1の放熱器と接合する工程、をさらに有することを特徴とする。
本発明の別の実施態様によれば、本製造方法は、
前記ハンダ接合工程と、前記ハンダ付け工程とを同時に行う、
ことを特徴とする。
本発明のさらなる実施態様によれば、本製造方法は、
前記基板の主面に突起部品またはスペーサを設ける工程とをさらに有し、
前記スペーサまたは前記突起部品を前記絶縁部に接触させ、前記ハンダ付け接合工程を実行する、ことを特徴とする。
本発明のさらなる実施態様によれば、本製造方法では
記上面電極の周縁絶縁部が、略平板長方形形状の複数の絶縁領域を含む、
ことを特徴とする。
According to an embodiment of the present invention, the manufacturing method further includes a step of joining the back surface of the substrate to the first heat sink via an insulator.
According to another embodiment of the present invention, the manufacturing method comprises:
Performing the solder joining step and the soldering step simultaneously;
It is characterized by that.
According to Rana Ru embodiment Is of the present invention, the method,
And further providing a protruding component or a spacer on the main surface of the substrate,
The spacer or the protruding component is brought into contact with the insulating portion, and the soldering and joining step is performed.
According to Rana Ru embodiment Is of the present invention, in the manufacturing method,
Insulating portion of the peripheral edge of the front SL upper electrode comprises a plurality of insulating regions of the substantially flat rectangular shape,
It is characterized by that.

本発明のさならる実施態様によれば、本製造方法では、
前記半導体素子が、第1の半導体素子と第2の半導体素子とを含み、
該第1の半導体素子と該第2の半導体素子の夫々の厚さが異なる、
ことを特徴とする。
According to a further embodiment of the invention, the production method comprises:
The semiconductor element includes a first semiconductor element and a second semiconductor element,
The thickness of each of the first semiconductor element and the second semiconductor element is different.
It is characterized by that.

本発明のさならる実施態様によれば、本製造方法は、
前記第1の放熱器上に前記絶縁物を介して第2の基板を設ける工程をさらに有し、
前記ハンダ付け接合工程が、
前記上面電極の周縁の前記絶縁部を設けていない部分を、前記第2の基板の主面にハンダで接合する工程を含み、
該第2の基板の主面と前記上面電極の周縁の前記絶縁部を設けていない部分を接合するハンダと、前記第1の基板の主面と前記半導体ブロックの上面電極の絶縁部および半導体素子の裏面を接合するハンダとが、分離した領域である、
ことを特徴とする。
According to a further embodiment of the invention, the production method comprises:
A step of providing a second substrate on the first radiator via the insulator;
The soldering and joining step includes
Bonding a portion of the periphery of the upper surface electrode not provided with the insulating portion to the main surface of the second substrate with solder;
Solder for joining the main surface of the second substrate and the peripheral portion of the upper surface electrode where the insulating portion is not provided, the main surface of the first substrate, the insulating portion of the upper surface electrode of the semiconductor block, and a semiconductor element The solder that joins the back surface of is a separated area,
It is characterized by that.

本発明のさならる実施態様によれば、本製造方法では、
前記半導体素子が制御端子を有し、
該制御端子の位置に対応して第2の開口部が前記上面電極に設けられており、
前記製造方法は、
該第2の開口部に、接続線を貫通させる枠体(絶縁性のリング、円筒、角筒など)を設ける工程と、
前記上面電極の主面上に回路基板を設ける工程と、
前記制御端子と該回路基板とを前記接続線で(電気的に)接続する工程とをさらに有する、
ことを特徴とする。
According to a further embodiment of the invention, the production method comprises:
The semiconductor element has a control terminal;
A second opening is provided in the upper surface electrode corresponding to the position of the control terminal,
The manufacturing method includes:
Providing the second opening with a frame (insulating ring, cylinder, square tube, etc.) through which the connection line passes;
Providing a circuit board on the main surface of the upper surface electrode;
A step of (electrically) connecting the control terminal and the circuit board with the connection line;
It is characterized by that.

本発明のさならる実施態様によれば、本製造方法は、
前記第1の半導体ブロックの上面電極上に、絶縁物を介して第2の放熱器と接合する工程、
をさらに有することを特徴とする。
According to a further embodiment of the invention, the production method comprises:
A step of bonding to a second radiator via an insulator on an upper surface electrode of the first semiconductor block;
It further has these.

本発明のさならる実施態様によれば、電力変換装置の製造方法は、
ハンダを注入すべき複数の開口部が設けられ、周縁に絶縁部が設けられた第1の上面電極の端部と、第1の半導体素子の少なくとも側面とを絶縁性接着剤で接合して第1の半導体ブロックを形成する工程と、
前記第1の半導体ブロックの前記第1の上面電極の絶縁部および前記第1の半導体素子の裏面と、第1の基板の主面とをハンダで接合するハンダ付け接合工程と、
前記第1の上面電極に設けられている複数の開口部の少なくとも1つから、前記第1の上面電極の裏面と前記第1の半導体素子の主面と、前記絶縁部とで囲まれた空間にハンダを供給してハンダ付けするハンダ付け工程と、
ハンダを注入すべき複数の開口部が設けられ、周縁に絶縁部が設けられた第2の上面電極の端部と、第2の半導体素子の少なくとも側面とを絶縁性接着剤で接合して第2の半導体ブロックを形成する工程と、
前記第2の半導体ブロックの前記第2の上面電極の絶縁部および前記第2の半導体素子の裏面と、第2の基板の主面とをハンダで接合するハンダ付け接合工程と、
前記第2の上面電極に設けられている複数の開口部の少なくとも1つから、前記第2の上面電極の裏面と前記第2の半導体素子の主面と、前記絶縁部とで囲まれた空間にハンダを供給してハンダ付けするハンダ付け工程と、
前記第2の半導体ブロックの第2の上面電極の主面と、前記第2の半導体ブロックの第2の上面電極の主面とを熱伝導性材料を介して接合する工程と、
を有する。
According to a further embodiment of the present invention, a method for manufacturing a power conversion device comprises:
A plurality of openings into which solder is to be injected is provided, and an end portion of the first upper surface electrode provided with an insulating portion on the periphery and at least a side surface of the first semiconductor element are joined with an insulating adhesive. Forming a semiconductor block of 1;
A soldering joining step for joining the insulating portion of the first upper surface electrode of the first semiconductor block and the back surface of the first semiconductor element to the main surface of the first substrate by solder;
A space surrounded by at least one of the plurality of openings provided in the first upper surface electrode by the back surface of the first upper surface electrode, the main surface of the first semiconductor element, and the insulating portion. A soldering process in which solder is supplied and soldered,
A plurality of openings into which solder is to be injected is provided, and an end of the second upper surface electrode provided with an insulating portion on the periphery and at least a side surface of the second semiconductor element are joined by an insulating adhesive. Forming a semiconductor block of 2;
A soldering joining step for joining the insulating portion of the second upper surface electrode of the second semiconductor block and the back surface of the second semiconductor element to the main surface of the second substrate by solder;
A space surrounded by at least one of a plurality of openings provided in the second upper surface electrode by the back surface of the second upper surface electrode, the main surface of the second semiconductor element, and the insulating portion. A soldering process in which solder is supplied and soldered,
Bonding the main surface of the second upper surface electrode of the second semiconductor block and the main surface of the second upper surface electrode of the second semiconductor block via a thermally conductive material;
Have

本発明のさならる実施態様によれば、電力変換装置の製造方法では、
前記第1の半導体素子が、IGBT(Insulated Gate Bipolar Transistor)またはMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であり、
前記第1の半導体素子が、ダイオードである、
ことを特徴とする。
According to a further embodiment of the present invention, in a method for manufacturing a power converter,
The first semiconductor element is an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor),
The first semiconductor element is a diode;
It is characterized by that.

上述したように本発明の解決手段を製造方法として説明したが、本発明はこれらに実質的に相当する装置としても実現し得るものであり、本発明の範囲には装置も包含されるものと理解されたい。   As described above, the solution of the present invention has been described as a manufacturing method. However, the present invention can be realized as an apparatus substantially corresponding to these, and the scope of the present invention includes the apparatus. I want you to understand.

例えば、本発明を装置として実現させた、本発明の別の態様による電力変換装置は、
ハンダを注入すべき複数の開口部が設けられ、周縁に絶縁部が設けられた上面電極と、該上面電極の端部と絶縁性接着剤で少なくとも側面が接合されている半導体素子とで、形成された半導体ブロックと、
前記半導体ブロックの上面電極の絶縁部および半導体素子の裏面に、ハンダで主面が接合されている基板とを具え、
前記上面電極に設けられている複数の開口部の少なくとも1つから、前記上面電極の裏面と前記半導体素子の主面と前記絶縁部とで囲まれた空間に供給したハンダで、該上面電極の裏面と該半導体素子の主面を接続するように構成した、
ことを特徴とする。
For example, a power conversion device according to another aspect of the present invention, in which the present invention is realized as a device,
Formed by a top surface electrode provided with a plurality of openings into which solder is to be injected and an insulating portion provided on the periphery, and a semiconductor element having at least a side surface bonded to an end portion of the top surface electrode with an insulating adhesive A semiconductor block,
A substrate whose main surface is joined by solder to the insulating portion of the upper surface electrode of the semiconductor block and the back surface of the semiconductor element,
Solder supplied from at least one of a plurality of openings provided in the upper surface electrode to a space surrounded by the back surface of the upper surface electrode, the main surface of the semiconductor element, and the insulating portion; Configured to connect the back surface and the main surface of the semiconductor element,
It is characterized by that.

また、本発明の別の実施態様による電力変換装置は、
ハンダを注入すべき複数の開口部が設けられ、周縁に絶縁部が設けられた第1の上面電極と、該第1の上面電極の端部と絶縁性接着剤で少なくとも側面が接合されている第1の半導体素子とで、形成された第1の半導体ブロックと、
前記第1の半導体ブロックの第1の上面電極の絶縁部および第1の半導体素子の裏面に、ハンダで主面が接合されている第1の基板と、
ハンダを注入すべき複数の開口部が設けられ、周縁に絶縁部が設けられた第2の上面電極と、該第2の上面電極の端部と絶縁性接着剤で少なくとも側面が接合されている第2の半導体素子とで、形成された第2の半導体ブロックと、
前記第1の半導体ブロックの第1の上面電極の絶縁部および第2の半導体素子の裏面に、ハンダで主面が接合されている第2の基板と、を具え、
前記第2の半導体ブロックの第2の上面電極の主面と、前記第2の半導体ブロックの第2の上面電極の主面とを熱伝導性材料を介して接合するように構成した、
ことを特徴とする。
Moreover, the power converter device by another embodiment of this invention is the following.
A plurality of openings into which solder is to be injected is provided, and a first upper surface electrode having an insulating portion provided on the periphery, and an end of the first upper surface electrode are joined to at least a side surface with an insulating adhesive. A first semiconductor block formed with a first semiconductor element;
A first substrate having a main surface bonded by solder to the insulating portion of the first upper surface electrode of the first semiconductor block and the back surface of the first semiconductor element;
A plurality of openings into which solder is to be injected is provided, and a second upper surface electrode having an insulating portion provided at the periphery thereof, and at least a side surface is bonded to an end portion of the second upper surface electrode by an insulating adhesive. A second semiconductor block formed by the second semiconductor element;
A second substrate having a main surface bonded by solder to the insulating portion of the first upper surface electrode of the first semiconductor block and the back surface of the second semiconductor element;
The main surface of the second upper surface electrode of the second semiconductor block and the main surface of the second upper surface electrode of the second semiconductor block are joined to each other through a heat conductive material.
It is characterized by that.

以降、諸図面を参照しながら本発明の実施態様を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<第1実施例>
図1は、第1実施例による電力変換装置の断面構造を示す模式図である。図2は、本実施例の上面構造を示す模式図である。ここで、図2の(a)は本実施例の上面構造、同図(b)は図1の電力変換装置をA-A’線で切ったときの断面およびそれより下の構造を示す模式図である。図1に示すように、電力変換装置は、半導体素子100と上面電極101とを有する。上面電極101は、近接した複数の開口部102を有すると共に、その裏面側の周縁(端部)に絶縁部103を有する。絶縁部103は、基板105に対向する面に金属箔(図示せず)を有する。
<First embodiment>
FIG. 1 is a schematic diagram showing a cross-sectional structure of the power conversion device according to the first embodiment. FIG. 2 is a schematic diagram showing the top structure of the present embodiment. Here, (a) in FIG. 2 is a top view structure of the present embodiment, and (b) in FIG. 2 is a schematic diagram showing a cross section of the power conversion device in FIG. 1 taken along the line AA ′ and a structure below it. FIG. As shown in FIG. 1, the power conversion device includes a semiconductor element 100 and an upper surface electrode 101. The upper surface electrode 101 has a plurality of adjacent openings 102 and an insulating portion 103 at the periphery (end) on the back surface side. The insulating part 103 has a metal foil (not shown) on the surface facing the substrate 105.

半導体素子100の端部及び側面と、上面電極101の裏面、及び絶縁部103側面とで囲まれた領域に絶縁性接着剤104を充填することにより、半導体素子100の主面電極(図示せず)の上に、上面電極101の開口部102が位置するように上面電極101を被せた形状にすることによって形成した半導体ブロック(半導体素子主面電極側保持構造体)110を有する。また、ハンダを注入すべき複数の開口部(貫通孔)102が設けられ、上面電極101の周縁(端部)に絶縁部が設けられた上面電極の端部と、半導体素子100の少なくとも側面とを絶縁性接着剤で接合して半導体ブロック110を形成する。   A main surface electrode (not shown) of the semiconductor element 100 is filled with an insulating adhesive 104 in a region surrounded by the end and side surfaces of the semiconductor element 100, the back surface of the upper surface electrode 101, and the side surfaces of the insulating part 103. ), A semiconductor block (semiconductor element main surface electrode side holding structure) 110 formed by covering the upper surface electrode 101 so that the opening 102 of the upper surface electrode 101 is located. In addition, a plurality of openings (through holes) 102 into which solder is to be injected are provided, and an end portion of the upper surface electrode in which an insulating portion is provided on a peripheral edge (end portion) of the upper surface electrode 101; Are bonded with an insulating adhesive to form the semiconductor block 110.

また、電力変換装置は、基板105を有し、基板105に半導体ブロック110の裏面を成す半導体素子100の裏面と金属箔を第1のハンダ106にて接合する。さらに、半導体素子100の主面電極と上面電極101の裏面側及び開口部側面とを第2のハンダ107にて実装する。加えて、電力変換装置は、基板105裏面を絶縁物INSを介して放熱器108に実装する構成とする。なお、上面電極101の主面端部に接続電極111を接続し、電力変換装置として必要な電気的接続を行なってもよい。上面電極101に設けられている複数の開口部102の少なくとも1つから、上面電極101の裏面と半導体素子100の主面と、固化した絶縁性接着剤104とで囲まれた空間に第2のハンダ107を供給してハンダ付けする。   In addition, the power conversion apparatus includes a substrate 105, and the back surface of the semiconductor element 100 that forms the back surface of the semiconductor block 110 and the metal foil are bonded to the substrate 105 by the first solder 106. Further, the main surface electrode of the semiconductor element 100 and the back surface side and the opening side surface of the upper surface electrode 101 are mounted by the second solder 107. In addition, the power conversion device is configured such that the back surface of the substrate 105 is mounted on the radiator 108 via the insulator INS. Note that the connection electrode 111 may be connected to the end of the main surface of the upper surface electrode 101 to make an electrical connection necessary for the power conversion device. From at least one of the plurality of openings 102 provided in the upper surface electrode 101, a second space is surrounded by the back surface of the upper surface electrode 101, the main surface of the semiconductor element 100, and the solidified insulating adhesive 104. Solder 107 is supplied and soldered.

本構成によって、以下の効果が生じる。第1の効果として、半導体素子100の主面電極に対して上面電極101をハンダ付け実装して、上面電極101への電気的接続や放熱を容易にかつ確実にできる。即ち、半導体素子100の主面端部と側面と、上面電極101とを絶縁性接着剤104で接合した形状とする。この絶縁性接着剤104がハンダ材の流れ出しを防止するので、半導体素子100の主面電極と上面電極101の間に第2のハンダ107を入れて、ハンダ付け実装できる。ここで、絶縁性接着剤104接合部分は半導体素子100端部に渡って有る程度の面積で接合しており、かつ上面電極101の形状も複雑でない。かつ上面電極101の裏面側端部が絶縁部103を介して、半導体素子100同様に、基板105に接した状態になる。よって上面電極101のハンダ付け時に過剰な応力がかかり、ハンダ付け実装の確実実施に支障を来たす恐れが無い。また、その際に上面電極101を保持固定する特別な部品も必要としない。なお、半導体素子100主面電極へのハンダ材充填は、上面電極101開口部102から例えばディスペンス等により行なえばよい。ハンダ溶融時のガス等はこの開口部102から抜けていける。また、開口部102にてハンダ溶融時にハンダ材が流動できることにより、ハンダ付けの実施に悪影響が生じない。   This configuration has the following effects. As a first effect, the upper surface electrode 101 is soldered and mounted on the main surface electrode of the semiconductor element 100, and electrical connection and heat dissipation to the upper surface electrode 101 can be easily and reliably performed. In other words, the main surface end and side surface of the semiconductor element 100 and the upper surface electrode 101 are joined by the insulating adhesive 104. Since this insulating adhesive 104 prevents the solder material from flowing out, the second solder 107 can be inserted between the main surface electrode and the upper surface electrode 101 of the semiconductor element 100 and soldered and mounted. Here, the bonding portion of the insulating adhesive 104 is bonded in an area that extends over the end of the semiconductor element 100, and the shape of the upper surface electrode 101 is not complicated. In addition, the rear surface side end portion of the upper surface electrode 101 is in contact with the substrate 105 through the insulating portion 103 in the same manner as the semiconductor element 100. Therefore, excessive stress is applied when soldering the upper surface electrode 101, and there is no risk of hindering reliable implementation of soldering mounting. Further, no special parts for holding and fixing the upper surface electrode 101 are required at that time. Note that the filling of the solder material into the main surface electrode of the semiconductor element 100 may be performed from the opening 102 of the upper surface electrode 101 by, for example, dispensing. Gas or the like at the time of melting the solder can escape from the opening 102. In addition, since the solder material can flow at the opening 102 when the solder is melted, the soldering operation is not adversely affected.

以上より、上面電極101のハンダ付け実装を容易にかつ確実にできる。これにより上面電極101による電気接続が確実にできる。また、上面電極101から基板105にかけての放熱も確実にできて、半導体素子100の裏面電極側からだけでなく、主面電極側からも確実に放熱できる。これにより半導体素子100の放熱効果が大きく向上する。   From the above, it is possible to easily and reliably solder and mount the upper surface electrode 101. Thereby, the electrical connection by the upper surface electrode 101 can be ensured. Further, heat can be reliably radiated from the upper surface electrode 101 to the substrate 105, and heat can be reliably radiated not only from the back surface electrode side of the semiconductor element 100 but also from the main surface electrode side. Thereby, the heat dissipation effect of the semiconductor element 100 is greatly improved.

第2の効果として、電力変換装置の電流容量を大きくするなどの理由によって、半導体素子100を複数個並列接続する場合も、上面電極101を容易にかつ確実にハンダ付け実装できる。即ち、半導体素子100は製造上の理由によって厚さに幾許可のバラツキが生じる場合がある。また、上面電極101の形状や寸法も同様に幾許可のバラツキが生じる。本構成では、これら寸法に関するばらつきが有っても、絶縁性接着剤104の接合時における同接着剤104の潰れによってこれら寸法ばらつきを吸収して、ハンダ付け実施に対する影響を防止できる。よって、1つの上面電極101に対して複数の半導体素子100の主面電極を容易にハンダ付け実装できるので、主面電極への電気接続に係るスペースを低減でき、かつ放熱効果も向上できる。よって電流容量の大きい電力変換装置を小型にできる。   As a second effect, even when a plurality of semiconductor elements 100 are connected in parallel for reasons such as increasing the current capacity of the power converter, the upper surface electrode 101 can be easily and reliably soldered and mounted. That is, the semiconductor device 100 may have some variation in thickness due to manufacturing reasons. Similarly, the shape and dimensions of the upper surface electrode 101 are subject to some variation. In this configuration, even if there are variations regarding these dimensions, the dimensional variations are absorbed by the collapse of the adhesive 104 when the insulating adhesive 104 is joined, and the influence on soldering can be prevented. Therefore, since the main surface electrodes of the plurality of semiconductor elements 100 can be easily soldered and mounted on one upper surface electrode 101, the space for electrical connection to the main surface electrodes can be reduced, and the heat dissipation effect can be improved. Therefore, a power converter having a large current capacity can be reduced in size.

第3の効果として、半導体素子100主面電極への第2のハンダ107の実装(ハンダ付け)と、半導体素子100裏面電極への第1のハンダ106の実装(ハンダ付け)を同一の工程で行なうことが容易にできる。即ち、絶縁性接着剤104が第2のハンダ107実装時における溶融したハンダ材の流失を防止できる。この為。第1と第2のハンダ106、107の実装工程を同時に行なっても、両ハンダ106、107が接触し、電気的な短絡に至る事態を防止できる。これにより製造コストを低減できる。特に所謂、鉛フリーハンダでは、ハンダ付け温度が異なる複数のハンダ材を使い分けることが困難な可能性もあるが、本構成により半導体素子100の裏面側と主面側に同じハンダ材を用いる必要が有る場合でも、容易に素子の裏面側と主面側に対するハンダ付け実装を行なえる。   As a third effect, mounting of the second solder 107 to the main surface electrode of the semiconductor element 100 (soldering) and mounting of the first solder 106 to the back surface electrode of the semiconductor element 100 (soldering) are performed in the same process. Easy to do. That is, it is possible to prevent the molten solder material from flowing out when the insulating adhesive 104 is mounted on the second solder 107. For this reason. Even if the mounting processes of the first and second solders 106 and 107 are performed simultaneously, it is possible to prevent a situation in which both the solders 106 and 107 are in contact with each other and an electrical short circuit is caused. Thereby, manufacturing cost can be reduced. In particular, with so-called lead-free solder, it may be difficult to properly use a plurality of solder materials having different soldering temperatures, but with this configuration, it is necessary to use the same solder material for the back surface side and the main surface side of the semiconductor element 100. Even if it exists, it can be easily soldered and mounted on the back surface side and the main surface side of the element.

第4の効果として、半導体素子100の主面電極から基板105への放熱効果を大きく向上できる。本構成では上面電極101に対する複雑な加工を必要としない。この為、例えば厚さ2mm〜数mm程度の金属板によって、上面電極101と成し、半導体素子100にハンダ付け実装することは容易である。さらに、上面電極101を半導体素子100の近傍にて基板105に接合できる。よって主面電極から基板105に至る上面電極101内部の放熱経路は、熱流の断面積を大きく、経路を短くできる。これにより上面電極101の熱抵抗を低減でき、放熱効果を向上できる。   As a fourth effect, the heat dissipation effect from the main surface electrode of the semiconductor element 100 to the substrate 105 can be greatly improved. In this configuration, complicated processing for the upper surface electrode 101 is not required. For this reason, it is easy to solder and mount on the semiconductor element 100 by forming the upper surface electrode 101 with a metal plate having a thickness of about 2 mm to several mm, for example. Further, the upper surface electrode 101 can be bonded to the substrate 105 in the vicinity of the semiconductor element 100. Therefore, the heat dissipation path inside the upper surface electrode 101 from the main surface electrode to the substrate 105 can increase the cross-sectional area of the heat flow and shorten the path. Thereby, the thermal resistance of the upper surface electrode 101 can be reduced, and the heat dissipation effect can be improved.

第5の効果として、半導体素子100の主面電極に対する電気接続に係るスペースを小さくできる。本構成では、半導体素子100の主面電極は上面電極101に電気的に接続されている。よって、上面電極101の主面端部に接続電極111を設ければ、電気的接続ができる。なお、接続電極111は、例えば超音波接合やレーザ接合等の従来接合技術で接続することができる。特に接続部分は、上面電極101端部をハンダ付けにて基板に接合している部分の上になるので、上記接合に際に多少の外力が上面電極101に印加されても、悪影響は無い。よって、例えば従来のワイヤボンディング技術によって、半導体素子から離れた配線パターンに一旦電気的に接続し、その配線パターンに対してバスバ電極等の接続電極を改めて接続する構成に対して、半導体素子100の主面電極に対する電気接続に係るスペースを低減できる。よって、電力変換装置をさらに小型化できる。   As a fifth effect, a space for electrical connection to the main surface electrode of the semiconductor element 100 can be reduced. In this configuration, the main surface electrode of the semiconductor element 100 is electrically connected to the upper surface electrode 101. Therefore, if the connection electrode 111 is provided at the end of the main surface of the upper surface electrode 101, electrical connection can be achieved. The connection electrode 111 can be connected by a conventional bonding technique such as ultrasonic bonding or laser bonding. In particular, since the connection portion is on the portion where the end of the upper surface electrode 101 is joined to the substrate by soldering, even if some external force is applied to the upper surface electrode 101 during the joining, there is no adverse effect. Therefore, for example, by using a conventional wire bonding technique to electrically connect once to a wiring pattern away from the semiconductor element and connect a connection electrode such as a bus bar electrode to the wiring pattern again, the semiconductor element 100 Space for electrical connection to the main surface electrode can be reduced. Therefore, the power converter can be further reduced in size.

第6の効果として、半導体素子100を基板105にハンダ付け実装する際に、そのハンダ付け位置を高精度に設定することができる。この為、ハンダ付け位置ずれを考慮してレイアウトを広く設定する必要もなく、ハンダ付け形状が変化して、このハンダ付け部分の熱応力耐量が変動してしまう懸念も無い。   As a sixth effect, when the semiconductor element 100 is soldered and mounted on the substrate 105, the soldering position can be set with high accuracy. For this reason, it is not necessary to set a wide layout in consideration of the soldering position shift, and there is no fear that the soldering shape changes and the thermal stress resistance of the soldered portion varies.

図4に、第6の効果を示すための断面構造を説明する模式図を示す。本構成では、半導体素子100主面電極の上に上面電極101を載せる際、上面電極101の端部を位置合わせの基準としてハンダ付けを行なえば良い。即ち、図に示すように、上面電極101の端部の位置であるD-D’線を基準として、距離Xの位置に半導体素子100端部を配置することは容易である。上面電極101と半導体素子100を絶縁性接着剤104で接合する際にジグ等を用いて位置合わせすれば良い。そして、このD-D’線を基準として上面電極101を基板105にハンダ106を実装すれば、半導体素子100の位置も高精度に合わせることができる。上面電極101は半導体素子100よりは重量が有るので、ハンダ付け実装の振動や、ハンダの表面張力による力、或いはフラックスガス発生などの拠っても動き難くなる。この為、半導体素子100を所定の位置にハンダ付けすることが容易で、かつハンダ付け部分の形状も変動しない。この為、電力変換装置の小型化と高信頼化をさらに図ることができる。   FIG. 4 is a schematic diagram for explaining a cross-sectional structure for showing the sixth effect. In this configuration, when the upper surface electrode 101 is placed on the main surface electrode of the semiconductor element 100, soldering may be performed using the end portion of the upper surface electrode 101 as a reference for alignment. That is, as shown in the drawing, it is easy to dispose the end portion of the semiconductor element 100 at the position of the distance X with reference to the D-D ′ line that is the position of the end portion of the upper surface electrode 101. What is necessary is just to align using the jig | tool etc. when joining the upper surface electrode 101 and the semiconductor element 100 with the insulating adhesive agent 104. If the solder 106 is mounted on the substrate 105 with the upper surface electrode 101 on the basis of the D-D ′ line, the position of the semiconductor element 100 can be adjusted with high accuracy. Since the upper surface electrode 101 is heavier than the semiconductor element 100, it is difficult to move even if the soldering mounting vibration, the force due to the surface tension of the solder, or the generation of flux gas is applied. Therefore, it is easy to solder the semiconductor element 100 to a predetermined position, and the shape of the soldered portion does not change. Therefore, it is possible to further reduce the size and reliability of the power conversion device.

実施例1の電力変換装置の製造工程を説明する。図3は、この製造順序を示す模式図である。半導体ブロック110を形成する第1の工程と、第1のハンダ106のハンダ付け工程と、第2のハンダ107のハンダ付け工程とから形成される。ここで、第1の工程は、図3の(a)に示す上面電極101裏面に絶縁性接着剤104を塗布する工程の後に、同図(b)に示す半導体素子100を接着する工程を行なう。その際、何らかの作業台(図示せず)上に半導体素子100を置き、その上から図3の(a)に示す形態の上面電極101を被せればよい。また、ジグ等(図示せず)を用いて、半導体素子100と上面電極101の位置を高精度に合わせた状態にて、半導体素子100裏面と絶縁部103裏面とが同一平面になるように接着する。そして、第1の工程の後に、第1のハンダ106のハンダ付け工程と第2のハンダ107のハンダ付け工程を実施する。図3の(c)に示すように、この第1のハンダ106のハンダ付け工程と第2のハンダ107のハンダ付け工程を同一の工程にて行なうこととする。   A manufacturing process of the power conversion device according to the first embodiment will be described. FIG. 3 is a schematic diagram showing the manufacturing order. The semiconductor block 110 is formed by a first step, a soldering step of the first solder 106, and a soldering step of the second solder 107. Here, in the first step, after the step of applying the insulating adhesive 104 to the back surface of the upper surface electrode 101 shown in FIG. 3A, the step of bonding the semiconductor element 100 shown in FIG. 3B is performed. . At that time, the semiconductor element 100 may be placed on some work table (not shown), and the top electrode 101 having the form shown in FIG. Also, using a jig or the like (not shown), the back surface of the semiconductor element 100 and the back surface of the insulating portion 103 are bonded to the same plane in a state where the positions of the semiconductor element 100 and the upper surface electrode 101 are aligned with high accuracy. To do. Then, after the first step, a soldering step for the first solder 106 and a soldering step for the second solder 107 are performed. As shown in FIG. 3C, the soldering process of the first solder 106 and the soldering process of the second solder 107 are performed in the same process.

この製造工程順序により、以下のさらなる効果も生じる。第1の効果として、半導体素子100をハンダ付け実装する際に、その位置ずれが生じることをさらに防止できる。これによりハンダ付け位置ずれを考慮してレイアウト設計することによる電力変換装置のサイズ増大や、ハンダ付け部分の形状変化によるハンダ付け部分の熱応力耐量の低下する事態を防止できる。即ち、図3の(a)、(b)に示したように、第1の工程により、先ず半導体素子100を上面電極101に固定する。この固定後に、半導体ブロック110として、金属箔を有する絶縁部103と半導体素子100とを一括して第1のハンダ106のハンダ付け工程を実施することになる。半導体素子100は複数個有っても上面電極101に固定されているので、第1のハンダ106のハンダ付け工程時に各半導体素子100の間隔を大きく開けて、ハンダ付け位置ずれ時の半導体素子100同士の干渉を防ぐ事態は生じない。   This manufacturing process sequence also produces the following further effects. As a first effect, when the semiconductor element 100 is soldered and mounted, it is possible to further prevent the displacement. As a result, it is possible to prevent an increase in the size of the power conversion device by designing the layout in consideration of the soldering position shift and a decrease in the thermal stress resistance of the soldered portion due to the shape change of the soldered portion. That is, as shown in FIGS. 3A and 3B, the semiconductor element 100 is first fixed to the upper surface electrode 101 by the first step. After this fixing, the soldering process of the first solder 106 is performed collectively for the semiconductor block 110 with the insulating portion 103 having the metal foil and the semiconductor element 100. Even if there are a plurality of semiconductor elements 100, they are fixed to the upper surface electrode 101. Therefore, the semiconductor elements 100 at the time of soldering position deviation are set apart by widening the intervals between the semiconductor elements 100 during the soldering process of the first solder 106. There is no situation that prevents mutual interference.

また、半導体ブロック110は比較的重量があるので、これ自体はハンダ付け時に位置ずれを起こし難い。即ち、本製造工程に従って製造工程を実施すれば、図1を参照して説明した以上に、ハンダ106の実装以前にD-D’線を基準として距離Xの位置に半導体素子100が固定されているので、第1のハンダ106の実装時に、半導体素子100の位置を高精度に制御できる。これにより、レイアウトの小型化と共に、第1のハンダ106の形状の変動による第1のハンダ106の熱応力耐量の変動も防止できる。   In addition, since the semiconductor block 110 is relatively heavy, it is difficult for the semiconductor block 110 to be misaligned during soldering. That is, if the manufacturing process is performed according to this manufacturing process, the semiconductor element 100 is fixed at the position of the distance X with reference to the DD ′ line before the solder 106 is mounted, as described with reference to FIG. Therefore, the position of the semiconductor element 100 can be controlled with high accuracy when the first solder 106 is mounted. As a result, the layout can be downsized, and fluctuations in the thermal stress resistance of the first solder 106 due to fluctuations in the shape of the first solder 106 can be prevented.

なお、半導体ブロック110を形成する第1の工程は、例えば以下の手順で容易に形成できる。先ず、図3の(a)のように、上面電極101の裏面側及び絶縁部103の側面に絶縁性接着剤104を塗布する。そして何らかの平らな作業台上に半導体素子100を置き、その上に上面電極101を被せる。この際に、半導体素子100と上面電極101の位置合わせはジグ等を用いることにより容易にできる。この後に絶縁性接着剤104を熱硬化させれば、半導体素子100の裏面と上面電極101の端部に有る絶縁部103の裏面とを同一平面に形成できる。よって、その後に第1のハンダ106のハンダ付け工程を容易に実施できる。さらに半導体素子100の側面と、上面電極101の端部や絶縁部103の側面との間に有る絶縁性接着剤104が、第1のハンダ106のハンダ付け工程時に、ハンダが半導体素子100主面電極側に回りこんで、素子に接触して電気的短絡を生じさせる事態も確実に防止できる。   Note that the first step of forming the semiconductor block 110 can be easily formed by the following procedure, for example. First, as shown in FIG. 3A, an insulating adhesive 104 is applied to the back surface side of the upper surface electrode 101 and the side surface of the insulating portion 103. Then, the semiconductor element 100 is placed on some flat work table, and the upper surface electrode 101 is placed thereon. At this time, alignment of the semiconductor element 100 and the upper surface electrode 101 can be easily performed by using a jig or the like. Thereafter, if the insulating adhesive 104 is thermally cured, the back surface of the semiconductor element 100 and the back surface of the insulating portion 103 at the end of the upper surface electrode 101 can be formed on the same plane. Therefore, the soldering process of the first solder 106 can be easily performed thereafter. Further, the insulating adhesive 104 between the side surface of the semiconductor element 100 and the end portion of the upper surface electrode 101 or the side surface of the insulating portion 103 is soldered to the main surface of the semiconductor element 100 during the soldering process of the first solder 106. It is also possible to reliably prevent a situation where an electric short circuit occurs due to the electrode side being brought into contact with the element.

第2の効果として、上面電極101を容易に実装配置できる。即ち、予め半導体素子100を基板105に対して第1のハンダ106で実装した後に、上面電極101を固定するならば、第1のハンダ106の工程と第2のハンダ107の工程を共に問題無く実施することは難しい。つまり、上面電極101固定用の第2のハンダ107の工程をするならば、半導体素子100を実装している第1のハンダ106部分への悪影響は避け難い。特に、ハンダ付け時に所謂鉛フリーハンダを用いると、ハンダ付け温度の設定自由度が少なく、ハンダ付け温度が異なる2種類のハンダ材を使い分けることが著しく、困難な事態も生じかねない。   As a second effect, the upper surface electrode 101 can be easily mounted and arranged. That is, if the upper surface electrode 101 is fixed after the semiconductor element 100 is previously mounted on the substrate 105 with the first solder 106, both the first solder 106 process and the second solder 107 process have no problem. It is difficult to implement. That is, if the process of the second solder 107 for fixing the upper surface electrode 101 is performed, an adverse effect on the first solder 106 portion on which the semiconductor element 100 is mounted is unavoidable. In particular, when so-called lead-free solder is used during soldering, there are few degrees of freedom in setting the soldering temperature, and two types of solder materials having different soldering temperatures are used differently, which may cause a difficult situation.

本手順によって、前述の第1の効果で示したように、また、図3の(c)に示したように、半導体素子100と絶縁部103の裏面を同一平面にした上で、半導体素子100と上面電極101を固定できる。よって、1回のハンダ付け工程で、即ち第1のハンダ106のハンダ付け工程時に、半導体ブロック110として半導体素子100と上面電極101の第2のハンダ107のハンダ付け工程を容易にかつ同時に実施できる。第3の効果として、複数の半導体素子100を上面電極101に固定する場合、各半導体素子100に多少の厚さバラツキが有っても、支障が生じない。一般に、半導体素子100は製造上の都合によって厚さに幾許可のバラツキが生じることは避け難い。本手順では、絶縁性接着剤104の潰れ程度によって、これらの厚さバラツキが有っても、各半導体素子100と絶縁性接着剤(絶縁物領域)104の夫々の裏面の段差を吸収して、同一平面にすることは容易である。よって、このような場合でも容易に、即ち製造コストを抑えて本電力変換装置を形成できる。   According to this procedure, as shown in the first effect described above and as shown in FIG. 3C, the back surface of the semiconductor element 100 and the insulating portion 103 are flush with each other, and then the semiconductor element 100 And the upper surface electrode 101 can be fixed. Therefore, the soldering process of the semiconductor element 100 and the second solder 107 of the upper surface electrode 101 as the semiconductor block 110 can be easily and simultaneously performed in one soldering process, that is, during the soldering process of the first solder 106. . As a third effect, when a plurality of semiconductor elements 100 are fixed to the upper surface electrode 101, no problem occurs even if each semiconductor element 100 has some thickness variation. In general, it is unavoidable that the semiconductor device 100 has a certain variation in thickness due to manufacturing reasons. In this procedure, depending on the degree of collapse of the insulating adhesive 104, even if there is a variation in these thicknesses, the steps on the back surface of each semiconductor element 100 and the insulating adhesive (insulator region) 104 are absorbed. It is easy to make the same plane. Therefore, even in such a case, the present power converter can be formed easily, that is, with reduced manufacturing costs.

上述したように、半導体素子100の裏面を基板105にハンダ付け実装する第1のハンダ106の実装(ハンダ付け)工程や、上面電極101を接合する第1のハンダ106の実装工程に先立って、第1の工程を行なうことにより、上記第1から第3の効果が生じる。なお、半導体素子100の裏面に、基板105とハンダ付けした際の熱応力を緩和する為に、半導体素子100と基板105との中間程度の熱膨張率を有する熱応力緩衝板(図示せず)を予めハンダ付け接合してから、上記第1の工程を行なっても、同様の効果が得られる。   As described above, prior to the mounting process (soldering) of the first solder 106 for soldering and mounting the back surface of the semiconductor element 100 to the substrate 105 and the mounting process of the first solder 106 for bonding the upper surface electrode 101, By performing the first step, the first to third effects are produced. In order to relieve thermal stress when soldering the substrate 105 to the back surface of the semiconductor element 100, a thermal stress buffer plate (not shown) having an intermediate thermal expansion coefficient between the semiconductor element 100 and the substrate 105. The same effect can be obtained even if the first step is performed after soldering and joining.

<第2実施例>
図5は、第2実施例による電力変換装置の断面構造を示す模式図である。図に示すように、電力変換装置は、基板105主面に配置した突起部品200に絶縁部103の側面を接触させると共に、絶縁部103裏面該金属箔と基板の間にスペーサ201を介して、第1のハンダ106の実装工程を行なう構成とする。本構成とすることにより、第1実施例に記した効果に加えて、以下の効果も追加して生じる。半導体ブロック110を基板105にハンダ106を実装する際に、ハンダ106の位置を高精度に調整することができる。特に、図3にに示した製造工程順序によって、予め半導体素子100と上面電極101とが絶縁性接着剤104とで接合固定されているので、絶縁部103を突起部品200に接触させてハンダ106の実装工程をすることにより、半導体素子100のハンダ106の位地を高精度に合わせることが容易にできる。
<Second embodiment>
FIG. 5 is a schematic diagram showing a cross-sectional structure of the power conversion device according to the second embodiment. As shown in the figure, the power converter is configured to bring the side surface of the insulating part 103 into contact with the protruding component 200 disposed on the main surface of the substrate 105, and through the spacer 201 between the metal foil and the substrate on the back surface of the insulating part 103, The first solder 106 is mounted. By adopting this configuration, the following effects are additionally produced in addition to the effects described in the first embodiment. When the solder 106 is mounted on the substrate 105 with the semiconductor block 110, the position of the solder 106 can be adjusted with high accuracy. In particular, since the semiconductor element 100 and the upper surface electrode 101 are bonded and fixed in advance by the insulating adhesive 104 according to the manufacturing process sequence shown in FIG. 3, the insulating portion 103 is brought into contact with the protruding component 200 and the solder 106. By performing this mounting process, the position of the solder 106 of the semiconductor element 100 can be easily adjusted with high accuracy.

また、ハンダ106の形状が変動することが無いので、ハンダ106部分の熱応力耐量が変動することは無い。また、突起部品200を直接半導体素子100に接触乃至は近接させることではないので、突起部品200の存在が半導体素子100のハンダ106部分に何ら悪影響を与えることは無い。また、絶縁部103裏面の金属箔と基板105の間にスペーサ201を介してハンダ106のハンダ付け工程をすれば、容易にハンダ106の厚さを所定の値に制御できる。特に同様に、図3に示した製造工程順序によれば、半導体素子100と基板105との間のハンダ106の厚さを容易に制御できる。これにより、ハンダ106の熱応力耐量が変動してしまう事態を確実に防止できる。なお、スペーサ201も半導体素子100の下或いは近傍に配置することは無いので、スペーサ201の存在が半導体素子100と基板105の間のハンダ106の部分や、半導体素子100裏面への電流の流れに対して何ら悪影響を与えることは無い。   Further, since the shape of the solder 106 does not change, the thermal stress resistance of the solder 106 portion does not change. Further, since the protruding component 200 is not directly brought into contact with or close to the semiconductor element 100, the presence of the protruding component 200 does not have any adverse effect on the solder 106 portion of the semiconductor element 100. Further, if the soldering process of the solder 106 is performed between the metal foil on the back surface of the insulating portion 103 and the substrate 105 via the spacer 201, the thickness of the solder 106 can be easily controlled to a predetermined value. In particular, similarly, according to the manufacturing process sequence shown in FIG. 3, the thickness of the solder 106 between the semiconductor element 100 and the substrate 105 can be easily controlled. As a result, it is possible to reliably prevent a situation in which the heat stress resistance of the solder 106 varies. Since the spacer 201 is not disposed under or in the vicinity of the semiconductor element 100, the presence of the spacer 201 is a part of the solder 106 between the semiconductor element 100 and the substrate 105 and the current flow to the back surface of the semiconductor element 100. There is no adverse effect on it.

また、第2実施例の変形例として、上面電極101の上に、絶縁物を介して別の放熱器(図示せず)を設けてもよい。本変形例によって、放熱器108と別の放熱器の2箇所から熱を逃がすことが可能となる。   As a modification of the second embodiment, another radiator (not shown) may be provided on the upper surface electrode 101 via an insulator. According to this modification, it is possible to release heat from two places of the radiator 108 and another radiator.

<第3実施例>
図6は、第3実施例による電力変換装置の上面電極の構造を示す模式図である。図6の(a)は、上面電極301の断面構造を示す模式図である。図6の(b)は、上面電極301の裏面側の構造を示す模式図である。先ず構造を説明する。図に示すように、上面電極301は、この上面電極301の裏面端部(周縁の下側)に略平板長方形形状の絶縁部303を複数個接合する構成とする。上面電極301の裏面側端部を、これら絶縁部303が囲むような形状とする。また上面電極301には、ハンダを注入すべき複数の開口部302を設ける。
<Third embodiment>
FIG. 6 is a schematic diagram showing the structure of the upper surface electrode of the power conversion device according to the third embodiment. FIG. 6A is a schematic diagram showing a cross-sectional structure of the upper surface electrode 301. FIG. 6B is a schematic diagram showing the structure of the back surface side of the upper surface electrode 301. First, the structure will be described. As shown in the figure, the upper surface electrode 301 has a configuration in which a plurality of substantially flat rectangular insulating portions 303 are joined to the back surface end portion (lower side of the periphery) of the upper surface electrode 301. The back surface side end portion of the upper surface electrode 301 is shaped so as to be surrounded by these insulating portions 303. The upper surface electrode 301 is provided with a plurality of openings 302 into which solder is to be injected.

この構造により、実施例1,2に記した効果に加えて、以下の効果も追加して生じる。上面電極301の形成をさらに容易にできる。上面電極301の端部と絶縁部303を合わせた高さの必要値は、凡そ数百μmから1mm程度である。よって、上面電極301を略平板上にし、従来技術による絶縁部303、例えば表裏面に金属箔を有するセラミックス基板を接合しても、本構成に必要な上面電極301と絶縁部303を形成できる。これにより上面電極301に複雑な加工を施すことによる製造コスト増加を防止できる。かつ絶縁部303側面もある程度の厚さを有するので、ハンダが上面電極301端部に接触して電気的短絡が生じる事態を容易に防止できる。   With this structure, in addition to the effects described in the first and second embodiments, the following effects are also added. The formation of the upper surface electrode 301 can be further facilitated. A required value of the total height of the end portion of the upper surface electrode 301 and the insulating portion 303 is about several hundred μm to 1 mm. Therefore, the upper electrode 301 and the insulating part 303 necessary for this configuration can be formed even if the upper electrode 301 is made substantially flat and the insulating part 303 according to the prior art, for example, a ceramic substrate having a metal foil on the front and back surfaces is joined. As a result, an increase in manufacturing cost due to complicated processing of the upper surface electrode 301 can be prevented. In addition, since the side surface of the insulating portion 303 has a certain thickness, it is possible to easily prevent a situation in which an electrical short circuit is caused when the solder contacts the end portion of the upper surface electrode 301.

<第4実施例>
図7は、第4実施例による電力変換装置の断面構造を示す模式図である。図に示すように、電力変換装置は、半導体素子として、第1の半導体素子401と第2の半導体素子402とを有する。そして、第1の半導体素子401と第2の半導体素子402の夫々の厚さが異なる構成とする。なお、これら半導体素子401、402は共通の上面電極403に絶縁性接着剤104で以って接合され、半導体ブロック410が形成される。この構成とすることにより、前述の各実施例に記した効果に加えて、以下の効果も追加して生じる。例えば、第1の半導体素子401をIGBT、第2の半導体素子402をダイオードとするような異なる半導体素子を用いる場合、各半導体素子の厚さが異なる場合がある。このような場合でも、第1の効果として、同じ上面電極403に容易に各半導体素子を接合できる。即ち半導体素子401、402の厚さが多少異なっていても、絶縁性接着剤104の潰れによって、半導体素子401、402の裏面と上面電極403端部の絶縁部303裏面との段差を吸収して、同一平面にして接合することが容易にできる。特に、図3に示した製造順序を採れば、一層容易に実現できる。この為厚さの異なる複数の半導体素子401、402を同じ上面電極403に接続しても、前述した効果を同様に生じることができる。
<Fourth embodiment>
FIG. 7 is a schematic diagram showing a cross-sectional structure of the power conversion device according to the fourth embodiment. As shown in the figure, the power conversion device includes a first semiconductor element 401 and a second semiconductor element 402 as semiconductor elements. The first semiconductor element 401 and the second semiconductor element 402 have different thicknesses. The semiconductor elements 401 and 402 are bonded to the common upper surface electrode 403 with an insulating adhesive 104 to form a semiconductor block 410. With this configuration, in addition to the effects described in the above-described embodiments, the following effects are also added. For example, when different semiconductor elements are used such that the first semiconductor element 401 is an IGBT and the second semiconductor element 402 is a diode, the thickness of each semiconductor element may be different. Even in such a case, as a first effect, each semiconductor element can be easily joined to the same upper surface electrode 403. In other words, even if the thicknesses of the semiconductor elements 401 and 402 are slightly different, the step between the back surface of the semiconductor elements 401 and 402 and the back surface of the insulating portion 303 at the end of the upper surface electrode 403 is absorbed by the crushing of the insulating adhesive 104. It can be easily joined in the same plane. In particular, the manufacturing sequence shown in FIG. Therefore, even when a plurality of semiconductor elements 401 and 402 having different thicknesses are connected to the same upper surface electrode 403, the above-described effects can be similarly produced.

また、各半導体素子401、402の厚さが異なるとしても、多くは200〜400μmの範囲内で有る場合が多い。この程度の厚さ違いを、金属から成る電極の加工のみで対応するならば、電極の加工に微細さが要る。よって製造コストの増加を招く。本構成では、接着剤104の潰れでこの程度の厚さ違いを容易に吸収でき、製造コストが低減できる。第2の効果として、配線に係るスペースを低減できる。各半導体素子401、402の主面電極に対する電気接続は、同じ上面電極403にて行う。よって、半導体素子401、402毎に電気接続用の接続電極を個々設ける必要が無く、電力変換装置の小型化を図ることができる。第3の効果として、各々の半導体素子401、402を基板105に対してハンダ付け実装する際に、その実装位置を高精度に合わせることができる。よって、厚さの異なる半導体素子401、402を用いる場合でも、位地ずれを抑制することが可能である。   Even if the thicknesses of the semiconductor elements 401 and 402 are different, many of them are in the range of 200 to 400 μm in many cases. If this thickness difference can be dealt with only by processing an electrode made of metal, the electrode needs to be finely processed. Therefore, the manufacturing cost is increased. In this configuration, this thickness difference can be easily absorbed by the collapse of the adhesive 104, and the manufacturing cost can be reduced. As a second effect, a space for wiring can be reduced. Electrical connection to the main surface electrodes of the semiconductor elements 401 and 402 is performed by the same upper surface electrode 403. Therefore, it is not necessary to provide individual connection electrodes for electrical connection for each of the semiconductor elements 401 and 402, and the power converter can be downsized. As a third effect, when each of the semiconductor elements 401 and 402 is soldered and mounted on the substrate 105, the mounting position can be adjusted with high accuracy. Therefore, even when semiconductor elements 401 and 402 having different thicknesses are used, it is possible to suppress the positional shift.

<第5実施例>
図8は、第5実施例による電力変換装置の断面構造を示す模式図である。図に示すように、電力変換装置に、放熱器108上に絶縁物を介して第2の基板502を設ける。上面電極101の端部の一部分が、第2の基板502に第1のハンダ106の実装工程で以って接合される。かつ基板105上の第1のハンダ106部分と、第2の基板502上の第1のハンダ106部分は分離した領域である構成とする。この構成とすることにより、各実施例に記した効果に加えて、以下の効果も追加して生じる。半導体素子100の主面電極から上面電極101を介しての電気的接続を、第2の基板502によって行うことができる。第2の基板502は第1の基板501と同じ工程にて、放熱器108上の絶縁物主面上に設けることが可能である。よって、上面電極101上に接続電極を設ける必要がなく、さらに製造コストを低減できる。
<Fifth embodiment>
FIG. 8 is a schematic diagram showing a cross-sectional structure of the power converter according to the fifth embodiment. As shown in the figure, the second substrate 502 is provided on the radiator 108 via an insulator in the power converter. A part of the end portion of the upper surface electrode 101 is bonded to the second substrate 502 in the mounting process of the first solder 106. In addition, the first solder 106 portion on the substrate 105 and the first solder 106 portion on the second substrate 502 are separated regions. By adopting this configuration, in addition to the effects described in each embodiment, the following effects are also added. Electrical connection from the main surface electrode of the semiconductor element 100 to the upper surface electrode 101 can be performed by the second substrate 502. The second substrate 502 can be provided over the main insulating surface of the radiator 108 in the same process as the first substrate 501. Therefore, there is no need to provide a connection electrode on the upper surface electrode 101, and the manufacturing cost can be further reduced.

<第6実施例>
図9は、第6実施例による電力変換装置の平面図である。図に示すように、半導体素子401の制御端子の位置に対応する上面電極403が第2の開口部601を有する。そして、その制御端子の周囲、即ち、第2の開口部601に枠体602を設置する。かつ上面電極403主面上に回路基板603を配置し、制御端子と回路基板603とを電気的に接続する構成とする。この接続には例えばワイヤボンディング線による接続線604を用いる。この構成とすることにより、各実施例に記した効果に加えて、以下の効果も追加して生じる。第1の効果として、半導体素子401が例えばIGBT等であり、ゲートによる制御端子を有する場合においても、この制御端子と回路基板603との電気的接続を容易にかつ省スペースでできる。即ち、第2の開口部601を介して、制御端子と上面電極403上の回路基板603とを容易に電気的に接続できる。なお、枠体602にてこの接続に係る部分は、周辺の他の領域と電気的に絶縁を図ることは容易である。特に、上面電極403上に回路基板603を配置するので、基板105上に回路基板603を設ける特段のスペースを設ける必要がない。よって電力変換装置を小型にできる。
<Sixth embodiment>
FIG. 9 is a plan view of the power converter according to the sixth embodiment. As shown in the figure, the upper surface electrode 403 corresponding to the position of the control terminal of the semiconductor element 401 has the second opening 601. Then, a frame body 602 is installed around the control terminal, that is, in the second opening 601. In addition, the circuit board 603 is disposed on the main surface of the upper surface electrode 403 so that the control terminal and the circuit board 603 are electrically connected. For this connection, for example, a connection line 604 using a wire bonding line is used. By adopting this configuration, in addition to the effects described in each embodiment, the following effects are also added. As a first effect, even when the semiconductor element 401 is, for example, an IGBT or the like and has a control terminal using a gate, the electrical connection between the control terminal and the circuit board 603 can be easily and space-saving. That is, the control terminal and the circuit board 603 on the upper surface electrode 403 can be easily electrically connected through the second opening 601. Note that it is easy to electrically insulate a portion related to this connection in the frame body 602 from other peripheral regions. In particular, since the circuit board 603 is disposed on the upper surface electrode 403, it is not necessary to provide a special space for providing the circuit board 603 on the substrate 105. Therefore, a power converter device can be reduced in size.

第2の効果として、半導体素子401の電気的動作がさらに安定化できる。即ちIGBT等では主面電極であるエミッタの電位に対して、制御端子であるゲートの電位を設定して、半導体素子401の電気的動作を制御する。本構成では、エミッタ電位である上面電極403の直上に回路基板603を配置して、ゲートに対する電気的接続を行う。これによりゲート接続線がエミッタ電極側とより一層容量結合できると共に、この上面電極403が半導体素子401の裏面電位と同じである基板105や、その他の電位の配線等からのシールド効果も出る。よって半導体素子401のゲート電位がノイズ等で乱される悪影響が低減し、半導体素子401の電気的動作が安定化できる。     As a second effect, the electrical operation of the semiconductor element 401 can be further stabilized. That is, in the IGBT or the like, the electrical potential of the semiconductor element 401 is controlled by setting the potential of the gate as the control terminal with respect to the potential of the emitter as the main surface electrode. In this configuration, the circuit substrate 603 is disposed immediately above the upper surface electrode 403 that is the emitter potential, and electrical connection to the gate is performed. As a result, the gate connection line can be further capacitively coupled to the emitter electrode side, and a shield effect can be obtained from the substrate 105 whose upper surface electrode 403 is the same as the back surface potential of the semiconductor element 401, wiring of other potentials, and the like. Therefore, the adverse effect of disturbing the gate potential of the semiconductor element 401 due to noise or the like is reduced, and the electrical operation of the semiconductor element 401 can be stabilized.

<第7実施例>
図10は、第7実施例による電力変換装置の断面構造を示す模式図である。図に示すように、第1の半導体ブロック701と第2の半導体ブロック702を有する。半導体ブロック701,702は、前述した実施例の半導体ブロックと同様の構成を持つ。そして、第1の半導体ブロック701は、第1の放熱器108上に絶縁物INSを介して実装すると共に、第2の半導体ブロック702は第2の放熱器708上に絶縁物INSを介して実装する。さらに、第1の半導体ブロック701の上面電極上に、熱伝導性材料703を介して第2の半導体ブロック702の上面電極が載るように、第1と第2の半導体ブロック701、702を積層配置する構成とする。
<Seventh embodiment>
FIG. 10 is a schematic diagram showing a cross-sectional structure of the power conversion device according to the seventh embodiment. As shown in the figure, a first semiconductor block 701 and a second semiconductor block 702 are included. The semiconductor blocks 701 and 702 have the same configuration as the semiconductor block of the above-described embodiment. The first semiconductor block 701 is mounted on the first radiator 108 via an insulator INS, and the second semiconductor block 702 is mounted on the second radiator 708 via an insulator INS. To do. Further, the first and second semiconductor blocks 701 and 702 are laminated so that the upper surface electrode of the second semiconductor block 702 is placed on the upper surface electrode of the first semiconductor block 701 with the heat conductive material 703 interposed therebetween. The configuration is as follows.

本構成とすることにより、各実施例に記した効果に加えて、以下の効果も追加して生じる。第1の半導体ブロック701と第2の半導体ブロック702のそれぞれの半導体素子が、裏面側のみならず主面電極からも放熱できる。よって、半導体素子の放熱効果が向上し、電力変換装置を小型化できる。特に第1の半導体ブロック701と第2の半導体ブロック702のそれぞれの半導体素子が、電気的に同一の動作をしない、即ち継続して大電流が同時に流れる状態が殆ど無い場合には、各半導体素子共にお互いの発熱で過剰に温度が上昇することなく、裏面と主面側の両方から効果的に放熱できる。例えば、インバータ装置を構成するスイッチ回路を成すIGBTとダイオードの逆並列回路において、第1の半導体ブロック701にIGBTが実装され、第2の半導体ブロック702にダイオードが実装されている場合は、IGBTとダイオードが同時に継続して発熱を生じることは殆ど無い。よって、本構成ではIGBTとダイオードの両方を効果的に放熱できることになる。また、本構成とすることにより、インバータ回路を構成して電動機の運転ができる。   By adopting this configuration, in addition to the effects described in each embodiment, the following effects are also added. Each semiconductor element of the first semiconductor block 701 and the second semiconductor block 702 can dissipate heat not only from the back surface side but also from the main surface electrode. Therefore, the heat dissipation effect of the semiconductor element is improved, and the power conversion device can be reduced in size. In particular, when each of the semiconductor elements of the first semiconductor block 701 and the second semiconductor block 702 does not perform the same electrical operation, that is, when there is almost no state where a large current continuously flows, each semiconductor element Both of them can effectively dissipate heat from both the back surface and the main surface without excessively rising the temperature due to mutual heat generation. For example, in an anti-parallel circuit of an IGBT and a diode constituting a switch circuit constituting an inverter device, when an IGBT is mounted on the first semiconductor block 701 and a diode is mounted on the second semiconductor block 702, the IGBT is The diodes hardly continue to generate heat at the same time. Therefore, in this configuration, both the IGBT and the diode can be effectively dissipated. Further, with this configuration, an inverter circuit can be configured to operate the motor.

<第8実施例>
図11は、第8実施例による電力変換装置の断面構造を示す模式図である。図に示すように、第1の半導体ブロック701の上面電極上に、絶縁物801を介して第2の放熱器800を実装する構成とする。この構成とすることにより、各実施例に記した効果に加えて、以下の効果も追加して生じる。第1の半導体ブロック701の内部に実装されている半導体素子を裏面側のみならず、主面電極側からも容易にかつ効果的に放熱できる。よって電力変換装置を小型化できる。なお、第1の半導体ブロック701の主面上に第2の放熱器800を配置する構造にて説明を行なった。第2の放熱器800の代わりにヒートスプレッダを配置し、そのヒートスプレッダの端部を基板105またはに接触させる構造としても同様な効果を生じる。
<Eighth embodiment>
FIG. 11 is a schematic diagram showing a cross-sectional structure of the power conversion device according to the eighth embodiment. As shown in the figure, the second heat sink 800 is mounted on the upper surface electrode of the first semiconductor block 701 with an insulator 801 interposed therebetween. By adopting this configuration, in addition to the effects described in each embodiment, the following effects are also added. The semiconductor element mounted in the first semiconductor block 701 can be easily and effectively dissipated not only from the back surface side but also from the main surface electrode side. Therefore, a power converter can be reduced in size. The description has been given of the structure in which the second radiator 800 is disposed on the main surface of the first semiconductor block 701. A similar effect can be obtained by arranging a heat spreader in place of the second radiator 800 and contacting the end of the heat spreader with the substrate 105 or the substrate 105.

ここで、以上の各実施例では何れも放熱器上に絶縁物を介して基板を実装し、この基板上に半導体素子を実装する構造にて説明を行なった。本発明はこの構造に限らず、放熱器上にセラミックス基板を実装する、或いはセラミックス基板をベースプレートを介して実装してもよい。また、セラミックス基板が表裏面に金属箔を有してもよい。さらにこの金属箔上に半導体素子を実装すると共に、配線パターンともなる構造においても、以上述べた各実施例は同様に成立し、また各効果も同様に生じる。   Here, in each of the above-described embodiments, a description has been given of a structure in which a substrate is mounted on a radiator via an insulator and a semiconductor element is mounted on the substrate. The present invention is not limited to this structure, and a ceramic substrate may be mounted on a radiator or the ceramic substrate may be mounted via a base plate. The ceramic substrate may have a metal foil on the front and back surfaces. Furthermore, in the structure in which a semiconductor element is mounted on this metal foil and also serves as a wiring pattern, the above-described embodiments are similarly established, and the respective effects are similarly produced.

本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、部材、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の部材やステップなどを1つに組み合わせたり、或いは、1つをの部材やステップを分割したりすることが可能である。   Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, members, functions, functions included in each step, etc. can be rearranged so as not to be logically contradictory, and a plurality of members, steps, etc. can be combined into one, or one member, It is possible to divide the steps.

第1実施例による電力変換装置の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the power converter device by 1st Example. 第1実施例の上面構造を示す模式図である。It is a schematic diagram which shows the upper surface structure of 1st Example. 製造順序を示す模式図である。It is a schematic diagram which shows a manufacture order. 第6の効果を示すための断面構造を説明する模式図である。It is a schematic diagram explaining the cross-sectional structure for showing the 6th effect. 第2実施例による電力変換装置の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the power converter device by 2nd Example. 第3実施例による電力変換装置の上面電極の構造を示す模式図である。It is a schematic diagram which shows the structure of the upper surface electrode of the power converter device by 3rd Example. 第4実施例による電力変換装置の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the power converter device by 4th Example. 第5実施例による電力変換装置の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the power converter device by 5th Example. 第6実施例による電力変換装置の平面図である。It is a top view of the power converter device by 6th Example. 第7実施例による電力変換装置の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the power converter device by 7th Example. 第8実施例による電力変換装置の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the power converter device by 8th Example. 従来の半導体素子実装技術を示す図である。It is a figure which shows the conventional semiconductor element mounting technique.

符号の説明Explanation of symbols

100 半導体素子
101 上面電極
102 開口部
103 絶縁部
104 絶縁性接着剤
105 基板
106 第1のハンダ
107 第2のハンダ
108 放熱器
110 半導体ブロック
111 接続電極
INS 絶縁物
200 突起部品
201 スペーサ
301 上面電極
302 開口部
303 絶縁部
401 第1の半導体素子
402 第2の半導体素子
403 上面電極
410 半導体ブロック
501 第1の基板
502 第2の基板
601 第2の開口部
602 枠体
603 回路基板
604 接続線
701 第1の半導体ブロック
702 第2の半導体ブロック
703 熱伝導性材料
705 第1の放熱器
708 第2の放熱器
800 第2の放熱器
801 絶縁物
100 semiconductor devices
101 Top electrode
102 opening
103 insulation
104 Insulating adhesive
105 substrates
106 First solder
107 Second solder
108 radiator
110 Semiconductor block
111 Connection electrode
INS insulator
200 Protruding parts
201 Spacer
301 Top electrode
302 opening
303 insulation
401 First semiconductor element
402 Second semiconductor element
403 Top electrode
410 Semiconductor block
501 First substrate
502 Second board
601 second opening
602 frame
603 circuit board
604 connection line
701 First semiconductor block
702 Second semiconductor block
703 Thermally conductive material
705 First radiator
708 Second radiator
800 Second radiator
801 Insulator

Claims (13)

ハンダを注入すべき複数の開口部が設けられ、周縁に絶縁部が設けられた上面電極の端部と、半導体素子の少なくとも側面とを絶縁性接着剤で接合して半導体ブロックを形成する工程と、
前記半導体ブロックの上面電極の絶縁部および半導体素子の裏面と、基板の主面とをハンダで接合するハンダ付け接合工程と、
前記上面電極に設けられている複数の開口部の少なくとも1つから、前記上面電極の裏面と前記半導体素子の主面と、前記絶縁部とで囲まれた空間にハンダを供給してハンダ付けするハンダ付け工程と、
を有し、
前記上面電極は、前記半導体素子の主面及び側面を被せる形状であり、
前記端部は、前記絶縁性接着剤を前記半導体素子の側面との間で囲う位置に形成され、
前記周縁は、前記端部で前記上面電極の裏面の位置に形成される
電力変換装置の製造方法。
A step of forming a semiconductor block by bonding an end portion of an upper surface electrode provided with a plurality of openings into which solder is to be injected and having an insulating portion provided on the periphery thereof and at least a side surface of the semiconductor element with an insulating adhesive; ,
A soldering joining step of joining the insulating portion of the upper surface electrode of the semiconductor block and the back surface of the semiconductor element and the main surface of the substrate with solder;
Solder is supplied and soldered to a space surrounded by the back surface of the upper surface electrode, the main surface of the semiconductor element, and the insulating portion from at least one of the plurality of openings provided in the upper surface electrode. Soldering process,
Have
The upper surface electrode has a shape covering the main surface and side surfaces of the semiconductor element,
The end is formed at a position surrounding the insulating adhesive between the side surfaces of the semiconductor element,
The method of manufacturing a power conversion device, wherein the peripheral edge is formed at a position of a back surface of the upper surface electrode at the end portion .
請求項1に記載の電力変換装置の製造方法において、
前記基板の裏面を絶縁物を介して第1の放熱器と接合する工程、
をさらに有することを特徴とする電力変換装置の製造方法。
In the manufacturing method of the power converter device of Claim 1,
Bonding the back surface of the substrate to the first radiator via an insulator;
The manufacturing method of the power converter device characterized by further having.
請求項1または2に記載の電力変換装置の製造方法において、
前記ハンダ接合工程と、前記ハンダ付け工程とを同時に行う、
ことを特徴とする電力変換装置の製造方法。
In the manufacturing method of the power converter device of Claim 1 or 2,
Performing the solder joining step and the soldering step simultaneously;
The manufacturing method of the power converter device characterized by the above-mentioned.
請求項1〜3のいずれか1項に記載の電力変換装置の製造方法において、
前記基板の主面に突起部品またはスペーサを設ける工程とをさらに有し、
前記スペーサまたは前記突起部品を前記絶縁部に接触させ、前記ハンダ付け接合工程を実行する、
ことを特徴とする電力変換装置の製造方法。
In the manufacturing method of the power converter device of any one of Claims 1-3,
And further providing a protruding component or a spacer on the main surface of the substrate,
The spacer or the protruding component is brought into contact with the insulating portion, and the soldering joining step is performed.
The manufacturing method of the power converter device characterized by the above-mentioned.
請求項1〜4のいずれか1項に記載の電力変換装置の製造方法において
記上面電極の周縁の絶縁部が、略平板長方形形状の複数の絶縁領域を含む、
ことを特徴とする電力変換装置の製造方法。
In the manufacturing method of the power converter device of any one of Claims 1-4 ,
Insulation of the peripheral edge of the front SL upper electrode comprises a plurality of insulating regions of the substantially flat rectangular shape,
The manufacturing method of the power converter device characterized by the above-mentioned.
請求項1〜5のいずれか1項に記載の電力変換装置の製造方法において、
前記半導体素子が、第1の半導体素子と第2の半導体素子とを含み、
該第1の半導体素子と該第2の半導体素子の夫々の厚さが異なる、
ことを特徴とする電力変換装置の製造方法。
In the manufacturing method of the power converter device of any one of Claims 1-5,
The semiconductor element includes a first semiconductor element and a second semiconductor element,
The thickness of each of the first semiconductor element and the second semiconductor element is different.
The manufacturing method of the power converter device characterized by the above-mentioned.
請求項1〜6のいずれか1項に記載の電力変換装置の製造方法において、
前記第1の放熱器上に前記絶縁物を介して第2の基板を設ける工程をさらに有し、
前記ハンダ付け接合工程が、
前記上面電極の周縁の前記絶縁部を設けていない部分を、前記第2の基板の主面にハンダで接合する工程を含み、
該第2の基板の主面と前記上面電極の周縁の前記絶縁部を設けていない部分を接合するハンダと、前記第1の基板の主面と前記半導体ブロックの上面電極の絶縁部および半導体素子の裏面を接合するハンダとが、分離した領域である、
ことを特徴とする電力変換装置の製造方法。
In the manufacturing method of the power converter device of any one of Claims 1-6,
A step of providing a second substrate on the first radiator via the insulator;
The soldering and joining step includes
Bonding a portion of the periphery of the upper surface electrode not provided with the insulating portion to the main surface of the second substrate with solder;
Solder for joining the main surface of the second substrate and the peripheral portion of the upper surface electrode where the insulating portion is not provided, the main surface of the first substrate, the insulating portion of the upper surface electrode of the semiconductor block, and a semiconductor element The solder that joins the back surface of is a separated area,
The manufacturing method of the power converter device characterized by the above-mentioned.
請求項1〜5のいずれか1項に記載の電力変換装置の製造方法において、
前記半導体素子が制御端子を有し、
該制御端子の位置に対応して第2の開口部が前記上面電極に設けられており、
前記製造方法は、
該第2の開口部に、接続線を貫通させる枠体を設ける工程と、
前記上面電極の主面上に回路基板を設ける工程と、
前記制御端子と該回路基板とを前記接続線で接続する工程とをさらに有する、
ことを特徴とする電力変換装置の製造方法。
In the manufacturing method of the power converter device of any one of Claims 1-5 ,
The semiconductor element has a control terminal;
A second opening is provided in the upper surface electrode corresponding to the position of the control terminal,
The manufacturing method includes:
Providing a frame for penetrating the connection line in the second opening;
Providing a circuit board on the main surface of the upper surface electrode;
A step of connecting the control terminal and the circuit board with the connection line;
The manufacturing method of the power converter device characterized by the above-mentioned.
請求項1〜8のいずれか1項に記載の電力変換装置の製造方法において、
前記半導体ブロックの上面電極上に、絶縁物を介して第2の放熱器と接合する工程、
をさらに有することを特徴とする電力変換装置の製造方法。
In the manufacturing method of the power converter device of any one of Claims 1-8,
On the upper surface electrode of the semiconductor block, the step of joining the second radiator through an insulator,
The manufacturing method of the power converter device characterized by further having.
ハンダを注入すべき複数の開口部が設けられ、周縁に絶縁部が設けられた第1の上面電極の端部と、第1の半導体素子の少なくとも側面とを絶縁性接着剤で接合して第1の半導体ブロックを形成する工程と、
前記第1の半導体ブロックの前記第1の上面電極の絶縁部および前記第1の半導体素子の裏面と、第1の基板の主面とをハンダで接合するハンダ付け接合工程と、
前記第1の上面電極に設けられている複数の開口部の少なくとも1つから、前記第1の上面電極の裏面と前記第1の半導体素子の主面と、前記絶縁部とで囲まれた空間にハンダを供給してハンダ付けするハンダ付け工程と、
ハンダを注入すべき複数の開口部が設けられ、周縁に絶縁部が設けられた第2の上面電極の端部と、第2の半導体素子の少なくとも側面とを絶縁性接着剤で接合して第2の半導体ブロックを形成する工程と、
前記第2の半導体ブロックの前記第2の上面電極の絶縁部および前記第2の半導体素子の裏面と、第2の基板の主面とをハンダで接合するハンダ付け接合工程と、
前記第2の上面電極に設けられている複数の開口部の少なくとも1つから、前記第2の上面電極の裏面と前記第2の半導体素子の主面と、前記絶縁部とで囲まれた空間にハンダを供給してハンダ付けするハンダ付け工程と、
前記第2の半導体ブロックの第2の上面電極の主面と、前記第2の半導体ブロックの第2の上面電極の主面とを熱伝導性材料を介して接合する工程と、
を有し、
前記第1の上面電極は、前記第1の半導体素子の主面及び側面を被せる形状であり、
前記第1の上面電極の端部は、前記絶縁性接着剤を前記第1の半導体素子の側面との間で囲う位置に形成され、
前記第1の上面電極の周縁は、前記第1の上面電極の端部で前記第1の上面電極の裏面の位置に形成され、
前記第2の上面電極は、前記第2の半導体素子の主面及び側面を被せる形状であり、
前記第2の上面電極の端部は、前記絶縁性接着剤を前記第2の半導体素子の側面との間で囲う位置に形成され、
前記第2の上面電極の周縁は、前記第2の上面電極の端部で前記第2の上面電極の裏面の位置に形成される
電力変換装置の製造方法。
A plurality of openings into which solder is to be injected is provided, and an end portion of the first upper surface electrode provided with an insulating portion on the periphery and at least a side surface of the first semiconductor element are joined with an insulating adhesive. Forming a semiconductor block of 1;
A soldering joining step for joining the insulating portion of the first upper surface electrode of the first semiconductor block and the back surface of the first semiconductor element to the main surface of the first substrate by solder;
A space surrounded by at least one of the plurality of openings provided in the first upper surface electrode by the back surface of the first upper surface electrode, the main surface of the first semiconductor element, and the insulating portion. A soldering process in which solder is supplied and soldered,
A plurality of openings into which solder is to be injected is provided, and an end of the second upper surface electrode provided with an insulating portion on the periphery and at least a side surface of the second semiconductor element are joined by an insulating adhesive. Forming a semiconductor block of 2;
A soldering joining step for joining the insulating portion of the second upper surface electrode of the second semiconductor block and the back surface of the second semiconductor element to the main surface of the second substrate by solder;
A space surrounded by at least one of a plurality of openings provided in the second upper surface electrode by the back surface of the second upper surface electrode, the main surface of the second semiconductor element, and the insulating portion. A soldering process in which solder is supplied and soldered,
Bonding the main surface of the second upper surface electrode of the second semiconductor block and the main surface of the second upper surface electrode of the second semiconductor block via a thermally conductive material;
Have
The first upper surface electrode has a shape covering the main surface and side surfaces of the first semiconductor element,
An end portion of the first upper surface electrode is formed at a position surrounding the insulating adhesive between a side surface of the first semiconductor element,
The peripheral edge of the first upper surface electrode is formed at the position of the back surface of the first upper surface electrode at the end of the first upper surface electrode,
The second upper surface electrode has a shape covering the main surface and side surfaces of the second semiconductor element,
An end portion of the second upper surface electrode is formed at a position surrounding the insulating adhesive between a side surface of the second semiconductor element,
The method of manufacturing a power converter , wherein the periphery of the second upper surface electrode is formed at the end of the second upper surface electrode at the position of the back surface of the second upper surface electrode .
請求項6または10に記載の電力変換装置の製造方法において、
前記第1の半導体素子が、IGBTまたはMOSFETであり、
前記第の半導体素子が、ダイオードである、
ことを特徴とする電力変換装置の製造方法。
In the manufacturing method of the power converter device of Claim 6 or 10,
The first semiconductor element is an IGBT or a MOSFET;
The second semiconductor element is a diode;
The manufacturing method of the power converter device characterized by the above-mentioned.
ハンダを注入すべき複数の開口部が設けられ、周縁に絶縁部が設けられた上面電極と、該上面電極の端部と絶縁性接着剤で少なくとも側面が接合されている半導体素子とで、形成された半導体ブロックと、
前記半導体ブロックの上面電極の絶縁部および半導体素子の裏面に、ハンダで主面が接合されている基板とを具え、
前記上面電極に設けられている複数の開口部の少なくとも1つから、前記上面電極の裏面と前記半導体素子の主面と前記絶縁部とで囲まれた空間に供給したハンダで、該上面電極の裏面と該半導体素子の主面を接続するように構成し、
前記上面電極は、前記半導体素子の主面及び側面を被せる形状であり、
前記端部は、前記絶縁性接着剤を前記半導体素子の側面との間で囲う位置に形成され、
前記周縁は、前記端部で前記上面電極の裏面の位置に形成される
ことを特徴とする電力変換装置。
Formed by a top surface electrode provided with a plurality of openings into which solder is to be injected and an insulating portion provided on the periphery, and a semiconductor element having at least a side surface bonded to an end portion of the top surface electrode with an insulating adhesive A semiconductor block,
A substrate whose main surface is joined by solder to the insulating portion of the upper surface electrode of the semiconductor block and the back surface of the semiconductor element,
Solder supplied from at least one of a plurality of openings provided in the upper surface electrode to a space surrounded by the back surface of the upper surface electrode, the main surface of the semiconductor element, and the insulating portion; It is configured to connect the back surface and the main surface of the semiconductor element,
The upper surface electrode has a shape covering the main surface and side surfaces of the semiconductor element,
The end is formed at a position surrounding the insulating adhesive between the side surfaces of the semiconductor element,
The power converter according to claim 1, wherein the peripheral edge is formed at a position of a back surface of the upper surface electrode at the end portion .
ハンダを注入すべき複数の開口部が設けられ、周縁に絶縁部が設けられた第1の上面電極と、該第1の上面電極の端部と絶縁性接着剤で少なくとも側面が接合されている第1の半導体素子とで、形成された第1の半導体ブロックと、
前記第1の半導体ブロックの第1の上面電極の絶縁部および第1の半導体素子の裏面に、ハンダで主面が接合されている第1の基板と、
ハンダを注入すべき複数の開口部が設けられ、周縁に絶縁部が設けられた第2の上面電極と、該第2の上面電極の端部と絶縁性接着剤で少なくとも側面が接合されている第2の半導体素子とで、形成された第2の半導体ブロックと、
前記第1の半導体ブロックの第1の上面電極の絶縁部および第2の半導体素子の裏面に、ハンダで主面が接合されている第2の基板と、を具え、
前記第2の半導体ブロックの第2の上面電極の主面と、前記第2の半導体ブロックの第2の上面電極の主面とを熱伝導性材料を介して接合するように構成し、
前記第1の上面電極は、前記第1の半導体素子の主面及び側面を被せる形状であり、
前記第1の上面電極の端部は、前記絶縁性接着剤を前記第1の半導体素子の側面との間で囲う位置に形成され、
前記第1の上面電極の周縁は、前記第1の上面電極の端部で前記第1の上面電極の裏面の位置に形成され、
前記第2の上面電極は、前記第2の半導体素子の主面及び側面を被せる形状であり、
前記第2の上面電極の端部は、前記絶縁性接着剤を前記第2の半導体素子の側面との間で囲う位置に形成され、
前記第2の上面電極の周縁は、前記第2の上面電極の端部で前記第2の上面電極の裏面の位置に形成される
ことを特徴とする電力変換装置。
A plurality of openings into which solder is to be injected is provided, and a first upper surface electrode having an insulating portion provided on the periphery, and an end of the first upper surface electrode are joined to at least a side surface with an insulating adhesive. A first semiconductor block formed with a first semiconductor element;
A first substrate having a main surface bonded by solder to the insulating portion of the first upper surface electrode of the first semiconductor block and the back surface of the first semiconductor element;
A plurality of openings into which solder is to be injected is provided, and a second upper surface electrode having an insulating portion provided at the periphery thereof, and at least a side surface is bonded to an end portion of the second upper surface electrode by an insulating adhesive. A second semiconductor block formed by the second semiconductor element;
A second substrate having a main surface bonded by solder to the insulating portion of the first upper surface electrode of the first semiconductor block and the back surface of the second semiconductor element;
The main surface of the second upper surface electrode of the second semiconductor block and the main surface of the second upper surface electrode of the second semiconductor block are joined via a heat conductive material,
The first upper surface electrode has a shape covering the main surface and side surfaces of the first semiconductor element,
An end portion of the first upper surface electrode is formed at a position surrounding the insulating adhesive between a side surface of the first semiconductor element,
The peripheral edge of the first upper surface electrode is formed at the position of the back surface of the first upper surface electrode at the end of the first upper surface electrode,
The second upper surface electrode has a shape covering the main surface and side surfaces of the second semiconductor element,
An end portion of the second upper surface electrode is formed at a position surrounding the insulating adhesive between a side surface of the second semiconductor element,
The power conversion device according to claim 1, wherein a peripheral edge of the second upper surface electrode is formed at an end of the second upper surface electrode at a position on the back surface of the second upper surface electrode .
JP2008005938A 2008-01-15 2008-01-15 Power conversion device and manufacturing method thereof Active JP5217014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008005938A JP5217014B2 (en) 2008-01-15 2008-01-15 Power conversion device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008005938A JP5217014B2 (en) 2008-01-15 2008-01-15 Power conversion device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009170596A JP2009170596A (en) 2009-07-30
JP5217014B2 true JP5217014B2 (en) 2013-06-19

Family

ID=40971460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008005938A Active JP5217014B2 (en) 2008-01-15 2008-01-15 Power conversion device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5217014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7005418B2 (en) 2018-04-13 2022-01-21 東芝テック株式会社 Product reading system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369933B (en) * 2015-12-16 2021-06-29 三菱电机株式会社 Semiconductor device and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2914409B2 (en) * 1991-12-10 1999-06-28 富士電機株式会社 Semiconductor element
JP2002043587A (en) * 2000-07-28 2002-02-08 Origin Electric Co Ltd Mesa type diode and its manufacturing method
JP4085768B2 (en) * 2002-10-08 2008-05-14 トヨタ自動車株式会社 Upper electrode, power module, and upper electrode soldering method
JP4281050B2 (en) * 2003-03-31 2009-06-17 株式会社デンソー Semiconductor device
JP2007335538A (en) * 2006-06-13 2007-12-27 Sanken Electric Co Ltd Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7005418B2 (en) 2018-04-13 2022-01-21 東芝テック株式会社 Product reading system

Also Published As

Publication number Publication date
JP2009170596A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
US8981552B2 (en) Power converter, semiconductor device, and method for manufacturing power converter
JP6305302B2 (en) Semiconductor device and manufacturing method thereof
JP4438489B2 (en) Semiconductor device
JP5239291B2 (en) Semiconductor device and manufacturing method thereof
JP5414644B2 (en) Semiconductor device
JP7238330B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP5930980B2 (en) Semiconductor device and manufacturing method thereof
JPWO2016024445A1 (en) Semiconductor device
JP2017017109A (en) Semiconductor device
JP2019153752A (en) Semiconductor device
JP2017139406A (en) Semiconductor device
JP6602981B2 (en) Semiconductor device
US20140347838A1 (en) Electronic device and manufacturing method of electronic device
JP6043049B2 (en) Semiconductor device mounting structure and semiconductor device mounting method
JP2019083294A (en) Semiconductor device and method for manufacturing the same
JP2007173703A (en) Semiconductor device
JP5217015B2 (en) Power converter and manufacturing method thereof
JP2017123360A (en) Semiconductor module
JP2010287726A (en) Semiconductor device
JP5217014B2 (en) Power conversion device and manufacturing method thereof
JP7176397B2 (en) Semiconductor device and its manufacturing method
US20170288564A1 (en) Power conversion apparatus and method for manufacturing the same
JP7074046B2 (en) Semiconductor devices and their manufacturing methods
JP2009016380A (en) Semiconductor apparatus and manufacturing method thereof
JPWO2017077729A1 (en) Semiconductor module and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150