JP5215496B1 - Composition for producing sealing film for solar cell, method for producing the same, and sealing film for solar cell - Google Patents
Composition for producing sealing film for solar cell, method for producing the same, and sealing film for solar cell Download PDFInfo
- Publication number
- JP5215496B1 JP5215496B1 JP2012190925A JP2012190925A JP5215496B1 JP 5215496 B1 JP5215496 B1 JP 5215496B1 JP 2012190925 A JP2012190925 A JP 2012190925A JP 2012190925 A JP2012190925 A JP 2012190925A JP 5215496 B1 JP5215496 B1 JP 5215496B1
- Authority
- JP
- Japan
- Prior art keywords
- composition
- eva
- polyethylene
- ethylene
- sealing film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Photovoltaic Devices (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Sealing Material Composition (AREA)
Abstract
【課題】エチレン−酢酸ビニル共重合体及びポリエチレン系樹脂を含む太陽電池用封止膜製造用組成物であって、製造時の製膜性等の加工特性に優れた組成物、及びこれを用いた太陽電池用封止膜を提供する。
【解決手段】エチレン−酢酸ビニル共重合体、及びポリエチレンを含む太陽電池用封止膜製造用組成物であって、前記エチレン−酢酸ビニル共重合体が海相であり、前記ポリエチレンが島相である海島構造を有し、前記ポリエチレンからなる島相の平均径((平均長径(l)+平均短径(d))/2)が40μm以下であり、及び/又は前記ポリエチレンからなる島相の平均アスペクト比(平均長径(l)/平均短径(d))が、40以下であることを特徴とする組成物、並びにこれを用いた太陽電池用封止膜。
【選択図】図1A composition for producing a sealing film for a solar cell comprising an ethylene-vinyl acetate copolymer and a polyethylene-based resin, which is excellent in processing characteristics such as film-forming properties during production, and uses the composition The sealing film for solar cells was provided.
A composition for producing a sealing film for a solar cell comprising an ethylene-vinyl acetate copolymer and polyethylene, wherein the ethylene-vinyl acetate copolymer is a sea phase and the polyethylene is an island phase. An island phase having a certain sea-island structure and having an average diameter ((average major axis (l) + average minor axis (d)) / 2) made of polyethylene of 40 μm or less and / or of an island phase made of polyethylene A composition having an average aspect ratio (average major axis (l) / average minor axis (d)) of 40 or less, and a solar cell sealing film using the composition.
[Selection] Figure 1
Description
本発明は、エチレン−酢酸ビニル共重合体及びポリエチレンを含む太陽電池用封止膜を製造するための組成物に関し、特に、製膜性等の加工特性に優れた組成物に関する。 The present invention relates to a composition for producing a sealing film for a solar cell containing an ethylene-vinyl acetate copolymer and polyethylene, and particularly relates to a composition excellent in processing characteristics such as film forming properties.
従来から、エチレン−酢酸ビニル共重合体(以下、EVAともいう)を主成分として含む組成物からなるシート(EVAシート)は、安価であり、高い透明性を有することから、合わせガラス用中間膜や太陽電池用封止膜等として利用されている。合わせガラス用中間膜としては、図2に示すように、ガラス板11A及び11Bの間に挟持され、耐貫通性や破損したガラスの飛散防止等の機能を発揮する。太陽電池用封止膜としては、図3に示すように、太陽電池用セル24とガラス基板等からなる表面側透明保護部材21との間、及び太陽電池用セル24と裏面側保護部材(バックカバー)22との間に配置され、絶縁性の確保や機械的耐久性の確保等の機能を発揮する。
Conventionally, a sheet (EVA sheet) made of a composition containing an ethylene-vinyl acetate copolymer (hereinafter also referred to as EVA) as a main component is inexpensive and has high transparency. And as a sealing film for solar cells. As shown in FIG. 2, the interlayer film for laminated glass is sandwiched between glass plates 11A and 11B and exhibits functions such as penetration resistance and prevention of scattering of broken glass. As shown in FIG. 3, the solar cell sealing film is formed between the
近年、耐熱性、耐クリープ性、及び耐水蒸気透過性の向上等の目的で、EVA等のエチレン系共重合体と、ポリエチレン(以下、PEともいう)等のポリオレフィンとを含有する封止膜用組成物又は封止用シートが開発されている(特許文献1、2)。
In recent years, for the purpose of improving heat resistance, creep resistance, and water vapor permeation resistance, etc., for sealing films containing ethylene-based copolymers such as EVA and polyolefins such as polyethylene (hereinafter also referred to as PE) A composition or a sealing sheet has been developed (
しかしながら、本発明者らの検討によると、特許文献1又は2に記載されたようなEVAとポリエチレンとを混合した組成物は、EVAを主成分とする組成物(EVA組成物)に比べてシート製造時における加工特性が低下する場合がある。
However, according to the study by the present inventors, a composition in which EVA and polyethylene as described in
即ち、樹脂組成物をシート状に製膜する場合、例えば、まず一次混練工程により材料を混合し、その後、必要に応じてロール練り等の二次混練を行い、カレンダ成形等により製膜する。この際、一次混練工程後の一次混練工程後の製膜工程等における樹脂組成物の粘度は、製膜性等の加工特性に大きく影響するため、樹脂組成物の粘度を一定の範囲(加工可能粘度範囲ともいう)に調整することが必要になる。樹脂組成物の粘度は、一般に温度に応じて変化するので、粘度の調整は、樹脂組成物の温度を調節することで可能である。 That is, when the resin composition is formed into a sheet, for example, the materials are first mixed by a primary kneading step, and then, if necessary, secondary kneading such as roll kneading is performed, and the film is formed by calendering or the like. At this time, the viscosity of the resin composition in the film-forming process after the primary kneading process after the primary kneading process greatly affects the processing characteristics such as film-forming properties. It is necessary to adjust to a viscosity range). Since the viscosity of the resin composition generally changes according to the temperature, the viscosity can be adjusted by adjusting the temperature of the resin composition.
EVA組成物の場合は、加工可能粘度範囲が得られる温度近傍において、温度の変化に伴って緩やかに粘度が変化するため、加工可能粘度範囲が得られる温度範囲の幅(加工可能温度幅ともいう)が大きい。一方、EVAとポリエチレンとを混合した樹脂組成物では、特にポリエチレンの混合比が高い場合に加工可能粘度範囲が得られる温度近傍において、温度の変化に伴って急激に粘度変化が生じ、加工可能温度幅が小さくなる場合がある。 In the case of an EVA composition, the viscosity gradually changes with a change in temperature in the vicinity of the temperature at which the workable viscosity range can be obtained. Therefore, the width of the temperature range in which the workable viscosity range can be obtained (also referred to as the workable temperature range). ) Is large. On the other hand, in a resin composition in which EVA and polyethylene are mixed, particularly when the mixing ratio of polyethylene is high, in the vicinity of a temperature at which a workable viscosity range is obtained, a viscosity change occurs abruptly as the temperature changes, and the processable temperature The width may be smaller.
通常、製膜工程等において樹脂組成物の温度を高精度に調節することは困難であるため、樹脂組成物の加工可能温度幅が小さくなると加工し難くなるといった問題が生じる。 Usually, it is difficult to adjust the temperature of the resin composition with high accuracy in a film forming process or the like, so that there arises a problem that it becomes difficult to process when the processable temperature range of the resin composition becomes small.
更に、EVAとポリエチレンとを混合した樹脂組成物では、EVA組成物と比較して加工可能粘度範囲が得られる温度が高くなる傾向があり、エネルギーコストが上昇する。また、特にポリエチレンの混合比が高い場合には、EVA組成物を加工する既存の製膜装置、例えば、水を温調用溶媒として用いたカレンダ成形装置等では、温調範囲を超えて加工できなくなる恐れもある。 Furthermore, in a resin composition in which EVA and polyethylene are mixed, the temperature at which a workable viscosity range is obtained tends to be higher than that of the EVA composition, and the energy cost increases. In particular, when the mixing ratio of polyethylene is high, an existing film forming apparatus for processing an EVA composition, for example, a calendar molding apparatus using water as a temperature adjusting solvent, cannot be processed beyond the temperature adjustment range. There is also a fear.
従って、本発明の目的は、エチレン−酢酸ビニル共重合体及びポリエチレンを含む太陽電池用封止膜製造用組成物であって、上述のような加工可能な粘度範囲が得られる温度範囲の幅等における問題が改善され、シート製造時の製膜性等の加工特性に優れた組成物を提供することにある。 Accordingly, an object of the present invention is a composition for producing a sealing film for a solar cell containing an ethylene-vinyl acetate copolymer and polyethylene, and the temperature range in which the above processable viscosity range is obtained, etc. It is an object of the present invention to provide a composition having improved processing characteristics such as film forming properties during sheet production.
また、本発明の目的は、上記太陽電池用封止膜製造用組成物の製造方法を提供することにある。 Moreover, the objective of this invention is providing the manufacturing method of the said composition for solar cell sealing film manufacture.
更に、本発明の目的は、上記太陽電池用封止膜製造用組成物を用いた太陽電池用封止膜を提供することにある。 Furthermore, the objective of this invention is providing the sealing film for solar cells using the said composition for sealing film manufacture for solar cells.
上記目的は、エチレン−酢酸ビニル共重合体、及びポリエチレンを含む太陽電池用封止膜製造用組成物であって、前記エチレン−酢酸ビニル共重合体が海相であり、前記ポリエチレンが島相である海島構造を有し、前記ポリエチレンからなる島相の平均径((平均長径(l)+平均短径(d))/2)が40μm以下であり、前記ポリエチレンからなる島相の平均アスペクト比(平均長径(l)/平均短径(d))が、40以下であり、且つ前記エチレン−酢酸ビニル共重合体(EVA)と前記ポリエチレン(PE)の体積比(EVA:PE)が、65:35〜30:70の範囲であることを特徴とする組成物によって達成される。この範囲の配合比であれば、PEを配合することによる耐熱性等の向上効果が得られ、上記の海島構造を有することによる加工特性に優れた組成物とすることができる。 Above object, et styrene - vinyl acetate copolymer, and a solar cell sealing film prepared composition comprising polyethylene, the ethylene - vinyl acetate copolymer is the sea phase, the polyethylene island phase It has a sea-island structure is, the average diameter of the island phase consisting of polyethylene ((average major axis (l) + average minor diameter (d)) / 2) is at 40μm or less, an average aspect of the island phase consisting of the polyethylene ratio (average major axis (l) / average minor diameter (d)), 40 Ri der less, and the ethylene - volume ratio of vinyl acetate copolymer (EVA) and the polyethylene (PE) (EVA: PE) is , 65:35 to 30:70 . If the blending ratio is within this range, an effect of improving heat resistance and the like by blending PE can be obtained, and a composition excellent in processing characteristics by having the sea-island structure can be obtained.
これにより、エチレン−酢酸ビニル共重合体(EVA)とポリエチレン(PE)とが混合された組成物であっても、EVA組成物と同様な範囲の加工可能温度幅が得られ、加工可能粘度範囲が得られる温度についてもEVA組成物に近くなり、加工特性を向上することができる。これは、上記組成物において、EVA成分が海相(連続相)であり、PE成分が島相であることにより、EVAとPEが共連続構造、もしくはEVA成分が島相、PE成分が海相となって混合されている場合に比べてPEの物性が発現し難くなるためと考えられる。また、PEの島相の平均径、及び/又はPEの島相のアスペクト比を上記のようにすることで、組成物の加工特性を向上させることができ、PEの配合比を高くすることができる。 Thereby, even in a composition in which an ethylene-vinyl acetate copolymer (EVA) and polyethylene (PE) are mixed, a processable temperature range in the same range as the EVA composition is obtained, and the processable viscosity range is obtained. The temperature at which is obtained is close to that of the EVA composition, and the processing characteristics can be improved. This is because, in the above composition, the EVA component is a sea phase (continuous phase) and the PE component is an island phase, so that EVA and PE are co-continuous structures, or the EVA component is an island phase and the PE component is a sea phase. This is thought to be because the physical properties of PE are less likely to be expressed as compared to the case where the mixture is mixed. Moreover, the processing characteristic of a composition can be improved by making the average diameter of the PE island phase and / or the aspect ratio of the PE island phase as described above, and the PE blending ratio can be increased. it can.
本発明の太陽電池用封止膜製造用組成物の好ましい態様は以下の通りである。 Preferred embodiments of the composition for producing a sealing film for solar cells of the present invention are as follows.
(1)前記海島構造が、前記エチレン−酢酸ビニル共重合体(EVA)及び前記ポリエチレン(PE)が、EVAの粘度VEVA[Pa・s]に対して、PEの粘度VPE[Pa・s]が0.1〜20倍となる条件下で混練されて得られる。これにより、更にPEの配合比が高い、海島構造を有する組成物とすることができる。
(2)前記海島構造が、前記エチレン−酢酸ビニル共重合体及び前記ポリエチレンが、せん断速度10〜1500s-1の条件で混練されて得られる。
(3)組成物の粘度が30000Pa・sとなる温度が、70〜100℃であり、且つ組成物の粘度が20000〜50000Pa・sとなる温度範囲の幅が5.0℃以上である。
(4)前記ポリエチレンが、低密度ポリエチレン及び/又は直鎖状低密度ポリエチレンから選択される1種以上のポリエチレンからなる。これらのポリエチレンは比較的低融点で、結晶化度が低い点で好ましい。
(5)前記エチレン−酢酸ビニル共重合体のJIS K7210で規定されるメルトフローレートが、1.0〜50g/10分である。
(6)前記エチレン−酢酸ビニル共重合体の酢酸ビニル含有量が、20〜40質量%である。
( 1 ) The sea-island structure is such that the ethylene-vinyl acetate copolymer (EVA) and the polyethylene (PE) have a viscosity V PE [Pa · s] of PE with respect to the viscosity V EVA [Pa · s] of EVA . ] Is obtained by kneading under the condition of 0.1 to 20 times. Thereby, it can be set as the composition which has a sea island structure with the higher compounding ratio of PE.
( 2 ) The sea-island structure is obtained by kneading the ethylene-vinyl acetate copolymer and the polyethylene under conditions of a shear rate of 10 to 1500 s −1 .
( 3 ) The temperature at which the viscosity of the composition is 30000 Pa · s is 70 to 100 ° C., and the width of the temperature range in which the viscosity of the composition is 20000 to 50000 Pa · s is 5.0 ° C. or more.
( 4 ) The polyethylene is composed of one or more kinds of polyethylene selected from low density polyethylene and / or linear low density polyethylene. These polyethylenes are preferred because of their relatively low melting points and low crystallinity.
( 5 ) The melt flow rate defined by JIS K7210 of the ethylene-vinyl acetate copolymer is 1.0 to 50 g / 10 min.
( 6 ) The vinyl acetate content of the ethylene-vinyl acetate copolymer is 20 to 40% by mass.
また、本発明の目的は、本発明の太陽電池用封止膜製造用組成物の製造方法であって、前記エチレン−酢酸ビニル共重合体(EVA)及び前記ポリエチレン(PE)を、EVAの粘度VEVA[Pa・s]に対するPEの粘度VPE[Pa・s]が0.1〜20倍となる条件下で混練する混練工程を含むことを特徴とする製造方法によって達成される。 Moreover, the objective of this invention is a manufacturing method of the composition for solar cell sealing film manufacture of this invention, Comprising: The said ethylene-vinyl acetate copolymer (EVA) and the said polyethylene (PE) are the viscosity of EVA. This is achieved by a production method including a kneading step of kneading under a condition that the viscosity V PE [Pa · s] of PE with respect to V EVA [Pa · s] is 0.1 to 20 times.
本発明の製造方法は、前記混練工程が、せん断速度10〜1500s-1の条件で混練する工程であることが好ましい。また、前記混練工程が、70〜130℃の温度条件で混練する工程であることが好ましい。 In the production method of the present invention, the kneading step is preferably a step of kneading under conditions of a shear rate of 10 to 1500 s −1 . The kneading step is preferably a step of kneading under a temperature condition of 70 to 130 ° C.
更に、本発明の目的は、本発明の組成物をシート状に製膜したことを特徴とする太陽電池用封止膜によって達成される。本発明の太陽電池用封止膜は、本発明の組成物を用いて製造されているので、PEを含むことにより、耐熱性等が付与され、且つEVA組成物と同様な条件で得られるため、高品質且つ低コストの太陽電池用封止膜である。 Furthermore, the object of the present invention is achieved by a sealing film for solar cells, wherein the composition of the present invention is formed into a sheet. Since the sealing film for solar cells of the present invention is manufactured using the composition of the present invention, heat resistance and the like are imparted by including PE and obtained under the same conditions as the EVA composition. A high-quality and low-cost solar cell sealing film.
本発明によれば、EVAにPEを配合することにより耐熱性等が向上された太陽電池用封止膜を製造するための組成物において、EVA組成物と同様な範囲の加工可能温度幅を有する等、加工特性に優れた組成物を得ることができる。従って、本発明の組成物は、EVA組成物と同様な条件で太陽電池用封止膜を製造することができ、これにより得られた太陽電池用封止膜は、高品質且つ低コストであるといえる。 According to the present invention, a composition for producing a solar cell sealing film having improved heat resistance and the like by blending PE with EVA has a workable temperature range in the same range as that of the EVA composition. Thus, a composition having excellent processing characteristics can be obtained. Therefore, the composition of the present invention can produce a solar cell sealing film under the same conditions as the EVA composition, and the solar cell sealing film obtained thereby has high quality and low cost. It can be said.
以下に、本発明の太陽電池用封止膜製造用組成物について、図面を参照しながら説明する。 Below, the composition for solar cell sealing film manufacture of this invention is demonstrated, referring drawings.
図1は、本発明の太陽電池用封止膜製造用組成物の海島構造を説明するための概略断面図であり、図1(a)は、EVAとPEとが共連続構造である状態を示し、図1(b)は、EVAが海相(連続相)であり、PEが島相である海島構造である状態を示す。 FIG. 1 is a schematic cross-sectional view for explaining the sea-island structure of the composition for producing a sealing film for solar cells of the present invention. FIG. 1 (a) shows a state in which EVA and PE are co-continuous structures. FIG. 1 (b) shows a state of sea-island structure where EVA is the sea phase (continuous phase) and PE is the island phase.
EVAとPEを混合した樹脂組成物においては、混合比にもよるが、一般に、図1(a)のようなEVA成分とPE成分とが共連続構造を有している。本発明の太陽電池用封止膜製造用組成物は、EVA及びPEを含み、且つ図1(b)で示すように、EVA成分が海相であり、PE成分が島相である海島構造を有していることを特徴とする。 In a resin composition in which EVA and PE are mixed, generally, the EVA component and the PE component as shown in FIG. 1A have a co-continuous structure, although depending on the mixing ratio. The composition for producing a sealing film for a solar cell of the present invention includes EVA and PE, and has a sea-island structure in which the EVA component is a sea phase and the PE component is an island phase, as shown in FIG. It is characterized by having.
樹脂組成物を用いて太陽電池用封止膜を製造する場合、例えば、上述のように、まず2軸混練機等を用いて、各材料を混合する一次混練工程を行い、次いで、必要に応じてロール練り等の二次混練を行い、カレンダ成形や押し出し成形等により製膜する。この際、一次混練工程後の製膜工程等における樹脂組成物の粘度は、製膜性等の加工特性に大きく影響するため、樹脂組成物の粘度を一定の範囲(加工可能粘度範囲)に調整することが必要になる。例えばEVA組成物を用いて、カレンダ成形等において良好な製膜性を得るためには、製膜工程における樹脂組成物の粘度は、5000〜100000Pa・sが好ましく、20000〜50000Pa・sが更に好ましい。 When producing a sealing film for a solar cell using a resin composition, for example, as described above, first, a primary kneading step of mixing each material is performed using a biaxial kneader or the like, and then as necessary. Then, secondary kneading such as roll kneading is performed, and a film is formed by calendar molding or extrusion molding. At this time, since the viscosity of the resin composition in the film-forming process after the primary kneading process greatly affects the processing characteristics such as film-forming properties, the viscosity of the resin composition is adjusted to a certain range (processable viscosity range). It becomes necessary to do. For example, in order to obtain good film forming properties in calendar molding or the like using an EVA composition, the viscosity of the resin composition in the film forming process is preferably 5,000 to 100,000 Pa · s, and more preferably 20,000 to 50,000 Pa · s. .
樹脂組成物の粘度は、一般に温度に応じて変化するので、粘度の調整は樹脂組成物の温度を調節することで行うことができる。温度変化に伴う粘度の変化は、樹脂組成物によって異なるため、加工可能粘度範囲が得られる温度範囲の幅(加工可能温度幅)は、樹脂組成物によって異なる。通常、製膜工程等において樹脂組成物の温度を高精度に調節することは困難で、加工し難くなるため、樹脂組成物の加工可能温度幅は大きい方が好ましく、一般に、5℃以上が好ましい。また、加工可能粘度範囲が得られる温度についても、高温になるとエネルギーコストが上昇する上、例えば、水を温調用溶媒に用いたカレンダ成形装置等の製膜装置を用いる場合は、温調範囲を超えて加工できなくなる恐れがある。従って、加工可能粘度範囲が得られる温度は、95℃以下が好ましい。 Since the viscosity of the resin composition generally changes depending on the temperature, the viscosity can be adjusted by adjusting the temperature of the resin composition. Since the change in the viscosity accompanying the temperature change varies depending on the resin composition, the width of the temperature range (processable temperature width) where the processable viscosity range is obtained varies depending on the resin composition. Usually, it is difficult to adjust the temperature of the resin composition with high accuracy in a film forming process and the like, and it becomes difficult to process. Therefore, the processable temperature range of the resin composition is preferably large, and generally 5 ° C. or more is preferable. . In addition, the temperature at which the workable viscosity range can be obtained also increases the energy cost when the temperature becomes high.For example, when using a film forming apparatus such as a calendering apparatus using water as a temperature adjusting solvent, the temperature adjusting range is set. There is a risk that it will be impossible to process beyond that. Therefore, the temperature at which the workable viscosity range is obtained is preferably 95 ° C. or lower.
EVA組成物の場合は、上記の加工可能粘度範囲が得られる温度近傍において、温度の変化に伴って緩やかに粘度が変化するため、5℃以上の加工可能温度幅が得られ、加工可能粘度範囲が得られる温度は90℃以下である。 In the case of an EVA composition, the viscosity gradually changes with the change of temperature near the temperature at which the above processable viscosity range is obtained, so a processable temperature range of 5 ° C. or more is obtained, and the processable viscosity range Is obtained at a temperature of 90 ° C. or lower.
一方、EVAとPEとを混合した樹脂組成物においては、後述の実施例で述べるように、樹脂組成物の状態が、図1(a)に示したようなEVA成分とPE成分が共連続構造を有する一般的な混合組成物の場合は、加工可能粘度範囲が得られる温度近傍において、温度の変化に伴って急激に粘度変化が生じるため、加工可能温度幅が小さくなり、更に加工可能粘度範囲が得られる温度も95℃を超える場合がある。これに対し、EVAとPEの配合比が同一であっても、樹脂組成物の状態が、図1(b)に示したようなEVA成分が海相であり、PE成分が島相である海島構造を有する本発明の組成物の場合は、EVA組成物と同様な範囲の加工可能温度幅が得られ、加工可能粘度範囲が得られる温度についてもEVA組成物に近づけることができ、加工特性を向上させることができる。これは、EVA成分が海相であり、PE成分が島相であることにより、EVAとPEが共連続構造、もしくはEVA成分が島相、PE成分が海相となってとなって混合されている場合に比べてPEの物性が発現し難くなるためと考えられる。 On the other hand, in the resin composition in which EVA and PE are mixed, the state of the resin composition is such that the EVA component and PE component as shown in FIG. In the case of a general mixed composition having a viscosity, a change in viscosity suddenly occurs with a change in temperature near the temperature at which a workable viscosity range can be obtained. The temperature at which can be obtained may also exceed 95 ° C. On the other hand, even if the blending ratio of EVA and PE is the same, the state of the resin composition is the sea island where the EVA component as shown in FIG. 1B is the sea phase and the PE component is the island phase. In the case of the composition of the present invention having a structure, a processable temperature range in the same range as that of the EVA composition can be obtained, and the temperature at which the processable viscosity range can be obtained can be brought close to the EVA composition, and the processing characteristics can be improved. Can be improved. This is because the EVA component is the sea phase and the PE component is the island phase, so that the EVA and PE are co-continuous structures, or the EVA component is the island phase and the PE component is the sea phase. This is probably because the physical properties of PE are less likely to be exhibited compared to the case where it is present.
本発明の組成物において、EVAとPEの配合比は、PEを配合することによる耐熱性、耐クリープ性、耐水蒸気透過性の向上等の効果が十分に得られ、且つ上記の海島構造が十分に得られ、加工特性に優れた組成物とするために、EVAとPEの体積比(EVA:PE)は、65:35〜30:70の範囲である。本発明の効果は、特にPEの配合比が高い場合に発揮されるのでEVA:PEは、60:40〜30:70が更に好ましく、50:50〜30:70が特に好ましい。 In the compositions of the present invention, the compounding ratio of EVA and PE are heat resistance by blending the P E, creep resistance, the effect of improvement of resistance to water vapor permeability is sufficiently obtained, and the above-mentioned sea-island structure sufficiently obtained, the volume ratio of to an excellent composition processing properties, EVA and PE (EVA: PE) is 65:35 to 30: in the range of 70. Since the effect of the present invention is exhibited particularly when the blending ratio of PE is high, EVA: PE is more preferably 60:40 to 30:70, and particularly preferably 50:50 to 30:70.
本発明の組成物において、上述海島構造はどのような条件で得られたものでも良い。よりPEの配合比が高い組成物の場合は、海島構造が形成され難いので、混練条件を調整することが好ましい。例えば、EVA及びPEを混練する際に、EVAの粘度VEVA[Pa・s]に対してPEの粘度VPE[Pa・s]が0.1〜20倍となる条件下で混練されて得られることが好ましい。この条件でEVA及びPEを混練した場合、よりPEの配合比が高い、海島構造を有する組成物とすることができる。特にPEの配合比がEVAの配合比より高い組成物の場合、上記混練条件において、EVAの粘度VEVA[Pa・s]に対するPEの粘度VPE[Pa・s]は、更に1倍より大きく20倍以下が好ましく、更に2〜15倍が好ましく、特に4〜13倍が好ましい。これにより、PE成分よりEVA成分がよく流れることになるため、少ないEVA配合量でも良く流れてEVAのみが連続相を形成しやすくなる。これにより更にPEの配合比が高い海島構造を有する組成物とすることができる。 In the composition of the present invention, the above-mentioned sea-island structure may be obtained under any conditions. In the case of a composition having a higher blending ratio of PE, it is difficult to form a sea-island structure, so it is preferable to adjust the kneading conditions. For example, when kneading EVA and PE, it is obtained by kneading under a condition in which the viscosity V PE [Pa · s] of PE is 0.1 to 20 times the viscosity V EVA [Pa · s] of EVA . It is preferred that When EVA and PE are kneaded under these conditions, a composition having a sea-island structure with a higher blending ratio of PE can be obtained. In particular, in the case of a composition in which the blending ratio of PE is higher than the blending ratio of EVA, the viscosity V PE [Pa · s] of PE with respect to the viscosity V EVA [Pa · s] of EVA is further larger than 1 time under the above kneading conditions. It is preferably 20 times or less, more preferably 2 to 15 times, and particularly preferably 4 to 13 times. As a result, the EVA component flows better than the PE component, so that even with a small amount of EVA blended, the EVA component flows easily, and only EVA makes it easy to form a continuous phase. Thereby, it can be set as the composition which has a sea island structure where the compounding ratio of PE is still higher.
また、上記の条件において、EVAの粘度VEVAは、1000〜50000Pa・sが好ましく、更に2000〜20000Pa・sが好ましい。一方、PEの粘度VPEは、20000〜120000Pa・sが好ましく、更に30000〜50000Pa・sが好ましい。これらの樹脂の粘度は、例えば、キャピラリーレオメータ-を用い、せん断速度6.1s−1、温度は実際の加工温度にて測定することができる。この粘度から上記の粘度比が算出できる。 Further, under the above conditions, the EVA viscosity V EVA is preferably 1000 to 50000 Pa · s, more preferably 2000 to 20000 Pa · s. On the other hand, the viscosity V PE of PE is preferably 20000 to 120,000 Pa · s, and more preferably 30000 to 50000 Pa · s. The viscosity of these resins can be measured, for example, using a capillary rheometer, the shear rate is 6.1 s −1 , and the temperature is the actual processing temperature. The viscosity ratio can be calculated from this viscosity.
また、上記海島構造を形成する条件として、EVA及びPEを混練する際のせん断速度は、10〜1500s-1が好ましい。これにより、PEの島相を更に密に形成することができ、更にPEの配合比が高い、海島構造を有する組成物とすることができる。上記混練条件において、せん断速度は、更に100〜1000s-1が好ましく、特に200〜800s-1が好ましい。 As a condition for forming the sea-island structure, the shear rate when kneading EVA and PE is preferably 10 to 1500 s −1 . Thereby, the island phase of PE can be formed more densely, and it can be set as the composition which has a sea island structure with the further high compounding ratio of PE. In the above kneading conditions, the shear rate is further preferably 100 to 1000 s −1 , particularly preferably 200 to 800 s −1 .
本発明の組成物は、太陽電池用封止膜の製造における製膜工程に使用される段階で効果を発揮するので、組成物の粘度が30000Pa・sとなる温度(本発明の組成物における中心加工可能温度)が70〜100℃であることが好ましく、更に80〜95℃が好ましい。また、組成物の粘度が20000〜50000Pa・sとなる温度範囲の幅(本発明の組成物の加工可能温度幅)は、5.0℃以上であることが好ましい。 Since the composition of the present invention exerts an effect at the stage of use in the film forming process in the production of a solar cell sealing film, the temperature at which the viscosity of the composition becomes 30000 Pa · s (the center in the composition of the present invention) The processable temperature) is preferably 70 to 100 ° C, more preferably 80 to 95 ° C. Moreover, it is preferable that the width | variety (temperature range which can process the composition of this invention) of the temperature range from which the viscosity of a composition will be 20000-50000 Pa.s is 5.0 degreeC or more.
これらの樹脂組成物の粘度及び温度の関係は、例えば、キャピラリーレオメータ-を用い、せん断速度6.1s−1のもと、温度を昇温させて粘度を測定することにより求めることができる。 The relationship between the viscosity and temperature of these resin compositions can be determined, for example, by using a capillary rheometer and measuring the viscosity by increasing the temperature at a shear rate of 6.1 s −1 .
本発明の組成物において、海島構造を構成するPEからなる島相の形態(形状、大きさ等)については上述の規定を有していれば、特に制限はない。島相の形状は、例えば、断面形状として、円形、楕円形、矩形等の多角形、角丸矩形等の角丸多角形、又はこれらが組み合わさった形状等が挙げられる。島相の大きさについては、例えば、図1(b)においては、断面形状を円形又は楕円形として示しているが、本発明において、島相の平均長径(l)と平均短径(d)の平均値を平均径とした場合、PEからなる島相の平均径((平均長径(l)+平均短径(d))/2)が40μm以下である。これにより更に樹脂組成物の加工特性を向上させることができる。また、島相を密にすることにより、更にPEの配合比を高くすることができる。島相の平均径は、2〜30μmが更に好ましく、5〜25μmが特に好ましい。島相の大きさは、大き過ぎると共連続構造に近い性質が生じる恐れがあり、小さ過ぎると、粘度が高くなる恐れがある。 In the composition of the present invention, the form (shape, size, etc.) of the island phase composed of PE constituting the sea-island structure is not particularly limited as long as it has the above-mentioned definition. Examples of the shape of the island phase include a cross-sectional shape such as a circle, an ellipse, a polygon such as a rectangle, a rounded polygon such as a rounded rectangle, or a combination of these. With regard to the size of the island phase, for example, in FIG. 1B, the cross-sectional shape is shown as a circle or an ellipse, but in the present invention , the average major axis (l) and the average minor axis (d) of the island phase. Is the average diameter of the island phase composed of PE ((average major axis (l) + average minor axis (d)) / 2) is 40 μm or less. Thereby, the processing characteristics of the resin composition can be further improved. Moreover, the blending ratio of PE can be further increased by making the island phase dense. The average diameter of the island phase is more preferably 2 to 30 μm, particularly preferably 5 to 25 μm. If the size of the island phase is too large, a property close to a co-continuous structure may occur, and if it is too small, the viscosity may increase.
なお、島相の平均径は、島相の断面形状が多角形や角丸多角形等の場合は、長手方向の最大距離を長径とし、幅方向の最大距離を短径として平均長径(l)及び平均短径(d)を算出する。 The average diameter of the island phase is the average major axis (l) where the longest maximum distance in the longitudinal direction is the major axis and the maximum distance in the width direction is the minor axis when the island phase has a polygonal shape or a rounded polygon. And the average minor axis (d) is calculated.
また、本発明において、PEからなる島相の平均アスペクト比(平均長径(l)/平均短径(d))は大き過ぎると、島相の合一により共連続構造を形成しやすくなるため、40以下である。これにより、更にPEの配合比を高くすることができる。島相の平均アスペクト比は、1〜30が更に好ましく、1〜10が特に好ましい。 In the present invention , if the average aspect ratio (average major axis (l) / average minor axis (d)) of the island phase made of PE is too large, it becomes easy to form a co-continuous structure by uniting the island phases. 40 or less. Thereby, the blending ratio of PE can be further increased. The average aspect ratio of the island phase is more preferably 1 to 30, and particularly preferably 1 to 10.
これらの数値は、例えば、樹脂組成物の断面(ミクロトームを用いた断面出しによる)を光学顕微鏡、又は透過型電子顕微鏡で1000倍等に拡大した写真、あるいは樹脂組成物の断面をAFM(原子間力顕微鏡)により弾性率マッピングした写真から、任意にサンプリングした部分における島相について測定して算出することができる。 These numerical values are, for example, a photograph in which the cross section of the resin composition (by cross-section using a microtome) is magnified 1000 times with an optical microscope or a transmission electron microscope, or the cross section of the resin composition is AFM (interatomic It can be calculated by measuring the island phase in an arbitrarily sampled part from a photograph obtained by mapping the elastic modulus using a force microscope.
[ポリエチレン]
本発明において、ポリエチレン(PE)は、JISに規定される通り、エチレンを主体とする重合体であり、エチレンの単独重合体、エチレンと5モル%以下の炭素数3以上のα−オレフィン例えばブテン−1、ヘキセン−1、4―メチルペンテン−1、オクテン−1等との共重合体、エチレンと官能基に炭素、酸素、および水素だけを有する1モル%以下の非オレフィン単量体との共重合体を含む(JISK6922−1:1997附属書参照)。PEは一般に、その密度によって分類され、高密度ポリエチレン(HDPE(又はPE−HD))、低密度ポリエチレン(LDPE(又はPE−LD))、直鎖状低密度ポリエチレン(LLDPE(又はPE−LLD)等が挙げられる。PEとしてはどのようなものでも良いが、比較的融点が低く、結晶化度が低い、低密度ポリエチレン及び/又は直鎖状低密度ポリエチレンから選択される1種以上のポリエチレンからなることが好ましい。
[polyethylene]
In the present invention, polyethylene (PE) is a polymer mainly composed of ethylene, as defined in JIS, and is a homopolymer of ethylene, an ethylene and an α-olefin having 3 or less carbon atoms of 5 mol% or less, such as butene. -1, copolymer of hexene-1, 4-methylpentene-1, octene-1, etc., ethylene and 1 mol% or less non-olefin monomer having only functional groups such as carbon, oxygen and hydrogen Copolymers are included (see JISK6922-1: 1997 appendix). PE is generally classified by its density, high density polyethylene (HDPE (or PE-HD)), low density polyethylene (LDPE (or PE-LD)), linear low density polyethylene (LLDPE (or PE-LLD)). Any PE may be used, but one or more kinds of polyethylene selected from low density polyethylene and / or linear low density polyethylene having a relatively low melting point and low crystallinity. It is preferable to become.
LDPEは、一般に、100〜350MPaの高圧下で有機過酸化物等のラジカル発生剤の存在下でエチレンを重合して得られる長鎖分岐を有するもので、その密度は、一般に、0.910g/cm3以上0.930g/cm3未満である。LLDPEは、一般に、チーグラー型触媒、フィリップス触媒、メタロセン型触媒等の遷移金属触媒の存在下にエチレンとα−オレフィンとを共重合して得られるもので、その密度(JIS K 7112に準ずる。以下同じ)は、一般に0.910〜0.940g/cm3、好ましくは0.910〜0.930g/cm3である。これらは、市販のものを適宜用いることができる。 LDPE generally has a long chain branch obtained by polymerizing ethylene in the presence of a radical generator such as an organic peroxide under a high pressure of 100 to 350 MPa, and its density is generally 0.910 g / cm 3 or more and less than 0.930 g / cm 3 . LLDPE is generally obtained by copolymerizing ethylene and an α-olefin in the presence of a transition metal catalyst such as a Ziegler type catalyst, a Phillips catalyst, or a metallocene type catalyst, and its density (according to JIS K 7112. The same is generally 0.910 to 0.940 g / cm 3 , preferably 0.910 to 0.930 g / cm 3 . These can use a commercially available thing suitably.
また、本発明において、PEは2種以上が混合されていることが好ましい。特に1種以上のLDPE、及び1種以上のLLDPEが混合されていることが好ましい。LLDPEを配合することで、引張強度に優れた組成物を得ることができるが、一方でLLDPEは、LDPEと比較して融点が高い傾向にある。このため、LDPEも併用することで、引張強度に優れ、且つ比較的低融点とすることができ、組成物の中心加工可能温度を低く保つことができる。 Moreover, in this invention, it is preferable that 2 or more types of PE is mixed. In particular, it is preferable that one or more types of LDPE and one or more types of LLDPE are mixed. By blending LLDPE, a composition excellent in tensile strength can be obtained. On the other hand, LLDPE tends to have a higher melting point than LDPE. For this reason, when LDPE is also used, the tensile strength is excellent and the melting point can be relatively low, and the temperature at which the composition can be processed centrally can be kept low.
[エチレン−酢酸ビニル共重合体]
本発明において、エチレン−酢酸ビニル共重合体(EVA)における酢酸ビニルの含有率は、通常、EVAの質量に対して20〜45質量%である。EVAの酢酸ビニル単位の含有量が低い程、得られる組成物が硬くなる傾向がある。酢酸ビニルの含有量が20質量%未満では、本発明の組成物を用いて得られる太陽電池用封止膜を高温で架橋硬化させた場合に、架橋硬化後のシートの透明性が充分でないおそれがある。また、45質量%を超えると、得られる架橋硬化後のシートの硬さが不十分となる場合があり、更にカルボン酸、アルコール、アミン等が発生し積層体における他の部材等との界面で発泡が生じ易くなるおそれがある。
[Ethylene-vinyl acetate copolymer]
In this invention, the content rate of the vinyl acetate in an ethylene-vinyl acetate copolymer (EVA) is 20-45 mass% normally with respect to the mass of EVA. There exists a tendency for the composition obtained to become hard, so that the content of the vinyl acetate unit of EVA is low. If the vinyl acetate content is less than 20% by mass, the solar cell encapsulating film obtained using the composition of the present invention may be crosslinked and cured at a high temperature, whereby the transparency of the sheet after crosslinking and curing may not be sufficient. There is. Moreover, when it exceeds 45 mass%, the hardness of the sheet | seat after bridge | crosslinking hardening obtained may become inadequate, and also carboxylic acid, alcohol, an amine, etc. generate | occur | produce and in an interface with the other member in a laminated body, etc. There is a risk that foaming is likely to occur.
本発明において、架橋硬化後のシートに適度な柔軟性を付与するためには、EVAにおける酢酸ビニルの含有率は、20〜40質量%が好ましく、更に22〜35質量%が好ましい。 In this invention, in order to provide moderate softness | flexibility to the sheet | seat after bridge | crosslinking hardening, 20-40 mass% is preferable and, as for the vinyl acetate content rate in EVA, 22-35 mass% is preferable.
また、EVAのメルトフローレート(MFR)(JIS−K7210に従う)は、1.0g/10分以上が好ましい。MFRは、1.0〜50.0g/10分が更に好ましく、特に4.0〜30.0g/10分が好ましい。なお、MFRは、190℃、荷重21.18Nの条件で測定されたものである。 The EVA melt flow rate (MFR) (according to JIS-K7210) is preferably 1.0 g / 10 min or more. The MFR is more preferably 1.0 to 50.0 g / 10 min, and particularly preferably 4.0 to 30.0 g / 10 min. In addition, MFR is measured on condition of 190 degreeC and load 21.18N.
本発明の太陽電池用封止膜の組成物においては、EVAに加えて、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体のようなエチレン−不飽和カルボン酸共重合体、前記エチレン−不飽和カルボン酸共重合体のカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−アクリル酸イソブチル共重合体、エチレン−アクリル酸n−ブチル共重合体のようなエチレン−不飽和カルボン酸エステル共重合体、エチレン−アクリル酸イソブチル−メタクリル酸共重合体、エチレン−アクリル酸n−ブチル−メタクリル酸共重合体のようなエチレン−不飽和カルボン酸エステル−不飽和カルボン酸共重合体及びそのカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン−酢酸ビニル共重合体のようなエチレン−ビニルエステル共重合体等のエチレン−極性モノマー共重合体、ポリビニルアセタール系樹脂(例えば、ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB)、及び塩化ビニル樹脂を副次的に使用しても良い。 In the composition for the solar cell sealing film of the present invention, in addition to EVA, an ethylene-unsaturated carboxylic acid copolymer such as an ethylene-acrylic acid copolymer or an ethylene-methacrylic acid copolymer, the ethylene -Ionomer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer in which some or all of the carboxyl groups of the unsaturated carboxylic acid copolymer are neutralized with the above metals. Polymer, ethylene-isobutyl acrylate copolymer, ethylene-unsaturated carboxylic acid ester copolymer such as ethylene-n-butyl acrylate copolymer, ethylene-isobutyl acrylate-methacrylic acid copolymer, ethylene- Ethylene-unsaturated carboxylic acid ester-unsaturated polymer such as n-butyl acrylate-methacrylic acid copolymer An ethylene-polar monomer copolymer such as an ionomer in which a part or all of the carboxyl group thereof is neutralized with the above metal, an ethylene-vinyl ester copolymer such as an ethylene-vinyl acetate copolymer, etc. Polyvinyl acetal resins (for example, polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB), and vinyl chloride resin may be used as secondary materials.
本発明の組成物は、EVA及びPEに加えて、必要に応じて、架橋剤、架橋助剤、接着向上剤、可塑剤等を添加することができる。 In addition to EVA and PE, the composition of this invention can add a crosslinking agent, a crosslinking adjuvant, an adhesion improvement agent, a plasticizer, etc. as needed.
[架橋剤]
架橋剤は、EVAの架橋構造を形成することができるもので、本発明の組成物を用いて得られる太陽電池用封止膜の強度、接着性及び耐久性を向上することができる。架橋剤は、有機過酸化物又は光重合開始剤を用いることが好ましい。なかでも、接着力、透明性、耐湿性、耐貫通性の温度依存性が改善された太陽電池用封止膜が得られることから、有機過酸化物を用いるのが好ましい。
[Crosslinking agent]
A crosslinking agent can form the crosslinked structure of EVA, and can improve the strength, adhesiveness and durability of the sealing film for solar cell obtained by using the composition of the present invention. As the crosslinking agent, an organic peroxide or a photopolymerization initiator is preferably used. Especially, since the sealing film for solar cells with which the adhesive force, transparency, moisture resistance, and penetration resistance were improved in temperature dependence is obtained, it is preferable to use an organic peroxide.
前記有機過酸化物としては、100℃以上の温度で分解してラジカルを発生するものであれば、どのようなものでも使用することができる。有機過酸化物は、一般に、成膜温度、組成物の調整条件、硬化温度、被着体の耐熱性、貯蔵安定性を考慮して選択される。特に、半減期10時間の分解温度が70℃以上のものが好ましい。 Any organic peroxide may be used as long as it decomposes at a temperature of 100 ° C. or higher and generates radicals. The organic peroxide is generally selected in consideration of the film formation temperature, the adjustment conditions of the composition, the curing temperature, the heat resistance of the adherend, and the storage stability. In particular, the one having a decomposition temperature of 70 ° C. or more with a half-life of 10 hours is preferable.
前記有機過酸化物としては、樹脂の加工温度・貯蔵安定性の観点から例えば、ベンゾイルパーオキサイド系硬化剤、tert−ヘキシルパーオキシピバレート、tert−ブチルパーオキシピバレート、3,5,5−トリメチルヘキサノイルパーオキサイド、ジ−n−オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、スクシニックアシドパーオキサイド、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノエート、tert−ヘキシルパーオキシ−2−エチルヘキサノエート、4−メチルベンゾイルパーオキサイド、tert−ブチルパーオキシ−2−エチルヘキサノエート、m−トルオイル+ベンゾイルパーオキサイド、ベンゾイルパーオキサイド、1,1−ビス(tert−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ビス(tert−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(tert−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(tert−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(tert−ブチルパーオキシ)シクロヘキサン、2,2−ビス(4,4−ジ−tert−ブチルパーオキシシクロヘキシル)プロパン、1,1−ビス(tert−ブチルパーオキシ)シクロドデカン、tert−ヘキシルパーオキシイソプロピルモノカーボネート、tert−ブチルパーオキシマレイックアシド、tert−ブチルパーオキシ−3,3,5−トリメチルヘキサン、tert−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ジ(メチルベンゾイルパーオキシ)ヘキサン、tert−ブチルパーオキシイソプロピルモノカーボネート、tert−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、tert−ヘキシルパーオキシベンゾエート、2,5−ジ−メチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン等が挙げられる。 Examples of the organic peroxide include, from the viewpoint of resin processing temperature and storage stability, for example, benzoyl peroxide curing agent, tert-hexyl peroxypivalate, tert-butyl peroxypivalate, 3, 5, 5- Trimethylhexanoyl peroxide, di-n-octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, succinic acid peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethyl Peroxy-2-ethylhexanoate, tert-hexyl par Xyl-2-ethylhexanoate, 4-methylbenzoyl peroxide, tert-butylperoxy-2-ethylhexanoate, m-toluoyl + benzoyl peroxide, benzoyl peroxide, 1,1-bis (tert-butyl Peroxy) -2-methylcyclohexane, 1,1-bis (tert-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (tert-hexylperoxy) cyclohexane, 1,1-bis (Tert-Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane, 2,2-bis (4,4-di-tert-butylperoxycyclohexyl) Propane, 1,1-bis (tert-butylperoxy) Clododecane, tert-hexylperoxyisopropyl monocarbonate, tert-butylperoxymaleic acid, tert-butylperoxy-3,3,5-trimethylhexane, tert-butylperoxylaurate, 2,5-dimethyl-2 , 5-di (methylbenzoylperoxy) hexane, tert-butylperoxyisopropyl monocarbonate, tert-butylperoxy-2-ethylhexyl monocarbonate, tert-hexylperoxybenzoate, 2,5-di-methyl-2, 5-di (benzoylperoxy) hexane and the like.
ベンゾイルパーオキサイド系硬化剤としては、70℃以上の温度で分解してラジカルを発生するものであればいずれも使用可能であるが、半減期10時間の分解温度が50℃以上のものが好ましく、調製条件、成膜温度、硬化(貼り合わせ)温度、被着体の耐熱性、貯蔵安定性を考慮して適宜選択できる。使用可能なベンゾイルパーオキサイド系硬化剤としては、例えば、ベンゾイルパーオキサイド、2,5−ジメチルヘキシル−2,5−ビスパーオキシベンゾエート、p−クロロベンゾイルパーオキサイド、m−トルオイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート等が挙げられる。ベンゾイルパーオキサイド系硬化剤は1種でも2種以上を組み合わせて使用してもよい。 As the benzoyl peroxide-based curing agent, any can be used as long as it decomposes at a temperature of 70 ° C. or higher to generate radicals, and those having a decomposition temperature of 50 hours or higher with a half-life of 10 hours are preferable, It can be appropriately selected in consideration of preparation conditions, film formation temperature, curing (bonding) temperature, heat resistance of the adherend, and storage stability. Usable benzoyl peroxide curing agents include, for example, benzoyl peroxide, 2,5-dimethylhexyl-2,5-bisperoxybenzoate, p-chlorobenzoyl peroxide, m-toluoyl peroxide, 2, Examples include 4-dichlorobenzoyl peroxide and t-butyl peroxybenzoate. The benzoyl peroxide curing agent may be used alone or in combination of two or more.
有機過酸化物として、特に、2,5−ジメチル−2,5ジ(tert−ブチルパーオキシ)ヘキサン、1,1−ビス(tert−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、tert−ブチルパーオキシ−2−エチルヘキシルモノカーボネートが好ましい。これにより優れた絶縁性を有する太陽電池用封止膜が得られる。 As organic peroxides, in particular 2,5-dimethyl-2,5 di (tert-butylperoxy) hexane, 1,1-bis (tert-hexylperoxy) -3,3,5-trimethylcyclohexane, tert -Butylperoxy-2-ethylhexyl monocarbonate is preferred. Thereby, the sealing film for solar cells which has the outstanding insulation is obtained.
前記有機過酸化物の含有量は特に制限はないが、EVA及びPEの混合物100質量部に対して、好ましくは0.1〜5質量部、より好ましくは0.2〜3質量部であることが好ましい。 Although there is no restriction | limiting in particular in content of the said organic peroxide, Preferably it is 0.1-5 mass parts with respect to 100 mass parts of mixtures of EVA and PE, More preferably, it is 0.2-3 mass parts Is preferred.
また、光重合開始剤としては、公知のどのような光重合開始剤でも使用することができるが、配合後の貯蔵安定性の良いものが望ましい。このような光重合開始剤としては、例えば、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルホリノプロパン−1などのアセトフェノン系、ベンジルジメチルケタ−ルなどのベンゾイン系、ベンゾフェノン、4−フェニルベンゾフェノン、ヒドロキシベンゾフェノンなどのベンゾフェノン系、イソプロピルチオキサントン、2−4−ジエチルチオキサントンなどのチオキサントン系、メチルフェニルグリオキシレ−トなどが使用できる。好ましくは、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルホリノプロパン−1、ベンゾフェノン等が挙げられる。これら光重合開始剤は、必要に応じて、4−ジメチルアミノ安息香酸のような安息香酸系又は、第3級アミン系などの公知慣用の光重合促進剤の1種または2種以上を任意の割合で混合して使用することができる。また、光重合開始剤のみの1種単独または2種以上の混合で使用することができる。 As the photopolymerization initiator, any known photopolymerization initiator can be used, but a photopolymerization initiator having good storage stability after blending is desirable. Examples of such a photopolymerization initiator include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-methyl-1- (4- (methylthio) phenyl). Acetophenones such as -2-morpholinopropane-1, benzoins such as benzyldimethylketal, benzophenones such as benzophenone, 4-phenylbenzophenone and hydroxybenzophenone, thioxanthones such as isopropylthioxanthone and 2-4-diethylthioxanthone, Methylphenylglyoxylate can be used. Preferably, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane-1, benzophenone Etc. These photopolymerization initiators may be optionally selected from one or more known photopolymerization accelerators such as a benzoic acid type such as 4-dimethylaminobenzoic acid or a tertiary amine type. It can be used by mixing at a ratio. Moreover, it can be used individually by 1 type of only a photoinitiator, or 2 or more types of mixture.
前記光重合開始剤の含有量は、EVA及びPEの混合物100質量部に対して0.5〜5.0質量部であることが好ましい。 It is preferable that content of the said photoinitiator is 0.5-5.0 mass parts with respect to 100 mass parts of mixtures of EVA and PE.
[架橋助剤]
架橋助剤は、EVAのゲル分率を向上させ、本発明の組成物を用いて得られる太陽電池用封止膜の接着性及び耐久性を向上させることができる。
[Crosslinking aid]
A crosslinking aid can improve the gel fraction of EVA and can improve the adhesiveness and durability of the sealing film for solar cells obtained by using the composition of the present invention.
前記架橋助剤の含有量は、EVA及びPEの混合物100質量部に対して、一般に10質量部以下、好ましくは0.1〜5質量部、更に好ましくは0.1〜2.5質量部で使用される。これにより、更に接着性に優れる太陽電池用封止膜が得られる。 The content of the crosslinking aid is generally 10 parts by mass or less, preferably 0.1 to 5 parts by mass, more preferably 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the mixture of EVA and PE. used. Thereby, the sealing film for solar cells which is further excellent in adhesiveness is obtained.
前記架橋助剤(官能基としてラジカル重合性基を有する化合物)としては、トリアリルシアヌレート、トリアリルイソシアヌレート等の3官能の架橋助剤の他、(メタ)アクリルエステル(例、NKエステル等)の単官能又は2官能の架橋助剤等を挙げることができる。なかでも、トリアリルシアヌレートおよびトリアリルイソシアヌレートが好ましく、特にトリアリルイソシアヌレートが好ましい。 Examples of the crosslinking aid (compound having a radical polymerizable group as a functional group) include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (eg, NK ester) ) Monofunctional or bifunctional crosslinking aids. Of these, triallyl cyanurate and triallyl isocyanurate are preferable, and triallyl isocyanurate is particularly preferable.
[接着向上剤]
接着向上剤としては、シランカップリング剤を用いることができる。これにより、得られる太陽電池用封止膜の接着力を、更に向上させることができる。前記シランカップリング剤としては、γ−クロロプロピルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリクロロシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシランを挙げることができる。これらシランカップリング剤は、単独で使用しても、又は2種以上組み合わせて使用しても良い。なかでも、γ−メタクリロキシプロピルトリメトキシシランが特に好ましく挙げられる。
[Adhesion improver]
As the adhesion improver, a silane coupling agent can be used. Thereby, the adhesive force of the solar cell sealing film obtained can be further improved. Examples of the silane coupling agent include γ-chloropropyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, and γ-glycidoxypropyl. Trimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrichlorosilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N Mention may be made of -β- (aminoethyl) -γ-aminopropyltrimethoxysilane. These silane coupling agents may be used alone or in combination of two or more. Of these, γ-methacryloxypropyltrimethoxysilane is particularly preferred.
前記シランカップリング剤の含有量はEVA及びPEの混合物100質量部に対して0.1〜0.7質量部、特に0.3〜0.65質量部であることが好ましい。 The content of the silane coupling agent is preferably 0.1 to 0.7 parts by mass, particularly 0.3 to 0.65 parts by mass with respect to 100 parts by mass of the mixture of EVA and PE.
[その他]
可塑剤としては、トリスイソデシルホスファイト、トリスノニルフェニルホスファイト等のホスファイトやリン酸エステル等のリン含有化合物、アジピン酸エーテルエステル、トリメリテートn−オクチル、フタル酸ジオクチル、アジピン酸ジヘキシル、セバシン酸ジブチル等の多塩基酸のエステル、2,2,4−トリメチル−1,3−ペンタンジオールジソブチレート、トリエチレングリコール−ジ−2−エチルブチレート、テトラエチレングリコールジヘプタノエート、トリエチレングリコールジペラルゴネート等の多価アルコールのエステル、エポキシ化脂肪酸アルキルエステル等が使用できる。
[Others]
Examples of plasticizers include phosphites such as trisisodecyl phosphite and trisnonylphenyl phosphite and phosphorus-containing compounds such as phosphate esters, adipic acid ether esters, trimellitate n-octyl, dioctyl phthalate, dihexyl adipate, and sebacic acid Esters of polybasic acids such as dibutyl, 2,2,4-trimethyl-1,3-pentanediol disobutyrate, triethylene glycol-di-2-ethylbutyrate, tetraethylene glycol diheptanoate, triethylene glycol Polyesters such as dipelargonate, epoxidized fatty acid alkyl esters and the like can be used.
また、本発明における組成物は、得られる太陽電池用封止膜の用途により、上記の材料の他の添加剤を使用しても良い。例えば、合わせガラス用中間膜や太陽電池用封止膜として使用する場合、種々の物性(機械的強度、接着性、透明性等の光学的特性、耐熱性、耐光性、架橋速度等)の改良あるいは調整のため、必要に応じて、アクリロキシ基含有化合物、メタクリロキシ基含有化合物、エポキシ基含有化合物、紫外線吸収剤、光安定剤、及び/又は老化防止剤などの各種添加剤を添加してもよい。 Moreover, you may use the other additive of said material for the composition in this invention by the use of the sealing film for solar cells obtained. For example, when used as an interlayer film for laminated glass or a sealing film for solar cells, various physical properties (such as mechanical properties, optical properties such as adhesion, transparency, heat resistance, light resistance, crosslinking speed, etc.) Alternatively, various additives such as an acryloxy group-containing compound, a methacryloxy group-containing compound, an epoxy group-containing compound, an ultraviolet absorber, a light stabilizer, and / or an anti-aging agent may be added as necessary for adjustment. .
[太陽電池用封止膜製造用組成物の製造方法]
本発明の太陽電池用封止膜製造用組成物の製造方法は、上述の海島構造が形成される条件であれば、特に制限はない。特にPEの配合比が高い組成物の場合は、海島構造が形成され難いので、上述の海島構造を形成する混練条件を含むことが好ましい。即ち、EVA及びPEを、EVAの粘度VEVA[Pa・s]に対して、PEの粘度VPE[Pa・s]が0.1〜20倍となる条件下、特にPEの配合比がEVAの配合比より高い組成物の場合、好ましくは1倍より大きく20倍以下、更に好ましくは2〜15倍、特に好ましくは4〜13倍となる条件下で混練する混練工程を含むことが好ましく、更に混練工程が、せん断速度10〜1500s-1、更に好ましくは100〜1000s−1、特に好ましくは200〜800s−1の条件で混練する工程であることが好ましい。
[Method for producing composition for producing sealing film for solar cell]
The manufacturing method of the composition for manufacturing a sealing film for a solar cell of the present invention is not particularly limited as long as the above-described sea-island structure is formed. In particular, in the case of a composition having a high blending ratio of PE, it is difficult to form a sea-island structure. Therefore, it is preferable to include a kneading condition for forming the sea-island structure described above. That is, when EVA and PE are used under conditions where the PE viscosity V PE [Pa · s] is 0.1 to 20 times the EVA viscosity V EVA [Pa · s], the blend ratio of PE is particularly EVA. In the case of a composition higher than the blending ratio, it is preferable to include a kneading step of kneading under a condition of preferably more than 1 and not more than 20 times, more preferably 2 to 15 times, particularly preferably 4 to 13 times, Further, the kneading step is preferably a step of kneading under conditions of a shear rate of 10 to 1500 s −1 , more preferably 100 to 1000 s −1 , particularly preferably 200 to 800 s −1 .
混練工程の温度条件は、EVA及びPEの種類によって適宜調整することができる。組成物に架橋剤を含有させた場合は、架橋剤が反応しない或いはほとんど反応しない温度とすることが好ましい。温度条件は70〜130℃が好ましく、更に80〜120℃が好ましい。 The temperature condition of the kneading step can be appropriately adjusted depending on the types of EVA and PE. When the composition contains a crosslinking agent, the temperature is preferably such that the crosslinking agent does not react or hardly reacts. The temperature condition is preferably 70 to 130 ° C, and more preferably 80 to 120 ° C.
混練工程は、どのような装置で行っても良い。例えば、EVA及びPE、並びに必要に応じて上記の各材料をスーパーミキサー(高速流動混合機)、二軸混練機、遊星歯車式混練機、単軸押出機等に投入し、好ましくは上記の条件下で混練する。 The kneading step may be performed with any apparatus. For example, EVA and PE and, if necessary, each of the above materials are put into a super mixer (high speed fluid mixer), a twin screw kneader, a planetary gear kneader, a single screw extruder, etc. Knead under.
本発明の組成物は、通常、太陽電池用封止膜の製造工程において、中間体として製造され、その後、製膜工程(必要に応じて、二次混練を含む)に用いられるものであるが、本発明の組成物の製造工程とその後の製膜工程は、時間的、空間的に連続した工程である必要はない。エネルギーコスト的及び品質的には本発明の組成物を製造し、連続して製膜工程に用いられることが好ましい。 The composition of the present invention is usually produced as an intermediate in the production process of a solar cell sealing film, and then used in a film production process (including secondary kneading as necessary). The production process of the composition of the present invention and the subsequent film-forming process do not have to be temporally and spatially continuous processes. From the viewpoint of energy cost and quality, it is preferable that the composition of the present invention is produced and continuously used in the film forming process.
[太陽電池用封止膜]
本発明の太陽電池用封止膜は、本発明の太陽電池用封止膜製造用組成物をシート状に製膜することで得られるものである。本発明の太陽電池用封止膜は、本発明の組成物を、必要に応じてロール練り等の二次混練を行った後、通常の押出成形、又はカレンダ成形(カレンダリング)等により成形してシート状物を得る方法により製造することができる。製膜時の加熱温度は、特に架橋剤を配合する場合、架橋剤が反応しない或いはほとんど反応しない温度とすることが好ましい。例えば、50〜90℃、特に40〜80℃とするのが好ましい。太陽電池用封止膜の厚さは、特に制限されず、用途によって適宜設定することができる。一般に、50μm〜2mmの範囲である。
[Seal film for solar cell]
The sealing film for solar cells of this invention is obtained by forming into a sheet form the composition for manufacturing the sealing film for solar cells of this invention. The solar cell sealing film of the present invention is formed by subjecting the composition of the present invention to secondary extrusion kneading such as roll kneading, if necessary, and then by ordinary extrusion molding or calendar molding (calendering). Can be manufactured by a method of obtaining a sheet-like material. The heating temperature during film formation is preferably a temperature at which the crosslinking agent does not react or hardly reacts, particularly when a crosslinking agent is blended. For example, it is preferably 50 to 90 ° C, particularly 40 to 80 ° C. The thickness of the solar cell sealing film is not particularly limited, and can be appropriately set depending on the application. Generally, it is in the range of 50 μm to 2 mm.
本発明の太陽電池用封止膜は、本発明の組成物を用いて製造されているので、PEを含むことにより、耐熱性等が付与され、且つEVA組成物と同様な条件で得られるため、高品質且つ低コストの太陽電池用封止膜である。 Since the sealing film for solar cells of the present invention is manufactured using the composition of the present invention, heat resistance and the like are imparted by including PE and obtained under the same conditions as the EVA composition. A high-quality and low-cost solar cell sealing film.
[太陽電池]
太陽電池は、通常、表面側透明保護部材と裏面側保護部材との間に、本発明の太陽電池用封止膜を介在させて架橋一体化させることにより太陽電池用セルを封止させて製造する。太陽電池用セルを十分に封止するには、表面側透明保護部材、表面側封止膜、太陽電池用セル、裏面側封止膜及び裏面側保護部材をその順で積層し、積層体を減圧下で予備圧着し、各層の残存する空気を脱気した後、加熱加圧して封止膜を架橋硬化させればよい。なお、本発明において、太陽電池用セルの光が照射される側(受光面側)を「表面側」と称し、太陽電池用セルの受光面とは反対面側を「裏面側」と称する。
[Solar cell]
Solar cells are usually produced by sealing cells for solar cells by interposing the solar cell sealing film of the present invention between the front surface side transparent protective member and the back surface side protective member so as to be crosslinked and integrated. To do. In order to sufficiently seal the solar cell, the front side transparent protective member, the front side sealing film, the solar cell, the back side sealing film and the back side protective member are laminated in that order, After pre-pressing under reduced pressure and degassing the air remaining in each layer, the sealing film may be crosslinked and cured by heating and pressurization. In addition, in this invention, the side (light-receiving surface side) where the light of the solar cell is irradiated is referred to as “front surface side”, and the surface opposite to the light-receiving surface of the solar cell is referred to as “back surface side”.
太陽電池の製造は、例えば、図2に示すように表面側透明保護部材21、表面側封止膜23A、太陽電池用セル24、裏面側封止膜23B及び裏面側保護部材22を積層し、加熱加圧など常法に従って、封止膜23A及び23Bを架橋硬化させればよい。前記加熱加圧するには、例えば、前記積層体を、真空ラミネータで温度135〜180℃、さらに140〜180℃、特に155〜180℃、脱気時間0.1〜5分、プレス圧力0.1〜1.5kg/cm2、プレス時間5〜15分で加熱圧着すればよい。この加熱加圧時に、表面側封止膜23Aおよび裏面側封止膜23Bに含まれるEVAを架橋させることにより、表面側封止膜23Aおよび裏面側封止膜23Bを介して、表面側透明保護部材21、裏面側保護部材22、および太陽電池用セル24を一体化させて、太陽電池用セル24を封止することができる。
For example, as shown in FIG. 2, the solar battery is manufactured by laminating the surface-side transparent protective member 21, the surface-
なお、本発明の太陽電池用封止膜は、図3に示したような単結晶又は多結晶のシリコン結晶系の太陽電池セルを用いた太陽電池だけでなく、薄膜シリコン系、薄膜アモルファスシリコン系太陽電池、セレン化銅インジウム(CIS)系太陽電池等の薄膜太陽電池の封止膜にも使用することもできる。この場合は、例えば、ガラス基板、ポリイミド基板、フッ素樹脂系透明基板等の表面側透明保護部材の表面上に化学気相蒸着法等により形成された薄膜太陽電池素子層上に、裏面側封止膜、裏面側保護部材を積層し、接着一体化させた構造、裏面側保護部材の表面上に形成された太陽電池素子上に、表面側封止膜、表面側透明保護部材を積層し、接着一体化させた構造、又は表面側透明保護部材、表面側封止膜、薄膜太陽電池素子、裏面側封止膜、及び裏面側保護部材をこの順で積層し、接着一体化させた構造等が挙げられる。 The solar cell sealing film of the present invention is not limited to a solar cell using a single crystal or polycrystalline silicon crystal solar cell as shown in FIG. It can also be used for sealing films of thin film solar cells such as solar cells and copper indium selenide (CIS) solar cells. In this case, for example, the back side sealing is performed on the thin film solar cell element layer formed by chemical vapor deposition on the surface of the front side transparent protective member such as a glass substrate, a polyimide substrate, or a fluororesin transparent substrate. A structure in which a film and a back surface side protective member are laminated and bonded and integrated, a surface side sealing film and a surface side transparent protective member are laminated and bonded on a solar cell element formed on the surface of the back surface side protective member An integrated structure, or a structure in which a surface-side transparent protective member, a surface-side sealing film, a thin-film solar cell element, a back-side sealing film, and a back-side protective member are laminated in this order and bonded and integrated. Can be mentioned.
本発明で使用される前記表面側透明保護部材21は、通常珪酸塩ガラスなどのガラス基板であるのがよい。ガラス基板の厚さは、0.1〜10mmが一般的であり、0.3〜5mmが好ましい。ガラス基板は、一般に、化学的に、或いは熱的に強化させたものであってもよい。 The surface-side transparent protective member 21 used in the present invention is usually a glass substrate such as silicate glass. As for the thickness of a glass substrate, 0.1-10 mm is common, and 0.3-5 mm is preferable. The glass substrate may generally be chemically or thermally strengthened.
本発明で使用される前記裏面側保護部材22は、ポリエチレンテレフタレート(PET)などのプラスチックフィルムが好ましく用いられる。また、耐熱性、耐湿熱性を考慮してフッ化ポリエチレンフィルム、特にフッ化ポリエチレンフィルム/Al/フッ化ポリエチレンフィルムをこの順で積層させたフィルムでも良い。
The back
以下、本発明を実施例により説明する。 Hereinafter, the present invention will be described with reference to examples.
(実施例1〜14、比較例1〜7)
表1及び2に示す物性のEVA及びPEを各配合量、混練条件で混練し、EVA及びPE混合組成物を調製した。各組成物におけるEVAの粘度に対する及びPEの粘度(PE粘度/EVA粘度)は、キャピログラフ(東洋精機社製)を用い、せん断速度6.1s−1、温度は混練温度となる120℃で各樹脂の粘度を測定し、算出した。
(Example 1-14 and Comparative Example 1 to 7)
EVA and PE having the physical properties shown in Tables 1 and 2 were kneaded under the respective blending amounts and kneading conditions to prepare EVA and PE mixed compositions. In each composition, the viscosity of EVA and the viscosity of PE (PE viscosity / EVA viscosity) are capillograph (manufactured by Toyo Seiki Co., Ltd.), shear rate is 6.1 s −1 , and the temperature is 120 ° C. which is the kneading temperature. The viscosity of was measured and calculated.
得られた各樹脂組成物について、キャピログラフ(東洋精機社製)を用い、せん断速度6.1s−1のもと温度を昇温させて粘度を測定した。組成物の粘度が20000〜50000Pa・sとなる温度範囲の幅を加工可能温度幅とし、粘度が30000Pa・sとなる温度を中心加工可能温度として求めた。 About each obtained resin composition, using capyograph (made by Toyo Seiki Co., Ltd.), the temperature was raised at a shear rate of 6.1 s −1 and the viscosity was measured. The width of the temperature range in which the viscosity of the composition was 20000 to 50000 Pa · s was defined as the workable temperature range, and the temperature at which the viscosity was 30000 Pa · s was determined as the central workable temperature.
合否判定として、加工可能温度幅は、5℃以上の場合を○、5℃未満の場合を×とし、中心加工可能温度は、70℃以上95℃以下の場合を○、95℃より高く100℃以下の場合を△、100℃より高い場合を×とした。 As a pass / fail judgment, the processable temperature range is ◯ when the temperature is 5 ° C or higher, and x when the temperature is lower than 5 ° C. In the following cases, Δ, and in the case of higher than 100 ° C., ×.
更に、各組成物について、ミクロトーム(leica社製)を用いて断面出しを行い、その断面をAFM(原子間力顕微鏡)(東陽テクニカ社製)にて弾性率マッピングし、EVA及びPEの海島構造を観察した。EVAが海相(連続相)となり、PEが島相となっている場合を○とし、EVA、PEが共に連続相化している場合を△とし、PEが連続相化し、EVAが島相となっている場合を×とした。 Further, for each composition, a cross-section is made using a microtome (manufactured by Leica), and the cross-section is subjected to elastic modulus mapping by AFM (Atomic Force Microscope) (manufactured by Toyo Technica Co., Ltd.). Was observed. When EVA is the sea phase (continuous phase) and PE is the island phase, ◯, when EVA and PE are both in continuous phase, △, PE becomes the continuous phase, and EVA becomes the island phase When it is, it was set as x.
また、PEの島相が認められたものについて、二値化画像処理(解像度の観点から、長径が1.2μm以下となる島相はノイズと判断し、除外して算出)を行い、AFM(原子間力顕微鏡)画像の場合は2500μm2、光学顕微鏡画像の場合は4900μm2中に存在する島相の長径及び短径を測定し、その平均値から平均径((平均長径(l)+平均短径(d))/2)、及び平均アスペクト比(平均長径(l)/平均短径(d))を求めた。
In addition, binarized image processing (calculated by excluding the island phase having a major axis of 1.2 μm or less from the viewpoint of resolution is determined as noise) is performed for those in which PE island phases are recognized. 2500 [mu]
(評価結果)
評価結果を表1及び2に示す。
(Evaluation results)
The evaluation results are shown in Tables 1 and 2.
表1及び表2に示したように、EVAが海相であり、PEが島相である海島構造を有する実施例1〜14の組成物は、加工可能温度幅が5℃以上で、中心加工可能温度が95℃以下であり、シート製造時の製膜性等の加工特性に優れた組成物であることが認められた。これらの実施例のPEの島相の平均径は40μm以下であり、平均アスペクト比は40以下であった。比較例6、7は上記の海島構造が認められたが、比較例6のPEの島相の平均径は40μmより大きく、比較例7のPEの島相の平均アスペクト比は40より大きかった。このような組成物の場合、加工可能温度幅が実施例に比較して小さく、中心加工可能温度も95より高く100℃以下であり、やや加工し難い組成物であった。これは、島相の平均径が大き過ぎたり、平均アスペクト比が大き過ぎると、共連続構造に近い性質を示すためと考えられた。 As shown in Tables 1 and 2, the compositions of Examples 1 to 14 having a sea-island structure in which EVA is the sea phase and PE is the island phase, the workable temperature range is 5 ° C. or more, and the center processing The possible temperature was 95 ° C. or less, and it was confirmed that the composition had excellent processing characteristics such as film-forming properties during sheet production. The average diameter of the PE island phase in these examples was 40 μm or less, and the average aspect ratio was 40 or less. In Comparative Examples 6 and 7, the above-described sea-island structure was observed, but the average diameter of the PE island phase of Comparative Example 6 was larger than 40 μm, and the average aspect ratio of the PE island phase of Comparative Example 7 was larger than 40. For such compositions, less workable temperature range as compared to the actual施例center processable temperature also at 100 ° C. or less higher than 95, was slightly machining hard composition. This is thought to be due to the fact that when the average diameter of the island phase is too large or the average aspect ratio is too large, it exhibits properties close to a co-continuous structure.
混練条件としては、実施例1、2、4、7、9、11〜14のようにPEの配合比がEVAの配合比より低い組成物の場合は、PE/EVAの粘度比が0.1以上で、せん断速度が100s-1以上であれば、粘度比に係らず上記の海島構造が得られた。なお比較例6、7のようにPE/EVA粘度比が0.1未満、及び/又はせん断速度が100s-1未満の場合は、上記の海島構造が得られても、上述のように島相の平均径や平均アスペクト比が大きくなり過ぎる傾向がある。 As a kneading condition, in the case of a composition in which the blending ratio of PE is lower than the blending ratio of EVA as in Examples 1, 2, 4, 7, 9, 11-14, the viscosity ratio of PE / EVA is 0.1. As described above, when the shear rate was 100 s −1 or more, the above-mentioned sea-island structure was obtained regardless of the viscosity ratio. In addition, when the PE / EVA viscosity ratio is less than 0.1 and / or the shear rate is less than 100 s −1 as in Comparative Examples 6 and 7 , even if the sea-island structure is obtained, the island phase is as described above. There is a tendency that the average diameter and the average aspect ratio of the film become too large.
それに対し、実施例3、5、6、8、10のように、PEの配合比がEVAの配合比より高い組成物の場合は、PE/EVAの粘度比が1倍より大きければ、高いせん断速度を与えることで、上記の海島構造が得られた。これは、高いせん断速度下において、EVAの方が流れやすくなり、EVAの配合比が低くても連続相を形成し易くなるためと考えられた。 On the other hand, in the case of a composition in which the blending ratio of PE is higher than the blending ratio of EVA as in Examples 3, 5, 6, 8, and 10, if the viscosity ratio of PE / EVA is larger than one time, high shear is obtained. The above-mentioned sea-island structure was obtained by giving speed. This is considered to be because EVA tends to flow at a high shear rate, and a continuous phase is easily formed even when the blending ratio of EVA is low.
一方、比較例1〜4のようにPE/EVAの粘度比が0.1未満と低い場合は、高いせん断速度であっても上記の海島構造は得られない場合があり、比較例5のようにPE/EVAの粘度比が11と十分高い場合でも、せん断速度が10s−1と低い場合には、上記の海島構造が得られなかった。このように十分な海島構造を有さない組成物は加工可能温度幅が5℃未満と小さく、中心加工可能温度も100℃より高く、加工し難い組成物であった。 On the other hand, when the PE / EVA viscosity ratio is as low as less than 0.1 as in Comparative Examples 1 to 4, the above sea-island structure may not be obtained even at a high shear rate. In addition, even when the PE / EVA viscosity ratio was sufficiently high as 11, when the shear rate was as low as 10 s −1 , the sea-island structure was not obtained. Thus, the composition that does not have a sufficient sea-island structure has a small workable temperature width of less than 5 ° C., a central workable temperature that is higher than 100 ° C., and is difficult to process.
また、LLDPEのみを使用した実施例4に対し、実施例1のようにLDPEも併用することで、より中心加工可能温度を低下させることが可能であることがわかる。 Moreover, it turns out that the center processable temperature can be further lowered by using LDPE together as in Example 1 with respect to Example 4 using only LLDPE.
なお、本発明は上記の実施の形態の構成及び実施例に限定されるものではなく、発明の要旨の範囲内で種々変形が可能である。 In addition, this invention is not limited to the structure and Example of said embodiment, A various deformation | transformation is possible within the range of the summary of invention.
本発明により、高品質且つ低コストの太陽電池を提供することができる。 According to the present invention, a high-quality and low-cost solar cell can be provided.
11A、11B 透明基板
12 中間膜
21 表面側透明保護部材
22 裏面側保護部材
23A 表面側封止膜
23B 裏面側封止膜
24 太陽電池用セル
11A, 11B
Claims (11)
前記エチレン−酢酸ビニル共重合体が海相であり、前記ポリエチレンが島相である海島構造を有し、
前記ポリエチレンからなる島相の平均径((平均長径(l)+平均短径(d))/2)が40μm以下であり、
前記ポリエチレンからなる島相の平均アスペクト比(平均長径(l)/平均短径(d))が、40以下であり、且つ
前記エチレン−酢酸ビニル共重合体(EVA)と前記ポリエチレン(PE)の体積比(EVA:PE)が、65:35〜30:70の範囲であることを特徴とする組成物。 A composition for producing a sealing film for a solar cell, comprising an ethylene-vinyl acetate copolymer and polyethylene,
The ethylene-vinyl acetate copolymer has a sea-island structure in which the ethylene phase is a sea phase and the polyethylene is an island phase,
The average diameter of the island phase made of polyethylene ((average major axis (l) + average minor axis (d)) / 2) is 40 μm or less ,
The average aspect ratio of the island phase consisting of the polyethylene (average major axis (l) / average minor diameter (d)) is state, and are 40 or less, and
A composition wherein the volume ratio (EVA: PE) of the ethylene-vinyl acetate copolymer (EVA) and the polyethylene (PE) is in the range of 65:35 to 30:70.
前記エチレン−酢酸ビニル共重合体(EVA)及び前記ポリエチレン(PE)を、EVAの粘度VEVA[Pa・s]に対するPEの粘度VPE[Pa・s]が0.1〜20倍となる条件下で混練する混練工程を含むことを特徴とする製造方法。 A method of manufacturing a solar cell sealing film prepared composition according to any one of claims 1 to 7
Conditions for the ethylene-vinyl acetate copolymer (EVA) and the polyethylene (PE) to be such that the PE viscosity V PE [Pa · s] is 0.1 to 20 times the EVA viscosity V EVA [Pa · s]. The manufacturing method characterized by including the kneading | mixing process kneaded below.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012190925A JP5215496B1 (en) | 2012-01-27 | 2012-08-31 | Composition for producing sealing film for solar cell, method for producing the same, and sealing film for solar cell |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012015235 | 2012-01-27 | ||
JP2012015235 | 2012-01-27 | ||
JP2012190925A JP5215496B1 (en) | 2012-01-27 | 2012-08-31 | Composition for producing sealing film for solar cell, method for producing the same, and sealing film for solar cell |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012163453A Division JP6073590B2 (en) | 2012-01-27 | 2012-07-24 | LAMINATE FORMING SHEET MANUFACTURING COMPOSITION, ITS MANUFACTURING METHOD, AND LAMINATE FORMING SHEET |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5215496B1 true JP5215496B1 (en) | 2013-06-19 |
JP2013175704A JP2013175704A (en) | 2013-09-05 |
Family
ID=48778675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012190925A Expired - Fee Related JP5215496B1 (en) | 2012-01-27 | 2012-08-31 | Composition for producing sealing film for solar cell, method for producing the same, and sealing film for solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5215496B1 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5578409A (en) * | 1978-12-06 | 1980-06-13 | Hitachi Cable | Polyolefin insulating cable |
JPH0737539B2 (en) * | 1987-12-18 | 1995-04-26 | 旭化成工業株式会社 | Film for polyolefin resin packaging |
JPH0589725A (en) * | 1991-09-25 | 1993-04-09 | Fujikura Ltd | Electric insulating composition and power cable |
JP3519746B2 (en) * | 1992-07-15 | 2004-04-19 | 三菱瓦斯化学株式会社 | Manufacturing method of thermoplastic resin molded product |
JPH10101860A (en) * | 1996-08-07 | 1998-04-21 | Sekisui Chem Co Ltd | Methacrylic resin and its production |
JP2001062828A (en) * | 1999-08-31 | 2001-03-13 | Mns:Kk | Manufacture of plastic molding for emitting fragrance |
JP4336442B2 (en) * | 2000-05-23 | 2009-09-30 | キヤノン株式会社 | Solar cell module |
JP2006245503A (en) * | 2005-03-07 | 2006-09-14 | Dainippon Printing Co Ltd | Filler for solar cell module, solar cell module employing same, and method of manufacturing filler for solar cell module |
-
2012
- 2012-08-31 JP JP2012190925A patent/JP5215496B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013175704A (en) | 2013-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6073590B2 (en) | LAMINATE FORMING SHEET MANUFACTURING COMPOSITION, ITS MANUFACTURING METHOD, AND LAMINATE FORMING SHEET | |
JP5572232B2 (en) | Solar cell sealing film and solar cell using the same | |
WO2014061669A1 (en) | Cured sheet, laminate body using same, and method for producing said laminate body | |
JP5572233B2 (en) | Solar cell sealing film and solar cell using the same | |
WO2010140608A1 (en) | Sealing film for solar cell, and solar cell utilizing same | |
WO2013002133A1 (en) | Sealing film for solar cell and solar cell using same | |
JP2011077360A (en) | Sealing resin sheet and solar cell module using the same | |
JP5759875B2 (en) | SOLAR CELL SEALING MATERIAL AND SOLAR CELL MODULE PRODUCED BY USING THE SAME | |
JP5788712B2 (en) | Ethylene-polar monomer copolymer sheet, and interlayer film for laminated glass, laminated glass, solar cell sealing film and solar cell using the same | |
JP2014234481A (en) | Composition for producing sheet for forming laminate, method for producing the same, and sheet for forming laminate | |
JP5215496B1 (en) | Composition for producing sealing film for solar cell, method for producing the same, and sealing film for solar cell | |
JP2014214211A (en) | Composition for producing sheet for forming laminate, production method of the same, and sheet for forming laminate | |
JP5909101B2 (en) | Composition for forming sealing film for solar cell | |
JP2011152686A (en) | Ethylene-vinyl acetate copolymer sheet, method for producing the sheet, laminated glass using the sheet, and solar cell | |
JP5879299B2 (en) | Method for producing sealing film for solar cell and method for producing solar cell | |
JP5869211B2 (en) | Solar cell sealing film and solar cell using the same | |
JP2015192001A (en) | Method of manufacturing sealing film for solar cell | |
WO2017094354A1 (en) | Method for manufacturing solar cell sealing material and composition for manufacturing solar cell sealing material | |
JP5865293B2 (en) | Manufacturing method of solar cell sealing film and solar cell sealing film | |
JP2017222752A (en) | Composition for producing sealing material for solar battery, and sealing material for solar battery | |
JP2016213401A (en) | Composition for manufacturing sealant for solar batteries | |
JP2017222753A (en) | Composition for producing sealing material for solar battery, and sealing material for solar battery | |
JP2016219448A (en) | Composition for producing sealing material for solar cell | |
JP2017101196A (en) | Composition for manufacturing encapsulation material for solar cell and encapsulation material for solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160308 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |