Nothing Special   »   [go: up one dir, main page]

JP5213828B2 - Method for electrolytic purification of copper - Google Patents

Method for electrolytic purification of copper Download PDF

Info

Publication number
JP5213828B2
JP5213828B2 JP2009227739A JP2009227739A JP5213828B2 JP 5213828 B2 JP5213828 B2 JP 5213828B2 JP 2009227739 A JP2009227739 A JP 2009227739A JP 2009227739 A JP2009227739 A JP 2009227739A JP 5213828 B2 JP5213828 B2 JP 5213828B2
Authority
JP
Japan
Prior art keywords
electrode
copper
current
electrolytic
electrodeposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009227739A
Other languages
Japanese (ja)
Other versions
JP2011074463A (en
Inventor
守友 橋本
公博 下川
育伸 隅田
幸司 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2009227739A priority Critical patent/JP5213828B2/en
Publication of JP2011074463A publication Critical patent/JP2011074463A/en
Application granted granted Critical
Publication of JP5213828B2 publication Critical patent/JP5213828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、銅の電解精製方法に関し、特に、停電時対策として利用可能な銅の電解精製方法に関する。   The present invention relates to a copper electrolytic purification method, and more particularly, to a copper electrolytic purification method that can be used as a countermeasure during a power failure.

粗銅から精製銅にする電解精製プロセスとして、パーマネントカソード(PC)法と呼ばれるプロセスが知られている。PC法は、金属板をカソードとし、このカソードの表面に電気分解により電着させた銅を剥ぎ取って製品とする方法であるが、従来法に比べて生産性が高く、高品質の銅が得られることから、近年、各地の電解精製工場で利用されてきている。   A process called a permanent cathode (PC) method is known as an electrolytic purification process for converting crude copper into purified copper. The PC method is a method in which a metal plate is used as a cathode, and the copper electrodeposited by electrolysis on the surface of the cathode is peeled off to make a product. Compared with the conventional method, the PC method has higher productivity and high quality copper. In recent years, it has been used in various electrolytic refining factories.

電解精製工場では、変電所設備のために年1回程度、約8〜12時間の一斉停電が行われる場合がある。導体工事、配管工事、電解槽整備などのために停電が行われることもある。しかしながら、PC法を用いた電解精製工場において、通電を長時間停止すると、ラミネーションの問題が発生する。「ラミネーション」とは、電着銅をカソードから機械的に剥ぎ取る際に、停電前に電析した電着銅層と停電後に電析した再電着銅層との間で2層に分かれ、電着銅層の下端に発生する亀裂が再電着銅層にまで進展しにくくなる現象をいう。   In an electrolytic refining factory, there may be a simultaneous power outage for about 8-12 hours about once a year for substation equipment. There may be a power outage due to conductor work, piping work, electrolytic cell maintenance, etc. However, in an electrolytic refining factory using the PC method, if energization is stopped for a long time, a problem of lamination occurs. “Lamination” is divided into two layers, when the electrodeposited copper is mechanically peeled from the cathode, between the electrodeposited copper layer deposited before the power failure and the re-electrodeposited copper layer deposited after the power failure. It refers to a phenomenon in which cracks generated at the lower end of the electrodeposited copper layer are difficult to propagate to the re-electrodeposited copper layer.

電着銅層の亀裂がスムーズに進展しない場合、PC剥取機により「フラッピング」と呼ばれる荷重を繰り返し与え、亀裂を強引に生じさせる必要がある。通常の電解精製においては、フラッピングを1回行うだけで、電着銅を完全に剥ぎ取ることができる。   When the crack of the electrodeposited copper layer does not progress smoothly, it is necessary to repeatedly apply a load called “flapping” by the PC stripper to cause the crack to be forcibly generated. In ordinary electrolytic purification, the electrodeposited copper can be completely removed by performing flapping once.

しかしながら、電解精製中に長時間の停電が生じる場合、上述した不具合によりフラッピング作業を何度も繰り返して行う必要がある。そのため、作業時間の長期化を招き、銅の生産効率の低下を招く。電着銅の剥ぎ取り不良等によりカソード電極板の入替を必要とする場合もあるため、作業時間が更に長期化する場合もある。電着銅の剥ぎ取り不良は、電着銅が長期間、電解液中に晒されることによって電着銅上に薄膜が付着することが原因の1つと考えられている。そのため、電着銅の剥ぎ取り不良を抑制するためには、薄膜付着に対する何らかの対策を講じる必要がある。   However, when a power outage for a long time occurs during electrolytic refining, it is necessary to repeat the flapping operation many times due to the above-described problems. Therefore, the working time is prolonged and the copper production efficiency is lowered. Since the cathode electrode plate may need to be replaced due to poor stripping of electrodeposited copper, the working time may be further prolonged. The poor stripping of the electrodeposited copper is considered to be one of the causes that the electrodeposited copper is exposed to the electrolytic solution for a long period of time and a thin film is deposited on the electrodeposited copper. For this reason, it is necessary to take some measures against thin film adhesion in order to suppress electrodeposition copper stripping failure.

特開2008−248273では、電解精製工場の計画停電時に、電解槽へ通電される電流を穏やかに落とした後、停電復旧までに低電流にて停電復旧まで通電することにより、電着銅表面の薄膜形成を抑制する方法を開示している。   In Japanese Patent Application Laid-Open No. 2008-248273, at the time of a planned power outage at an electrolytic refining plant, the current applied to the electrolytic cell is gently dropped, and then the power is restored to the power outage at a low current until the power outage is restored. A method for inhibiting thin film formation is disclosed.

特開2008−248273号公報JP 2008-248273 A

上記問題点を鑑み、本発明は、電着銅の剥ぎ取り不良を抑制する別の方法を提供するものである。電着銅の剥ぎ取り不良抑制対策として別の方法を提供することにより、選択肢が増え、当業者の個々の事情に応じてより好ましい対策を講じることが可能となるため、有用である。   In view of the above-described problems, the present invention provides another method for suppressing poor peeling of electrodeposited copper. Providing another method as a countermeasure for suppressing the peeling defect of electrodeposited copper is useful because it increases the options and makes it possible to take more preferable countermeasures according to individual circumstances of those skilled in the art.

上記課題を解決するために、本発明者が鋭意検討したところ、停電後に一定期間、通常運転時とは逆向きの電流を電極間に流すことによって、電着銅の表面に付着した薄膜を除去でき、その後に通常運転を再開した場合に、電着銅の剥ぎ取り不良を抑制できることを見出した。   In order to solve the above-mentioned problems, the present inventor has intensively studied and removed a thin film adhering to the surface of the electrodeposited copper by passing a current in a direction opposite to that during normal operation between the electrodes for a certain period after the power failure. It has been found that when the normal operation is resumed afterwards, it is possible to suppress the stripping failure of the electrodeposited copper.

以上の知見を基礎として完成した本発明は、一側面において、電解液を収容する電解槽中に第1電極及び粗銅製の第2電極を浸漬させて銅電解精製を行う方法であって、(a)第1電極をカソードとし、第2電極をアノードとする第1電流を第1電極及び第2電極の間に流し、第1電極の表面に電着銅層を析出させる工程と、(b)第1電流の供給を停止させる工程と、(c)停止後、所定時間経過後に、第1電極をアノードとし、第2電極をカソードとする第2電流を第1電極及び第2電極の間に流し、停止後に電解液中に電着銅が浸漬された状態で保持されることにより電着銅層上に生成される塩化銅を含む銅化合物層を除去する工程と、(d)銅化合物層の除去後に、第1電極をカソードとし、第2電極をアノードとする第3電流を第1電極及び第2電極の間に流し、電着銅層の表面に再電着銅層を電着させる工程とを含む銅の電解精製方法である。


The present invention completed on the basis of the above knowledge is, in one aspect, a method of performing copper electrolytic purification by immersing the first electrode and the second electrode made of crude copper in an electrolytic cell containing an electrolytic solution, a) flowing a first current between the first electrode and the second electrode with the first electrode as a cathode and the second electrode as an anode, and depositing an electrodeposited copper layer on the surface of the first electrode; ) A step of stopping the supply of the first current; and (c) after the lapse of a predetermined time after the stop, a second current having the first electrode as an anode and the second electrode as a cathode is between the first electrode and the second electrode. Removing the copper compound layer containing copper chloride formed on the electrodeposited copper layer by holding the electrodeposited copper immersed in the electrolyte after stopping , and (d) a copper compound After removal of the layer, a third current is generated with the first electrode as the cathode and the second electrode as the anode. It flowed between the electrode and a second electrode, an electrolytic purification process for copper and a step of electrodepositing re electrostatic Chakudoso the surface of the electrostatic Chakudoso.


本発明に係る銅の電解精製方法は、一実施態様において、少なくとも工程(b)と工程(d)との間に、第1電極の電極面に対して液流を起こさせる工程を更に含む。   In one embodiment, the copper electrolytic purification method according to the present invention further includes a step of causing a liquid flow to the electrode surface of the first electrode between at least the step (b) and the step (d).

本発明に係る銅の電解精製方法は、一実施態様において、少なくとも工程(b)と工程(d)との間に、電解液を循環させる工程を更に含む。   In one embodiment, the copper electrolytic purification method according to the present invention further includes a step of circulating an electrolytic solution between at least step (b) and step (d).

本発明に係る銅の電解精製方法は、一実施態様において、工程(b)と工程(c)との間に、第2電流より電流密度が小さく、第1電極をアノードとし、第2電極をカソードとする第4電流を、第1電極及び第2電極の間に流す工程を更に含む。   In one embodiment, the copper electrolytic purification method according to the present invention has a current density smaller than the second current between the step (b) and the step (c), the first electrode as an anode, and the second electrode as an anode. The method further includes a step of flowing a fourth current serving as a cathode between the first electrode and the second electrode.

本発明に係る銅の電解精製方法は、一実施態様において、第2電流の電流密度が、100〜350A/m2である。 In one embodiment of the copper electrolytic purification method according to the present invention, the current density of the second current is 100 to 350 A / m 2 .

本発明によれば、停電中に電着液中に長期間晒される電着銅の表面に付着する銅化合物層を有効に除去できるため、電着銅の剥ぎ取り不良による入れ替え時間の延長を防げる。また、電着銅の剥ぎ取り不良による電極等の交換回数も減るため、減産を行う必要もなくなり、銅製品の生産効率も向上する。得られた銅製品は、停電の影響による断片状の出っ張り等が発生しないため、製品外観もよくなる。更に、剥ぎ取り機のトラブルや故障も減少するため、修繕費も少なくて済み、生産性の向上に繋がる。   According to the present invention, it is possible to effectively remove the copper compound layer adhering to the surface of the electrodeposited copper that is exposed to the electrodeposition liquid for a long time during a power outage, and therefore, it is possible to prevent the replacement time from being extended due to poor peeling of the electrodeposited copper. . In addition, since the number of electrode replacements due to poor stripping of electrodeposited copper is reduced, there is no need to reduce production and the production efficiency of copper products is improved. Since the obtained copper product does not generate fragmentary protrusions or the like due to the influence of a power failure, the appearance of the product is improved. Further, since troubles and breakdowns of the stripping machine are reduced, repair costs can be reduced and productivity can be improved.

本発明の実施の形態に係る銅の電解精製方法を実施するための電解精製システムの一例を説明する概略図である。It is the schematic explaining an example of the electrolytic purification system for enforcing the electrolytic purification method of copper which concerns on embodiment of this invention. カソード電極板上に電着される電着銅層及び再電着銅層の積層状態を表す模式図である。It is a schematic diagram showing the lamination | stacking state of the electrodeposition copper layer electrodeposited on a cathode electrode plate, and a re-electrodeposition copper layer. 本発明の実施の形態に係る銅の電解精製方法を説明するフローチャートである。It is a flowchart explaining the electrolytic purification method of copper which concerns on embodiment of this invention.

次に、図面を参照して、本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。   Next, embodiments of the present invention will be described with reference to the drawings. The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the following in terms of the structure and arrangement of components. It is not something specific.

−電解精製システム−
図1に示す電解精製システムは、電解槽1、整流器2、循環槽3、ヘッドタンク4および制御装置5を備える。電解槽1の中には電解液11が収容されている。電解液11としては、例えば、銅濃度50〜60g/L、塩素濃度50〜60mg/Lの硫酸系電解液が利用可能である。電解液11中には、ステンレス、アルミ等により形成される第1電極13及び粗銅製の第2電極12が浸漬されている。第2電極12としては、例えば99.2〜99.6%の銅品位を有し、不純物として、Ni、Bi等を含む粗銅が利用可能である。第1電極13の側面部には、樹脂によるマスキング(エッジストリッププロテクター)が施されている。第1電極13の底部には、図2に示すように、V字型の溝14が形成されている。
-Electrolytic purification system-
The electrolytic purification system shown in FIG. 1 includes an electrolytic cell 1, a rectifier 2, a circulation tank 3, a head tank 4, and a control device 5. An electrolytic solution 11 is accommodated in the electrolytic cell 1. As the electrolyte solution 11, for example, a sulfuric acid electrolyte solution having a copper concentration of 50 to 60 g / L and a chlorine concentration of 50 to 60 mg / L can be used. A first electrode 13 made of stainless steel, aluminum, or the like and a second electrode 12 made of crude copper are immersed in the electrolytic solution 11. As the second electrode 12, for example, crude copper having 99.2 to 99.6% copper grade and containing Ni, Bi or the like as impurities can be used. Masking with resin (edge strip protector) is performed on the side surface of the first electrode 13. As shown in FIG. 2, a V-shaped groove 14 is formed at the bottom of the first electrode 13.

整流器2は、電解槽1に浸漬された第1電極13及び第2電極12に電力を供給する。循環槽3には、例えば、電解槽1中の電解液11の物理状態(温度、濃度など)を制御するためのセンサ等が設けられていてもよい。また、必要に応じて電解槽1、循環槽3およびヘッドタンク4に電解液11を流通させるためのポンプ(図示省略)等が設けられてもよい。   The rectifier 2 supplies power to the first electrode 13 and the second electrode 12 immersed in the electrolytic cell 1. The circulation tank 3 may be provided with, for example, a sensor for controlling the physical state (temperature, concentration, etc.) of the electrolytic solution 11 in the electrolytic tank 1. Moreover, a pump (not shown) for circulating the electrolytic solution 11 through the electrolytic cell 1, the circulation tank 3, and the head tank 4 may be provided as necessary.

制御装置5は、電解槽1、整流器2、循環槽3、ヘッドタンク4の運転状態を制御する。例えば、制御装置5が、図1に示す電解精製システムの運転状況に応じて、電解槽1に供給する電流密度の値、第2電極12及び第1電極13に電流を流すタイミング、通電期間等を制御する。   The control device 5 controls the operation state of the electrolytic cell 1, the rectifier 2, the circulation tank 3, and the head tank 4. For example, the control device 5 determines the value of the current density supplied to the electrolytic cell 1 according to the operation status of the electrolytic purification system shown in FIG. 1, the timing of supplying current to the second electrode 12 and the first electrode 13, the energization period, etc. To control.

図示を省略しているが、実施の形態に係る銅の電解精製システムにおいては、補助電源(補助整流器)が更に設けられてもよい。補助電源(補助整流器)により、停電中に電解槽1中に微弱電流を流す、あるいは電解槽1内の第1電極13の電極面に対して液流を起こさせることが可能である。   Although not shown, in the copper electrolytic purification system according to the embodiment, an auxiliary power source (auxiliary rectifier) may be further provided. With the auxiliary power supply (auxiliary rectifier), it is possible to cause a weak current to flow in the electrolytic cell 1 during a power failure, or to cause a liquid flow to the electrode surface of the first electrode 13 in the electrolytic cell 1.

−銅の電解精製方法−
図3に示すフローチャートを用いて本発明の実施の形態に係る銅の電解精製方法を説明する。
-Copper electrolytic purification method-
The copper electrolytic purification method according to the embodiment of the present invention will be described with reference to the flowchart shown in FIG.

ステップS1において、通常運転を行う。すなわち、制御装置5により運転条件等を設定した後、第1電極13をカソード(溶液から電極に向かって正電荷が流れこむ方)とし、第2電極12をアノード(電極から溶液に向かって正電荷が流れる方)とする第1電流(通常電流)を、第1電極13及び第2電極12の間に流す。これにより、第1電極13の表面に電着銅層6を析出させる。この際、必要に応じて循環槽3を駆動させ、所定の循環流量で電解液11を循環させ、ヘッドタンク4から電解液11を電解槽1中に補給させてもよい。   In step S1, normal operation is performed. That is, after operating conditions are set by the control device 5, the first electrode 13 is used as a cathode (a positive charge flows from the solution toward the electrode), and the second electrode 12 is set as an anode (the electrode from the electrode toward the solution). A first current (ordinary current) that is assumed to be an electric charge flows between the first electrode 13 and the second electrode 12. Thereby, the electrodeposited copper layer 6 is deposited on the surface of the first electrode 13. At this time, the circulation tank 3 may be driven as necessary, the electrolyte solution 11 may be circulated at a predetermined circulation flow rate, and the electrolyte solution 11 may be replenished into the electrolyte tank 1 from the head tank 4.

通常運転時の電解液11の条件は、例えば、液温60〜65℃、銅濃度50〜60g/L、塩素濃度50〜60mg/Lとすることができる。第1電流の電流密度は、250〜325A/m2程度である。 The conditions of the electrolytic solution 11 during normal operation can be set to, for example, a liquid temperature of 60 to 65 ° C., a copper concentration of 50 to 60 g / L, and a chlorine concentration of 50 to 60 mg / L. The current density of the first current is about 250~325A / m 2.

図3のステップS2において、停電等により第1電流の供給が停止される。第1電流の供給停止により、電着銅層6の第1電極13への析出が停止する。第1電流の供給停後は、ステップS3において、停電対策が施される。ステップS3の詳細は後述する。   In step S2 of FIG. 3, the supply of the first current is stopped due to a power failure or the like. By stopping the supply of the first current, the deposition of the electrodeposited copper layer 6 on the first electrode 13 stops. After the supply of the first current is stopped, a power failure countermeasure is taken in step S3. Details of step S3 will be described later.

ステップS4において、通常運転を再開する。すなわち、第1電極13をカソードとし、第2電極12をアノードとする第3電流を流す。通常運転の再開により、図2に示す電着銅層6上には再電着銅層7が析出する。なお、第3電流の電流密度は、250〜325A/m2程度とすることができる。 In step S4, normal operation is resumed. That is, a third current is flown with the first electrode 13 as a cathode and the second electrode 12 as an anode. By resuming normal operation, a re-deposited copper layer 7 is deposited on the electrodeposited copper layer 6 shown in FIG. The current density of the third current may be a 250~325A / m 2 approximately.

ステップS5において、PC剥離機を用いて、第1電極13上に形成された電着銅層6および再電着銅層7を剥ぎ取る。まず、PC剥離機のフレキシング工程において、図2に示す第1電極13、電着銅層6、再電着銅層7に外力を与えて、第1電極13、電着銅層6、再電着銅層7を曲げ、第1電極13と電着銅層6との界面8に剥離を生じさせる。チゼリング工程において、界面8に楔を打ち込み、電着銅層6及び再電着銅層7とを切り離す。ダウンエンダ工程において、電着銅層6と再電着銅層7を同時にグリップで掴み、電着銅層6の底辺を支点として水平に開くことで、溝14と接する電着部分に亀裂を生じさせる。   In step S5, the electrodeposited copper layer 6 and the re-electrodeposited copper layer 7 formed on the first electrode 13 are peeled off using a PC peeling machine. First, in the flexing process of the PC stripper, an external force is applied to the first electrode 13, the electrodeposited copper layer 6, and the re-electrodeposited copper layer 7 shown in FIG. The electrodeposited copper layer 7 is bent to cause peeling at the interface 8 between the first electrode 13 and the electrodeposited copper layer 6. In the chiseling step, a wedge is driven into the interface 8 to separate the electrodeposited copper layer 6 and the re-electrodeposited copper layer 7. In the down-end process, the electrodeposited copper layer 6 and the re-deposited copper layer 7 are simultaneously grasped with a grip and opened horizontally with the bottom of the electrodeposited copper layer 6 as a fulcrum, thereby causing a crack in the electrodeposited portion in contact with the groove 14. .

亀裂がスムーズに進展しない場合は、電着銅層6と再電着銅層7とを水平に開く動作と、電着銅層6と再電着銅層7とを第1電極13側へ近づける動作を1セットとするフラッピングを複数回繰り返す。これにより、電着銅層6と再電着銅層7とを第1電極13から完全に切り剥がし、製品を得る。   When the crack does not progress smoothly, the electrodeposited copper layer 6 and the re-electrodeposited copper layer 7 are opened horizontally, and the electrodeposited copper layer 6 and the re-electrodeposited copper layer 7 are brought closer to the first electrode 13 side. Repeat the flapping operation as one set multiple times. Thereby, the electrodeposited copper layer 6 and the re-electrodeposited copper layer 7 are completely cut off from the first electrode 13 to obtain a product.

−停電対策の詳細−
ステップS3の詳細を説明する前に、まず、停電前後の電解槽1内の反応について説明する。通常運転時の銅の電解精製(ステップS1)は、上述したように、通常250〜325A/m2程度の電流密度で行われるが、停電が起こると、電解槽1内の電流密度は一挙にゼロとなり、第1電極13上に析出した電着銅層6(図2参照)が、電解液11中に長期間晒される。その後、通常運転を再開して電流値を一挙に正常操業値に上げ、再電着銅層7を形成した後に、第1電極13に積層した電着銅の断面組織を観察すると、電着銅層6と再電着銅層7との間の界面9に筋状の模様が観察される。停電時間が長いほど、筋状の模様が明瞭になっており、結晶成長が停電前の履歴を引き継がないことがわかった。この筋状の模様は、塩化銅(CuCl(s))を主とする銅化合物層であると考えられる。
-Details of power outage countermeasures-
Before explaining the details of step S3, first, the reaction in the electrolytic cell 1 before and after the power failure will be explained. As described above, the electrolytic refining of copper during normal operation (step S1) is usually performed at a current density of about 250 to 325 A / m 2, but when a power failure occurs, the current density in the electrolytic cell 1 is increased all at once. The electrodeposited copper layer 6 (see FIG. 2) deposited on the first electrode 13 becomes zero and is exposed to the electrolytic solution 11 for a long time. Thereafter, normal operation is resumed, the current value is increased to a normal operation value at once, and after forming the re-electrodeposited copper layer 7, the cross-sectional structure of the electrodeposited copper laminated on the first electrode 13 is observed. A streak pattern is observed at the interface 9 between the layer 6 and the re-deposited copper layer 7. The longer the blackout time, the clearer the streak pattern was, and it was found that the crystal growth did not inherit the history before the blackout. This streak pattern is considered to be a copper compound layer mainly composed of copper chloride (CuCl (s)).

CuCl(s)の生成メカニズムは、以下の通りと考えられる。通常運転時(ステップS1)においては、以下の式(1)及び式(2)に従って、第1電極13上にCuが析出する。
Cu2+ + e- → Cu+ ・・・(1)
Cu+ + e- → Cu ・・・(2)
The formation mechanism of CuCl (s) is considered as follows. During normal operation (step S1), Cu is deposited on the first electrode 13 according to the following formulas (1) and (2).
Cu 2+ + e → Cu + (1)
Cu + + e → Cu (2)

式(1)及び式(2)の過程において、塩化物錯体を形成しやすい一価の銅イオンの一部は、電解液11中に含有している塩化物イオンと錯形成し、式(3)及び式(4)を経て、銅に還元される。
Cu+ + Cl- → CuCl(aq) ・・・ (3)
CuCl(aq)+ e- → Cu + Cl- ・・(4)
In the process of the formula (1) and the formula (2), a part of the monovalent copper ion that easily forms a chloride complex forms a complex with the chloride ion contained in the electrolytic solution 11, and the formula (3) ) And formula (4) to be reduced to copper.
Cu + + Cl → CuCl (aq) (3)
CuCl (aq) + e → Cu + Cl (4)

停電中は、以下に示す式(5)及び式(6)に従ってCuCl(s)の生成が進む。電解液11中にはCu2+が含有されるため、式(5)により、第1電極13表面にはCu+が溶解してくる。この際、電解液11中の第1電極13の電極面近傍に塩化物イオンが所定濃度以上存在すれば、CuCl(s)が生成する。停電中においては、式(5)で生成したCu+イオンとCl-イオンにより、電解銅層6の表面にCuCl(s)が逐次的に生成するものと考えられる。
Cu0 + Cu2+ → 2Cu+ ・・・(5)
Cu+ + Cl- → CuCl(s) ・・・ (6)
During a power failure, the generation of CuCl (s) proceeds according to the following formulas (5) and (6). Since Cu 2+ is contained in the electrolytic solution 11, Cu + is dissolved on the surface of the first electrode 13 according to the equation (5). At this time, if chloride ions are present in the vicinity of the electrode surface of the first electrode 13 in the electrolytic solution 11 at a predetermined concentration or more, CuCl (s) is generated. During a power outage, it is considered that CuCl (s) is sequentially generated on the surface of the electrolytic copper layer 6 by the Cu + ions and the Cl ions generated in the formula (5).
Cu 0 + Cu 2+ → 2Cu + (5)
Cu + + Cl → CuCl (s) (6)

実施の形態に係る銅の電解精製方法においては、停電対策(ステップS3)として、停電後、所定時間が経過した後に、第1電極13をアノードとし、第2電極12をカソードとする第2電流(逆電流)を第1電極13及び第2電極12の間に流す。これにより、電解銅層6の表面に生成されるCuCl(s)を電気分解して電解液11中に溶解させ、電着銅層6の表面から除去させるというものである。   In the copper electrolytic purification method according to the embodiment, as a power failure countermeasure (step S3), after a predetermined time has elapsed after the power failure, a second current having the first electrode 13 as an anode and the second electrode 12 as a cathode. (Reverse current) is passed between the first electrode 13 and the second electrode 12. Thereby, CuCl (s) produced on the surface of the electrolytic copper layer 6 is electrolyzed and dissolved in the electrolytic solution 11 and removed from the surface of the electrodeposited copper layer 6.

第2電流の電流密度としては、100〜350A/m2であるのが好ましく、より好ましくは、200〜250A/m2である。第2電流を流すタイミングは、例えば停電期間が12時間以上である場合においては、運転再開の数時間前、具体的には、運転再開から3〜8時間以上前から実施するのが好ましく、より好ましくは運転再開から3〜5時間前である。 The current density of the second current is preferably from 100~350A / m 2, more preferably 200~250A / m 2. For example, when the power outage period is 12 hours or more, the timing of supplying the second current is preferably several hours before the restart of operation, specifically, 3 to 8 hours or more before the restart of operation. Preferably, it is 3 to 5 hours before restarting operation.

CuCl(s)が電着銅層6の表面から除去されたことを確認するために、EPMA (電子線マイクロアナライザー)等によるサンプル評価をおこなってもよい。   In order to confirm that CuCl (s) has been removed from the surface of the electrodeposited copper layer 6, sample evaluation may be performed using EPMA (electron beam microanalyzer) or the like.

更に、ステップS3においては、第1電極13の電極面に対して液流を起こさせる工程を更に含むのが好ましい。液流を起こさせる方法としては、電解液11を電解槽1内において撹拌する方法、あるいは循環槽3及びヘッドタンク4を経由して電解液11を循環させる方法などが挙げられるが、少なくとも第1電極13の電極免に対して液流が起こる態様であれば、方法は特に限定されない。   Furthermore, in step S3, it is preferable to further include a step of causing a liquid flow to the electrode surface of the first electrode 13. Examples of the method for causing the liquid flow include a method of stirring the electrolytic solution 11 in the electrolytic cell 1 or a method of circulating the electrolytic solution 11 through the circulation tank 3 and the head tank 4. The method is not particularly limited as long as the liquid flow occurs with respect to the electrode 13 of the electrode 13.

電解液11中の塩化物イオンは、銅表面に特異吸着しやすいと言われており、停電中の電着銅層6(第1電極13)の表面での有効濃度はいくぶん大きくなっていることが推測される。これに対し、第1電極13の電極面に対して液流を起こさせることにより、第1電極13近傍の塩素含量が小さくなるため、塩化物イオンの特異吸着を抑制できる。また、式(5)の反応により生成したCu+イオンを、電解液11中へ散逸させることができるため、第1電極13周辺の濃度の不均一分布が緩和され、式(6)の反応で示すCuCl(s)の析出を抑制できる。 It is said that chloride ions in the electrolyte 11 are likely to be adsorbed specifically on the copper surface, and the effective concentration on the surface of the electrodeposited copper layer 6 (first electrode 13) during a power outage is somewhat higher. Is guessed. In contrast, by causing a liquid flow to the electrode surface of the first electrode 13, the chlorine content in the vicinity of the first electrode 13 is reduced, so that specific adsorption of chloride ions can be suppressed. In addition, since the Cu + ions generated by the reaction of the formula (5) can be dissipated into the electrolytic solution 11, the uneven distribution of the concentration around the first electrode 13 is relaxed, and the reaction of the formula (6) is performed. The precipitation of CuCl (s) shown can be suppressed.

液流を起こさせる工程は、停電中常時行わなくてもよい。例えば、停電が8〜12時間以上続く場合において、停電開始後1〜5時間程度、好ましくは停電開始後約2〜3時間程度、液流を起こさせておくことにより一定の効果を得ることができる。また、運転再開前の1〜5時間程度行うことも好ましい。例えば、運転再開から2〜3時間前から実施することにより、一定の効果を得ることができる。   The step of causing the liquid flow may not always be performed during a power failure. For example, when a power outage continues for 8 to 12 hours or more, a certain effect can be obtained by causing the liquid flow to occur for about 1 to 5 hours after the start of the power outage, preferably about 2 to 3 hours after the start of the power outage. it can. Moreover, it is also preferable to carry out for about 1 to 5 hours before restarting operation. For example, a certain effect can be obtained by carrying out the operation for 2 to 3 hours before the restart of operation.

例えば、電解液11を循環させる場合は、循環流量としては、1槽当たり20〜60L/min程度が好ましく、より好ましくは、35〜45L/min程度である。循環流量が20L/min以下とすると、電解槽1内での電解液11の組成分布にむらが発生し、電気銅へ悪影響を与える場合がある。一方、循環流量を60L/min以上とすると、槽底の澱物巻き上げによる、電気銅の汚染が発生する場合がある。   For example, when the electrolytic solution 11 is circulated, the circulation flow rate is preferably about 20 to 60 L / min, more preferably about 35 to 45 L / min per tank. If the circulation flow rate is 20 L / min or less, the composition distribution of the electrolytic solution 11 in the electrolytic cell 1 may be uneven, which may adversely affect electrolytic copper. On the other hand, when the circulating flow rate is 60 L / min or more, there is a case where electrolytic copper is contaminated due to the starch at the bottom of the tank.

更に、ステップS3においては、第1電極13をアノードとし、第2電極12をカソードとする微弱電流(=第4電流)を、第1電極13及び第2電極12間に流すことが好ましい。第4電流の電流密度としては、10〜100A/m2であるのが好ましく、より好ましくは、10〜20A/m2である。停電中、第4電流を流すタイミングは、停電後、第1電極13をアノードとし、第2電極12をカソードとする第2電流を流す前に、補助電源等を用いて常時行ってもよいし、断続的に行ってもよい。なお、第2電流としてPR電解を採用した場合においても、停電中対策を全く講じない場合に比べて塩素分の吸着が低減できることも確認されている。 Further, in step S <b> 3, it is preferable that a weak current (= fourth current) having the first electrode 13 as an anode and the second electrode 12 as a cathode flows between the first electrode 13 and the second electrode 12. The current density of the fourth current is preferably 10 to 100 A / m 2 , and more preferably 10 to 20 A / m 2 . During the power failure, the fourth current may be supplied at any time after the power failure by using an auxiliary power source or the like before supplying the second current using the first electrode 13 as an anode and the second electrode 12 as a cathode. It may be done intermittently. It has also been confirmed that even when PR electrolysis is employed as the second current, the adsorption of chlorine can be reduced as compared with the case where no measures are taken during a power failure.

本発明を更に詳しく説明するために、以下に実施例を挙げるが、本発明はこれらの実施例のみに限定されるものではない。   In order to describe the present invention in more detail, examples will be given below, but the present invention is not limited to these examples.

停電時対策として、表1に示す条件に基づいて実験を行った。電解液は、Cu:52±2g/L、H2SO4:180±5g/Lの硫酸系電解液を用いた。カソードとしてSUS316L(第1電極13)を使用し、アノードとして粗銅(第2電極12)を使用した。通常運転時の電流密度(第1電流および第3電流)は320A/m2、電解液11の温度を65±5℃とし、停電時間は24時間であった。 Experiments were conducted based on the conditions shown in Table 1 as a countermeasure against power failure. As the electrolytic solution, a sulfuric acid electrolytic solution of Cu: 52 ± 2 g / L and H 2 SO 4 : 180 ± 5 g / L was used. SUS316L (first electrode 13) was used as the cathode, and crude copper (second electrode 12) was used as the anode. The current density (first current and third current) during normal operation was 320 A / m 2 , the temperature of the electrolytic solution 11 was 65 ± 5 ° C., and the power failure time was 24 hours.

表1中「液循環1」とは、停電開始直後3時間、電解液を電解槽1槽当たり42L/minで循環させた場合を示す。「アノード電流(小)」とは、停電時に電流密度−10A/m2の微弱のアノード電流(第4電流)を供給した場合を示す。「液循環2」とは、通常運転再開3時間前から電解液を電解槽1槽当たり42L/minで循環させた場合を示す。「アノード電流(大)」とは、再通電開始3時間前から再通電開始時まで、電流密度−263.3A/m2のアノード電流(第2電流)を流す場合を示す。 “Liquid circulation 1” in Table 1 indicates a case where the electrolytic solution is circulated at 42 L / min per electrolytic cell for 3 hours immediately after the start of the power failure. “Anode current (small)” indicates a case where a weak anode current (fourth current) having a current density of −10 A / m 2 is supplied during a power failure. “Liquid circulation 2” indicates a case where the electrolytic solution is circulated at 42 L / min per electrolytic cell from 3 hours before resumption of normal operation. “Anode current (large)” indicates a case where an anode current (second current) having a current density of −263.3 A / m 2 is passed from 3 hours before the start of re-energization to the time of the start of re-energization.

Figure 0005213828
Figure 0005213828

表2に、表1に示す各試験条件に基づくフラッピング回数の変化を示す。「フラッピング回数」は、電着銅をカソード電極板から引き剥がす際に、電着銅の底部を支点として水平方向に開く動作(開状態)と、水平方向に開いた電着銅を再び元の閉状態に戻す動作(閉状態)の組み合わせを「1回」として計算した。表2中「N数(剥ぎ取り枚数)」とは、カソード電極板から実際に引き剥がした電着銅の枚数、「フラッピング回数(最大値)」とは、フラッピング回数の最大回数、「フラッピング回数(平均値)」とは、フラッピング回数の平均値を示す。   Table 2 shows the change in the number of times of flapping based on each test condition shown in Table 1. The “flapping frequency” refers to the operation of opening the electrodeposited copper horizontally from the bottom of the electrodeposited copper as a fulcrum when the electrodeposited copper is peeled off (open state) and the electrodeposited copper opened in the horizontal direction again. The combination of the operation of returning to the closed state (closed state) was calculated as “once”. In Table 2, “N number (number of strips)” means the number of electrodeposited copper actually peeled from the cathode electrode plate, “Flap number (maximum value)” means the maximum number of flapping times, “Flap number (average value)” indicates an average value of the number of flappings.

Figure 0005213828
Figure 0005213828

表2に示すように、停電中に停電対策を行わない従来例(試験1)では、フラッピング回数の最大値が5回になった。一方、試験3では、フラッピング回数が最大2回程度に低減されている。また、従来例ではフラッピング回数の平均値が3.83回であったのに比べ、試験2の場合はフラッピング回数を2.20回に減少させることができ、電着銅の剥ぎ取り不良を有効に低減できていることがわかる。   As shown in Table 2, the maximum value of the number of flappings was 5 in the conventional example (Test 1) in which power failure countermeasures were not taken during a power failure. On the other hand, in Test 3, the number of times of flapping is reduced to a maximum of about 2. Moreover, compared with the average value of the number of times of flapping in the conventional example being 3.83 times, in the case of Test 2, the number of times of flapping can be reduced to 2.20 times, resulting in poor stripping of electrodeposited copper. It can be seen that can be effectively reduced.

1 電解槽
2 整流器
3 循環槽
4 ヘッドタンク
5 制御装置
6 電着銅層
7 再電着銅層
8、9 界面
11 電解液
12 第2電極
13 第1電極
14 V字形の溝
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Rectifier 3 Circulation tank 4 Head tank 5 Control apparatus 6 Electrodeposition copper layer 7 Re-deposition copper layer 8, 9 Interface 11 Electrolyte solution 12 2nd electrode 13 1st electrode 14 V-shaped groove | channel

Claims (5)

電解液を収容する電解槽中に第1電極及び粗銅製の第2電極を浸漬させて銅電解精製を行う方法であって、
(a)前記第1電極をカソードとし、前記第2電極をアノードとする第1電流を前記第1電極及び前記第2電極の間に流し、前記第1電極の表面に電着銅層を析出させる工程と、
(b)前記第1電流の供給を停止させる工程と、
(c)前記停止後、所定時間経過後に、前記第1電極をアノードとし、前記第2電極をカソードとする第2電流を前記第1電極及び前記第2電極の間に流し、前記停止後に前記電解液中に前記電着銅が浸漬された状態で保持されることにより前記電着銅層上に生成される塩化銅を含む銅化合物層を除去する工程と、
(d)前記銅化合物層の除去後に、前記第1電極をカソードとし、前記第2電極をアノードとする第3電流を前記第1電極及び前記第2電極の間に流し、前記電着銅層の表面に再電着銅層を電着させる工程と
を含む銅の電解精製方法。
A method of performing copper electrolytic purification by immersing a first electrode and a second electrode made of crude copper in an electrolytic cell containing an electrolytic solution,
(A) A first current having the first electrode as a cathode and the second electrode as an anode is passed between the first electrode and the second electrode, and an electrodeposited copper layer is deposited on the surface of the first electrode A process of
(B) stopping the supply of the first current;
(C) After a predetermined time has elapsed after the stop, a second current having the first electrode as an anode and the second electrode as a cathode is caused to flow between the first electrode and the second electrode, and after the stop, Removing the copper compound layer containing copper chloride formed on the electrodeposited copper layer by holding the electrodeposited copper in an electrolyte solution ; and
(D) After the removal of the copper compound layer, a third current having the first electrode as a cathode and the second electrode as an anode is passed between the first electrode and the second electrode, and the electrodeposited copper layer A method of electrodepositing a re-electrodeposition copper layer on the surface of the copper.
少なくとも工程(b)と工程(d)との間に、前記第1電極の電極面に対して液流を起こさせる工程を更に含む請求項1に記載の銅の電解精製方法。   The method for electrolytic purification of copper according to claim 1, further comprising a step of causing a liquid flow to the electrode surface of the first electrode at least between step (b) and step (d). 少なくとも工程(b)と工程(d)との間に、前記電解液を循環させる工程を更に含む請求項1に記載の銅の電解精製方法。   The method for electrolytic purification of copper according to claim 1, further comprising a step of circulating the electrolytic solution at least between step (b) and step (d). 工程(b)と工程(c)との間に、前記第2電流より電流密度が小さく、前記第1電極をアノードとし、前記第2電極をカソードとする第4電流を、前記第1電極及び前記第2電極の間に流す工程を更に含むことを特徴とする請求項1または2に記載の銅の電解精製方法。   Between the step (b) and the step (c), a current density is smaller than the second current, the fourth electrode having the first electrode as an anode and the second electrode as a cathode, the first electrode and The method for electrolytic purification of copper according to claim 1, further comprising a step of flowing between the second electrodes. 前記第2電流の電流密度が、100〜350A/m2であることを特徴とする請求項1〜4のいずれか1項に記載の銅の電解精製方法。 5. The method for electrolytic purification of copper according to claim 1, wherein the second current has a current density of 100 to 350 A / m 2 .
JP2009227739A 2009-09-30 2009-09-30 Method for electrolytic purification of copper Active JP5213828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009227739A JP5213828B2 (en) 2009-09-30 2009-09-30 Method for electrolytic purification of copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009227739A JP5213828B2 (en) 2009-09-30 2009-09-30 Method for electrolytic purification of copper

Publications (2)

Publication Number Publication Date
JP2011074463A JP2011074463A (en) 2011-04-14
JP5213828B2 true JP5213828B2 (en) 2013-06-19

Family

ID=44018743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009227739A Active JP5213828B2 (en) 2009-09-30 2009-09-30 Method for electrolytic purification of copper

Country Status (1)

Country Link
JP (1) JP5213828B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6306932B2 (en) * 2014-04-23 2018-04-04 パンパシフィック・カッパー株式会社 Stripping method for electrodeposited copper
CN106435654A (en) * 2016-08-31 2017-02-22 河南豫光金铅股份有限公司 Elimination method for cathode plate copper liquid level line white crystals in copper electrolytic refining

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3097824B2 (en) * 1995-09-12 2000-10-10 住友金属鉱山株式会社 Long-period pulse electrolysis operation method in copper electrorefining
JPH09217190A (en) * 1996-02-15 1997-08-19 Sumitomo Metal Mining Co Ltd Energization method in electrolytic refining
JP3063636B2 (en) * 1996-09-13 2000-07-12 住友金属鉱山株式会社 Copper electrolytic refining method
JP3761074B2 (en) * 2000-10-27 2006-03-29 三井金属鉱業株式会社 Method for electrolytic purification of copper

Also Published As

Publication number Publication date
JP2011074463A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
EP2604725B1 (en) Method of removing oxide film on surface of copper or copper-base alloy.
JP4846740B2 (en) Plating product manufacturing method and electroplating method
JP2004204308A (en) Lead-free tin alloy plating method
JP5213828B2 (en) Method for electrolytic purification of copper
JP2003268595A (en) Copper electroplating method, phosphorus-containing copper anode for copper electroplating, and semiconductor wafer with minimal particle adhesion plated by using them
JP5669995B1 (en) Method and apparatus for processing Au-containing iodine-based etching solution
JP4343969B2 (en) Measures for power outage of copper electrolytic refining method
JP5606747B2 (en) Method for electrolytic purification of copper
JP2009256742A (en) Copper electro-refining method in which planned blackout is carried out
JP6995139B2 (en) Plating equipment and plating method
JP6041915B2 (en) Surface treatment method for aluminum and aluminum alloy and electrolytic solution used for the surface treatment method
JP3405517B2 (en) Electroplating method and apparatus
JP3416620B2 (en) Electrolytic copper foil manufacturing apparatus and electrolytic copper foil manufacturing method
JP4465084B2 (en) Copper foil manufacturing method and manufacturing apparatus
JP3761074B2 (en) Method for electrolytic purification of copper
EP0058506B1 (en) Bipolar refining of lead
JP5084055B2 (en) Electrolytic degreasing apparatus and electrolytic degreasing method
KR20120034577A (en) Method for electrowinning of cobalt
JP5804920B2 (en) Electrolytic extraction of metals
CN106011949A (en) Current density parameter gradient control method during copper cyclone electrolysis
JP4231351B2 (en) Nickel plating method with less sludge generation
JP2018184626A (en) Washing system
EP0255451B1 (en) Process for shutting down and restarting an electrolytic refining plant
JP7042641B2 (en) Aluminum foil manufacturing method and manufacturing equipment
TW585932B (en) Method of reducing defects caused by conductor roll surface anomalies using high volume bottom sprays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250