Nothing Special   »   [go: up one dir, main page]

JP5213791B2 - Slide bearing with back layer - Google Patents

Slide bearing with back layer Download PDF

Info

Publication number
JP5213791B2
JP5213791B2 JP2009109526A JP2009109526A JP5213791B2 JP 5213791 B2 JP5213791 B2 JP 5213791B2 JP 2009109526 A JP2009109526 A JP 2009109526A JP 2009109526 A JP2009109526 A JP 2009109526A JP 5213791 B2 JP5213791 B2 JP 5213791B2
Authority
JP
Japan
Prior art keywords
layer
bearing
back layer
plane
fretting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009109526A
Other languages
Japanese (ja)
Other versions
JP2010255815A (en
Inventor
茂 稲見
知之 韮澤
幸彦 籠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2009109526A priority Critical patent/JP5213791B2/en
Publication of JP2010255815A publication Critical patent/JP2010255815A/en
Application granted granted Critical
Publication of JP5213791B2 publication Critical patent/JP5213791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

本発明は、自動車、舶用、一般産業機械エンジン等の内燃機関の、裏金の背面側に層を有するすべり軸受に関するものである。   The present invention relates to a plain bearing having a layer on the back side of a back metal of an internal combustion engine such as an automobile, a marine engine, or a general industrial machine engine.

近年、軽量化などの目的から、すべり軸受を取り付けるハウジングは、薄肉化されたり、アルミニウム合金が使用されたりして、剛性が低くなってきている。このため、ハウジングには、動的荷重に伴う微小な繰り返し歪みが生じ易くなってきている。例えば、自動車用エンジンのコンロッドの大端部や主軸受部といったハウジングでは、上記のような軽量化が図られているため、ハウジングの内面と、このハウジングの内面に取り付けられたすべり軸受の背面との間では、ハウジングの繰り返し歪みに伴って相対的な微小衝突や微小すべりを生じ、これによってフレッチングによる損傷を生じ易い状態になっている。この現象を解消するため、例えば、本出願人が先に提案した特開2000−314424号公報(特許文献1)に開示される技術においては、裏金層内面に摺動層を有するすべり軸受において、すべり軸受の裏金層背面のフレッチングを生じやすい部分にリン酸塩皮膜を形成し、一方リン酸塩皮膜を形成していない背面に熱良導性の良導体皮膜を形成することにより、熱の放散性を向上して、耐フレッチング性と非焼付性に優れたすべり軸受が開示されている。   In recent years, for the purpose of weight reduction and the like, a housing to which a slide bearing is attached has become thinner and aluminum has become less rigid. For this reason, minute repeated strains accompanying dynamic loads are likely to occur in the housing. For example, in a housing such as a large end portion of a connecting rod of a car engine or a main bearing portion, the weight reduction as described above is achieved. Therefore, an inner surface of the housing and a rear surface of a slide bearing attached to the inner surface of the housing In the meantime, relative micro-collisions and micro-slip are caused with repeated distortion of the housing, which is likely to cause fretting damage. In order to eliminate this phenomenon, for example, in the technique disclosed in Japanese Patent Laid-Open No. 2000-314424 (Patent Document 1) previously proposed by the present applicant, in a plain bearing having a sliding layer on the inner surface of the back metal layer, Heat dissipating performance by forming a phosphate coating on the back of the plain bearing back of the plain bearing that is prone to fretting, while forming a good thermal conductive coating on the back without the phosphate coating There is disclosed a plain bearing that is improved in fretting resistance and non-seizure property.

特開2000−314424号公報(請求項1)JP 2000-314424 A (Claim 1)

上記した先行技術文献1に開示されるすべり軸受は、従来の一般的なエンジンにあって、上記した背面層を有する軸受で、フレッチングに対して比較的良好に機能し、損傷無く使用できていたが、最近の更なるエンジンの高性能化・高機能化の進展によって高回転・高荷重化が進み、取り付けられているハウジングと擦れあう背面層にとって厳しい使用環境において、フレッチングによる背面層の耐摩耗性・耐疲労性が不十分となりがちである。また高回転によって高温となると、背面層がより摩耗して摩耗物が背面層とハウジングとの間に堆積し、その堆積した摩耗物による片当りと該片当りによるさらなる温度上昇によって軸受の疲労・焼付が発生し、結果として軸受の損傷が発生するという欠点があった。   The slide bearing disclosed in the above-mentioned prior art document 1 is a conventional general engine, and is a bearing having the above-described back layer, which functioned relatively well against fretting and could be used without damage. However, with the recent progress of higher performance and higher performance of engines, higher rotation and higher load have advanced, and the back layer wear resistance due to fretting in the severe use environment for the back layer that rubs against the mounted housing. Tend to be insufficient in resistance and fatigue resistance. Also, when the temperature increases due to high rotation, the back layer is more worn and the worn material accumulates between the back layer and the housing. There was a drawback that seizure occurred, resulting in damage to the bearing.

本発明は、上記した事情に鑑みなされたものであり、その目的とするところは、高い耐フレッチング性を得ることができる背面層を有するすべり軸受を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a plain bearing having a back layer capable of obtaining high fretting resistance.

上記した目的を達成するために、請求項1に係る発明においては、裏金層の背面にNi又はCuからなる背面層を設け、その背面層を設けた状態の裏金層を圧延及び熱処理したすべり軸受において、
前記背面層は、(111)面のX線回折のピーク強度P1、(200)面のX線回折のピーク強度P2、(220)面のX線回折のピーク強度P3、とした場合に、
P1/(P1+P2+P3)>0.6・・・(イ)
P1≧3×P2、且つP1≧10×P3・・・(ロ)
を充足し
前記背面層は、さらに酸化量が5質量%以下であることを特徴とする。
In order to achieve the above-described object, in the invention according to claim 1, a slide bearing in which a back layer made of Ni or Cu is provided on the back surface of the back metal layer, and the back metal layer with the back layer provided is rolled and heat-treated. In
When the back layer has a (111) plane X-ray diffraction peak intensity P1, a (200) plane X-ray diffraction peak intensity P2, and a (220) plane X-ray diffraction peak intensity P3,
P1 / (P1 + P2 + P3)> 0.6 (a)
P1 ≧ 3 × P2 and P1 ≧ 10 × P3 (B)
Is satisfied ,
The back layer further has an oxidation amount of 5% by mass or less .

請求項2に係る発明においては、請求項1記載のすべり軸受において、前記背面層は、硬さHV80以下であることを特徴とする。
According to a second aspect of the present invention, in the plain bearing according to the first aspect, the back layer has a hardness of HV80 or less .

請求項1に係る発明においては、結晶構造がfccであるNiやCuの場合、結晶のすべり面である(111)面のピーク強度P1と、すべりの抵抗となる面である(200)面のピーク強度P2及び(220)面のピーク強度P3と、の結晶面のピーク強度の和に対するすべり面である(111)面のピーク強度P1の割合(P1, P2, P3の和に対するP1の比の値:P1強度比)を、0.6よりも大きく配向させると、背面層が変形するときの転位の移動を容易にさせることができる。そのため、フレッチング時の背面層と例えばハウジングとの摩擦抵抗が低下して摩耗量が減少すると考えられるので、耐フレッチング性が向上する。結果として背面層の耐摩耗性及び軸受の耐疲労性が向上し、軸受損傷を防止することができる。   In the invention according to claim 1, in the case of Ni or Cu having a crystal structure of fcc, the peak intensity P1 of the (111) plane that is the slip plane of the crystal and the (200) plane that is the plane that becomes the slip resistance. The ratio of the peak intensity P1 of the (111) plane, which is the slip plane to the sum of the peak intensity P3 of the crystal plane and the peak intensity P3 of the peak intensity P2 and (220) plane (the ratio of P1 to the sum of P1, P2, P3) If the (value: P1 intensity ratio) is oriented larger than 0.6, the movement of dislocations when the back layer is deformed can be facilitated. For this reason, it is considered that the frictional resistance between the back surface layer and the housing, for example, at the time of fretting is reduced and the amount of wear is reduced, so that the fretting resistance is improved. As a result, the wear resistance of the back layer and the fatigue resistance of the bearing are improved, and bearing damage can be prevented.

また、(111)面のピーク強度P1が、(200)面のピーク強度P2の3倍以上であり、且つ(220)面のピーク強度P3の10倍以上である場合には、耐フレッチング性に対してより適切なすべり面の配向状態を有する背面層とすることができる。そのため、さらにフレッチングによる摩耗を減少させることができる。
Further , when the peak intensity P1 of the ( 111) plane is 3 times or more of the peak intensity P2 of the (200) plane and 10 times or more of the peak intensity P3 of the (220) plane, the fretting resistance is improved. On the other hand, it can be set as the back layer which has the more suitable orientation state of a slip surface. Therefore, wear due to fretting can be further reduced.

また、背面層の酸化量が5質量%以下の場合には、酸化による脆化の影響が少なくなり、さらにフレッチングによる摩耗を減少させることができる。望ましくは、背面層の酸化量が2質量%以下が好ましい。
なお、めっきにより形成した背面層に圧延・焼鈍を施すことによって、上記の配向状態や酸化量となる背面層に制御することができる。
Further, when the oxidation amount of the back surface layer is 5 mass% or less, the influence of brittleness is reduced due to oxidation, it is possible to further reduce the wear due to fretting. Desirably, the oxidation amount of the back layer is preferably 2% by mass or less.
In addition, it can control to the back surface layer used as said orientation state and oxidation amount by giving rolling and annealing to the back surface layer formed by plating.

本実施形態に係るすべり軸受の概略断面図である。It is a schematic sectional drawing of the slide bearing which concerns on this embodiment. 本実施形態に係る背面層のピーク強度P1,P2,P3の関係を示すX線回折グラフの模式図である。It is a schematic diagram of the X-ray diffraction graph which shows the relationship of the peak intensity P1, P2, P3 of the back surface layer which concerns on this embodiment. 油圧振動試験の説明図である。It is explanatory drawing of a hydraulic vibration test.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本実施形態に係るすべり軸受の概略断面図であり、図2は、本実施形態に係る背面層のピーク強度P1,P2,P3の関係を示すX線回折グラフの模式図であり、図3は、油圧振動試験の説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a plain bearing according to the present embodiment, and FIG. 2 is a schematic diagram of an X-ray diffraction graph showing the relationship between the peak intensities P1, P2, and P3 of the back layer according to the present embodiment. FIG. 3 is an explanatory diagram of a hydraulic vibration test.

図1に示す断面図を有するすべり軸受を以下のようにして作製する。ネライの成分で鋳造した軸受合金ビレット(本実施形態の場合は、Al-8Sn-2.5Si-1Cu-0.3Mn-0.2V-0.2Feのアルミ軸受合金層4)を作製し、中間層3を構成するAl箔と軸受合金ビレットを圧接により、接合・圧延し複層アルミニウム合金板5を作製する。その後、背面層6(Ni又はCu)を設けた鋼裏金に複層アルミニウム合金板5を重ね合わせて圧接し、300〜400℃で数時間焼鈍することにより、軸受合金層4が中間層3を介して鋼裏金層2に接合してなるいわゆるバイメタル1を作製する。このバイメタル1を半円筒状に加工して半割形状のすべり軸受(半割軸受)を作製する。また、背面層6は、めっきにより鋼裏金層2の背面に設けられるものである。   A plain bearing having the cross-sectional view shown in FIG. 1 is produced as follows. A bearing alloy billet cast with the components of Nerai (in the case of this embodiment, Al-8Sn-2.5Si-1Cu-0.3Mn-0.2V-0.2Fe aluminum bearing alloy layer 4) is produced, The Al foil constituting the layer 3 and the bearing alloy billet are joined and rolled by pressure welding to produce a multilayer aluminum alloy plate 5. Thereafter, the multilayer aluminum alloy plate 5 is superposed on the steel back metal provided with the back layer 6 (Ni or Cu) and pressed, and annealed at 300 to 400 ° C. for several hours, whereby the bearing alloy layer 4 forms the intermediate layer 3. A so-called bimetal 1 formed by bonding to the steel back metal layer 2 is produced. The bimetal 1 is processed into a semi-cylindrical shape to produce a half-shaped slide bearing (half-bearing). Moreover, the back surface layer 6 is provided in the back surface of the steel back metal layer 2 by plating.

そして、上記のようにして作製したすべり軸受においては、背面層6を設けた鋼裏金層2に複層アルミニウム合金板5を重ね合わせて圧接・焼鈍した後に、半円筒状に加工して半割軸受を製造した。背面層6への上記加工処理によって、背面層6のP1強度比、酸化量、厚さ、硬さとして所望の値を得ることが可能となる。例えば、圧接(圧延)条件や焼鈍(熱処理)条件を変えることにより、背面層6のP1強度比を0.6超えに調整することができると共に、酸化量も5質量%以下、厚さ0.1〜10μm、硬さHV80以下の所望の値とすることができる。なお、フレッチングによる背面層6の摩耗に対して、背面層6は、0.1〜10μmの厚さが好ましい。0.1μm未満では、耐フレッチング性の低下傾向がでてき、厚さが10μmより大又は硬さがHV80より大では、フレッチングによる背面層の耐摩耗性・疲労性の低下傾向がでてくるため、厚さ及び硬さは、上記した範囲が望ましい。さらに、酸化量は、X線マイクロアナライザー(EPMA)による表面分析を行って酸素について定量することにより計測することができる。   In the plain bearing produced as described above, the multilayered aluminum alloy plate 5 is superimposed on the steel back metal layer 2 provided with the back layer 6 and pressed and annealed, and then processed into a semi-cylindrical shape. A bearing was manufactured. By the above processing on the back layer 6, it is possible to obtain desired values for the P1 intensity ratio, oxidation amount, thickness, and hardness of the back layer 6. For example, by changing the pressure welding (rolling) conditions and annealing (heat treatment) conditions, the P1 strength ratio of the back layer 6 can be adjusted to exceed 0.6, the oxidation amount is 5% by mass or less, the thickness is 0. It can be set to a desired value of 1 to 10 μm and a hardness of HV80 or less. In addition, with respect to abrasion of the back surface layer 6 due to fretting, the back surface layer 6 preferably has a thickness of 0.1 to 10 μm. If the thickness is less than 0.1 μm, the fretting resistance tends to decrease. If the thickness is greater than 10 μm or the hardness is greater than HV80, the wear resistance and fatigue resistance of the back layer due to fretting tend to decrease. The thickness and hardness are preferably in the above-described ranges. Furthermore, the amount of oxidation can be measured by performing surface analysis with an X-ray microanalyzer (EPMA) and quantifying oxygen.

また、本実施形態では、背面層6をX線回折で測定した場合に、ピーク強度P1,P2,P3の関係は、図2のグラフのようになった。図2は、後述する表1の実施例1の試料の背面層6をX線回折で測定したもので、角度約44度で現れる(111)面のピーク強度P1と、角度約52度で現れる(200)面のピーク強度P2と、角度約77度で現れる(220)面のピーク強度P3のみを表示しているが、このグラフからP1=1とした場合に、大凡P2=0.125、P3=0.050となる。このため、P1/(P1+P2+P3)=0.85であり、P1≧3×P2、P1≧10×P3の関係を満たしている。   In the present embodiment, when the back layer 6 is measured by X-ray diffraction, the relationship between the peak intensities P1, P2, and P3 is as shown in the graph of FIG. FIG. 2 shows an X-ray diffraction measurement of the back layer 6 of the sample of Example 1 in Table 1 to be described later. The peak intensity P1 of the (111) plane appearing at an angle of about 44 degrees and an angle of about 52 degrees are shown. Only the peak intensity P2 of the (200) plane and the peak intensity P3 of the (220) plane appearing at an angle of about 77 degrees are displayed. From this graph, when P1 = 1, approximately P2 = 0.125, P3 = 0.050. Therefore, P1 / (P1 + P2 + P3) = 0.85, which satisfies the relationship of P1 ≧ 3 × P2 and P1 ≧ 10 × P3.

次に、本発明に係る背面層を有するすべり軸受について、P1強度比や酸化量等が異なる実施品と従来品との試験結果について説明する。表1に示す実施例1〜5については、前述したように、ネライの成分で鋳造した軸受合金ビレットを作製し、中間層3を構成するAl箔と軸受合金ビレットを圧接により、接合・圧延し複層アルミニウム合金板5を作製した後、Niからなる背面層6を設けた鋼裏金に複層アルミニウム合金板5を重ね合わせて圧接し、300〜400℃で数時間焼鈍することにより、軸受合金層4が中間層3を介して鋼裏金層2に接合してなるバイメタル1を作製し、このバイメタル1を半円筒状に加工して背面層を有するすべり軸受としたものである。そして、圧下率並びに焼鈍温度及び焼鈍時間を調節することにより、実施例1〜5に示すようなP1強度比及び酸化量を有する背面層6としたものである。   Next, with respect to the plain bearing having the back layer according to the present invention, the test results of the actual product and the conventional product having different P1 strength ratios and oxidation amounts will be described. For Examples 1 to 5 shown in Table 1, as described above, a bearing alloy billet cast with the components of nerai was prepared, and the Al foil and the bearing alloy billet constituting the intermediate layer 3 were joined and rolled by pressure welding. After producing the multilayer aluminum alloy plate 5, the multilayer aluminum alloy plate 5 is superimposed on the steel back metal provided with the back layer 6 made of Ni, and is pressed and annealed at 300 to 400 ° C. for several hours, thereby bearing alloy A bimetal 1 in which the layer 4 is bonded to the steel back metal layer 2 through the intermediate layer 3 is produced, and the bimetal 1 is processed into a semi-cylindrical shape to form a slide bearing having a back layer. And it is set as the back layer 6 which has P1 intensity | strength ratio and oxidation amount as shown in Examples 1-5 by adjusting a rolling reduction, annealing temperature, and annealing time.

一方、表1に示す比較例1は、ネライの成分で鋳造した軸受合金ビレットを作製し、中間層3を構成するAl箔と軸受合金ビレットを圧接により、接合・圧延し複層アルミニウム合金板5を作製した後、鋼裏金に複層アルミニウム合金板5を重ね合わせて圧接し、300〜400℃で数時間焼鈍することにより、軸受合金層4が中間層3を介して鋼裏金層2に接合してなるバイメタル1を作製し、このバイメタル1を半円筒状に加工して半割軸受を作製する。さらに半割軸受の鋼裏金2に背面層6(Ni)を設けることにより、背面層を有するすべり軸受としたものである。つまり、実施例1〜5と比較例1との作製上の相違点は、前者(実施例1〜5)が半割形状に加工する前に鋼裏金層2の背面に背面層6を設けて圧延・熱処理等をしているのに対し、後者(比較例1)が半割形状に加工した後に鋼裏金層2の背面に背面層6を設けただけで当該背面層6に対して圧延・熱処理等をしていない点で相違する。このため、比較例1におけるP1強度比は、実施例1〜5に比べて極めて低くなっており、0.6に満たないものとなっている。ただし、酸化量は、実施例1〜3と比較例1とで同じとなっている。   On the other hand, in Comparative Example 1 shown in Table 1, a bearing alloy billet cast with a component of nerai is prepared, and an Al foil constituting the intermediate layer 3 and a bearing alloy billet are joined and rolled by pressure welding to form a multilayer aluminum alloy plate 5 Then, the multi-layer aluminum alloy plate 5 is superposed on the steel back metal and pressed, and annealed at 300 to 400 ° C. for several hours, so that the bearing alloy layer 4 is joined to the steel back metal layer 2 via the intermediate layer 3. A bimetal 1 is produced, and the bimetal 1 is processed into a semicylindrical shape to produce a half bearing. Further, by providing a back layer 6 (Ni) on the steel back metal 2 of the half bearing, a slide bearing having a back layer is obtained. That is, the difference in production between Examples 1 to 5 and Comparative Example 1 is that the back layer 6 is provided on the back surface of the steel back metal layer 2 before the former (Examples 1 to 5) is processed into a halved shape. While the latter (Comparative Example 1) is processed into a halved shape after the latter (Comparative Example 1) is processed, the rear layer 6 is simply rolled to the back layer 6 by providing the back layer 6 on the back surface. The difference is that no heat treatment is performed. For this reason, the P1 intensity ratio in the comparative example 1 is very low compared with Examples 1-5, and is less than 0.6. However, the amount of oxidation is the same in Examples 1 to 3 and Comparative Example 1.

Figure 0005213791
Figure 0005213791

上記した実施例1〜5及び比較例1について油圧振動試験機により振動試験を行った。振動試験は、図3に示すように自動車用エンジンのコネクティングロッドの大端部を模したハウジングに各実施例及び比較例のすべり軸受を取り付け、表2に示す条件で30kNの振動荷重Wを加えて行った。評価は、表3に示すフレッチングによる損傷が外観上確認(ルーペ等での観察)できるか否かによって区分けしたランク1〜5によって評価した。即ち、クラックのある激しいフレッチングがある場合のランク1と、クラックはないが激しいフレッチングがある場合のランク2をフレッチング損傷ありと評価し、わずかなフレッチングがある場合のランク3と、わずかなフレッチングの痕跡が確認できるようなランク4と、フレッチングが全くない場合のランク5とをフレッチング損傷なしと評価した。   A vibration test was performed on the above-described Examples 1 to 5 and Comparative Example 1 using a hydraulic vibration tester. In the vibration test, as shown in FIG. 3, the sliding bearings of the examples and comparative examples were attached to a housing simulating the large end of a connecting rod of an automobile engine, and a vibration load W of 30 kN was applied under the conditions shown in Table 2. I went. The evaluation was performed based on ranks 1 to 5 classified according to whether or not damage caused by fretting shown in Table 3 can be visually confirmed (observation with a magnifying glass or the like). That is, rank 1 when there is severe fretting with cracks and rank 2 when there is no cracks but severe fretting is evaluated as fretting damage, rank 3 when there is slight fretting, and slight fretting. Rank 4 in which traces could be confirmed and rank 5 in the absence of fretting were evaluated as having no fretting damage.

Figure 0005213791
Figure 0005213791

Figure 0005213791
Figure 0005213791

しかして、表1の右側の評価の欄に示されるように、P1強度比が0.6超えである実施例1〜5については、試験温度が150℃又は180℃のいずれの場合でもランク3以上のフレッチング損傷なしと評価でき、そのうち、酸化量が5質量%以下の4質量%の実施例4と、5質量%以上の10質量%の実施例5とを比較した場合に、180℃の試験温度では両者ともランク3と評価されているのに対し、150℃の試験温度では実施例4がランク4で実施例5がランク3で評価されていることからも、酸化量が5質量%以下である方が好ましいことが理解できる。さらに、酸化量が2質量%以下の1質量%の実施例3と、2質量%以上の4質量%の実施例4とを比較した場合に、150℃の試験温度では両者ともランク4と評価されているのに対し、180℃の試験温度では実施例3がランク4で実施例4がランク3で評価されていることからも、酸化量が2質量%以下である方がより好ましいことが理解できる。   Thus, as shown in the evaluation column on the right side of Table 1, for Examples 1 to 5 in which the P1 strength ratio is more than 0.6, rank 3 in any case where the test temperature is 150 ° C. or 180 ° C. It can be evaluated that there is no fretting damage as described above. Among them, when 4% by mass of Example 4 with an oxidation amount of 5% by mass or less and Example 5 with 10% by mass of 5% by mass or more are compared, Both were evaluated as rank 3 at the test temperature, whereas at the test temperature of 150 ° C., Example 4 was evaluated at rank 4 and Example 5 was evaluated at rank 3, indicating that the oxidation amount was 5% by mass. It can be understood that the following is preferable. Furthermore, when Example 3 of 1% by mass with an oxidation amount of 2% by mass or less was compared with Example 4 of 4% by mass of 2% by mass or more, both were evaluated as Rank 4 at a test temperature of 150 ° C. On the other hand, at the test temperature of 180 ° C., Example 3 is evaluated as Rank 4 and Example 4 is evaluated as Rank 3, so that the oxidation amount is preferably 2% by mass or less. Understandable.

一方、P1強度比が0.6以下である比較例1については、酸化量が5質量%よりもはるかに少なくても、試験温度が150℃又は180℃のいずれの場合でもランク1のフレッチング損傷ありと評価されている。   On the other hand, for Comparative Example 1 in which the P1 strength ratio is 0.6 or less, even if the oxidation amount is much less than 5% by mass, the fretting damage of rank 1 regardless of whether the test temperature is 150 ° C. or 180 ° C. It is evaluated as being.

以上、詳細に説明したところから明らかなように、結晶構造がfccであるNiやCuの場合、結晶のすべり面である(111)面のピーク強度P1と、すべりの抵抗となる面である(200)面のピーク強度P2及び(220)面のピーク強度P3との結晶面のピーク強度の和に対するすべり面である(111)面のピーク強度P1の割合(P1, P2, P3の和に対するP1の比の値:P1強度比)が、0.6よりも大きく配向していると、背面層の耐摩耗性及び軸受の耐疲労性が向上し、軸受損傷を防止することができ、また、背面層の酸化量が5質量%以下の場合には、酸化による脆化の影響が少なくなり、さらにフレッチングによる摩耗を減少させることができる。
上述した実施例ではNiからなる背面層での結果を示したが、背面層にCuを用いたすべり軸受においても同様の結果となった。
As is apparent from the detailed description above, in the case of Ni or Cu having a crystal structure of fcc, the peak intensity P1 of the (111) plane which is the slip plane of the crystal and the plane which becomes the slip resistance ( The ratio of the peak intensity P1 of the (111) plane which is the slip plane to the sum of the peak intensity P2 of the (200) plane and the peak intensity P3 of the (220) plane (P1 with respect to the sum of P1, P2 and P3) If the ratio value of the ratio: P1 strength ratio) is oriented larger than 0.6, the wear resistance of the back layer and the fatigue resistance of the bearing can be improved, and bearing damage can be prevented. When the amount of oxidation of the back layer is 5% by mass or less, the influence of embrittlement due to oxidation is reduced, and wear due to fretting can be reduced.
In the above-described embodiment, the result of the back layer made of Ni was shown. However, the same result was obtained in a plain bearing using Cu for the back layer.

1 バイメタル
2 鋼裏金層
3 中間層
4 軸受合金層
5 複層アルミニウム合金板
6 背面層
7 すべり軸受
1 Bimetal 2 Steel back metal layer 3 Intermediate layer 4 Bearing alloy layer 5 Multi-layer aluminum alloy plate 6 Back layer 7 Slide bearing

Claims (2)

裏金層の背面にNi又はCuからなる背面層を設け、その背面層を設けた状態の裏金層を圧延及び熱処理したすべり軸受において、
前記背面層は、(111)面のX線回折のピーク強度P1、(200)面のX線回折のピーク強度P2、(220)面のX線回折のピーク強度P3、とした場合に、
P1/(P1+P2+P3)>0.6・・・(イ)
P1≧3×P2、且つP1≧10×P3・・・(ロ)
を充足し
前記背面層は、さらに酸化量が5質量%以下であることを特徴とするすべり軸受。
In a slide bearing in which a back layer made of Ni or Cu is provided on the back of the back metal layer, and the back metal layer in the state in which the back layer is provided is rolled and heat-treated ,
When the back layer has a (111) plane X-ray diffraction peak intensity P1, a (200) plane X-ray diffraction peak intensity P2, and a (220) plane X-ray diffraction peak intensity P3,
P1 / (P1 + P2 + P3)> 0.6 (a)
P1 ≧ 3 × P2 and P1 ≧ 10 × P3 (B)
Is satisfied ,
The back bearing further has an oxidation amount of 5% by mass or less .
前記背面層は、硬さHV80以下であることを特徴とする請求項1記載のすべり軸受。
The plain bearing according to claim 1, wherein the back layer has a hardness of HV80 or less .
JP2009109526A 2009-04-28 2009-04-28 Slide bearing with back layer Active JP5213791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109526A JP5213791B2 (en) 2009-04-28 2009-04-28 Slide bearing with back layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109526A JP5213791B2 (en) 2009-04-28 2009-04-28 Slide bearing with back layer

Publications (2)

Publication Number Publication Date
JP2010255815A JP2010255815A (en) 2010-11-11
JP5213791B2 true JP5213791B2 (en) 2013-06-19

Family

ID=43316947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109526A Active JP5213791B2 (en) 2009-04-28 2009-04-28 Slide bearing with back layer

Country Status (1)

Country Link
JP (1) JP5213791B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252217A (en) * 1985-09-02 1987-03-06 Nippon Telegr & Teleph Corp <Ntt> Bearing
JPS62258224A (en) * 1986-05-02 1987-11-10 Hitachi Medical Corp Bearing
JP2858237B2 (en) * 1995-03-31 1999-02-17 本田技研工業株式会社 Functional Cu film
JPH10325411A (en) * 1997-05-23 1998-12-08 Toshiba Corp Thrust bearing device
JP4349719B2 (en) * 2000-04-28 2009-10-21 エヌデーシー株式会社 Aluminum bronze sintered bearing material and manufacturing method thereof
JP2006177449A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Sliding bearing, housing, and bearing unit

Also Published As

Publication number Publication date
JP2010255815A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
US10494701B2 (en) Composite material for a sliding bearing
US9435376B2 (en) Multi-layered plain bearing
JP2535126B2 (en) Multilayer plain bearings and bearing assemblies
JPH0694036A (en) Multilayer slide bearing excellent in fretting resistant characteristic
JP2009228870A (en) Sliding bearing
GB2384007A (en) Sliding bearings
JPS6117893B2 (en)
US20130108197A1 (en) Bearing apparatus
JPH0539811A (en) Multilayer sliding material for high speed and manufacture thereof
WO2015141572A1 (en) Slide bearing
GB2483790A (en) Slide member with Ni-based intermediate and Sn-based overlay layers
WO2015118924A1 (en) Sliding mechanism
JP5412530B2 (en) Aluminum alloy for slide bearing, slide bearing and manufacturing method thereof
JPH06192774A (en) Copper alloy plain bearing having high strength back plate and its production
US6357918B1 (en) Sliding bearing and sliding bearing structure
JP5231312B2 (en) Plain bearing
EP2041327B1 (en) Aluminium bearing alloy aluminiumlagerlegierung
US20130022493A1 (en) Aluminum alloy bearing
JP5213791B2 (en) Slide bearing with back layer
JP2013007395A (en) Al alloy bearing
JP7389600B2 (en) sliding member
KR20170066331A (en) Composite material for a sliding bearing comprising an aluminum bearing metal layer
US6833339B2 (en) Non-plated aluminum based bearing alloy with performance-enhanced interlayer
JP3754353B2 (en) Sliding member with composite plating film
JPH07122158B2 (en) Multilayer plain bearing with overlay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5213791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250