JP5212607B2 - Method for forming rare earth oxide film - Google Patents
Method for forming rare earth oxide film Download PDFInfo
- Publication number
- JP5212607B2 JP5212607B2 JP2007293019A JP2007293019A JP5212607B2 JP 5212607 B2 JP5212607 B2 JP 5212607B2 JP 2007293019 A JP2007293019 A JP 2007293019A JP 2007293019 A JP2007293019 A JP 2007293019A JP 5212607 B2 JP5212607 B2 JP 5212607B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- film
- oxide film
- earth oxide
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Chemically Coating (AREA)
Description
本発明は、希土類(3A族)酸化物被膜の形成方法に関するものである。 The present invention relates to a method for forming a rare earth (Group 3A) oxide film.
希土類酸化物は、その良好な耐プラズマ性から、プラズマエッチング装置等のプラズマが接触する処理室内壁の耐食性被膜として使用されている。この耐プラズマ被膜は、形成の容易さやコストの関係からプラズマ溶射法が主に採用されている(特開2001−164354号公報:特許文献1)。ところが、プラズマ溶射法によって形成された被膜表面は未溶融粒子や高温プラズマ中で蒸発、析出した微細な粒子の付着、あるいは溶融、衝突、急冷によるクラックなどによって凹凸が大きく、エッチングプロセスで微細な粒子が脱離し易く、半導体ウェハーへのコンタミネーションを起こすという問題がある。これに対し、スパッタリングなどのPVD法やCVD等の緻密平滑膜が検討されているが、真空プロセス等の高コスト法である上、複雑な形状を有する部材には施工が不可能である。それを解決する方法としてゾルゲル塗布法が提案されており、比較的簡単な工程で緻密平滑膜が得られるとされている(特開2007−27329号公報:特許文献2)。 Rare earth oxides are used as corrosion-resistant coatings on the walls of processing chambers that come into contact with plasma, such as plasma etching apparatuses, due to their good plasma resistance. For this plasma-resistant coating, a plasma spraying method is mainly employed because of ease of formation and cost (Japanese Patent Laid-Open No. 2001-164354: Patent Document 1). However, the coating surface formed by plasma spraying has large irregularities due to adhesion of unmelted particles or fine particles evaporated or precipitated in high-temperature plasma, or cracks caused by melting, collision, or rapid cooling. Is liable to be detached and causes contamination to the semiconductor wafer. On the other hand, dense smooth films such as PVD methods such as sputtering and CVD have been studied, but they are high cost methods such as vacuum processes and cannot be applied to members having complicated shapes. A sol-gel coating method has been proposed as a method for solving this problem, and it is said that a dense smooth film can be obtained by a relatively simple process (Japanese Patent Laid-Open No. 2007-27329: Patent Document 2).
また、希土類酸化物は、水銀蒸気を吸着しにくい性質があり、蛍光ランプなどのガラスバルブが内部の水銀蒸気を吸着することによって起こる輝度劣化を防ぐために、ガラスバルブ内面に希土類酸化物被膜を形成することが行われている。 In addition, rare earth oxides are difficult to adsorb mercury vapor, and a rare earth oxide film is formed on the inner surface of the glass bulb to prevent luminance deterioration caused by the glass bulb of a fluorescent lamp adsorbing mercury vapor inside. To be done.
この形成方法には、希土類酸化物やその前駆体微粒子のゾルを塗布、乾燥、焼成させるゾルゲル法と、加熱分解することによって希土類酸化物となるような希土類化合物の溶液を塗布、乾燥、加熱分解する方法がある。 In this formation method, a sol-gel method in which a sol of rare earth oxide or its precursor fine particles is applied, dried, and fired, and a solution of a rare earth compound that becomes a rare earth oxide by thermal decomposition is applied, dried, and thermally decomposed. There is a way to do it.
しかし、このようなゾルゲル法や溶液塗布法は、溶媒を使用している点で共通の問題を抱えている。つまり、ゾルゲル法ではゾルの乾燥時に溶媒の蒸発による収縮が起こり、クラックが発生し易いという問題がある。しかも、前駆体ゾルはアルコキシドの加水分解などにより製造されるため、多量の有機溶媒を用いることが多く、コストや環境上の問題もある。また、溶液塗布法も同様の問題を抱える上、溶媒蒸発時に溶質が部分的に結晶析出して偏在し易く、緻密平滑な膜を得ることが難しかった。更に、これらの方法で一定の膜厚を得ようとすると、0.1μm以下の膜を数十〜数百回も塗り重ねる必要があり、高コストである。 However, such sol-gel method and solution coating method have a common problem in that a solvent is used. In other words, the sol-gel method has a problem that shrinkage occurs due to evaporation of the solvent when the sol is dried, and cracks are likely to occur. In addition, since the precursor sol is produced by hydrolysis of an alkoxide or the like, a large amount of an organic solvent is often used, and there are also problems in cost and environment. In addition, the solution coating method has the same problems, and the solute is likely to be partially crystallized and unevenly distributed when the solvent is evaporated, making it difficult to obtain a dense and smooth film. Furthermore, if it is intended to obtain a certain film thickness by these methods, it is necessary to coat a film of 0.1 μm or less several tens to several hundreds of times, which is expensive.
本発明は、上記事情に鑑みなされたもので、簡便に緻密平滑な希土類酸化物被膜が得られる希土類酸化物被膜の形成方法を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the formation method of the rare earth oxide film from which the precise | minute and smooth rare earth oxide film can be obtained simply.
本発明者は、上記目的を達成するために鋭意検討を重ねた結果、溶媒を使うことなく、化合物自体が非分解融点を持つ希土類有機錯体を使用し、加熱溶融状態におけるその融液によって被膜を形成し、これを酸化雰囲気で加熱分解することによって、緻密平滑な希土類酸化物被膜を形成できることを見出し、本発明をなすに至った。 As a result of intensive studies in order to achieve the above object, the present inventor has used a rare earth organic complex having a non-decomposable melting point without using a solvent, and formed a film with the melt in a heated and melted state. It has been found that a dense and smooth rare earth oxide film can be formed by forming and thermally decomposing it in an oxidizing atmosphere, and has reached the present invention.
従って、本発明は、下記に示す希土類酸化物被膜の形成方法を提供する。
〔1〕 非分解の融点を持ち、8−キノリノール、ジピバロイルメタン、2,4−ペンタンジオン、ベンゾイルアセトン、β−ジケトン類、芳香族カルボン酸、1,10−フェナントロリン、2,2’−ビピリジン、及びトリフェニルホスフィンオキサイドから選ばれる配位子を有する希土類元素の有機錯体を該有機錯体の分解温度未満で加熱溶融し、その融液によって被膜を形成し、これを加熱して酸化分解することを特徴とする希土類酸化物被膜の形成方法。
〔2〕 加熱溶融から被膜形成までを、水蒸気の含有量が雰囲気中1容量%以下の雰囲気下で行うことを特徴とする〔1〕に記載の希土類酸化物被膜の形成方法。
〔3〕 加熱溶融から被膜形成までを、酸素の含有量が雰囲気中1容量%以下の雰囲気下で行うことを特徴とする〔1〕又は〔2〕に記載の希土類酸化物被膜の形成方法。
Accordingly, the present invention provides the following method for forming a rare earth oxide film.
[1] Non-decomposable melting point, 8-quinolinol, dipivaloylmethane, 2,4-pentanedione, benzoylacetone, β-diketones, aromatic carboxylic acid, 1,10-phenanthroline, 2,2 ′ -An organic complex of a rare earth element having a ligand selected from bipyridine and triphenylphosphine oxide is heated and melted below the decomposition temperature of the organic complex, a film is formed by the melt, and this is heated to oxidatively decompose A method for forming a rare earth oxide film.
(2) from the heat-melted to the film forming method for forming a rare earth oxide coating according to the content of water vapor and carrying out in an atmosphere of less than 1% by volume in the atmosphere [1].
[3] from heat melting to film forming method for forming a rare earth oxide coating according to the content of oxygen is equal to or performed under an atmosphere of less than 1 volume% in an atmosphere (1) or (2) .
本発明によれば、有機錯体溶融成膜法によって簡便に緻密平滑な希土類酸化物被膜を得ることができ、産業上その利用価値は極めて高い。 According to the present invention, a dense and smooth rare earth oxide film can be easily obtained by an organic complex melt film formation method, and its utility value is extremely high in industry.
以下、本発明を詳細に説明する。本発明の希土類酸化物被膜の形成方法は、非分解融点を持つ希土類有機錯体の融液を成膜し、酸化分解させることを特徴とするものである。
まず、本発明で言う希土類元素とは、Sc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luである。
希土類元素酸化物を蛍光ランプのガラスバルブ内面の保護膜として使用する場合など、光を透過する用途においては、酸化物自体が無色透明である方がよく、特にSc,Y,La,Gd,Yb,Luが好ましい。
Hereinafter, the present invention will be described in detail. The method for forming a rare earth oxide film of the present invention is characterized in that a melt of a rare earth organic complex having a non-decomposable melting point is formed and oxidatively decomposed.
First, the rare earth elements referred to in the present invention are Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
For applications that transmit light, such as when a rare earth element oxide is used as a protective film on the inner surface of a glass bulb of a fluorescent lamp, it is better that the oxide itself is colorless and transparent, especially Sc, Y, La, Gd, Yb. , Lu is preferred.
希土類酸化物被膜の前駆物質となる希土類元素の有機錯体は、非分解の融点を持つものが好ましく、配位子としては、8−キノリノール、ジピバロイルメタン、2,4−ペンタンジオン、ベンゾイルアセトン、その他β−ジケトン類、芳香族カルボン酸、1,10−フェナントロリン、2,2’−ビピリジン、及びトリフェニルホスフィンオキサイドなどから選ぶことができる。 The rare earth element organic complex that is a precursor of the rare earth oxide film preferably has a non-decomposable melting point, and the ligand includes 8-quinolinol, dipivaloylmethane, 2,4-pentanedione, benzoyl. It can be selected from acetone, other β-diketones, aromatic carboxylic acids, 1,10-phenanthroline, 2,2′-bipyridine, triphenylphosphine oxide, and the like.
錯体の組成としては、例えば、
トリス(8−キノリノラト)(8−キノリノール)RE=[RE(C9H6NO)3(C9H7NO)]、
トリス(ベンゾイルアセトナト)RE=[RE(C10H9O2)3]、
トリス(2,4−ペンタンジオナト)RE=[RE(C5H7O2)3]
(REは希土類元素)
などが挙げられる。これらの融点は通常100〜140℃の範囲であり、分解温度は通常140〜180℃の範囲である。
As the composition of the complex, for example,
Tris (8-quinolinolato) (8-quinolinol) RE = [RE (C 9 H 6 NO) 3 (C 9 H 7 NO)],
Tris (benzoylacetonato) RE = [RE (C 10 H 9 O 2 ) 3 ],
Tris (2,4-pentanedionato) RE = [RE (C 5 H 7 O 2 ) 3 ]
(RE is a rare earth element)
Etc. These melting points are usually in the range of 100 to 140 ° C, and the decomposition temperature is usually in the range of 140 to 180 ° C.
これらの有機錯体を有機錯体の分解温度未満で加熱溶融して基材に被膜を形成する。溶融温度としては錯体の種類により融点以上分解温度未満で金属錯体を溶融する。溶融された希土類元素有機錯体の被膜形成方法としては、ドクターブレード,スピンコート,ロールコート,はけ塗り,ディップコートなど各種の方法を選択できるが、これらに限るものではない。また、ガラス管内壁に塗布する場合などは、融液吸引塗布が可能である。
被膜厚さは、1〜500μm、特に5〜100μmとすることが好ましい。
These organic complexes are heated and melted below the decomposition temperature of the organic complex to form a film on the substrate. As the melting temperature, the metal complex is melted at a melting point or higher and lower than a decomposition temperature depending on the type of the complex. Various methods such as doctor blade, spin coating, roll coating, brush coating, and dip coating can be selected as a method for forming a film of the molten rare earth element organic complex, but are not limited thereto. Moreover, when apply | coating to a glass tube inner wall etc., melt suction application | coating is possible.
The film thickness is preferably 1 to 500 μm, more preferably 5 to 100 μm.
これらの被膜形成方法においては、基材やコート機器類,雰囲気を全て有機錯体の非分解溶融温度範囲の一定温度にコントロールしておくことが好ましい。基材や機器類や雰囲気が溶融温度よりも低いと、部分的に固化したり、融液粘度が変化して均一な膜が形成できない場合がある。また、有機錯体の分解開始温度よりも高いと、部分的に分解固化したり、融液粘度が変化して均一な膜が形成できない場合がある。 In these film forming methods, it is preferable to control the substrate, the coating equipment, and the atmosphere all at a constant temperature in the non-decomposition melting temperature range of the organic complex. If the substrate, equipment, or atmosphere is lower than the melting temperature, the film may partially solidify or the melt viscosity may change and a uniform film may not be formed. On the other hand, when the temperature is higher than the decomposition start temperature of the organic complex, the film may be partially decomposed and solidified, or the melt viscosity may change and a uniform film may not be formed.
融液による被膜形成時の雰囲気は、酸素あるいは水蒸気を実質的に含んでいない窒素やアルゴンなどの不活性ガス雰囲気であることが好ましい。これは、酸素や水蒸気の存在により、有機錯体が分解しないで融解して得られる温度範囲が狭まり、温度コントロールが難しくなるからである。ここで、実質的に含まないとは、酸素又は水蒸気の含有量が雰囲気中1容量%以下、特に0.1容量%以下であることを意味する。 The atmosphere at the time of film formation by the melt is preferably an inert gas atmosphere such as nitrogen or argon which does not substantially contain oxygen or water vapor. This is because the presence of oxygen and water vapor narrows the temperature range obtained by melting the organic complex without decomposing, making it difficult to control the temperature. Here, “substantially free” means that the content of oxygen or water vapor is 1% by volume or less, particularly 0.1% by volume or less in the atmosphere.
以上のようにして得られた有機錯体の被膜を酸化性雰囲気(大気、酸素含有気体)中で焼成して酸化物被膜に転換するが、その焼成温度は選択した有機錯体が分解して酸化物に変わる温度400〜1,500℃、好ましくは400〜1,000℃を選択する。焼成温度が低すぎると被膜が完全に酸化物に転換しない状態がある場合があり、高すぎると被膜にクラックが発生する場合がある。なお、焼成時間は1〜100時間、更に5〜25時間が好ましい。また酸化物被膜の厚さは適宜選定されるが、0.1〜100μm、特に1〜50μmであることが好ましい。 The organic complex film obtained as described above is baked in an oxidizing atmosphere (air, oxygen-containing gas) and converted into an oxide film. The temperature is changed to 400 to 1,500 ° C, preferably 400 to 1,000 ° C. If the firing temperature is too low, the film may not be completely converted to an oxide, and if it is too high, a crack may occur in the film. The firing time is preferably 1 to 100 hours, and more preferably 5 to 25 hours. Moreover, although the thickness of an oxide film is suitably selected, it is preferable that it is 0.1-100 micrometers, especially 1-50 micrometers.
被膜を形成させる基材としては、炭素、金属(Al、SUS)、セラミック(アルミナ、ジルコニア、窒化珪素、窒化ホウ素)、石英等が挙げられる。 Examples of the substrate on which the film is formed include carbon, metal (Al, SUS), ceramic (alumina, zirconia, silicon nitride, boron nitride), quartz, and the like.
本発明の被膜は、プラズマエッチング装置のプラズマが接触する処理室内壁部材、蛍光ランプ用ガラスバルブ内壁の保護膜として用いることができる。 The coating film of the present invention can be used as a protective film for a processing chamber wall member and a fluorescent lamp glass bulb inner wall that are in contact with plasma of a plasma etching apparatus.
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[実施例1]
酸素及び水蒸気が0.1容量%未満の窒素置換された密閉容器内で100mm×100mm×2mmtのステンレス板を130℃に加温し、トリス(ベンゾイルアセトナト)イットリウム塩(融点114℃、分解点140℃)0.1gを表面に落とし、全体が溶融したことを確認してから、あらかじめ130℃に温めておいた間隙5μmのドクターブレードで成膜した。これを、大気中550℃にて8時間焼成し、その表面に酸化イットリウムの被膜を得た。表面と断面を電子顕微鏡で観察すると、約1μm厚の被膜が形成されていたが、クラックや異物のない緻密平滑膜であった。
[Example 1]
A stainless steel plate of 100 mm × 100 mm × 2 mmt was heated to 130 ° C. in a closed container purged with nitrogen containing less than 0.1% by volume of oxygen and water vapor, and tris (benzoylacetonato) yttrium salt (melting point 114 ° C., decomposition point) (140 ° C.) 0.1 g was dropped on the surface, and after confirming that the whole was melted, a film was formed with a doctor blade having a gap of 5 μm that had been heated to 130 ° C. in advance. This was baked at 550 ° C. for 8 hours in the atmosphere to obtain a yttrium oxide coating on the surface. When the surface and cross section were observed with an electron microscope, a film having a thickness of about 1 μm was formed, but it was a dense smooth film free from cracks and foreign matter.
[実施例2]
実施例1に記載の密閉容器内で100mm×100mm×2mmtの石英ガラス板を150℃に加温し、トリス(2,4−ペンタンジオン)エルビウム塩(融点140℃、分解点165℃)の0.1gを表面に落とし、全体が溶融したことを確認してから、あらかじめ150℃に温めておいた間隙5μmのドクターブレードで成膜した。これを、大気中550℃にて8時間焼成し、その表面に酸化エルビウムの被膜を得た。表面と断面を電子顕微鏡で観察すると、約1μm厚の被膜が形成されていたが、クラックや異物のない緻密平滑膜であった。
[Example 2]
A quartz glass plate of 100 mm × 100 mm × 2 mmt was heated to 150 ° C. in the sealed container described in Example 1, and 0 of tris (2,4-pentanedione) erbium salt (melting point 140 ° C., decomposition point 165 ° C.) was obtained. .1 g was dropped on the surface, and after confirming that the whole was melted, a film was formed with a doctor blade having a gap of 5 μm that had been heated to 150 ° C. in advance. This was baked at 550 ° C. for 8 hours in the atmosphere to obtain a coating of erbium oxide on the surface. When the surface and cross section were observed with an electron microscope, a film having a thickness of about 1 μm was formed, but it was a dense smooth film free from cracks and foreign matter.
[比較例1]
100mm×100mm×2mmtのアルミニウム板に、イットリウムイソプロポキシドの5質量%エタノール溶液をディップコート法によって塗布し、ゲル化,乾燥した。この操作を20回繰り返した後、大気中500℃にて焼成した。表面を電子顕微鏡で観察すると、約1μm厚の緻密膜が形成されていたが、1〜数十μm幅のクラックが各所に観察された。
[Comparative Example 1]
A 5% by mass ethanol solution of yttrium isopropoxide was applied to a 100 mm × 100 mm × 2 mmt aluminum plate by a dip coating method, gelled, and dried. This operation was repeated 20 times and then fired at 500 ° C. in the atmosphere. When the surface was observed with an electron microscope, a dense film having a thickness of about 1 μm was formed, but cracks having a width of 1 to several tens of μm were observed in various places.
[比較例2]
100mm×100mm×2mmtの石英ガラス板に、トリス(2,4−ペンタンジオン)エルビウム塩の5質量%エタノール溶液をディップコート法によって塗布し、乾燥後、大気中550℃にて焼成した。この操作を10回繰り返した後、表面を電子顕微鏡で観察すると、5μm程の不定形状をした酸化エルビウム粒子が石英ガラス表面に偏在していることが確認された。有機錯体の結晶が析出し、これが形を崩しながら熱分解して酸化物に変化したものと考えられる。
[Comparative Example 2]
A 5% by mass ethanol solution of tris (2,4-pentanedione) erbium salt was applied to a 100 mm × 100 mm × 2 mmt quartz glass plate by a dip coating method, dried, and fired at 550 ° C. in the atmosphere. After repeating this operation 10 times, when the surface was observed with an electron microscope, it was confirmed that erbium oxide particles having an irregular shape of about 5 μm were unevenly distributed on the quartz glass surface. It is considered that crystals of the organic complex were precipitated, and these were transformed into oxides by thermal decomposition while losing their shape.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007293019A JP5212607B2 (en) | 2007-11-12 | 2007-11-12 | Method for forming rare earth oxide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007293019A JP5212607B2 (en) | 2007-11-12 | 2007-11-12 | Method for forming rare earth oxide film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009120866A JP2009120866A (en) | 2009-06-04 |
JP5212607B2 true JP5212607B2 (en) | 2013-06-19 |
Family
ID=40813339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007293019A Expired - Fee Related JP5212607B2 (en) | 2007-11-12 | 2007-11-12 | Method for forming rare earth oxide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5212607B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4493736A1 (en) * | 2022-03-17 | 2025-01-22 | Ceres Intellectual Property Company Limited | Method for coating a component |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2946153B2 (en) * | 1993-02-03 | 1999-09-06 | キヤノン株式会社 | Method for manufacturing electron-emitting film and electron-emitting device |
JP3584089B2 (en) * | 1995-07-27 | 2004-11-04 | 同和鉱業株式会社 | Rare earth element material for CVD and film forming method using the same |
JP3818691B2 (en) * | 1996-02-22 | 2006-09-06 | 同和鉱業株式会社 | Raw material compound for CVD of rare earth elements and film forming method using the same |
JP2001114532A (en) * | 1999-10-15 | 2001-04-24 | Central Glass Co Ltd | Method for formation of metallic compound coating layer |
JP2005187254A (en) * | 2003-12-25 | 2005-07-14 | Sumitomo Electric Ind Ltd | Manufacturing method of glass body |
-
2007
- 2007-11-12 JP JP2007293019A patent/JP5212607B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009120866A (en) | 2009-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102243956B1 (en) | Chamber coatings | |
JP5877711B2 (en) | Protective coating resistant to reactive plasma treatment | |
Madhuri | Thermal protection coatings of metal oxide powders | |
TW201033407A (en) | Thermal spray coatings for semiconductor applications | |
TWI775757B (en) | Sprayed member, and method for producing yttrium oxyfluoride-containing sprayed coating | |
TWI661011B (en) | Plasma treatment detection indicator using inorganic substance as color changing layer | |
TWI375734B (en) | Ceramic coating material for thermal spray on the parts of semiconductor processing devices and fabrication method and coating method thereof | |
JP5014656B2 (en) | Plasma processing apparatus member and manufacturing method thereof | |
EP1764848A2 (en) | Method for removing organic electroluminescent residues from a substrate | |
JP5212607B2 (en) | Method for forming rare earth oxide film | |
JP5245365B2 (en) | Rare earth hydroxide coating and method for forming rare earth oxide coating | |
JP2007239083A (en) | Method for forming metal oxide film on substrate surface and nozzle of atmospheric open type CVD apparatus used in the method | |
US20090091033A1 (en) | Fabrication of metal oxide films | |
JP5554934B2 (en) | Method for producing spinel precursor sol, and method for producing spinel-coated aluminum titanate sintered body | |
JP5274065B2 (en) | Oxide film formation method | |
KR102272156B1 (en) | Yttrium-based ceramics and method for manufacturing the same | |
US20090053533A1 (en) | Corrosion-resistant member and process of producing the same | |
KR101965223B1 (en) | Regeneration method of ceramic member for recycle | |
JP2002193634A (en) | Quartz glass and quartz glass jig with excellent plasma corrosion resistance | |
JP5167822B2 (en) | Indium oxide film laminate and manufacturing method thereof | |
TW201334035A (en) | Plasma etch resistant films, articles bearing plasma etch resistant films and related methods | |
JP2012206865A (en) | Method for manufacturing aluminum nitride powder coated with aluminum oxide | |
Suzuki et al. | Structure and properties of plasma-sprayed zircon coating | |
JP2018080366A (en) | Manufacturing method of metal oxide thin film, and thin film manufacturing apparatus | |
TW202319350A (en) | Manufacturing method for spherical YOF-based powder, and spherical YOF-based powder and YOF-based coating layer manufactured thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5212607 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160308 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |