Nothing Special   »   [go: up one dir, main page]

JP5207076B2 - Pollution assessment method for chemical pollutants - Google Patents

Pollution assessment method for chemical pollutants Download PDF

Info

Publication number
JP5207076B2
JP5207076B2 JP2009151204A JP2009151204A JP5207076B2 JP 5207076 B2 JP5207076 B2 JP 5207076B2 JP 2009151204 A JP2009151204 A JP 2009151204A JP 2009151204 A JP2009151204 A JP 2009151204A JP 5207076 B2 JP5207076 B2 JP 5207076B2
Authority
JP
Japan
Prior art keywords
adsorption
chemical
coefficient
chemical pollutants
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009151204A
Other languages
Japanese (ja)
Other versions
JP2011007620A (en
Inventor
勲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2009151204A priority Critical patent/JP5207076B2/en
Publication of JP2011007620A publication Critical patent/JP2011007620A/en
Application granted granted Critical
Publication of JP5207076B2 publication Critical patent/JP5207076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、クリーンルームにおけるケミカル汚染物質の汚染評価方法に関するものであって、半導体・液晶等の電子デバイスを生産するクリーンルームにおいて対策が必要となるケミカル汚染物質の汚染評価方法に関する。   The present invention relates to a method for evaluating contamination of chemical pollutants in a clean room, and more particularly to a method for evaluating contamination of chemical pollutants that require countermeasures in a clean room that produces electronic devices such as semiconductors and liquid crystals.

半導体・液晶等を生産または開発する電子デバイス生産開発用クリーンルームおよび関連製品生産用クリーンルームでは、ケミカル汚染対策が重要な課題である。ケミカル汚染対策クリーンルームの清浄度評価のためには、クリーンルーム空気中に存在する各種の分子状・ガス状汚染物質の種類と濃度を正確に測定分析することが必要である。このため、室内空気を固体吸着剤や溶液、キャニスターなどに捕集し、種々の装置を使用して分析することが行われている。   In an electronic device production / development clean room that produces or develops semiconductors, liquid crystals, etc. and related product production clean rooms, measures against chemical contamination are an important issue. In order to evaluate cleanliness of cleanrooms against chemical contamination, it is necessary to accurately measure and analyze the types and concentrations of various molecular and gaseous contaminants present in cleanroom air. For this reason, room air is collected in a solid adsorbent, a solution, a canister or the like and analyzed using various apparatuses.

一方、空気中に存在する汚染物質の全てが半導体用シリコンウエハや液晶パネル用ガラス基板に吸着されるわけではなく、吸着された後の製造プロセスに悪影響を与える特性が物質によって大きく異なることが明らかにされつつある。したがって、シリコンウエハやガラス基板に特異的に吸着される分子状・ガス状汚染物質のみを特定化でき、吸着量や室内濃度を評価できる方法があれば有効である。そこで、本願出願人は、シリコンウエハやガラス基板を吸着剤とした汚染物質の検出方法を開発し実用化している(たとえば、特許文献1参照)。   On the other hand, not all pollutants present in the air are adsorbed on silicon wafers for semiconductors and glass substrates for liquid crystal panels, and it is clear that the characteristics that adversely affect the manufacturing process after adsorbing vary greatly depending on the substances. It is being made. Therefore, it is effective if there is a method capable of specifying only the molecular and gaseous contaminants specifically adsorbed on the silicon wafer or the glass substrate and evaluating the adsorption amount and the indoor concentration. Therefore, the applicant of the present application has developed and put to practical use a method for detecting contaminants using a silicon wafer or glass substrate as an adsorbent (see, for example, Patent Document 1).

他方、最近の計算機科学の進展に伴い、分子シミュレーションが注目され、様々な分野で利用が進められている。分子シミュレーションは、シリコンやガラス基板への分子の吸着現象を分子軌道法、分子力場法や分子動力学法を用いて、吸着する際の分子間に働くエネルギーと変化量を計算し、その大きさで吸着の程度を推定することができる。そして、分子とシリコンやガラス基板との吸着エネルギーが大きいほど、その分子は吸着しやすく半導体や液晶デバイス生産の際に悪影響の大きな物質であると評価することができる。   On the other hand, with recent advances in computer science, molecular simulation has attracted attention and is being used in various fields. Molecular simulation uses molecular orbital method, molecular force field method and molecular dynamics method to calculate the energy and change amount between molecules when adsorbing molecules on silicon or glass substrate, Now, the degree of adsorption can be estimated. As the adsorption energy between the molecule and the silicon or glass substrate increases, the molecule is more likely to be adsorbed and can be evaluated as a substance having a great adverse effect in the production of a semiconductor or a liquid crystal device.

そして、クリーンルーム中で吸着エネルギーが大きな物質が検出された場合は、ケミカルフィルタ等を利用することによりクリーンルームから除去することが必要となる。また、クリーンルーム建設やメンテナンス時には吸着エネルギーが大きな物質を含まない材料を使用することが重要となる。   When a substance having a large adsorption energy is detected in the clean room, it is necessary to remove it from the clean room by using a chemical filter or the like. Also, it is important to use materials that do not contain substances with large adsorption energy during clean room construction and maintenance.

本願発明者らは、分子シミュレーション(分子動力学計算の結果)を用いたクリーンルームの清浄度評価方法を提案している(たとえば、特許文献2参照)。   The inventors of the present application have proposed a clean room cleanliness evaluation method using molecular simulation (results of molecular dynamics calculation) (see, for example, Patent Document 2).

特開2000−304734号公報JP 2000-304734 A 特開2007−275803号公報JP 2007-275803 A

上述したクリーンルームの清浄度評価方法は、汚染物質の吸着のしやすさを定性的に順位付けするものであるが、各物質の吸着のしやすさを定量的に評価することはできなかった。しかしながら、定量的な評価が可能になれば、悪影響の程度をより正確に評価することが可能になる。   The above-described clean room cleanliness evaluation method qualitatively ranks the easiness of adsorption of contaminants, but the easiness of adsorption of each substance cannot be quantitatively evaluated. However, if quantitative evaluation becomes possible, the degree of adverse effects can be more accurately evaluated.

本発明は、上記に鑑みてなされたものであって、ケミカル汚染物質の定量的な評価を可能にするケミカル汚染物質の汚染評価方法を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a contamination evaluation method for chemical contaminants that enables quantitative evaluation of chemical contaminants.

上述した課題を解決し、目的を達成するために、本発明は、クリーンルームにおけるケミカル汚染物質の室内濃度と、クリーンルームにおいてケミカル汚染物質が基板に吸着される確率を示す吸着係数とを用いたケミカル汚染物質の汚染評価方法であって、前記吸着係数は、ケミカル汚染物質についての分子動力学計算の結果により得られたデータと、ケミカル汚染物質が基板に吸着される吸着実験から求められた吸着係数実験補正値との相関関係から求めるもので、前記分子動力学計算の結果により得られ、吸着係数実験補正値との相関関係を有するデータは、エネルギー収束係数であることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is directed to chemical contamination using an indoor concentration of chemical contaminants in a clean room and an adsorption coefficient indicating a probability that the chemical contaminants are adsorbed to a substrate in the clean room. A method for evaluating contamination of a substance, wherein the adsorption coefficient is an adsorption coefficient experiment obtained from data obtained from the results of molecular dynamics calculation for chemical contaminants and an adsorption experiment in which chemical contaminants are adsorbed on a substrate. The data obtained from the correlation with the correction value and obtained from the result of the molecular dynamics calculation and having the correlation with the adsorption coefficient experimental correction value is an energy convergence coefficient .

また、本発明は、クリーンルームにおけるケミカル汚染物質の室内濃度と、クリーンルームにおいてケミカル汚染物質が基板に吸着される確率を示す吸着係数とを用いたケミカル汚染物質の汚染評価方法であって、前記吸着係数は、ケミカル汚染物質についての分子動力学計算の結果により得られたデータと、ケミカル汚染物質が基板に吸着される吸着実験から求められた吸着係数実験補正値との相関関係から求めるもので、前記分子動力学計算の結果により得られ、吸着係数実験補正値との相関関係を有するデータは、自己拡散係数であることを特徴とする。 The present invention also relates to a method for evaluating contamination of a chemical contaminant using the indoor concentration of the chemical contaminant in a clean room and an adsorption coefficient indicating the probability that the chemical contaminant is adsorbed to the substrate in the clean room, the adsorption coefficient Is obtained from the correlation between the data obtained from the results of molecular dynamics calculation for chemical pollutants and the adsorption coefficient experimental correction value obtained from the adsorption experiment in which the chemical pollutants are adsorbed on the substrate. Data obtained from the results of molecular dynamics calculation and having a correlation with the adsorption coefficient experimental correction value is characterized by a self-diffusion coefficient.

また、本発明は、クリーンルームにおけるケミカル汚染物質の室内濃度と、クリーンルームにおいてケミカル汚染物質が基板に吸着される確率を示す吸着係数とを用いたケミカル汚染物質の汚染評価方法であって、前記吸着係数は、ケミカル汚染物質についての分子動力学計算の結果により得られたデータと、ケミカル汚染物質が基板に吸着される吸着実験から求められた吸着係数実験補正値との相関関係から求めるもので、前記相関関係は、数式1によって示されることを特徴とする。

Figure 0005207076
The present invention also relates to a method for evaluating contamination of a chemical contaminant using the indoor concentration of the chemical contaminant in a clean room and an adsorption coefficient indicating the probability that the chemical contaminant is adsorbed to the substrate in the clean room, the adsorption coefficient Is obtained from the correlation between the data obtained from the results of molecular dynamics calculation for chemical pollutants and the adsorption coefficient experimental correction value obtained from the adsorption experiment in which the chemical pollutants are adsorbed on the substrate. The correlation is represented by Equation (1).
Figure 0005207076

本発明にかかるケミカル汚染物質の汚染評価方法は、クリーンルームにおけるケミカル汚染物質の室内濃度と、クリーンルームにおいてケミカル汚染物質が基板に吸着される確率を示す吸着係数とを用いた汚染評価方法であって、吸着係数は、ケミカル汚染物質についての分子動力学計算の結果により得られたデータと、ケミカル汚染物質が基板に吸着される吸着実験から求めた吸着係数実験補正値との相関関係から求められるので、相関関係を求めた後は、実験を行うことなく、吸着係数を求めることができる。   The contamination assessment method for chemical contaminants according to the present invention is a contamination assessment method using the indoor concentration of chemical contaminants in a clean room and an adsorption coefficient indicating the probability that the chemical contaminant is adsorbed to the substrate in the clean room, The adsorption coefficient is obtained from the correlation between the data obtained from the results of molecular dynamics calculation for chemical pollutants and the adsorption coefficient experimental correction value obtained from the adsorption experiment in which the chemical pollutants are adsorbed on the substrate. After obtaining the correlation, the adsorption coefficient can be obtained without conducting an experiment.

図1は、吸着係数を算出する工程を示す工程図である。FIG. 1 is a process diagram illustrating a process of calculating an adsorption coefficient. 図2は、分子動力計算の結果求められた時間と系全体の内部エネルギーとの関係を示す図である。FIG. 2 is a diagram showing the relationship between the time obtained as a result of molecular dynamics calculation and the internal energy of the entire system.

以下に、本発明にかかるケミカル汚染物質の汚染評価方法の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, an embodiment of a method for evaluating contamination of chemical contaminants according to the present invention will be described in detail. Note that the present invention is not limited to the embodiments.

半導体・液晶等の電子デバイスを生産等するクリーンルームにおけるケミカル汚染物質の汚染評価は、基板に吸着されるケミカル汚染物質の量(吸着量)で評価されるべきである。基板に吸着されるケミカル汚染物質の量は、クリーンルームにおけるケミカル汚染物質の室内濃度と、クリーンルームにおいてケミカル汚染物質が基板に吸着する確率を示す吸着係数とに比例する。したがって、クリーンルームにおけるケミカル汚染物質の汚染評価は、クリーンルームにおけるケミカル汚染物質の室内濃度と、ケミカル汚染物質の吸着係数とによって評価される。吸着係数は、物質が基板に吸着される確率を示す数値であって、吸着される物質ごとに異なる数値(定数)を示すようになっている。ここで、吸着係数(吸着確率λ)は、下記数式2で定義される。   The contamination assessment of chemical contaminants in a clean room that produces electronic devices such as semiconductors and liquid crystals should be evaluated by the amount of chemical contaminants adsorbed on the substrate (adsorption amount). The amount of the chemical contaminant adsorbed on the substrate is proportional to the indoor concentration of the chemical contaminant in the clean room and the adsorption coefficient indicating the probability that the chemical contaminant adsorbs on the substrate in the clean room. Therefore, the contamination evaluation of the chemical contaminant in the clean room is evaluated by the indoor concentration of the chemical contaminant in the clean room and the adsorption coefficient of the chemical contaminant. The adsorption coefficient is a numerical value indicating the probability that a substance is adsorbed on the substrate, and is a different numerical value (constant) for each adsorbed substance. Here, the adsorption coefficient (adsorption probability λ) is defined by Equation 2 below.

Figure 0005207076
Figure 0005207076

たとえば、室内濃度が10μg/m、吸着係数が1.00×10−1のDOP(可塑剤)と、室内濃度が1000μg/m、吸着係数が7.00×10−6のD5(シーリング剤・分解物)とを汚染評価する。 For example, DOP (plasticizer) having an indoor concentration of 10 μg / m 3 and an adsorption coefficient of 1.00 × 10 −1 , and D5 (sealing) having an indoor concentration of 1000 μg / m 3 and an adsorption coefficient of 7.00 × 10 −6. Contamination assessment.

上述したように、基板に吸着されるケミカル汚染物質の量は、クリーンルームにおけるケミカル汚染物質の室内濃度と、ケミカル汚染物質の吸着係数とに比例するから、室内濃度はD5がDOPの100倍であっても、基板に吸着されるケミカル汚染物質の量は、DOPのほうが多く、D5の略142倍(((1.00×10−1)×10)/((7.00×10−6)×1000))となる。 As described above, since the amount of chemical contaminants adsorbed on the substrate is proportional to the indoor concentration of chemical contaminants in the clean room and the adsorption coefficient of chemical contaminants, the indoor concentration of D5 is 100 times DOP. Even so, the amount of chemical contaminants adsorbed on the substrate is larger in DOP, approximately 142 times that of D5 (((1.00 × 10 −1 ) × 10) / ((7.00 × 10 −6 )). × 1000)).

したがって、DOPの室内濃度がD5の室内濃度の100分の1以下でも、D5よりも高度なケミカル汚染物質の除去対策をとる必要がある。   Therefore, even if the indoor concentration of DOP is 1/100 or less of the indoor concentration of D5, it is necessary to take a more advanced chemical contaminant removal measure than D5.

このように、物質ごとに吸着のしやすさを示す指標が数値化されると、適切な汚染物質の除去対策を実施でき、また、吸着係数の大きな物質を含む材料の使用を避ける設計が可能となる。   In this way, if the index indicating the ease of adsorption is quantified for each substance, it is possible to implement appropriate measures to remove pollutants and to avoid the use of materials containing substances with a large adsorption coefficient. It becomes.

しかしながら、従来は、吸着係数の算定は実験によるものが多かった。具体的には、小型容器内にシリコンウエハ等の基板を設置し、一定量の汚染物質を強制的に暴露させた後に、実際に吸着した量を測定する方法であるが、条件設定や微量成分の分析等で長時間を要し、さらにデータを不正確にする要因も多いという問題があった。したがって、正確かつ短時間で吸着係数を求める方法が必要と考えられていた。   However, conventionally, the calculation of the adsorption coefficient has been often based on experiments. Specifically, it is a method of measuring the amount actually adsorbed after placing a substrate such as a silicon wafer in a small container and forcibly exposing a certain amount of contaminants. There is a problem that it takes a long time to analyze the data and there are many factors that make the data inaccurate. Therefore, it has been considered that a method for obtaining the adsorption coefficient accurately and in a short time is necessary.

図1に示すように、本発明は、ケミカル汚染物質についての分子動力学計算の結果により得られたデータと、ケミカル汚染物質が基板に吸着される吸着実験から求められた吸着係数実験補正値との相関関係から吸着係数を求めることを特徴とするケミカル汚染物質の評価方法であって、分子動力学計算により各種データを算出する分子動力学計算工程(ステップS1)と、分子動力学計算工程において算出された各種データを用いて吸着係数実験補正値を算出する吸着係数実験補正値算出工程(ステップS2)と、吸着係数実験補正値算出工程において算出された吸着係数実験補正値から吸着係数を算出する吸着係数算出工程(ステップS3)とを有している。   As shown in FIG. 1, the present invention provides data obtained from the results of molecular dynamics calculation for chemical contaminants, and an adsorption coefficient experimental correction value obtained from an adsorption experiment in which chemical contaminants are adsorbed on a substrate. Is a chemical pollutant evaluation method characterized in that the adsorption coefficient is obtained from the correlation between the molecular dynamics calculation step (step S1) for calculating various data by molecular dynamics calculation, and the molecular dynamics calculation step. An adsorption coefficient experimental correction value calculation step (step S2) for calculating an adsorption coefficient experimental correction value using the calculated various data, and an adsorption coefficient calculated from the adsorption coefficient experimental correction value calculated in the adsorption coefficient experimental correction value calculation step And an adsorption coefficient calculating step (step S3).

分子動力学計算工程(ステップS1)は、分子動力学計算ソフトウェアを用いて動力学計算を実施する工程で、吸着エネルギー、エネルギー収束係数、自己拡散係数に関するデータが取得される。   The molecular dynamics calculation step (step S1) is a step of performing dynamics calculation using molecular dynamics calculation software, and data relating to adsorption energy, energy convergence coefficient, and self-diffusion coefficient is acquired.

本実施の形態で用いる分子動力学計算ソフトウェアは、富士通製Materials Explorer 5.0であるが、この分子動力学計算ソフトウェアに限られるものではなく、吸着エネルギー、拡散係数、エネルギー収束係数が算出できる分子動力学計算ソフトウェアであればよい。   The molecular dynamics calculation software used in this embodiment is Fujitsu Materials Explorer 5.0, but is not limited to this molecular dynamics calculation software, and molecular dynamics that can calculate adsorption energy, diffusion coefficient, and energy convergence coefficient. Any calculation software may be used.

また、分子動力学計算ソフトウェアにおいて、ケミカル汚染物質が吸着される基板は、シリコンウエハ基板とし、さらに、クリーンルームの通常環境を想定して、単分子層が三層重なった水分子層を基板の表面に配置した。   In the molecular dynamics calculation software, the substrate on which chemical contaminants are adsorbed is a silicon wafer substrate, and assuming a normal environment in a clean room, a water molecule layer consisting of three monolayers is formed on the surface of the substrate. Arranged.

また、分子動力学計算ソフトウェアにおいて、基板に吸着されるケミカル汚染物質は、DOP(可塑剤),DBP(可塑剤),BHT(樹脂用添加剤),TBP(難燃剤),D5(シーリング剤原料・分解物),n−メチルピロリドン(溶剤)を対象とし、比較対照物質としてほとんど基板に吸着されない水とトルエンを対象とした。   In the molecular dynamics calculation software, chemical contaminants adsorbed on the substrate are DOP (plasticizer), DBP (plasticizer), BHT (additive for resin), TBP (flame retardant), D5 (sealing agent raw material)・ Decomposed products) and n-methylpyrrolidone (solvent) were targeted, and water and toluene that were hardly adsorbed on the substrate were used as comparative control substances.

そして、分子動力学計算ソフトウェアにおいて、基板上空にケミカル汚染物質の分子をそれぞれ設置し、内部エネルギーが平衡状態となるまで分子動力学計算を行った。   In the molecular dynamics calculation software, chemical pollutant molecules were placed above the substrate, and molecular dynamics calculations were performed until the internal energy reached an equilibrium state.

分子動力学計算により得られた結果について、特に吸着現象と関連性が強いと思われる結果をさらに解析し、各分子の基板表面に対する吸着エネルギー、拡散係数、エネルギー収束係数が算出された。   The results obtained by the molecular dynamics calculation were further analyzed, especially those that seem to be strongly related to the adsorption phenomenon, and the adsorption energy, diffusion coefficient, and energy convergence coefficient of each molecule on the substrate surface were calculated.

吸着エネルギーは、数式3に示すように、系全体が平衡時の内部エネルギーから基板のみが平衡時のエネルギーと分子のみが平衡時のエネルギーとを減算することにより算出される。   As shown in Formula 3, the adsorption energy is calculated by subtracting the energy when only the substrate is in equilibrium and the energy when only the molecule is in equilibrium from the internal energy when the entire system is in equilibrium.

Figure 0005207076
Figure 0005207076

エネルギー収束係数は、内部エネルギーの変化を時間に対してプロットしたグラフから求めた累乗近似曲線の変化率である。具体的に説明する。分子動力学計算を実施すると、図2に示すように、時間と系全体の内部エネルギーとの関係(運動エネルギーとポテンシャルエネルギーとの関係)が求められる。本願で問題とするのは、汚染分子のシリコンウエハに対する吸着現象であるが、汚染分子がシリコンウエハに吸着しやすい場合には、吸着することにより内部エネルギーが安定し、早期にエネルギーが一定の値に収束する。したがって、図2に示す時間と系全体の内部エネルギーとの関係から累乗近似曲線を求めると、その近似式(y=a×X)の定数bが収束の速さを示す指標となる。そこで、本願では、この累乗近似曲線の回帰式における定数項bを「エネルギー収束係数」と定義する。なお、図2において、DOPは、トルエンよりもシリコンウエハに吸着しやすいため、内部エネルギーが安定化しやすく、近似式の定数b(エネルギー収束係数)が約1.7倍となる(DOP:0.0018133,トルエン:0.0010957)。 The energy convergence coefficient is a rate of change of a power approximation curve obtained from a graph in which changes in internal energy are plotted against time. This will be specifically described. When molecular dynamics calculation is performed, as shown in FIG. 2, the relationship between time and the internal energy of the entire system (the relationship between kinetic energy and potential energy) is obtained. The problem in this application is the adsorption phenomenon of contaminating molecules to the silicon wafer. If the contaminating molecules are likely to be adsorbed to the silicon wafer, the internal energy is stabilized by the adsorption, and the energy becomes a constant value at an early stage. Converge to. Therefore, when a power approximation curve is obtained from the relationship between the time shown in FIG. 2 and the internal energy of the entire system, the constant b of the approximate expression (y = a × X b ) is an index indicating the speed of convergence. Therefore, in the present application, the constant term b in the regression equation of the power approximation curve is defined as “energy convergence coefficient”. In FIG. 2, since DOP is more easily adsorbed to the silicon wafer than toluene, the internal energy is easily stabilized, and the constant b (energy convergence coefficient) of the approximate expression is about 1.7 times (DOP: 0.00). 0018133, toluene: 0.0010957).

自己拡散係数は、各物質分子の基板吸着後の2次元的移動量である。   The self-diffusion coefficient is a two-dimensional movement amount of each substance molecule after adsorption onto the substrate.

吸着係数実験補正値算出工程(ステップS2)は、吸着実験および分子動力学計算工程(ステップS1)において算出された各種データを用いて吸着係数実験補正値を算出する工程である。   The adsorption coefficient experiment correction value calculation step (step S2) is a step of calculating an adsorption coefficient experiment correction value using the various data calculated in the adsorption experiment and molecular dynamics calculation step (step S1).

吸着係数実験補正値は、ケミカル汚染物質が基板に吸着される吸着実験から求められる。吸着実験は、小型チャンバー(内容積6Lのガラスデシケータ)内にシリコンウエハ基板を設置し、これに上述した物質の気中濃度(室内濃度)を調整した空気を一定時間流通させ、シリコンウエハに吸着させるものである。吸着係数は、下記数式4に基づいて、算出される。   The adsorption coefficient experiment correction value is obtained from an adsorption experiment in which chemical contaminants are adsorbed on the substrate. In the adsorption experiment, a silicon wafer substrate is placed in a small chamber (glass desiccator with an internal volume of 6 L), and air with adjusted air concentration (indoor concentration) of the above substances is circulated for a certain period of time to adsorb to the silicon wafer. It is something to be made. The adsorption coefficient is calculated based on Equation 4 below.

Figure 0005207076
Figure 0005207076

この実験の結果、吸着係数の最大値はDOPの0.1であり、最小値はトルエンおよび水のほぼ0であった。ケミカル汚染物質の中でDOPは最悪の汚染物質として知られている。また、水やトルエンは現段階では、ほとんど影響が無いといわれる物質である。そこで、各物質の吸着係数を最悪のDOPと影響を無視できる水との間に分布させるようにした。すなわち、水およびトルエンの値をそれぞれ、1.00E−10、5.00E−11とし、その他の各物質の値を水の値(1.00E−10)で除し、さらに対数とすることによって吸着係数実験補正値とした。この結果を下記の表1に示す。   As a result of this experiment, the maximum value of the adsorption coefficient was 0.1 of DOP, and the minimum value was approximately 0 of toluene and water. Among chemical contaminants, DOP is known as the worst contaminant. In addition, water and toluene are substances that are said to have little influence at this stage. Therefore, the adsorption coefficient of each substance is distributed between the worst DOP and water whose influence can be ignored. That is, by setting the values of water and toluene to 1.00E-10 and 5.00E-11, respectively, dividing the values of other substances by the value of water (1.00E-10), and then making logarithm The adsorption coefficient was an experimental correction value. The results are shown in Table 1 below.

Figure 0005207076
Figure 0005207076

上述した分子動力学計算により得られた各データの中で、吸着エネルギー、エネルギー収束係数、拡散係数と、吸着実験の結果により得られた吸着係数実験補正値とは相関性が高いことが確認された。   Among the data obtained by the molecular dynamics calculation described above, it was confirmed that the adsorption energy, energy convergence coefficient, diffusion coefficient, and the adsorption coefficient experimental correction value obtained from the results of the adsorption experiment are highly correlated. It was.

したがって、下記の表2に示すように、分子動力学計算により、吸着エネルギー、エネルギー収束係数、拡散係数のいずれかを求めれば、吸着係数実験補正値を求めることができる。   Therefore, as shown in Table 2 below, if any one of the adsorption energy, energy convergence coefficient, and diffusion coefficient is obtained by molecular dynamics calculation, the adsorption coefficient experimental correction value can be obtained.

Figure 0005207076
Figure 0005207076

また、分子動力学の計算結果により求められた各データと、吸着係数実験補正値との関係から数式5に示す推定式(重回帰式)が求められた(実施例)。   Moreover, the estimation formula (multiple regression equation) shown in Formula 5 was calculated | required from the relationship between each data calculated | required by the calculation result of molecular dynamics, and an adsorption coefficient experiment correction value (Example).

Figure 0005207076
Figure 0005207076

したがって、吸着係数実験補正値は、推定式を求めた後は、吸着実験によらなくても、分子動力学計算工程(ステップS1)において算出された各種データを用いれば、求めることができる。   Therefore, the adsorption coefficient experiment correction value can be obtained by using various data calculated in the molecular dynamics calculation step (step S1) without using the adsorption experiment after obtaining the estimation formula.

吸着係数算出工程(ステップS3)は、吸着係数実験補正値算出工程(ステップS2)において算出された吸着実験補正値に対応する吸着係数を算出する工程である。すなわち、求められた吸着実験補正値は、各物質の吸着係数を水の吸着係数で除し、さらに対数としたものであるから、吸着係数を求めるには、吸着実験補正値から真数を求め、求めた真数に水の吸着係数を乗ずることになる。   The adsorption coefficient calculation step (step S3) is a step of calculating an adsorption coefficient corresponding to the adsorption experiment correction value calculated in the adsorption coefficient experiment correction value calculation step (step S2). In other words, the obtained adsorption experiment correction value is obtained by dividing the adsorption coefficient of each substance by the water adsorption coefficient and then taking a logarithm, and in order to obtain the adsorption coefficient, the true number is obtained from the adsorption experiment correction value. Then, the obtained true number is multiplied by the water adsorption coefficient.

ここで、分子動力学計算ソフトウェアを用いて、汚染物質として代表的なD3(環状シロキサン化合物)の吸着エネルギー、エネルギー収束係数、拡散係数を算出し、これらの値を数式4にあてはめて吸着係数実験補正値を算出した後、当該吸着係数実験補正値に対応する吸着係数を算出した。算出された吸着係数は、7.31×10−6となり、同類であるD5(7.00×10−6)と近い値となったことから、数式4の精度は高いことになる。また、その他の物質についても文献値との整合性が認められた。 Here, molecular energy calculation software is used to calculate the adsorption energy, energy convergence coefficient, and diffusion coefficient of D3 (cyclic siloxane compound), which is a typical contaminant, and apply these values to Equation 4 to perform adsorption coefficient experiments. After calculating the correction value, the adsorption coefficient corresponding to the adsorption coefficient experimental correction value was calculated. The calculated adsorption coefficient is 7.31 × 10 −6 , which is close to the similar value of D5 (7.00 × 10 −6 ), and thus the accuracy of Equation 4 is high. In addition, consistency with literature values was confirmed for other substances.

なお、推定式の設定には、代表的な数種類の化学物質を対象とする吸着実験を実施する必要があるが、求めた推定式を利用することによって他の物質については実験を省略することができる。これにより、短時間で理論的な吸着係数の推定ができ、ケミカル汚染物質の定量的な評価が可能となる。   In order to set the estimation formula, it is necessary to carry out adsorption experiments for several typical chemical substances. However, using the obtained estimation formula, it is possible to omit experiments for other substances. it can. As a result, a theoretical adsorption coefficient can be estimated in a short time, and quantitative evaluation of chemical contaminants becomes possible.

上述した本発明の実施の形態であるケミカル汚染物質の汚染方法評価方法は、ケミカル汚染物質のシリコンウエハ等基板表面へ吸着のしやすさを定量的に評価する方法であって、実験に頼らず、分子動力学計算によって、その指標である吸着係数を求めることができる。具体的には、分子動力学計算で得られるデータの中で、実際の吸着現象と相関性の高いデータを見出し、それらを用いてさらに解析することによって吸着係数の推定式を求め、これを利用して、クリーンルームで問題となる各種のケミカル汚染物質の吸着係数を算出する。この方法によれば、算出に要する時間は実験によって求める場合の三分の一以下になる。   The chemical contaminant contamination method evaluation method according to the embodiment of the present invention described above is a method for quantitatively evaluating the ease of adsorption of chemical contaminants onto the surface of a substrate such as a silicon wafer, and does not rely on experiments. The adsorption coefficient as an index can be obtained by molecular dynamics calculation. Specifically, from the data obtained by molecular dynamics calculation, we find data highly correlated with the actual adsorption phenomenon, and use them to obtain an estimation formula for the adsorption coefficient by further analysis. Then, the adsorption coefficients of various chemical pollutants that are problematic in the clean room are calculated. According to this method, the time required for the calculation is less than one-third that obtained by experiments.

これによって、クリーンルームのケミカル汚染対策において、各汚染物質の悪影響の程度を定量的に評価することができる。したがって、悪影響の程度も考慮した適切な設計・建設・運用が実施できる。すなわち、適切なケミカルフィルタ等の利用(フィルタ種類・稼働時間の最適化)やこれらの物質を含まない材料の使用等であり、低コスト・低消費エネルギーも実現可能となる。   This makes it possible to quantitatively evaluate the degree of adverse effects of each pollutant in the clean room chemical pollution countermeasure. Therefore, it is possible to implement appropriate design, construction, and operation in consideration of the degree of adverse effects. That is, use of an appropriate chemical filter or the like (optimization of filter type / operation time), use of a material that does not contain these substances, and the like, and low cost and low energy consumption can be realized.

S1 分子動力学計算工程
S2 吸着係数実験補正値算出工程
S3 吸着係数算出工程
S1 Molecular dynamics calculation process S2 Adsorption coefficient experiment correction value calculation process S3 Adsorption coefficient calculation process

Claims (3)

クリーンルームにおけるケミカル汚染物質の室内濃度と、クリーンルームにおいてケミカル汚染物質が基板に吸着される確率を示す吸着係数とを用いたケミカル汚染物質の汚染評価方法であって、
前記吸着係数は、ケミカル汚染物質についての分子動力学計算の結果により得られたデータと、ケミカル汚染物質が基板に吸着される吸着実験から求められた吸着係数実験補正値との相関関係から求めるもので、
前記分子動力学計算の結果により得られ、吸着係数実験補正値との相関関係を有するデータは、エネルギー収束係数であることを特徴とするケミカル汚染物質の汚染評価方法。
A method for evaluating contamination of chemical pollutants using an indoor concentration of chemical pollutants in a clean room and an adsorption coefficient indicating a probability that the chemical pollutants are adsorbed on a substrate in the clean room,
The adsorption coefficients, those obtained from the correlation of the data obtained as a result of the molecular dynamics calculations, the adsorption coefficient experimental correction value obtained from the adsorption experiments chemical contaminants are adsorbed on the substrate for chemical contaminants so,
A method for evaluating contamination of chemical pollutants , wherein the data obtained from the results of the molecular dynamics calculation and correlated with the adsorption coefficient experimental correction value is an energy convergence coefficient .
クリーンルームにおけるケミカル汚染物質の室内濃度と、クリーンルームにおいてケミカル汚染物質が基板に吸着される確率を示す吸着係数とを用いたケミカル汚染物質の汚染評価方法であって、A method for evaluating contamination of chemical pollutants using an indoor concentration of chemical pollutants in a clean room and an adsorption coefficient indicating a probability that the chemical pollutants are adsorbed on a substrate in the clean room,
前記吸着係数は、ケミカル汚染物質についての分子動力学計算の結果により得られたデータと、ケミカル汚染物質が基板に吸着される吸着実験から求められた吸着係数実験補正値との相関関係から求めるもので、The adsorption coefficient is obtained from the correlation between the data obtained from the results of molecular dynamics calculation for chemical pollutants and the adsorption coefficient experimental correction value obtained from the adsorption experiment in which the chemical pollutants are adsorbed on the substrate. so,
前記分子動力学計算の結果により得られ、吸着係数実験補正値との相関関係を有するデータは、自己拡散係数であることを特徴とするケミカル汚染物質の汚染評価方法。A method for evaluating contamination of chemical pollutants, wherein the data obtained from the results of the molecular dynamics calculation and having a correlation with the adsorption coefficient experimental correction value is a self-diffusion coefficient.
クリーンルームにおけるケミカル汚染物質の室内濃度と、クリーンルームにおいてケミカル汚染物質が基板に吸着される確率を示す吸着係数とを用いたケミカル汚染物質の汚染評価方法であって、A method for evaluating contamination of chemical pollutants using an indoor concentration of chemical pollutants in a clean room and an adsorption coefficient indicating a probability that the chemical pollutants are adsorbed on a substrate in the clean room,
前記吸着係数は、ケミカル汚染物質についての分子動力学計算の結果により得られたデータと、ケミカル汚染物質が基板に吸着される吸着実験から求められた吸着係数実験補正値との相関関係から求めるもので、The adsorption coefficient is obtained from the correlation between the data obtained from the results of molecular dynamics calculation for chemical pollutants and the adsorption coefficient experimental correction value obtained from the adsorption experiment in which the chemical pollutants are adsorbed on the substrate. so,
前記相関関係は、数式1によって示されることを特徴とするケミカル汚染物質の汚染評価方法。The said correlation is shown by Numerical formula 1, The pollution evaluation method of the chemical pollutant characterized by the above-mentioned.
Figure 0005207076
Figure 0005207076
JP2009151204A 2009-05-26 2009-06-25 Pollution assessment method for chemical pollutants Expired - Fee Related JP5207076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009151204A JP5207076B2 (en) 2009-05-26 2009-06-25 Pollution assessment method for chemical pollutants

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009126887 2009-05-26
JP2009126887 2009-05-26
JP2009151204A JP5207076B2 (en) 2009-05-26 2009-06-25 Pollution assessment method for chemical pollutants

Publications (2)

Publication Number Publication Date
JP2011007620A JP2011007620A (en) 2011-01-13
JP5207076B2 true JP5207076B2 (en) 2013-06-12

Family

ID=43564466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009151204A Expired - Fee Related JP5207076B2 (en) 2009-05-26 2009-06-25 Pollution assessment method for chemical pollutants

Country Status (1)

Country Link
JP (1) JP5207076B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045267A (en) * 2018-09-21 2020-03-26 日本電気硝子株式会社 Glass plate manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304734A (en) * 1999-04-21 2000-11-02 Shimizu Corp Detecting method for contaminant in air
JP2005055260A (en) * 2003-08-01 2005-03-03 Shin Nippon Air Technol Co Ltd Calculation method for equilibrium adsorption quantity of adsorbing material
JP2007275803A (en) * 2006-04-07 2007-10-25 Shimizu Corp Cleanliness evaluation method of clean room
JP4953283B2 (en) * 2006-06-29 2012-06-13 新日本空調株式会社 Analysis method of molecular pollutants

Also Published As

Publication number Publication date
JP2011007620A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
Bejaoui et al. Theoretical and experimental study of the response of CuO gas sensor under ozone
Den et al. Airborne molecular contamination: Recent developments in the understanding and minimization for advanced semiconductor device manufacturing
Poppendieck et al. Desorption of a methamphetamine surrogate from wallboard under remediation conditions
JP5207076B2 (en) Pollution assessment method for chemical pollutants
Kim et al. Soft X-ray-assisted detection method for airborne molecular contaminations (AMCs)
Tlili et al. Adsorption behavior of two model airborne organic contaminants on wafer surfaces
TWI636253B (en) Measuring device using spectrometer to measure gas dissociation state
Kumar et al. Numerical modelling of chemisorption of oxygen gas molecules on the surface of semiconductor for gas sensors applications
Kang et al. Short time deposition kinetics of diethyl phthalate and dibutyl phthalate on a silicon wafer surface
JP4936186B2 (en) Surface contamination degree evaluation method and surface contamination degree evaluation apparatus
US11788980B2 (en) Apparatus of countering contamination in gas sensors including corresponding circuit
JP3995403B2 (en) Adsorbent design method
JP2007275803A (en) Cleanliness evaluation method of clean room
Chiu et al. Reduction of moisture and airborne molecular contamination on the purge system of 450 mm front opening unified pod
Herrán et al. Validation, improvement and implementation of sorption mathematical models using a quartz crystal microbalance (QCM)
Santatriniaina et al. Dynamic boundary conditions for a coupled convection-diffusion model with heat effects: applications in cross-contamination control
JP4953283B2 (en) Analysis method of molecular pollutants
Tlili et al. Adsorption features of phthalates and organophosphorus compounds on silicon wafers
Demir et al. Low concentration of CO gas sensor by atomic layer deposition
Santatriniaina et al. Coupled system of PDEs to predict the sensitivity of some materials constituents of FOUP with the AMCs cross-contamination
Godse et al. Characterization of mass transfer rates and contamination kinetics on silicon wafer surface
Kang et al. Nano Pt-decorated transparent solution-processed oxide semiconductor sensor with ppm detection capability
JP2019169515A5 (en)
Karaduman et al. UV-assisted room-temperature gas sensing by HfO 2 thin films
Lobert et al. Measurement of low molecular weight silicon AMC to protect UV optics in photo-lithography environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees