JP5206510B2 - N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module - Google Patents
N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module Download PDFInfo
- Publication number
- JP5206510B2 JP5206510B2 JP2009055971A JP2009055971A JP5206510B2 JP 5206510 B2 JP5206510 B2 JP 5206510B2 JP 2009055971 A JP2009055971 A JP 2009055971A JP 2009055971 A JP2009055971 A JP 2009055971A JP 5206510 B2 JP5206510 B2 JP 5206510B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- type thermoelectric
- conversion material
- type
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 80
- 239000000463 material Substances 0.000 title claims description 59
- 239000002131 composite material Substances 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 21
- 229910052772 Samarium Inorganic materials 0.000 claims description 17
- 229910052746 lanthanum Inorganic materials 0.000 claims description 11
- 229910052708 sodium Inorganic materials 0.000 claims description 11
- 229910052712 strontium Inorganic materials 0.000 claims description 11
- 229910052797 bismuth Inorganic materials 0.000 claims description 10
- 229910052779 Neodymium Inorganic materials 0.000 claims description 9
- 229910052700 potassium Inorganic materials 0.000 claims description 8
- 229910052727 yttrium Inorganic materials 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 7
- 239000011572 manganese Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 22
- 239000011575 calcium Substances 0.000 description 21
- 238000010304 firing Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- -1 organic acid salt Chemical class 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- ZHJGWYRLJUCMRT-UHFFFAOYSA-N 5-[6-[(4-methylpiperazin-1-yl)methyl]benzimidazol-1-yl]-3-[1-[2-(trifluoromethyl)phenyl]ethoxy]thiophene-2-carboxamide Chemical compound C=1C=CC=C(C(F)(F)F)C=1C(C)OC(=C(S1)C(N)=O)C=C1N(C1=C2)C=NC1=CC=C2CN1CCN(C)CC1 ZHJGWYRLJUCMRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004343 Calcium peroxide Substances 0.000 description 1
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical compound O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910018663 Mn O Inorganic materials 0.000 description 1
- 229910003176 Mn-O Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- LHJQIRIGXXHNLA-UHFFFAOYSA-N calcium peroxide Chemical compound [Ca+2].[O-][O-] LHJQIRIGXXHNLA-UHFFFAOYSA-N 0.000 description 1
- 235000019402 calcium peroxide Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229960002303 citric acid monohydrate Drugs 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- IJHFIVUWUURYJD-UHFFFAOYSA-M lanthanum(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[La+3] IJHFIVUWUURYJD-UHFFFAOYSA-M 0.000 description 1
- GJKFIJKSBFYMQK-UHFFFAOYSA-N lanthanum(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GJKFIJKSBFYMQK-UHFFFAOYSA-N 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- YMKHJSXMVZVZNU-UHFFFAOYSA-N manganese(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YMKHJSXMVZVZNU-UHFFFAOYSA-N 0.000 description 1
- KKLCKMHYSAQCOF-UHFFFAOYSA-N manganese(2+);propan-1-olate Chemical compound [Mn+2].CCC[O-].CCC[O-] KKLCKMHYSAQCOF-UHFFFAOYSA-N 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本発明は、n型熱電変換材料に関する。 The present invention relates to an n-type thermoelectric conversion material.
例えば、特許文献1には、組成式:Ca1−xMxMn7−yM'yOz(式中、Mは、Sr,Ba,La,Pr,Nd,Sm,Na及びKからなる群から選ばれた少なくとも一種の元素、M'は、Cu及びCaからなる群から選ばれた少なくとも一種の元素であり、0≦x≦1;0≦y≦1.5;11≦z≦13である。)で表される組成を有し、一定温度以上において負のゼーベック係数を有する複合酸化物がn型熱電材料として開示されている。
また、非特許文献1には、n型熱電材料としては、Bi,La,Ce等を含有し一般式CaMnO3からなる熱電変換材料が開示されている。
また、非特許文献2及び非特許文献3には、p型熱電材料として、Ca,Bi,Sr,Naなどを含有するCo系複合酸化物が開示されている。
For example,
Non-Patent
Non-Patent
本発明は、上述した背景からなされたものであり、高効率のn型熱電変換材料を提供することを目的とする。 The present invention has been made from the above-described background, and an object thereof is to provide a highly efficient n-type thermoelectric conversion material.
上記目的を達成するために、本発明に係るn型熱電変換材料は、組成式:Ca3-xMxMn2O7(式中、Mは、Y,La,Sm,Bi,Sr,Ba,Pr,Nd,Sm,Na及びKからなる群から選ばれた少なくとも一種類の元素であり、0≦x≦1である。)で表される組成を有する。 In order to achieve the above object, an n-type thermoelectric conversion material according to the present invention has a composition formula: Ca 3-x M x Mn 2 O 7 (where M is Y, La, Sm, Bi, Sr, Ba , Pr, Nd, Sm, Na and K, at least one element selected from the group consisting of 0 ≦ x ≦ 1).
好適には、Ca3-xMxMn2O7(式中、Mは、Y,La,Sm,Bi,Sr,Ba,Pr,Nd,Sm,Na及びKからなる群から選ばれた少なくとも一種類の元素であり、0.05≦x≦0.5である。)で表される組成を有し、100℃以上の温度において、負のゼーベック係数を有する。 Preferably, Ca 3-x M x Mn 2 O 7 (wherein M is at least selected from the group consisting of Y, La, Sm, Bi, Sr, Ba, Pr, Nd, Sm, Na and K) It is a kind of element and has a composition represented by 0.05 ≦ x ≦ 0.5), and has a negative Seebeck coefficient at a temperature of 100 ° C. or higher.
好適には、層状の結晶構造を有し、100℃以上900℃以下の温度において、絶対値50μV/K以上の負のゼーベック係数を有する。 Preferably, it has a layered crystal structure and has a negative Seebeck coefficient having an absolute value of 50 μV / K or more at a temperature of 100 ° C. or more and 900 ° C. or less.
好適には、100℃以上800℃以下の温度において、2W/mK以下の熱伝導率を有する。 Preferably, it has a thermal conductivity of 2 W / mK or less at a temperature of 100 ° C. to 800 ° C.
また、本発明に係るn型熱電変換素子は、組成式:Ca3-xMxMn2O7(式中、Mは、Y,La,Sm,Bi,Sr,Ba,Pr,Nd,Sm,Na及びKからなる群から選ばれた少なくとも一種類の元素であり、0≦x≦1である。)で表される組成を有する複合酸化物を有する。 Further, the n-type thermoelectric conversion element according to the present invention has a composition formula: Ca 3-x M x Mn 2 O 7 (wherein M is Y, La, Sm, Bi, Sr, Ba, Pr, Nd, Sm). , At least one element selected from the group consisting of Na and K, and 0 ≦ x ≦ 1).
また、本発明に係る熱電変換モジュールは、組成式:Ca3-xMxMn2O7(式中、Mは、Y,La,Sm,Bi,Sr,Ba,Pr,Nd,Sm,Na及びKからなる群から選ばれた少なくとも一種類の元素であり、0≦x≦1である。)で表される組成を有する複合酸化物をn型熱電変換素子として含む。 Further, the thermoelectric conversion module according to the present invention has a composition formula: Ca 3-x M x Mn 2 O 7 (wherein M is Y, La, Sm, Bi, Sr, Ba, Pr, Nd, Sm, Na And a composite oxide having a composition represented by 0 ≦ x ≦ 1 is selected as the n-type thermoelectric conversion element.
本発明によれば、層状マンガン酸化物をn型熱電変換材料として提供できる。 According to the present invention, a layered manganese oxide can be provided as an n-type thermoelectric conversion material.
[背景]
まず、本実施形態における熱変換材料が開発されるに至った背景を説明する。
本実施形態のn型熱電変換材料は、負のゼーベック係数を有する複合酸化物からなる。
近年、エネルギー・地球環境問題への関心の高まりとともに、産業分野からの廃熱の有効利用が検討されている。このような背景から熱電変換材料が注目されるようになってきている。熱電変換材料とは,ゼーベック効果を利用して熱エネルギーと電気エネルギーを直接変換することが可能な材料であり,これを利用した熱電変換素子やエネルギー変換システムは、(1)メンテナンス性に優れる、(2)外部電力を要せず無排出のためクリーン、(3)システム全体を小型・軽量化できるという特徴がある。
[background]
First, the background that led to the development of the heat conversion material in this embodiment will be described.
The n-type thermoelectric conversion material of the present embodiment is composed of a complex oxide having a negative Seebeck coefficient.
In recent years, with increasing interest in energy and global environmental issues, the effective use of waste heat from the industrial field has been studied. From such a background, thermoelectric conversion materials have been attracting attention. A thermoelectric conversion material is a material that can directly convert thermal energy and electrical energy using the Seebeck effect. Thermoelectric conversion elements and energy conversion systems using this material are (1) excellent in maintainability. (2) It is clean because it does not require external power and does not discharge. (3) It is characterized in that the entire system can be reduced in size and weight.
熱電変換材料は、1Kの温度差によって生じる起電力の大きさを表すゼーベック係数によって大きさを表し、この係数が正であるp型と、負であるn型に大別される。また、熱電変換素子は、p型とn型の2種類の熱電変換材料を並べ、それぞれを接合した状態で用いる。 The thermoelectric conversion material represents the magnitude by a Seebeck coefficient representing the magnitude of an electromotive force generated by a temperature difference of 1 K, and is roughly classified into a p-type having a positive coefficient and an n-type having a negative coefficient. In addition, the thermoelectric conversion element is used in a state where two types of p-type and n-type thermoelectric conversion materials are arranged and joined together.
現在、高温大気中にて安定な熱電変換性能を有する材料として、酸化物材料が注目されおり、p型熱電材料として、Ca,Bi,Sr,Naなどを含有するCo系複合酸化物が報告されている。これらの複合酸化物の結晶構造は層状構造を有しており、熱電特性を担うCoO2ブロック層と熱伝導率の低減を実現する絶縁ブロック層とによる「ブロック層効果」によって、互いに相反する性質を調和させることで優れた熱電特性を発揮することができる。 Currently, oxide materials are attracting attention as materials having stable thermoelectric conversion performance in high-temperature air, and Co-based composite oxides containing Ca, Bi, Sr, Na, etc. have been reported as p-type thermoelectric materials. ing. The crystal structure of these composite oxides has a layered structure, and the properties contradict each other due to the “block layer effect” between the CoO 2 block layer responsible for thermoelectric properties and the insulating block layer that achieves a reduction in thermal conductivity. It is possible to exert excellent thermoelectric characteristics by harmonizing the above.
一方で、n型熱電材料としては、Bi,La,Ce等を含有し一般式CaMnO3からなる熱電変換材料や、CaMn7O12で表され電荷担体が正孔らなるMn系熱電変換材料が提案されている。 On the other hand, n-type thermoelectric materials include Bi, La, Ce, etc., and thermoelectric conversion materials made of the general formula CaMnO 3, and Mn-based thermoelectric conversion materials represented by CaMn 7 O 12 and having charge carriers as holes. Proposed.
しかしながら、従来のMn系熱電変換材料は、一般式ABO3で示される立方体を基本とするペロブスカイト型結晶構造を有すため、Co系熱電変換材料のようなブロック層効果による低熱伝導率化が十分ではなかった。このため、p型と同等の性能を有するn型熱電変換材料は未だ見出されるには至っていない。 However, the conventional Mn-based thermoelectric conversion material has a perovskite-type crystal structure based on a cube represented by the general formula ABO 3. Therefore, low thermal conductivity due to the block layer effect as in the Co-based thermoelectric conversion material is sufficient. It wasn't. For this reason, an n-type thermoelectric conversion material having performance equivalent to that of the p-type has not yet been found.
そこで、本実施形態のn型熱電変換材料は、Mn系複合酸化物であって、2次元的なMn-O層を持つA3B2O7型構造を有する。より好ましくは、組成式:Ca3-xMxMn2O7(式中、Mは、Y,La,Sm,Bi,Sr,Ba,Pr,Nd,Sm,Na及びKからなる群から選ばれた少なくとも一種類の元素であり、0≦x≦1である。)で表される組成を有し、かつ、高温域において負のゼーベック係数を有し、かつ、低い熱伝導率を有するものである。そして、このような層状のn型酸化物は、熱電変換素子における熱電変換材料として有用である。 Therefore, the n-type thermoelectric conversion material of the present embodiment is an Mn-based composite oxide and has an A 3 B 2 O 7 type structure having a two-dimensional Mn—O layer. More preferably, the composition formula is Ca 3-x M x Mn 2 O 7 (wherein M is selected from the group consisting of Y, La, Sm, Bi, Sr, Ba, Pr, Nd, Sm, Na and K) At least one element selected from the group consisting of 0 ≦ x ≦ 1), a negative Seebeck coefficient in a high temperature range, and a low thermal conductivity. It is. Such a layered n-type oxide is useful as a thermoelectric conversion material in a thermoelectric conversion element.
[実施形態]
本実施形態の熱電変換材料は、例えば、目的とする複合酸化物の元素成分比率と同様の元素成分比率となるように原料物質を混合し、焼成することによって製造することができる。
[Embodiment]
The thermoelectric conversion material of this embodiment can be manufactured, for example, by mixing raw materials and firing so as to have an element component ratio similar to the element component ratio of the target composite oxide.
熱電変換材料の原料物質としては、焼成により酸化物を形成するものであれば特に限定されず、酸化物、水酸化物、炭酸塩、硝酸塩、ハロゲン化物、硫酸塩、又は、有機酸塩など、高温で酸化物になる化合物が使用される。また、当該化合物の代わりに、前記の金属元素を含有する金属を用いてもよい。例えば、Ca源としては、カルシウム(Ca)、酸化カルシウム(CaO)、過酸化カルシウム(CaO2)、炭酸カルシウム(CaCO3)、硝酸カルシウム(Ca(NO3)2)、水酸化カルシウム(Ca(OH)2)、塩化カルシウム(CaCl2)、およびその水和物、アルコキシド化合物(ジメトキシカウシウム(Ca(OCH3)2)等を使用できる。また、Mn源としては、マンガン(Mn)、酸化マンガン(MnO、MnO2、Mn2O3、Mn3O4)、炭酸マンガン(MnCO3)、硝酸マンガン(Mn(NO3)2)、塩化マンガン(MnCl2)、アルコキシド化合物(ジプロポキシマンガン(Mn(OC3H7)2)等を使用できる。その他の元素についても、当該金属元素を含有する化合物としては、炭酸塩、硝酸塩、硫酸塩、水酸化物、有機酸塩等を用いることができる。また、本実施形態の熱電変換材料の構成元素を二種以上含む化合物を原料物質として使用してもよい。上記した原料物質は、各元素源の物質について、一種単独又は二種以上混合して用いることができる。 The raw material of the thermoelectric conversion material is not particularly limited as long as it forms an oxide by firing, such as an oxide, hydroxide, carbonate, nitrate, halide, sulfate, or organic acid salt, Compounds that become oxides at high temperatures are used. Moreover, you may use the metal containing the said metal element instead of the said compound. For example, Ca sources include calcium (Ca), calcium oxide (CaO), calcium peroxide (CaO 2 ), calcium carbonate (CaCO 3 ), calcium nitrate (Ca (NO 3 ) 2 ), calcium hydroxide (Ca ( OH) 2 ), calcium chloride (CaCl 2 ), and hydrates thereof, alkoxide compounds (dimethoxycausium (Ca (OCH 3 ) 2 ), etc.) Mn sources include manganese (Mn), oxidation Manganese (MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 ), manganese carbonate (MnCO 3 ), manganese nitrate (Mn (NO 3 ) 2 ), manganese chloride (MnCl 2 ), alkoxide compounds (dipropoxy manganese ( Mn (OC 3 H 7 ) 2 ), etc. As for other elements, carbonates, nitrates, sulfates, hydroxides, organic acid salts, etc. may be used as compounds containing the metal elements. In addition, the constituent elements of the thermoelectric conversion material of this embodiment A compound containing two or more may be used as a raw material. Raw material described above, for materials of the respective element sources can be used singly or in combination of two or more.
原料物質(前記金属化合物混合物)の混合は、乾式混合法、又は、湿式混合法のいずれによっても良いが、金属元素を含有する化合物をより均一に混合できる方法にすることが好ましい。例えば、金属−クエン酸錯体をグリコールと加熱重合することで高分子ゲルを生成し、その後の熱処理にて所望の組成の複合酸化物が得られる錯体重合法などの溶液法を用いることが好ましい。 The raw material (the metal compound mixture) may be mixed by either a dry mixing method or a wet mixing method, but it is preferable that the compound containing the metal element be mixed more uniformly. For example, it is preferable to use a solution method such as a complex polymerization method in which a polymer gel is produced by heat polymerization of a metal-citrate complex with glycol and a composite oxide having a desired composition is obtained by subsequent heat treatment.
前記金属化合物混合物の焼成温度および焼成時間については、目的とする複合酸化物が形成される条件とすれば良く、特に限定されないが、例えば600〜1350℃(873〜1623K)程度の範囲の温度にて、0.5〜72時間程度焼成すれば良い。焼成手段は特に限定されず、電気加熱炉、ガス加熱炉等任意の加熱手段を採用できる。焼成の雰囲気は通常、酸素気流中、空気中等の酸化雰囲気中とすれば良い。 The firing temperature and firing time of the metal compound mixture may be the conditions under which the target composite oxide is formed, and is not particularly limited. For example, the firing temperature and firing time are in the range of about 600 to 1350 ° C. (873 to 1623 K). And baking for about 0.5 to 72 hours. The baking means is not particularly limited, and any heating means such as an electric heating furnace or a gas heating furnace can be adopted. The firing atmosphere is usually an oxygen atmosphere or an oxidizing atmosphere such as air.
以上の方法で得ることができる本実施形態の熱電変換材料は、負のゼーベック係数を有し、100℃(373K)で、50μV/K以上の負のゼーベック係数となる。さらに、この熱電変換材料の熱伝導率は、100℃(373K)において1W/mK以下であり、このときの抵抗率は100mΩcm以下の良導電性を示す。 The thermoelectric conversion material of the present embodiment that can be obtained by the above method has a negative Seebeck coefficient, and has a negative Seebeck coefficient of 50 μV / K or more at 100 ° C. (373 K). Furthermore, the thermal conductivity of this thermoelectric conversion material is 1 W / mK or less at 100 ° C. (373 K), and the resistivity at this time exhibits good conductivity of 100 mΩcm or less.
したがって、本実施形態の熱電変換材料は、上記した特性を利用して、空気中において高温で用いるn型熱電変換材料として有効に利用することができる。 Therefore, the thermoelectric conversion material of the present embodiment can be effectively used as an n-type thermoelectric conversion material used at a high temperature in the air using the above-described characteristics.
本実施形態の熱電変換材料は、上記の方法により製造することができるが、他の製造方法としては、共沈工程を含む方法、水熱工程を含む方法、ドライアップ工程を含む方法、スパッタリング工程を含む方法、CVDによる工程を含む方法、ゾルゲル工程を含む方法、錯体重合工程を含む方法、FZ(浮遊帯域溶融法)工程を含む方法、TSCG(テンプレート型単結晶育成法)による工程を含む方法等が挙げられる。 The thermoelectric conversion material of the present embodiment can be manufactured by the above-described method, but other manufacturing methods include a method including a coprecipitation step, a method including a hydrothermal step, a method including a dry-up step, and a sputtering step. A method including a step by CVD, a method including a step by CVD, a method including a sol-gel step, a method including a complex polymerization step, a method including a FZ (floating zone melting method) step, a method including a step by TSCG (template type single crystal growth method) Etc.
[評価方法]
次に、上記熱電変換材料の実施例を説明する。ここで、熱電変換材料の熱電特性および構造の評価方法をまず説明する。
1.電気伝導率
焼結体試料(n型熱電変換材料)を角柱状に加工し、白金線を装着し、直流四端子法により大気中で室温〜900℃(1173K)の温度範囲にて電気伝導率を測定した。測定には、オザワ科学株式会社製熱電特性評価装置RZ-2001iを用いた。
2.ゼーベック係数
電気伝導率評価と同様の測定条件にて、定常法により測定した。測定には、オザワ科学株式会社製熱電特性評価装置RZ-2001iを用いた。
3.熱伝導率
焼結体試料(n型熱電変換材料)を7mm角で厚さ約1mmの薄板に加工し、レーザーフラッシュ法による比熱ならびに熱拡散係数を測定することで算出した。測定にはアルバック理工株式会社製レーザーフラッシュ法熱伝導率測定装置TC-9000Hを用いた。
4.組成分析
焼結体試料(n型熱電変換材料)の組成分析は、RhKαを線源とするエネルギー分散型蛍光X線分析法により評価した。測定には堀場製作所製非破壊蛍光X線分析装置XGT-5000を用いた。
5.結晶構造解析
焼結体試料(n型熱電変換材料)の結晶構造は、CuKα線を線源とする粉末X線回折とリートベルト解析により評価した。測定にはブルカーAXS株式会社製強力粉末X線回折装置MXP−18を用いて回折パターンを収集した。
[Evaluation method]
Next, examples of the thermoelectric conversion material will be described. Here, a method for evaluating the thermoelectric properties and structure of the thermoelectric conversion material will be described first.
1. Electrical conductivity Sintered body sample (n-type thermoelectric conversion material) is processed into a prism shape, platinum wire is attached, and electrical conductivity is measured in the temperature range from room temperature to 900 ° C (1173K) in the atmosphere by the DC four-terminal method. Was measured. For the measurement, a thermoelectric property evaluation apparatus RZ-2001i manufactured by Ozawa Science Co., Ltd. was used.
2. Seebeck coefficient The Seebeck coefficient was measured by a steady method under the same measurement conditions as in the electrical conductivity evaluation. For the measurement, a thermoelectric property evaluation apparatus RZ-2001i manufactured by Ozawa Science Co., Ltd. was used.
3. Thermal conductivity The sintered body sample (n-type thermoelectric conversion material) was processed into a 7 mm square thin plate with a thickness of about 1 mm, and the specific heat and thermal diffusion coefficient were measured by the laser flash method. For measurement, a laser flash method thermal conductivity measuring device TC-9000H manufactured by ULVAC-RIKO Inc. was used.
4). Composition analysis The composition analysis of the sintered body sample (n-type thermoelectric conversion material) was evaluated by energy dispersive X-ray fluorescence analysis using RhKα as a radiation source. For the measurement, a nondestructive X-ray fluorescence spectrometer XGT-5000 manufactured by Horiba was used.
5. Crystal structure analysis The crystal structure of the sintered body sample (n-type thermoelectric conversion material) was evaluated by powder X-ray diffraction and Rietveld analysis using CuKα rays as a radiation source. For the measurement, diffraction patterns were collected using Bruker AXS Co., Ltd. powerful powder X-ray diffractometer MXP-18.
[実施例1]
Ca源として炭酸カルシウム(CaCO3)、La源として二酸化ランタン(La2O3)、Mn源として酸化マンガン(MnO2)を用いて、Ca:La:Mn(元素比)=2.8:0.2:2.0となるように原料粉末を秤量し、エタノールを溶媒とし遊星ボールミルにて300rpmの回転速度で10分間の湿式粉砕・混合処理を行い、乾燥後直径20mmのペレット状に加圧成型を行い、大気中900℃にて1時間仮焼成して炭酸塩の分解を行った。この焼結体を粉砕し、加圧成型後、大気中1350℃で24時間焼成を行い、空気中に急冷処理を行い、再び粉砕工程と加圧成型、本焼成の工程を3回繰り返すことで複合酸化物を合成した。
[Example 1]
Using calcium carbonate (CaCO 3 ) as the Ca source, lanthanum dioxide (La 2 O 3 ) as the La source, and manganese oxide (MnO 2 ) as the Mn source, Ca: La: Mn (element ratio) = 2.8: 0.2: 2.0 The raw material powder is weighed so that ethanol can be used as a solvent, wet milled and mixed for 10 minutes with a planetary ball mill using a planetary ball mill, dried, and then pressure-molded into pellets with a diameter of 20 mm. The carbonate was decomposed by calcining at 900 ° C. for 1 hour. This sintered body is pulverized, pressure-molded, fired at 1350 ° C in the atmosphere for 24 hours, quenched in air, and then repeated the grinding, pressure-molding, and main firing processes three times. A composite oxide was synthesized.
得られた焼成品の粉末X線回折パターンを、図1(A)に示す。図1(A)に示すように、得られた複合酸化物は、図1(B)に示すように、Ca3Mn2O7で表される層状構造のものであることがわかった。また、蛍光X線分析の結果、組成式はCa2.8La0.2Mn2O7であることがわかった。 The powder X-ray diffraction pattern of the obtained fired product is shown in FIG. As shown in FIG. 1 (A), the obtained composite oxide was found to have a layered structure represented by Ca 3 Mn 2 O 7 as shown in FIG. 1 (B). As a result of fluorescent X-ray analysis, the composition formula was found to be Ca 2.8 La 0.2 Mn 2 O 7 .
得られた複合酸化物のゼーベック係数の温度依存性を表すグラフを図2(A)に示す。図2(A)から、この複合酸化物は室温において負のゼーベック係数−64μV/Kを示し、1173Kでは-130μV/Kとなることがわかる。この結果から、複合酸化物がn型熱電変換材料としての性能を示すことがわかった。 A graph showing the temperature dependence of the Seebeck coefficient of the obtained composite oxide is shown in FIG. FIG. 2A shows that this composite oxide has a negative Seebeck coefficient of −64 μV / K at room temperature and −130 μV / K at 1173K. From this result, it was found that the composite oxide exhibited performance as an n-type thermoelectric conversion material.
また、得られた複合酸化物の電気抵抗率の温度依存性を図2(B)に示す。図2(B)から、複合酸化物が温度上昇に伴い電気抵抗率が減少する半導体的な挙動を示し、1173Kにおいて63mΩcmの電気抵抗率であることが判る。 Further, FIG. 2B shows the temperature dependence of the electrical resistivity of the obtained composite oxide. From FIG. 2B, it can be seen that the composite oxide exhibits a semiconductor behavior in which the electrical resistivity decreases with increasing temperature, and has an electrical resistivity of 63 mΩcm at 1173K.
また、得られた複合酸化物の熱伝導率の温度依存性を図3に示す。該複合酸化物の熱伝導率特性は、室温で0.76W/mKであり、一般的な導電性酸化物よりも低い熱伝導率を示すことがわかった。これは、本発明の層状構造に起因し、積層界面におけるフォノン散乱により格子熱伝導が抑制されるため熱伝導率が低くなったものと考えられる。 Moreover, the temperature dependence of the thermal conductivity of the obtained composite oxide is shown in FIG. The composite oxide had a thermal conductivity characteristic of 0.76 W / mK at room temperature, which was found to be lower than that of a general conductive oxide. This is attributed to the layered structure of the present invention, and it is considered that the thermal conductivity is lowered because lattice heat conduction is suppressed by phonon scattering at the laminated interface.
[実施例2]
次に、実施例2を説明する。
Ca源として硝酸カルシウム四水和物(Ca(NO3)2・4H2O)、La源として硝酸ランタン六水和物(La(NO3)2・6H2O)、Mn源として硝酸マンガン六水和物(Mn(NO3)2・6H2O)を用い、それぞれ0.1mol/Lの濃度の溶液を作成した。この出発溶液をCa:La:Mn(元素比)=2.99:0.01:2.0と2.95:0.05:2.0となるようにビーカーに秤量し、混合溶液中の金属イオン0.15molに対して200mlのプロピレングリコールを添加しホットスターラーにて150℃にて加熱しながら撹拌した。次に金属イオンを安定化させるため、金属イオン量の3倍のキレート剤(クエン酸一水和物)を加えて前駆体溶液を作成した。この前駆体溶液を150℃で8時間乾燥させ、400℃で4時間仮焼した後、600℃で1時間焼成させて金属酸化物粉末を得た。得られた金属酸化物粉末を乳鉢で粉砕し、ペレットに成型した。これを1250℃から1350℃で24時間焼成することで複合酸化物を合成した。
[Example 2]
Next, Example 2 will be described.
Calcium nitrate tetrahydrate (Ca (NO 3 ) 2 · 4H 2 O) as Ca source, lanthanum nitrate hexahydrate (La (NO 3 ) 2 · 6H 2 O) as La source, manganese nitrate hexahydrate as Mn source Using hydrates (Mn (NO 3 ) 2 · 6H 2 O), solutions each having a concentration of 0.1 mol / L were prepared. This starting solution was weighed in a beaker so that Ca: La: Mn (element ratio) = 2.99: 0.01: 2.0 and 2.95: 0.05: 2.0, and 200 ml of propylene glycol was added to 0.15 mol of metal ions in the mixed solution. The mixture was added and stirred while heating at 150 ° C. with a hot stirrer. Next, in order to stabilize metal ions, a precursor solution was prepared by adding a chelating agent (citric acid monohydrate) three times the amount of metal ions. This precursor solution was dried at 150 ° C. for 8 hours, calcined at 400 ° C. for 4 hours, and then calcined at 600 ° C. for 1 hour to obtain a metal oxide powder. The obtained metal oxide powder was pulverized in a mortar and molded into pellets. This was fired at 1250 ° C. to 1350 ° C. for 24 hours to synthesize a composite oxide.
[その他の実施例と各実施例の比較]
上記実施例では、組成式Ca3-xMxMn2O7において、x=0.2の場合(実施例1)と、x=0.01および0.05の場合(実施例2)とを説明したが、これらの他に、xの値が0.0の場合、0.1の場合、0.3の場合、0.4の場合、および、0.5の場合も、同様に複合酸化物が得られた。
これらの複合酸化物も、実施例1および実施例2と同様のX線パターンを示し、ゼーベック係数の温度依存性(図4(A))、電気抵抗率の温度依存性(図4(B))、および、パワーファクター(図5)についても概ね同様の傾向を示す。
ただし、図5からわかるように、xが0.05以上であり0.5以下である場合の複合酸化物は、広い温度域(例えば、100℃〜800℃)において、x=0.0又は0.01の場合に比較して、n型熱電変換材料として高い性能を有する。すなわち、x=0.05〜0.5の場合の複合酸化物がn型熱電変換材料として、より好ましいということがいえる。
[Comparison between other embodiments and each embodiment]
In the above examples, in the composition formula Ca 3-x M x Mn 2 O 7 , when x = 0.2 (Example 1), when x = 0.01 and 0.05 (Example 2), In addition to these, in the case where the value of x is 0.0, 0.1, 0.3, 0.4, and 0.5, the compound is similarly applied. An oxide was obtained.
These composite oxides also show the same X-ray pattern as in Example 1 and Example 2, and the temperature dependence of the Seebeck coefficient (FIG. 4A) and the temperature dependence of the electrical resistivity (FIG. 4B). ) And the power factor (FIG. 5) show almost the same tendency.
However, as can be seen from FIG. 5, the composite oxide when x is 0.05 or more and 0.5 or less is x = 0.0 or over a wide temperature range (for example, 100 ° C. to 800 ° C.). Compared to the case of 0.01, it has high performance as an n-type thermoelectric conversion material. That is, it can be said that the composite oxide in the case of x = 0.05 to 0.5 is more preferable as the n-type thermoelectric conversion material.
次に、本実施形態のn型熱電変換素子3及び熱電変換モジュール1について説明する。本実施形態のn型熱電変換素子3は、上記熱電変換材料(すなわち、n型熱電変換材料)で構成され、本実施形態の熱電変換モジュール1は、このn型熱電変換素子3と、p型熱電変換素子2とで構成される。
図5は、本実施形態の熱電変換モジュール1の模式図である。
図5に例示するように、熱電発電モジュール1は、公知の熱電発電モジュールと同様であり、p型熱電変換素子2、n型熱電変換素子3、高温側電極4、p型に接続する低温側電極5、及び、n型に接続する低温側電極6により構成される。n型熱電変換素子3は、上記n型熱電変換材料を成形したものである。p型熱電変換素子2は、公知のp型熱電変換材料を使用でき、例えば、NaCo2O4、又は、Ca3Co4O9(特開平9−321346号公報、特開2001−64021号公報)を成形したものである。
Next, the n-type
FIG. 5 is a schematic diagram of the
As illustrated in FIG. 5, the thermoelectric
p型熱電素子2及びn型熱電素子3の一端面側には、高温側電極4がこれらの素子2及び3を掛け渡すように配置されている。p型熱電素子2の他端面側には低温側電極5が配置され、n型熱電素子3の他端面側には低温側電極6が配置されている。高温側電極4及び低温側電極5,6は、Cu,Pt,Au,Ag,Pd,Ni等のいずれか又はその合金等で形成されている。
On one end face side of the p-type
このような熱電発電モジュール1において、p型熱電素子2及びn型熱電素子3の一端面側と他端面側との間に温度差が発生すると、p型熱電素子2では高温側電極4側から低温側電極5側に正孔が移動し、n型熱電素子3では高温側電極4側から低温側電極6側に電子が移動する。これにより、ゼーベック効果による上記温度差に応じた起電力(電圧)が低温側電極5,6間に発生する。
In such a thermoelectric
以上説明したように、本実施形態のn型熱電変換材料によれば、大きな起電力を維持しつつ低い熱伝導率が得られるn型熱電変換素子3を得ることができる。これにより、本実施形態のn型熱電変換素子3は、耐熱性および耐化学的特性に優れ、エネルギー変換効率に優れた熱電変換モジュール1を構成することができる。
As described above, according to the n-type thermoelectric conversion material of the present embodiment, it is possible to obtain the n-type
1・・・熱電変換モジュール
3・・・n型熱電変換素子
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009055971A JP5206510B2 (en) | 2009-03-10 | 2009-03-10 | N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009055971A JP5206510B2 (en) | 2009-03-10 | 2009-03-10 | N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010212393A JP2010212393A (en) | 2010-09-24 |
JP5206510B2 true JP5206510B2 (en) | 2013-06-12 |
Family
ID=42972282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009055971A Expired - Fee Related JP5206510B2 (en) | 2009-03-10 | 2009-03-10 | N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5206510B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012091198A1 (en) * | 2010-12-29 | 2012-07-05 | 한국세라믹기술원 | Calcium-manganese-based thermoelectric composition doped with praseodymium, and preparation method thereof |
US8641917B2 (en) * | 2011-12-01 | 2014-02-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | Ternary thermoelectric material containing nanoparticles and process for producing the same |
US8840799B2 (en) * | 2011-12-01 | 2014-09-23 | Toyota Motor Engineering & Manufacturing North America, Inc. | Binary thermoelectric material containing nanoparticles and process for producing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008124417A (en) * | 2006-10-17 | 2008-05-29 | Sumitomo Chemical Co Ltd | Thermoelectric conversion material and method for producing the same |
-
2009
- 2009-03-10 JP JP2009055971A patent/JP5206510B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010212393A (en) | 2010-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5035561B2 (en) | Oxide sintered body having n-type thermoelectric properties | |
JP5189289B2 (en) | Method for producing perovskite complex oxide | |
JP5252474B2 (en) | Oxide composite having n-type thermoelectric properties | |
JP4867618B2 (en) | Thermoelectric conversion material | |
JP3727945B2 (en) | Thermoelectric conversion material and production method thereof | |
KR20080003875A (en) | Thermoelectric conversion material, manufacturing method thereof and thermoelectric conversion element | |
JP3968418B2 (en) | Composite oxide having n-type thermoelectric properties | |
JP5206510B2 (en) | N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module | |
JP4024294B2 (en) | Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element | |
JP2003142742A (en) | Manganese oxide thermoelectric conversion material | |
JP3069701B1 (en) | Composite oxide with high Seebeck coefficient and high electrical conductivity | |
CN100570916C (en) | Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic equipment and cooling device having the same | |
JP4876721B2 (en) | Thermoelectric conversion material and method for producing the same | |
JP2009196821A (en) | Perovskite-based oxide, its producing method and thermoelectric element using it | |
US7959833B2 (en) | Thermoelectric conversion material, method for producing the same and thermoelectric conversion device | |
Klyndyuk et al. | Thermoelectric properties of some perovskite oxides | |
Klyndyuk et al. | Thermoelectric ceramics based on the layered cobaltates of bismuth and alkaline-earth metals | |
JP2006062951A (en) | Thermoelectric conversion material and method for producing the same | |
JP2003008086A (en) | Composite oxide and thermoelectric conversion element using the same | |
JP3586716B2 (en) | Composite oxide with high thermoelectric conversion efficiency | |
JP4844043B2 (en) | Thermoelectric conversion material and method for producing the same | |
JP2010228927A (en) | Cobalt-manganese complex oxide | |
JP2007149996A (en) | Layered oxide thermoelectric material with delafossite structure | |
Lu | La doped SrTiO3 Based Oxide Thermoelectrics | |
Nurhayati et al. | Study of Structural, Thermal and Electrical Properties of Sr-Doped CaMnO3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130204 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5206510 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |