Nothing Special   »   [go: up one dir, main page]

JP5206493B2 - Ceramic capacitor sorting method and sorting apparatus - Google Patents

Ceramic capacitor sorting method and sorting apparatus Download PDF

Info

Publication number
JP5206493B2
JP5206493B2 JP2009045064A JP2009045064A JP5206493B2 JP 5206493 B2 JP5206493 B2 JP 5206493B2 JP 2009045064 A JP2009045064 A JP 2009045064A JP 2009045064 A JP2009045064 A JP 2009045064A JP 5206493 B2 JP5206493 B2 JP 5206493B2
Authority
JP
Japan
Prior art keywords
capacitor
ceramic
creeping discharge
discharge current
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009045064A
Other languages
Japanese (ja)
Other versions
JP2010199465A (en
Inventor
浩透 安部
直樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009045064A priority Critical patent/JP5206493B2/en
Publication of JP2010199465A publication Critical patent/JP2010199465A/en
Application granted granted Critical
Publication of JP5206493B2 publication Critical patent/JP5206493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

この発明は、耐サージ性能についてのセラミックコンデンサの選別方法および選別装置に関する。   The present invention relates to a ceramic capacitor sorting method and sorting apparatus for surge resistance.

従来、サージ電流による積層セラミックコンデンサの絶縁破壊を防止するために、バリスタやサージアブソーバなどのサージ吸収用部品が用いられていた。しかしながら、近年、電子機器の軽薄短小化に伴い、実装基板上に占める実装面積を削減することが強く求められている。そのため、積層セラミックコンデンサ自体に耐サージ機能を付加することにより、サージ吸収用部品を省略することが提案されている。例えば、特許文献1には、放電ギャップ付き積層セラミックコンデンサが開示されている。この積層セラミックコンデンサは、コンデンサ本体上面に形成された一対の放電用電極間の距離が短くなっている。これにより、サージ流入時には放電用電極間で放電を発生させて、コンデンサ内部にサージが流入することを防止し、コンデンサの破壊を防ぐ。   Conventionally, surge absorbing parts such as varistors and surge absorbers have been used to prevent dielectric breakdown of multilayer ceramic capacitors due to surge current. However, in recent years, as electronic devices become lighter, thinner and smaller, it is strongly demanded to reduce the mounting area on the mounting substrate. For this reason, it has been proposed to omit surge absorbing parts by adding a surge resistance function to the multilayer ceramic capacitor itself. For example, Patent Document 1 discloses a multilayer ceramic capacitor with a discharge gap. In this multilayer ceramic capacitor, the distance between a pair of discharge electrodes formed on the upper surface of the capacitor body is short. As a result, when a surge flows in, a discharge is generated between the discharge electrodes, preventing the surge from flowing into the capacitor and preventing the capacitor from being destroyed.

ところで、特許文献1に記載された積層セラミックコンデンサは、コンデンサの外部で確実にサージ放電を起こすために放電用電極が設けられているが、要するにコンデンサの破壊電圧よりも外部電極間のサージ放電開始電圧が低ければ、あえて放電用電極を設けなくても、コンデンサの外部で(つまり、外部電極間で)サージ放電は生じる。この場合、コンデンサの外部で確実にサージ放電が生じるコンデンサと、そうでないコンデンサと、を選別することが必要となる。しかし、従来の選別装置では、その選別を行うことが不可能であった。例えば、特許文献2に記載されている選別装置では、コンデンサの定格電圧値以上のパルス電圧をコンデンサに供給し、そのときのコンデンサに印加されるパルス電圧値をモニターし、モニターされたパルス電圧値に基づいてコンデンサ内部の異常を検出できるとしている。   By the way, the multilayer ceramic capacitor described in Patent Document 1 is provided with a discharge electrode in order to surely generate a surge discharge outside the capacitor, but in short, the surge discharge between the external electrodes starts from the breakdown voltage of the capacitor. If the voltage is low, surge discharge occurs outside the capacitor (that is, between the external electrodes) without providing a discharge electrode. In this case, it is necessary to select a capacitor that reliably generates a surge discharge outside the capacitor and a capacitor that does not. However, the conventional sorting apparatus cannot perform the sorting. For example, in the sorting apparatus described in Patent Document 2, a pulse voltage higher than the rated voltage value of the capacitor is supplied to the capacitor, the pulse voltage value applied to the capacitor at that time is monitored, and the monitored pulse voltage value It is said that the abnormality inside the capacitor can be detected based on the above.

特開平6−251981号公報JP-A-6-251981 特開平7−320993号公報JP-A-7-320993

しかしながら、特許文献2の選別装置でモニターされたパルス電圧値の異常の原因としては、外部電極間のサージ放電(コンデンサの外部で起きるサージ放電)による場合と、内部破壊によるショートによる場合と、の二つの場合が考えられ、真の原因を特定するためには再度絶縁抵抗の測定を、毎回行わなければならないという不具合があった。   However, the cause of the abnormality of the pulse voltage value monitored by the sorting device of Patent Document 2 is that it is caused by surge discharge between external electrodes (surge discharge that occurs outside the capacitor) or by short-circuit due to internal breakdown. There are two cases, and there is a problem that the insulation resistance must be measured again every time in order to identify the true cause.

それゆえに、この発明の主たる目的は、外部電極間で確実にサージ放電が生じるコンデンサを、絶縁抵抗の測定を行うことなく選別することができるセラミックコンデンサの選別方法および選別装置を提供することである。   SUMMARY OF THE INVENTION Therefore, a main object of the present invention is to provide a ceramic capacitor selection method and a selection apparatus capable of selecting a capacitor in which a surge discharge is reliably generated between external electrodes without performing an insulation resistance measurement. .

この発明は、セラミック素体と、セラミック素体の外表面上に設けられた第1外部電極および第2外部電極と、セラミック素体の内部に設けられ、第1外部電極と接合している第1内部電極および第2外部電極と接合している第2内部電極と、を有するセラミックコンデンサの選別方法であって、第1外部電極と第2外部電極との間に、セラミックコンデンサの定格電圧値より大きい略パルス状直流高電圧を印加して、セラミック素体の表面中央部に接触させた表面リーク電流検出端子にて、略パルス状直流高電圧を印加したときに発生する沿面放電電流値を検出し、沿面放電電流値に基づいてセラミックコンデンサの耐サージ性能の良否を判断してセラミックコンデンサを選別すること、を特徴とする、セラミックコンデンサの選別方法である。   The present invention provides a ceramic body, a first external electrode and a second external electrode provided on the outer surface of the ceramic body, and a first external electrode provided inside the ceramic body and joined to the first external electrode. A ceramic capacitor having a first internal electrode and a second internal electrode joined to the second external electrode, wherein the rated voltage value of the ceramic capacitor is between the first external electrode and the second external electrode. The surface discharge current value generated when a substantially pulsed DC high voltage is applied at the surface leakage current detection terminal that is applied to the surface center of the ceramic body by applying a larger substantially pulsed DC high voltage. A method of selecting a ceramic capacitor, characterized in that the ceramic capacitor is selected by detecting and judging whether the ceramic capacitor has a surge resistance performance based on a creeping discharge current value. That.

この発明では、セラミック素体の表面中央部に接触させた表面リーク電流検出端子にて、略パルス状直流高電圧を印加したときに発生する沿面放電電流値を検出することにより、セラミックコンデンサの耐サージ性能の良否を容易かつ確実に判断できる。すなわち、コンデンサの定格に応じて、このコンデンサの定格電圧値より大きい略パルス状直流高電圧を印加することにより、コンデンサの外部で確実にサージ放電が生じるコンデンサ(耐サージ性能において良品であるコンデンサ)である場合には、表面リーク電流検出端子にて検出される沿面放電電流値が、所定の電流閾値以上となる。一方、コンデンサの外部でサージ放電が生じないコンデンサ(耐サージ性能において不良品であるコンデンサ)である場合には、表面リーク電流検出端子にて検出される沿面放電電流値が、所定の電流閾値未満となる。従って、表面リーク電流検出端子にて検出される沿面放電電流値が、所定の電流閾値に到達しているか否かに基づいて、セラミックコンデンサの耐サージ性能の良否を容易かつ確実に判断できる。   In this invention, the surface leakage current detection terminal generated when a substantially pulsed DC high voltage is applied is detected at the surface leakage current detection terminal brought into contact with the center of the surface of the ceramic element body. Whether the surge performance is good or not can be judged easily and reliably. That is, a capacitor in which surge discharge is reliably generated outside the capacitor by applying a pulsed DC high voltage larger than the rated voltage value of this capacitor according to the capacitor rating (a capacitor that is good in surge resistance performance) In this case, the creeping discharge current value detected at the surface leakage current detection terminal is equal to or greater than a predetermined current threshold. On the other hand, in the case of a capacitor that does not generate surge discharge outside the capacitor (a capacitor that is defective in terms of surge resistance), the creeping discharge current value detected at the surface leakage current detection terminal is less than the predetermined current threshold value. It becomes. Therefore, whether or not the surge resistance performance of the ceramic capacitor is good can be easily and reliably determined based on whether or not the creeping discharge current value detected at the surface leakage current detection terminal has reached a predetermined current threshold value.

また、この発明は、略パルス状直流高電圧をセラミックコンデンサの一対の外部電極間に印加するパルス供給回路と、セラミックコンデンサのセラミック素体の表面中央部に接触させて、略パルス状直流高電圧を印加したときに発生する沿面放電電流を検出する表面リーク電流検出端子と、表面リーク電流検出端子にて検出した沿面放電電流の電流値を測定する沿面放電電流値測定回路と、沿面放電電流値測定回路で測定した沿面放電電流値が、所定の電流閾値に到達したか否かを判定する判定回路と、判定回路の判定結果に基づいてセラミックコンデンサの選別動作の指示する制御部と、を備えたことを特徴とする、セラミックコンデンサの選別装置である。   The present invention also provides a pulse supply circuit for applying a substantially pulsed DC high voltage between a pair of external electrodes of a ceramic capacitor, and a substantially pulsed DC high voltage in contact with the center of the surface of the ceramic body of the ceramic capacitor. A surface leakage current detection terminal for detecting a creeping discharge current generated when a voltage is applied, a creeping discharge current value measuring circuit for measuring a current value of the creeping discharge current detected at the surface leakage current detection terminal, and a creeping discharge current value A determination circuit that determines whether or not the creeping discharge current value measured by the measurement circuit has reached a predetermined current threshold; and a control unit that instructs the selection operation of the ceramic capacitor based on the determination result of the determination circuit. This is a ceramic capacitor sorting apparatus.

この発明によれば、簡素な回路構成の選別装置で、セラミックコンデンサの耐サージ性能の良否を容易かつ確実に判断できる。   According to the present invention, it is possible to easily and reliably determine whether the ceramic capacitor has surge resistance performance with a screening device having a simple circuit configuration.

この発明によれば、セラミック素体の表面中央部に接触させた表面リーク電流検出端子にて、略パルス状直流高電圧を印加したときに発生する沿面放電電流値を検出することにより、セラミックコンデンサの耐サージ性能の良否を容易かつ確実に判断できる。この結果、外部電極間で確実にサージ放電が生じるコンデンサを、絶縁抵抗の測定を行うことなく選別することができる。   According to the present invention, a ceramic capacitor is detected by detecting a creeping discharge current value generated when a substantially pulsed DC high voltage is applied at a surface leakage current detection terminal brought into contact with the center of the surface of the ceramic body. It is possible to easily and reliably determine whether the surge resistance is good or bad. As a result, it is possible to select a capacitor in which surge discharge is reliably generated between the external electrodes without measuring the insulation resistance.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。   The above-mentioned object, other objects, features and advantages of the present invention will become more apparent from the following description of embodiments for carrying out the invention with reference to the drawings.

本発明に係るセラミックコンデンサの選別装置の一実施形態を説明するための電気ブロック図である。It is an electric block diagram for demonstrating one Embodiment of the sorting apparatus of the ceramic capacitor | condenser which concerns on this invention. 図1に示した選別装置から供給される略パルス状直流高電圧の波形図である。FIG. 2 is a waveform diagram of a substantially pulsed DC high voltage supplied from the sorting apparatus shown in FIG. 1. 本発明に係るセラミックコンデンサの選別方法を説明するための模式図である。It is a schematic diagram for demonstrating the selection method of the ceramic capacitor which concerns on this invention.

図1は積層セラミックコンデンサの選別装置1を説明するための電気ブロック図である。選別装置1は、概略、パルス供給回路2と、表面リーク電流検出端子22と、沿面放電電流値測定回路24と、判定回路26と、を備えている。さらに、この選別装置1は、コンデンサの静電容量、誘電正接および絶縁抵抗を測定する電気特性選別回路30も備えている。なお、図1において、符号Cは被選別セラミックコンデンサ40の静電容量成分であり、符号Rcは被選別セラミックコンデンサ40の外部電極44−セラミック素体42表面−外部電極46(後述)の抵抗成分である。   FIG. 1 is an electric block diagram for explaining a sorting apparatus 1 for multilayer ceramic capacitors. The sorting device 1 generally includes a pulse supply circuit 2, a surface leakage current detection terminal 22, a creeping discharge current value measurement circuit 24, and a determination circuit 26. Furthermore, the sorting device 1 also includes an electrical property sorting circuit 30 that measures the capacitance, dielectric loss tangent, and insulation resistance of the capacitor. In FIG. 1, the symbol C is a capacitance component of the ceramic capacitor 40 to be sorted, and the symbol Rc is a resistance component of the external electrode 44 of the ceramic capacitor 40 to be sorted, the surface of the ceramic body 42, and the external electrode 46 (described later). It is.

パルス供給回路2は、パルス状直流高電圧を被選別セラミックコンデンサ40の一対の外部電極44,46間に印加するものである。パルス供給回路2には、直流高圧電源10を制御して、規定のパルス印加条件でコンデンサ40にパルス状直流高電圧を印加させるCPU(制御装置)4が備わっている。CPU4と直流高圧電源10との間には、CPU4からの制御信号をデジタルからアナログに変換するD/A変換器6、およびアナログ変換した制御信号を増幅する増幅器(AMP)8が電気的に接続されている。さらに、直流高圧電源10の出力端子と高電圧印加端子21a,21bとの間には、充電用スイッチ12を介して、充電抵抗14とエネルギ蓄積コンデンサ16と放電抵抗18とで構成されたT字形回路、および放電用スイッチ20が電気的に接続されている。   The pulse supply circuit 2 applies a pulsed DC high voltage between the pair of external electrodes 44 and 46 of the ceramic capacitor 40 to be sorted. The pulse supply circuit 2 includes a CPU (control device) 4 that controls the DC high-voltage power supply 10 and applies a pulsed DC high voltage to the capacitor 40 under specified pulse application conditions. A D / A converter 6 that converts a control signal from the CPU 4 from digital to analog and an amplifier (AMP) 8 that amplifies the converted control signal are electrically connected between the CPU 4 and the DC high-voltage power supply 10. Has been. Furthermore, between the output terminal of the DC high-voltage power supply 10 and the high voltage application terminals 21a, 21b, a T-shape configured by a charging resistor 14, an energy storage capacitor 16, and a discharging resistor 18 via a charging switch 12. The circuit and the discharge switch 20 are electrically connected.

パルス供給回路2は、充電用スイッチ12がON状態で、かつ、放電用スイッチ20がOFF状態のときに、エネルギ蓄積コンデンサ16に直流高電圧を印加し、エネルギ蓄積コンデンサ16を充電する。エネルギ蓄積コンデンサ16の充電が十分行われると、充電用スイッチ12がOFF状態に、かつ、放電用スイッチ20がON状態に切り変わり、図2に示すようなパルス波形を有するパルス状直流高電圧を発生させる。   The pulse supply circuit 2 applies a DC high voltage to the energy storage capacitor 16 to charge the energy storage capacitor 16 when the charging switch 12 is in the ON state and the discharge switch 20 is in the OFF state. When the energy storage capacitor 16 is sufficiently charged, the charging switch 12 is turned off and the discharging switch 20 is turned on, and a pulsed DC high voltage having a pulse waveform as shown in FIG. generate.

一方、表面リーク電流検出端子22は、表面リーク電流検出端子22にて検出した沿面放電電流の電流値を測定する沿面放電電流値測定回路24、沿面放電電流値測定回路24で測定した沿面放電電流値が、所定の電流閾値に到達したか否かを判定する判定回路26、および、判定回路26からの制御信号をデジタルからアナログに変換するD/A変換器28を介して、パルス供給回路2のCPU4に電気的に接続されている。CPU4は、直流高圧電源10の制御機能と共に、判定回路26の判定結果に基づいてコンデンサ40の選別動作を指示する機能も有している。   On the other hand, the surface leakage current detection terminal 22 is a creeping discharge current value measurement circuit 24 that measures the current value of the creeping discharge current detected by the surface leakage current detection terminal 22, and the creeping discharge current that is measured by the creeping discharge current value measurement circuit 24. The pulse supply circuit 2 passes through a determination circuit 26 that determines whether or not the value has reached a predetermined current threshold value, and a D / A converter 28 that converts a control signal from the determination circuit 26 from digital to analog. The CPU 4 is electrically connected. In addition to the control function of the DC high-voltage power supply 10, the CPU 4 also has a function of instructing the sorting operation of the capacitor 40 based on the determination result of the determination circuit 26.

なお、判定回路26において予め設定されている所定の電流閾値は、後述の実施例で説明する方法によって得られる「適正な電流閾値」を利用している。このとき、表面リーク電流検出端子22をセラミック素体42の上面中央部に接触させると、外部電極44,46間の距離と比較して、外部電極44、46とリーク電流検出端子22との間の距離が短くなるため、サージ開始電圧が下がる。そこで、別途、表面リーク電流検出端子22を用いないでパルス印加試験とその後の絶縁抵抗測定を実施し、そこで得られた結果と同じになるように、電流閾値を設定している。   The predetermined current threshold set in advance in the determination circuit 26 uses an “appropriate current threshold” obtained by a method described in an embodiment described later. At this time, when the surface leakage current detection terminal 22 is brought into contact with the center of the upper surface of the ceramic body 42, the distance between the external electrodes 44 and 46 and the leakage current detection terminal 22 is compared with the distance between the external electrodes 44 and 46. The surge start voltage is lowered because the distance is reduced. Therefore, separately, the pulse application test and the subsequent insulation resistance measurement are carried out without using the surface leakage current detection terminal 22, and the current threshold is set so as to be the same as the result obtained there.

次に、この選別装置1を用いてコンデンサ40を選別する方法について説明する。図3に示すように、被選別コンデンサ40を選別装置1にセットした後、高電圧印加端子21a,21bをそれぞれ、被選別コンデンサ40の一対の外部電極44,46に接触させる。さらに、被選別コンデンサ40のセラミック素体42の上面中央部(一対の外部電極44,46間の中央部)に表面リーク電流検出端子22を接触させる。表面リーク電流検出端子22は先端部が針状になっている。そして、パルス供給回路2に発生したパルス状直流高電圧を、高電圧印加端子21a,21bを介して、被選別コンデンサ40の一対の外部電極44,46に印加する。パルス状直流高電圧はコンデンサ40の定格電圧値より大きく、印加時間は10ns以下である。   Next, a method for sorting the capacitors 40 using the sorting apparatus 1 will be described. As shown in FIG. 3, after the capacitor to be sorted 40 is set in the sorting apparatus 1, the high voltage application terminals 21a and 21b are brought into contact with the pair of external electrodes 44 and 46 of the capacitor to be sorted 40, respectively. Further, the surface leakage current detection terminal 22 is brought into contact with the center of the upper surface of the ceramic body 42 of the capacitor to be sorted 40 (the center between the pair of external electrodes 44 and 46). The front end portion of the surface leakage current detection terminal 22 has a needle shape. The pulsed DC high voltage generated in the pulse supply circuit 2 is applied to the pair of external electrodes 44 and 46 of the capacitor 40 to be sorted through the high voltage application terminals 21a and 21b. The pulsed DC high voltage is larger than the rated voltage value of the capacitor 40, and the application time is 10 ns or less.

パルス状直流高電圧がコンデンサ40に印加されると、コンデンサ40のセラミック素体42表面で発生した沿面放電電流を、表面リーク電流検出端子22によって検出する。検出された沿面放電電流は、所定の電流閾値に到達したか否かを判定回路26によって判定される。判定結果は、D/A変換器28を介して、パルス供給回路2のCPU4に送信される。CPU4は、所定の電流閾値に到達しなかったコンデンサ40については、耐サージ性能において不良品(沿面放電が発生しなかったコンデンサ)と判断して、排除動作指令を送信して排除する。一方、所定の電流閾値に到達したコンデンサ40については、耐サージ性能において良品(沿面放電が発生したコンデンサ)と判断する。   When a pulsed DC high voltage is applied to the capacitor 40, the surface discharge current detection terminal 22 detects a creeping discharge current generated on the surface of the ceramic body 42 of the capacitor 40. The determination circuit 26 determines whether or not the detected creeping discharge current has reached a predetermined current threshold value. The determination result is transmitted to the CPU 4 of the pulse supply circuit 2 via the D / A converter 28. The CPU 4 determines that the capacitor 40 that has not reached the predetermined current threshold is a defective product (capacitor in which creeping discharge has not occurred) in surge resistance, and transmits it to eliminate it. On the other hand, the capacitor 40 that has reached the predetermined current threshold is determined as a non-defective product (capacitor in which creeping discharge has occurred) in surge resistance.

耐サージ性能において良品と判断されたコンデンサ40は、さらに、電気特性選別回路30にて静電容量、誘電正接および絶縁抵抗を測定することにより、仮に耐サージ性能選別で良品と判断されながらも、破壊されたコンデンサ40が生じた場合、これを排除することができる。   The capacitor 40 determined to be a non-defective product in surge resistance performance is further measured by measuring the capacitance, dielectric loss tangent and insulation resistance in the electrical characteristic selection circuit 30. If a broken capacitor 40 occurs, it can be eliminated.

以上の選別方法によれば、セラミック素体42の上面中央部に接触させた表面リーク電流検出端子22にて、パルス状直流高電圧を印加したときに発生する沿面放電電流値を検出することにより、コンデンサの外部で確実にサージ放電が生じるコンデンサ(耐サージ性能において良品であるコンデンサ)40である場合には、表面リーク電流検出端子22にて検出される沿面放電電流値が、所定の電流閾値以上となる。一方、コンデンサの外部でサージ放電が生じないコンデンサ(耐サージ性能において不良品であるコンデンサ)40である場合には、表面リーク電流検出端子22にて検出される沿面放電電流値が、所定の電流閾値未満となる。従って、表面リーク電流検出端子22にて検出される沿面放電電流値が、所定の電流閾値に到達しているか否かに基づいて、セラミックコンデンサ40の耐サージ性能の良否を容易かつ確実に判断できる。この結果、外部電極44,46間で確実にサージ放電が生じるコンデンサ(耐サージ性能において良品であるコンデンサ)40を、従来の選別方法では必要であった絶縁抵抗の測定を行うことなく選別することができ、耐サージ性能についての全数良否選別が可能となる。   According to the above selection method, the surface leakage current detection terminal 22 brought into contact with the center of the upper surface of the ceramic body 42 detects the creeping discharge current value generated when a pulsed DC high voltage is applied. In the case of a capacitor 40 that reliably generates surge discharge outside the capacitor (a capacitor that is non-defective in terms of surge resistance), the creeping discharge current value detected by the surface leakage current detection terminal 22 is a predetermined current threshold value. That's it. On the other hand, in the case of a capacitor 40 that does not generate surge discharge outside the capacitor (a capacitor that is defective in surge resistance), the creeping discharge current value detected by the surface leakage current detection terminal 22 is a predetermined current. Below the threshold. Therefore, the quality of the surge resistance performance of the ceramic capacitor 40 can be easily and reliably determined based on whether or not the creeping discharge current value detected at the surface leakage current detection terminal 22 has reached a predetermined current threshold value. . As a result, a capacitor (a capacitor that is good in terms of surge resistance) 40 that reliably generates a surge discharge between the external electrodes 44 and 46 is selected without measuring the insulation resistance that is required in the conventional sorting method. Therefore, it is possible to select all the items for the anti-surge performance.

また、表面リーク電流値をモニターすることにより、耐サージ性能に与える設計構造以外の因子(セラミック素体42の表面状態など)を明確にできる。さらに、この選別装置1による選別を製造工程中に導入することにより、耐サージ性能や耐サージ性能に与える設計構造以外の因子の変化を、迅速かつ感度良く捉えることができる。   Further, by monitoring the surface leakage current value, factors (such as the surface state of the ceramic body 42) other than the design structure that give the surge resistance can be clarified. Furthermore, by introducing the sorting by the sorting device 1 into the manufacturing process, it is possible to quickly and sensitively detect changes in factors other than the design structure that give the surge resistance and surge resistance performance.

なお、この発明は、前記実施形態に限定されるものではなく、その要旨の範囲内で種々に変形される。   In addition, this invention is not limited to the said embodiment, In the range of the summary, it changes variously.

図1に示した選別装置1を用いて積層セラミックコンデンサの耐サージ性能良否選別を実施した。耐サージ性能選別の有用性を検証するため、予め電気特性選別(コンデンサの静電容量および絶縁抵抗)を実施して、元々内在しているショート不良などの不良品を除去しているコンデンサを被選別対象とした。このときの絶縁抵抗測定装置は、Agilent社製、4349B 4チャネル ハイレジスタンスメータを使用し、絶縁抵抗選別条件は、100Vrmsの電圧を5sec印加し、絶縁抵抗が6.5MΩ未満のものを不良品とする選別基準を採用した。また、静電容量測定装置は、Agilent社製、4268A CAPACITANCE METERを使用し、静電容量選別条件は、印加電圧が1kVrms、測定周波数が1kHzの条件下で、静電容量が5.5pF未満のものを不良品とする選別基準を採用した。   The screening device 1 shown in FIG. 1 was used to select whether the multilayer ceramic capacitor had good surge resistance. In order to verify the usefulness of the anti-surge performance selection, electrical characteristics selection (capacitor capacitance and insulation resistance) is performed in advance to cover the capacitors that are removing defective products such as inherently short-circuit defects. Selected for selection. The insulation resistance measuring device at this time uses a 4349B 4-channel high resistance meter manufactured by Agilent, and the insulation resistance selection condition is that a voltage of 100 Vrms is applied for 5 seconds, and an insulation resistance of less than 6.5 MΩ is regarded as a defective product. The selection criteria to be adopted were adopted. In addition, the capacitance measuring apparatus uses 4268A CAPACITANT METER manufactured by Agilent, and the capacitance selection condition is that the applied voltage is 1 kVrms and the measurement frequency is 1 kHz, and the capacitance is less than 5.5 pF. We adopted a selection standard that makes things defective.

コンデンサには、定格電圧が100Vで、2.0mm×1.25mm×0.85mmのサイズものを使用し、全て同一ロットのものでる。パルス供給回路2のパルス状直流高電圧は15kVに設定した。サンプル数は10000個とした。判定回路26に予め設定する電流閾値は、3種類のパターンとした。すなわち、パターン(1)は、5.00A未満(不良品I)と、5.00A以上20.00A未満(不良品II)と、20.00A以上
(良品)の閾値の設定とした。パターン(2)は、5.00A未満(不良品I)と、5.00A以上40.00A未満(不良品II)と、40.00A以上(良品)の閾値の設定とした。パターン(3)は、5.00A未満(不良品I)と、5.00A以上60.00A未満(不良品II)と、60.00A以上(良品)の閾値の設定とした。
A capacitor having a rated voltage of 100 V and a size of 2.0 mm × 1.25 mm × 0.85 mm is used, and all capacitors are of the same lot. The pulsed DC high voltage of the pulse supply circuit 2 was set to 15 kV. The number of samples was 10,000. The current threshold value preset in the determination circuit 26 is set to three types of patterns. That is, pattern (1) was set to threshold values of less than 5.00 A (defective product I), 5.00 A or more and less than 20.00 A (defective product II), and 20.00 A or more (good product). For pattern (2), threshold values of less than 5.00 A (defective product I), 5.00 A or more and less than 40.00 A (defective product II), and 40.00 A or more (good product) were set. For pattern (3), threshold values of less than 5.00 A (defective product I), 5.00 A or more and less than 60.00 A (defective product II), and 60.00 A or more (good product) were set.

この3種類のパターンで選別した結果を表1に示す。不良品Iのコンデンサの発生数については、3種類のパターンの閾値の設定が同じであるため、パターン間に殆んど差異がない。しかし、不良品IIのコンデンサの発生数については、3種類のパターン間で差異が認められた。   Table 1 shows the results of sorting with these three types of patterns. As for the number of defective capacitors I generated, the threshold values of the three types of patterns are the same, so there is almost no difference between the patterns. However, the number of defective capacitors II was found to be different between the three patterns.

Figure 0005206493
Figure 0005206493

表2は3種類のパターンのそれぞれの、不良品中のショート数および良品中のショート数を示すグラフである。予め電気特性選別(コンデンサの静電容量および絶縁抵抗)を実施して、元々内在しているショート不良などの不良品を除いていることから、これらのショートしたコンデンサは、パルス供給回路2のパルス状直流高電圧を印加したことにより発生したものである。なお、耐サージ性能の良否選別後のコンデンサがショートしているか否かは、前記電気特性選別を同じ条件で再度実施して確認した。   Table 2 is a graph showing the number of shorts in defective products and the number of shorts in non-defective products for each of the three types of patterns. Since electrical characteristics selection (capacitance and insulation resistance of the capacitor) is performed in advance to remove defective products such as inherently short-circuit defects, these short-circuited capacitors are connected to the pulse supply circuit 2 pulse. It is generated by applying a high DC voltage. Whether or not the capacitor after the selection of whether or not the surge resistance is good was short-circuited was confirmed by performing the electric characteristic selection again under the same conditions.

Figure 0005206493
Figure 0005206493

不良品Iのコンデンサは全てショートしていた。これら不良品Iのコンデンサは沿面放電が生じなかったか、もしくは極めて生じ難かったために、ショートしたと考えられる。パターン(1)の場合、不良品IIのコンデンサのショート数が最も低いが、良品のコンデンサのショート発生率は高かった。これは、判定回路26の設定電流閾値が低過ぎたた
めに、十分な値の沿面表面電流が流れていなかったにもかかわらず、良品と判定されたと考えられる。一方、パターン(3)の場合、不良品IIのコンデンサのショート数が最も高かったが、不良品IIのコンデンサのショート発生率はパターン(2)の場合とほぼ同
等であった。これは、判定回路26の設定電流閾値が高過ぎたために、十分な値の沿面表
面電流が流れたにもかかわらず、不良品IIと判定されたと考えられる。そして、パターン(2)の場合、不良品IIのコンデンサは全てショートしており、かつ、良品のコンデンサのショート発生率はゼロであった。このことは、パターン(2)の設定が適正であり、この「適正な電流閾値」を利用すれば、耐サージ性能についての良否判定が可能であることを実証している。
All capacitors of the defective product I were short-circuited. These defective I capacitors were considered to have short-circuited because creeping discharge did not occur or was extremely difficult to occur. In the case of pattern (1), the number of shorts of the defective product II capacitor was the lowest, but the occurrence rate of the short circuit of the non-defective product was high. This is probably because the set current threshold value of the determination circuit 26 was too low, so that a sufficient value of the creeping surface current did not flow, but the product was determined to be non-defective. On the other hand, in the case of the pattern (3), the number of shorts of the capacitor of the defective product II was the highest, but the short-circuit occurrence rate of the capacitor of the defective product II was almost the same as that of the pattern (2). This is probably because the set current threshold of the determination circuit 26 was too high, and the creeping surface current of a sufficient value flowed, but the product was determined to be defective II. In the case of pattern (2), all the defective product capacitors were short-circuited, and the occurrence rate of the non-defective product capacitors was zero. This proves that the setting of the pattern (2) is appropriate, and if this “appropriate current threshold” is used, it is possible to determine whether the surge resistance is good or bad.

1 選別装置
2 パルス供給回路
4 CPU(制御装置)
22 表面リーク電流検出端子
24 沿面放電電流値測定回路
26 判定回路
1 Sorting Device 2 Pulse Supply Circuit 4 CPU (Control Device)
22 Surface Leakage Current Detection Terminal 24 Creeping Discharge Current Value Measurement Circuit 26 Judgment Circuit

Claims (2)

セラミック素体と、前記セラミック素体の外表面上に設けられた第1外部電極および第2外部電極と、前記セラミック素体の内部に設けられ、前記第1外部電極と接合している第1内部電極および前記第2外部電極と接合している第2内部電極と、を有するセラミックコンデンサの選別方法であって、
前記第1外部電極と前記第2外部電極との間に、前記セラミックコンデンサの定格電圧値より大きい略パルス状直流高電圧を印加して、前記セラミック素体の表面中央部に接触させた表面リーク電流検出端子にて、前記略パルス状直流高電圧を印加したときに発生する沿面放電電流値を検出し、前記沿面放電電流値に基づいて前記セラミックコンデンサの耐サージ性能の良否を判断して前記セラミックコンデンサを選別すること、を特徴とする、セラミックコンデンサの選別方法。
A ceramic body, a first external electrode and a second external electrode provided on an outer surface of the ceramic body, and a first body provided in the ceramic body and joined to the first external electrode A method of selecting a ceramic capacitor having an internal electrode and a second internal electrode joined to the second external electrode,
A surface leak in which a substantially pulsed DC high voltage larger than the rated voltage value of the ceramic capacitor is applied between the first external electrode and the second external electrode to bring it into contact with the center of the surface of the ceramic body. At the current detection terminal, the creeping discharge current value generated when the substantially pulsed DC high voltage is applied is detected, and the surge resistance performance of the ceramic capacitor is judged based on the creeping discharge current value, A method for sorting ceramic capacitors, comprising sorting ceramic capacitors.
略パルス状直流高電圧をセラミックコンデンサの一対の外部電極間に印加するパルス供給回路と、
前記セラミックコンデンサのセラミック素体の表面中央部に接触させて、前記略パルス状直流高電圧を印加したときに発生する沿面放電電流を検出する表面リーク電流検出端子と、
前記表面リーク電流検出端子にて検出した沿面放電電流の電流値を測定する沿面放電電流値測定回路と、
前記沿面放電電流値測定回路で測定した沿面放電電流値が、所定の電流閾値に到達したか否かを判定する判定回路と、
前記判定回路の判定結果に基づいて前記セラミックコンデンサの選別動作の指示する制御部と、
を備えたことを特徴とする、セラミックコンデンサの選別装置。
A pulse supply circuit for applying a substantially pulsed DC high voltage between a pair of external electrodes of a ceramic capacitor;
A surface leakage current detection terminal for detecting a creeping discharge current generated when the substantially pulsed DC high voltage is applied in contact with the center of the surface of the ceramic body of the ceramic capacitor;
A creeping discharge current value measuring circuit for measuring a current value of the creeping discharge current detected at the surface leakage current detection terminal;
A determination circuit for determining whether or not the creeping discharge current value measured by the creeping discharge current value measuring circuit has reached a predetermined current threshold;
A control unit for instructing the selection operation of the ceramic capacitor based on the determination result of the determination circuit;
An apparatus for sorting ceramic capacitors, comprising:
JP2009045064A 2009-02-27 2009-02-27 Ceramic capacitor sorting method and sorting apparatus Active JP5206493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009045064A JP5206493B2 (en) 2009-02-27 2009-02-27 Ceramic capacitor sorting method and sorting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045064A JP5206493B2 (en) 2009-02-27 2009-02-27 Ceramic capacitor sorting method and sorting apparatus

Publications (2)

Publication Number Publication Date
JP2010199465A JP2010199465A (en) 2010-09-09
JP5206493B2 true JP5206493B2 (en) 2013-06-12

Family

ID=42823862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045064A Active JP5206493B2 (en) 2009-02-27 2009-02-27 Ceramic capacitor sorting method and sorting apparatus

Country Status (1)

Country Link
JP (1) JP5206493B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976458A (en) * 2021-10-27 2022-01-28 扬州市飞鹰电子科技有限公司 Ceramic high-voltage electric leakage detection visual system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696261A (en) * 1979-12-28 1981-08-04 Mitsubishi Electric Corp Detection of leak location of ceramic condenser and device therefor
JP2994911B2 (en) * 1993-06-22 1999-12-27 松下電器産業株式会社 Screening method for ceramic electronic components
JP2001035758A (en) * 1999-07-15 2001-02-09 Murata Mfg Co Ltd Method and apparatus for screening laminated ceramic electronic component

Also Published As

Publication number Publication date
JP2010199465A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP4886013B2 (en) Method and apparatus for detecting deterioration of lightning arrester
CN101191811B (en) Substrate detecting device and substrate detecting method
US10180459B2 (en) Monitoring system for detecting occurrence of leakage current and/or relay short-circuit condition in an electrical system
JP4008173B2 (en) Capacitor insulation resistance measuring method and insulation resistance measuring device
US20090224770A1 (en) Screening of electrolytic capacitors
JP2016143580A (en) Manufacturing method for power storage device, and inspection device for structure
JP6369407B2 (en) Failure detection system
EP3312617A1 (en) Method and device for testing a galvanic connection of a high-voltage condenser bushing assembly
JP3603640B2 (en) Screening method of multilayer ceramic capacitor
TWI403734B (en) Substrate inspection method
JP7352209B2 (en) Mechanism to detect abnormal current
JP5206493B2 (en) Ceramic capacitor sorting method and sorting apparatus
JP5792051B2 (en) Arrestor failure determination method and failure determination apparatus
CN111521957B (en) Failure analysis method for solid tantalum electrolytic capacitor with built-in fuse
KR101670097B1 (en) System and method for testing an electrostatic chuck
JP2013247015A (en) Failure determination method and failure determination device of arrestor
JP3925136B2 (en) Capacitor pass / fail judgment method
JP2011158253A (en) Measuring device of inter-electrode insulation characteristic
JPH09152455A (en) Internal defect detector and method thereof for laminated ceramic capacitor
US6509741B2 (en) Method for screening multi-layer ceramic electronic component
JPH07244098A (en) In-circuit testing method for capacitor
JP2006196382A (en) Faulty insulator detector
Ling et al. In situ observation of electrode melting in multilayer ceramic capacitors
JP5151392B2 (en) Overvoltage protection element inspection method
JP2000348990A (en) Inspection device for electrolytic capacitor and inspection method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5206493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150