JP5295485B2 - Liquid plasma type treatment liquid purification method and liquid plasma type treatment liquid purification apparatus - Google Patents
Liquid plasma type treatment liquid purification method and liquid plasma type treatment liquid purification apparatus Download PDFInfo
- Publication number
- JP5295485B2 JP5295485B2 JP2006024084A JP2006024084A JP5295485B2 JP 5295485 B2 JP5295485 B2 JP 5295485B2 JP 2006024084 A JP2006024084 A JP 2006024084A JP 2006024084 A JP2006024084 A JP 2006024084A JP 5295485 B2 JP5295485 B2 JP 5295485B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- electrode
- plasma
- high voltage
- vaporized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Plasma Technology (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
本発明は、液中に気泡を形成された気泡内にプラズマを発生させる液中プラズマ発生方法及び液中プラズマ発生装置に関し、更に詳細には、前記プラズマにより液中に活性イオン種を過剰に浸透拡散させ、この活性イオン種により被分解物(有害物質、菌、微生物、染料など)を分解・殺菌・脱色する液中プラズマ発生方法、液中プラズマ発生装置、被処理液浄化装置及びイオン液体供給装置に関する。 The present invention relates to an in-liquid plasma generating method and an in-liquid plasma generating apparatus for generating plasma in bubbles in which bubbles are formed in liquid, and more specifically, an excessive penetration of active ionic species into the liquid by the plasma. In-liquid plasma generation method, in-liquid plasma generation apparatus, in-process liquid purification apparatus, and ionic liquid supply by diffusing and decomposing, disinfecting, and decolorizing substances to be decomposed (harmful substances, bacteria, microorganisms, dyes, etc.) Relates to the device.
従来の被処理液浄化装置には、微生物による活性汚泥処理法と共に水中放電を利用した排水処理法が下水道処理施設、屎尿処理施設、工場排水処理施設、畜産排水処理施設、湖水浄化施設などに用いられている。上記の活性汚泥処理法による生物処理では除去できない物質や微生物が存在し、脱臭、脱色、殺菌や汚染物質を高効率に処理する方法として、処理能力の高い水中放電を利用した被処理液浄化方法の性能向上が要求されている。水中放電を利用した被処理液浄化方法として、特開昭61−13484号公報(特許文献1)には、下水・屎尿等の生活排水に高電圧を印加して大腸菌を死滅させる被処理液浄化方法が示されている。 In the conventional treatment liquid purification equipment, the activated sludge treatment method using microorganisms and the wastewater treatment method using underwater discharge are used for sewerage treatment facilities, human waste treatment facilities, factory wastewater treatment facilities, livestock wastewater treatment facilities, lake water purification facilities, etc. It has been. As a method of deodorizing, decoloring, sterilizing and treating pollutants with high efficiency, there are substances and microorganisms that cannot be removed by biological treatment using the above activated sludge treatment method. There is a demand for improved performance. As a treatment liquid purification method using underwater discharge, Japanese Patent Application Laid-Open No. 61-13484 (Patent Document 1) discloses a treatment liquid purification that kills Escherichia coli by applying a high voltage to domestic wastewater such as sewage and human waste. The method is shown.
図16は、従来の高電圧を用いた被処理液浄化装置の概略構成図であり、上記特許文献1に記載される被処理液浄化方法に用いられている。単相交流120のAC100Vが電磁開閉器103を介して昇圧トランス122に結線し、昇圧した二次側の高電圧端子113は電極106に接続されている。昇圧時の電位差126は最高で6000Vになるよう設定されている。絶縁性と剛性を有するトラフ104の内面に板状体108を接合して凸板107を設ける。接地側端子110はアースされると共に板状体108に接続されている。供給される被処理液114は、前記板状体108の内面空間に充満状態となり、前記電極106と板状体108は、前記被処理液114が接するように配設されている。この被処理液114を供給しながら、前記電磁開閉器103を閉じて電位差126が生じると、同時に電極106と板状体108及び凸板107間に電位差が生じ、瞬時に被処理液114中に存在している大腸菌群を殺菌することができる。
FIG. 16 is a schematic configuration diagram of a conventional liquid treatment apparatus using a high voltage, which is used in the liquid treatment purification method described in
更に、従来の直流電源を具備するイオン液体供給装置では、飲用水や消毒液等に混合されるアルカリイオン水や酸性イオン水を生成する場合、直流電圧が印加される電極対により水をイオンに分離する。従って、特開平6−226259号公報(特許文献2)に記載されるように、水に乳酸カルシウムや食塩等を溶解させて高い導電性を付与する必要があった。また、直流電圧を印加しながら正負のイオンを生成し、分離容器内にイオン透過性隔膜を配設してイオンの分離を保持する必要性があった。
図16に示すような従来の水中放電型の被処理液浄化装置では、前記大腸菌群を殺菌する電流を被処理水114中に導通させるために平面電極間に利用され、この平面電極間(電極106、板状体108、凸板107)に電圧が印加されるから、前記電磁開閉器103により非常に高い電位差を生じさせる必要があった。従って、消費電力量を増大させ、エネルギー効率を著しく低減させていた。更に、電流の導通により大腸菌などの一部の菌を殺菌できたとしても、種種の汚染物質や雑菌等を分解・殺菌することは非常に困難であった。
In the conventional underwater discharge type treatment liquid purification apparatus as shown in FIG. 16, the current for sterilizing the coliform bacteria is used between the planar electrodes to conduct the current into the treated
更に、上水道や下水道に限らず、屎尿処理、畜産排水処理、工場排水処理などにおいて、被処理液中に溶解する汚水の色素や染料などを効率的に分解・脱色することは困難であった。また、このような問題を解決する方法として、脱色、脱臭、殺菌作用を有するオゾン処理法等を併用することも考えられるが、残存オゾンを2次処理して除去する必要性があり、被処理液の浄化コストを増大させる方法であった。 Furthermore, it is difficult to efficiently decompose and decolorize sewage pigments and dyes dissolved in the liquid to be treated not only in waterworks and sewers but also in sewage treatment, livestock wastewater treatment, factory wastewater treatment, and the like. In addition, as a method for solving such problems, it is conceivable to use an ozone treatment method having a decoloring, deodorizing, and bactericidal action, etc., but there is a need to remove residual ozone by secondary treatment. This was a method for increasing the liquid purification cost.
更に、前述のように、特許文献2に記載されるような従来のイオン液体供給装置では、水に乳酸カルシウムや食塩等を溶解させて高い導電性を付与し、分離容器内にイオン透過性隔膜を配設するイオンの分離を保持する必要性があり、アルカリイオン水や酸性イオン水の生成コストや簡便さを著しく低減させていた。
Further, as described above, in the conventional ionic liquid supply device as described in
本発明の目的は、液中に気泡を形成し、この気泡内にプラズマを発生させて、このプラズマにより液中に活性イオン種を過剰に浸透拡散させ、この活性イオン種により被分解物(有害物質、菌、微生物、染料など)を分解・殺菌・脱色する液中プラズマ発生方法、液中プラズマ発生装置、被処理液浄化装置及びイオン液体供給装置を提供することである。 The object of the present invention is to form bubbles in the liquid, generate plasma in the bubbles, and cause the active ionic species to permeate and diffuse excessively in the liquid by the plasma. It is to provide an in-liquid plasma generation method, an in-liquid plasma generation apparatus, a to-be-processed liquid purification apparatus, and an ionic liquid supply apparatus that decompose, disinfect, and decolorize substances, bacteria, microorganisms, and dyes).
本発明は、上記課題を解決するために提案されたものであって、本発明の第1の形態は、少なくとも一方が高電圧絶縁部と1つ以上の突出部が形成された高電圧電極からなる電極対を液体に浸漬し、この電極対間に高繰り返しの高電圧パルスを印加して前記高電圧電極近傍の液体をジュール加熱するとともに連続的又は断続的に沸騰気化させ、この気化泡により前記高電圧電極の突出部先端を少なくとも包囲する気化泡領域を形成し、前記高電圧パルスによる前記気化泡内の高電圧絶縁破壊放電により前記気泡内の気化物を電離(プラズマ化)して各種イオンを形成し、このプラズマ中のイオン種を前記液体中に浸透拡散させる液中プラズマ発生方法である。 The present invention has been proposed in order to solve the above-described problems. The first aspect of the present invention is a high-voltage electrode in which at least one is formed with a high-voltage insulating portion and one or more protruding portions. The electrode pair is immersed in a liquid, and a high-repetitive high-voltage pulse is applied between the electrode pair to joule-heat the liquid in the vicinity of the high-voltage electrode and continuously or intermittently boil and evaporate. A vaporized bubble region that at least surrounds the tip of the protruding portion of the high-voltage electrode is formed, and the vaporized material in the bubble is ionized (plasmaized) by high-voltage breakdown discharge in the vaporized bubble by the high-voltage pulse, and various types This is a submerged plasma generation method in which ions are formed and ion species in the plasma are permeated and diffused into the liquid.
本発明の第2の形態は、前記第1の形態において、前記高電圧電極が高電圧絶縁部を有する針状電極であり、前記針状電極の先端部を少なくとも包囲する気化泡領域を形成する液中プラズマ発生方法である。 According to a second aspect of the present invention, in the first aspect, the high-voltage electrode is a needle-like electrode having a high-voltage insulating portion, and forms a vaporized bubble region that at least surrounds the tip of the needle-like electrode. This is a method for generating plasma in liquid.
本発明の第3の形態は、前記第1又は第2の形態において、前記プラズマ中のイオン種を前記液体中に過剰に浸透拡散させて前記液体を活性イオン種液とする液中プラズマ発生方法である。 According to a third aspect of the present invention, in the first or second aspect, the in-liquid plasma generation method in which the ionic species in the plasma is excessively permeated and diffused in the liquid to make the liquid an active ionic species liquid. It is.
本発明の第4の形態は、前記第1〜第3の形態において、前記高電圧電極又はこの高電圧電極の周辺部に設けられたガス供給口からイオン種源となる1種以上のガスを供給し、前記気化泡内に混和させて気化物と同時に電離させ、前記イオン種と前記供給ガスが電離して形成された付加イオン種を液体中に過剰に浸透拡散させて前記液体を活性イオン種液とし、前記プラズマ中に付加イオン種を補助的に混合させる液中プラズマ発生方法である。 According to a fourth aspect of the present invention, in the first to third aspects, one or more gases serving as an ion species source are supplied from the gas supply port provided in the peripheral portion of the high voltage electrode or the high voltage electrode. And the mixture is mixed in the vaporized bubble and ionized at the same time as the vaporized product, and the ionic species formed by ionizing the ionic species and the supply gas are excessively permeated and diffused in the liquid to make the liquid active ions. This is a submerged plasma generation method in which an additional ion species is supplementally mixed into the plasma as a seed solution.
本発明の第5の形態は、前記第1〜第4のいずれかの形態において、前記液体は被分解物が混合状態にある液体であり、前記液体中に蓄積された活性イオン種により前記被分解物を分解する液中プラズマ発生方法である。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the liquid is a liquid in which a substance to be decomposed is in a mixed state, and the target is separated by the active ion species accumulated in the liquid. This is a method for generating plasma in liquid to decompose decomposition products.
本発明の第6の形態は、前記第1〜第4のいずれかの形態において、前記液体は2種類以上の混合状態にある液体であり、前記液体中に蓄積された活性イオン種により前記混合状態の液体間の化学反応を促進する液中プラズマ発生方法である。 According to a sixth aspect of the present invention, in any one of the first to fourth aspects, the liquid is a liquid in a mixed state of two or more types, and the mixing is performed by the active ion species accumulated in the liquid. This is a method for generating plasma in liquid that promotes a chemical reaction between liquids in a state.
本発明の第7の形態は、前記第1〜第4のいずれかの形態において、前記液体が飲用水又はその原水であり、前記プラズマ中のイオン種がH+及びOH−又はこれらのイオン種及び補助的に供給されたガスの電離による付加イオン種であり、これらのイオン種を過剰に浸透拡散させることにより前記水に含有される被分解物(菌、微生物など)を分解及び/又は殺菌して前記水を浄化する液中プラズマ発生方法である。 In a seventh aspect of the present invention, in any one of the first to fourth aspects, the liquid is potable water or raw water thereof, and the ion species in the plasma are H + and OH − or these ion species. And additional ionic species by ionization of auxiliary gas supplied, and decompose and / or sterilize the decomposed substances (fungi, microorganisms, etc.) contained in the water by excessively permeating and diffusing these ionic species. In this way, the in-liquid plasma generation method purifies the water.
本発明の第8の形態は、前記第5の形態において、前記被分解物が混合状態にある液体が下水、廃液又は汚水である液中プラズマ発生方法である。 An eighth aspect of the present invention is the in-liquid plasma generation method according to the fifth aspect, wherein the liquid in which the decomposition target is in a mixed state is sewage, waste liquid, or sewage.
本発明の第9の形態は、前記第5の形態において、前記被分解物が色素であり、この色素を分解して脱色させる液中プラズマ発生方法である。 A ninth aspect of the present invention is the in-liquid plasma generation method according to the fifth aspect, wherein the substance to be decomposed is a dye, and the dye is decomposed and decolorized.
本発明の第10の形態は、前記第3の形態において、前記イオン種を過剰に浸透拡散なされた活性液を、さらに直流電圧が印加された電極間に流通させ、この流通過程で陽イオンを陰極側に、陰イオンを陽極側に分離して、各電極側の液体を分離回収することにより陰イオンリッチ又は陽イオンリッチなイオン液体を形成する液中プラズマ発生方法である。 According to a tenth aspect of the present invention, in the third aspect, an active liquid in which the ionic species is excessively permeated and diffused is further circulated between electrodes to which a direct current voltage is applied. This is an in-liquid plasma generation method that forms an anion-rich or cation-rich ionic liquid by separating anion on the cathode side and separating and collecting the liquid on each electrode side.
本発明の第11の形態は、液体を流通又は保持する容器と、液体中に配設された1つ以上の電極対と、前記電極対に連続的な高電圧パルスを印加する電圧印加手段から少なくとも構成され、前記電極対の少なくとも一方は1つ以上の突出部と高電圧絶縁部を有し、前記電圧印加手段によって前記電極間に高繰返しの高電圧パルスを印加して前記高電圧電極近傍の液体をジュール加熱するとともに連続的又は断続的に沸騰気化させ、この気化泡により前記高電圧電極の突出部先端を少なくとも包囲する気化泡領域を形成し、前記高電圧パルスによる前記気化泡内の高電圧絶縁破壊放電により前記気泡内の気化物を電離(プラズマ化)して各種イオンを形成し、このプラズマ中のイオン種を前記液体中に浸透拡散させる液中プラズマ発生装置である。 An eleventh aspect of the present invention includes a container for circulating or holding a liquid, one or more electrode pairs disposed in the liquid, and voltage applying means for applying a continuous high voltage pulse to the electrode pairs. At least one of the electrode pairs has one or more protrusions and a high-voltage insulating part, and a high-repetitive high-voltage pulse is applied between the electrodes by the voltage applying means, and the vicinity of the high-voltage electrode The liquid is Joule-heated and vaporized continuously or intermittently, and this vaporized bubble forms a vaporized bubble region that at least surrounds the tip of the projecting portion of the high-voltage electrode. A submerged plasma generator that ionizes (plasmaizes) vaporized substances in the bubbles by high-voltage dielectric breakdown discharge to form various ions and permeates and diffuses ion species in the plasma into the liquid. .
本発明の第12の形態は、前記第11の形態において、前記高電圧電極が高電圧絶縁部を有する針状電極であり、この針状電極が前記容器内部の液中に突出して配設される液中プラズマ発生装置である。 According to a twelfth aspect of the present invention, in the eleventh aspect, the high voltage electrode is a needle electrode having a high voltage insulating portion, and the needle electrode protrudes into the liquid inside the container. In-liquid plasma generator.
本発明の第13の形態は、前記第11又は第12の形態において、前記高電圧電極部又はこの高電圧電極部周辺部位からガスを供給する供給装置と、気化泡内に混和させ気化物と同時に電離させるための高電圧パルスを電極対に印加する手段が設けられ、前記液中に付加イオン種を補助的に混入させる液中プラズマ発生装置である。 According to a thirteenth aspect of the present invention, in the eleventh or twelfth aspect, a supply device for supplying a gas from the high voltage electrode portion or a peripheral portion of the high voltage electrode portion; Means for applying a high voltage pulse to the electrode pair for ionization at the same time is provided, and the in-liquid plasma generator is configured to supplementally add additional ion species into the liquid.
本発明の第14の形態は、前記第11〜第13のいずれかの形態において、前記電極対の接地電極が前記容器の一部又は全部を構成する導電性容器又は導電性パイプである液中プラズマ発生装置である。 In a fourteenth aspect of the present invention, in any one of the first to thirteenth aspects, the ground electrode of the electrode pair is a conductive container or a conductive pipe constituting a part or all of the container. It is a plasma generator.
本発明の第15の形態は、前記第11〜第13のいずれかの形態において、前記電極対の接地電極が前記容器内に配設された板状電極であり、この板状電極が前記液体に接触して配設される液中プラズマ発生装置である。 According to a fifteenth aspect of the present invention, in any of the first to thirteenth aspects, a ground electrode of the electrode pair is a plate-like electrode disposed in the container, and the plate-like electrode is the liquid. Is a submerged plasma generator.
本発明の第16の形態は、前記第11〜第15のいずれかの形態において、前記容器中に前記液体の流通方向に沿って前記電極対が複数配列される液中プラズマ発生装置である。 A sixteenth aspect of the present invention is the submerged plasma generation device according to any one of the first to fifteenth aspects, wherein a plurality of the electrode pairs are arranged in the container along the flow direction of the liquid.
本発明の第17の形態は、前記第11〜16のいずれかの形態の液中プラズマ発生装置と、被分解物を含有する被処理液を供給する被処理液供給手段から構成され、前記液中イオン種が前記被分解物の分解、殺菌及び脱色のうち1つ以上の作用を有し、この被分解物を改質及び/又は除去する被処理液浄化装置である。 According to a seventeenth aspect of the present invention, the liquid plasma generator according to any one of the first to sixteenth aspects and a liquid-to-be-processed supply unit that supplies a liquid to be processed containing a decomposition target are provided. In the apparatus for purifying liquid to be treated, the intermediate ionic species has one or more functions of decomposition, sterilization, and decolorization of the decomposition target, and reforms and / or removes the decomposition target.
本発明の第18の形態は、前記第17の形態において、前記被処理液が飲用水、その原水、下水、廃液又は汚水である被処理液浄化装置である。 An eighteenth aspect of the present invention is the liquid to be treated purifying apparatus according to the seventeenth aspect, wherein the liquid to be treated is potable water, its raw water, sewage, waste liquid or sewage.
本発明の第19の形態は、前記第11〜第17のいずれかの形態の液中プラズマ発生装置と、イオン分離手段から構成され、イオン分離手段は、前記液体を流通させる流路と、この流路の両側面に配設された少なくとも1対の電極対と、この電極対に直流電圧を印加する電源から構成され、前記電極対の負電圧電極方に陽イオンリッチまた、正電圧電極方は陰イオンリッチなイオン液体を分離して回収するイオン液体供給装置である。 According to a nineteenth aspect of the present invention, the in-liquid plasma generator according to any one of the eleventh to seventeenth aspects and an ion separation unit are provided. The ion separation unit includes a flow path for circulating the liquid, It is composed of at least one electrode pair disposed on both sides of the flow path and a power source for applying a DC voltage to the electrode pair. The negative voltage electrode direction of the electrode pair is cation rich or positive voltage electrode direction. Is an ionic liquid supply device for separating and recovering an anion-rich ionic liquid.
本発明の第1の形態によれば、少なくとも一方が高電圧絶縁部と1つ以上の突出部が形成された高電圧電極からなる電極対を液体に浸漬し、この電極対間に高繰り返しの高電圧パルスを印加するから、前記突出部先端に電界を集中させることができ、前記高電圧電極近傍の液体を高効率にジュール加熱することができる。更に、電極対に高電圧パルスを印加して前記液体を沸騰気化させることにより所望量の気化泡を発生させることができ、この気化泡の成長及び/又は集合によって好適な大きさの気化泡領域を形成することができる。即ち、前記気化泡領域は、複数の気化泡及び/又は所定の大きさに成長した気化泡から形成される。前記電極対に高電圧パルスを印加すると、導電性を有する又は比較的低抵抗の液体に対して、絶縁性の気化泡領域では、その上端部から高電圧電極に亘って高勾配の高い電位差が生じる。従って、高電圧パルスによる気化泡領域内の高電圧絶縁破壊放電により前記気化物が電離(プラズマ化)してプラズマ又はこのプラズマに含まれるイオン種を持続的に発生させることができる。前記イオン種を液体中に浸透拡散(溶解及び/又は拡散)させ、所望の活性イオン種液を提供することができる。前記気化胞領域内におけるイオン種の生成及び液体への溶解・拡散と、正負のイオン種の結合(中性化)及び気化分子の液化とが平衡状態となり、プラズマの発生が好適に行われる程度の気化胞領域を保持させる。更に、高電圧パルスの繰返周波数が適切な電力で印加され、十分に前記気化泡とイオン種を生成することができれば、前記液体は容器内を流通させても良く、連続的かつ大量に高効率な処理を望める。
更に、本発明に係る液中プラズマ発生方法によれば、前記プラズマ中のイオン種を前記液体中に浸透拡散させ、種々のイオン種液を生成することができ、印加される高電圧パルスを調整して、連続的又は断続的に前記液体を沸騰気化させることにより、所定のイオン濃度を有するイオン種液を供給することができる。上記液体としては、導電性の溶液であれば種々の溶液を用いることができ、導電性が付与された水、アルコール類、フェノール類、カルボン酸類若しくはこれらの誘導体などが混合・溶解した溶液又は導電性を付与するイオン等を含有する種々の溶液を供給して、プラズマを発生させることができる。その他には、アンモニア水、石灰水、水酸化ナトリウム水溶液、重曹水などのアルカリ性水溶液を上記液体として供給することができ、これらの液体は、前記電極対が浸漬するように前記容器内に充填される。また、上水道や下水道に限らず、屎尿、畜産排水、工場排水などを前記容器に供給して、これらの被処理液を浄化することができる。
According to the first aspect of the present invention, an electrode pair consisting of a high voltage electrode, at least one of which is formed with a high voltage insulating part and one or more protrusions, is immersed in a liquid, Since the high voltage pulse is applied, the electric field can be concentrated on the tip of the protruding portion, and the liquid near the high voltage electrode can be Joule-heated with high efficiency. Furthermore, a desired amount of vaporized bubbles can be generated by applying a high voltage pulse to the electrode pair to boil and vaporize the liquid, and a vaporized bubble region having a suitable size can be generated by the growth and / or aggregation of the vaporized bubbles. Can be formed. That is, the vaporized bubble region is formed of a plurality of vaporized bubbles and / or vaporized bubbles grown to a predetermined size. When a high voltage pulse is applied to the electrode pair, there is a high potential difference with a high gradient from the upper end to the high voltage electrode in the insulating gas bubble region with respect to a conductive or relatively low resistance liquid. Arise. Therefore, the vaporized substance is ionized (plasmaized) by the high-voltage breakdown discharge in the vaporized bubble region caused by the high-voltage pulse, and plasma or ion species contained in the plasma can be continuously generated. The ionic species can be osmotically diffused (dissolved and / or diffused) into the liquid to provide a desired active ionic species solution. The extent to which the generation of ionic species in the vaporization vesicle region and dissolution / diffusion into the liquid, the binding of the positive and negative ionic species (neutralization), and the liquefaction of the vaporized molecules are in an equilibrium state, and the generation of plasma is suitably performed. To keep the vesicular region of. Furthermore, if the repetition frequency of the high voltage pulse is applied with appropriate power and the vaporized bubbles and ionic species can be generated sufficiently, the liquid may be circulated in the container, and the liquid may be continuously and in large quantities. We can expect efficient processing.
Furthermore, according to the method for generating plasma in liquid according to the present invention, various ion species liquids can be generated by osmotic diffusion of ion species in the plasma into the liquid, and the applied high voltage pulse is adjusted. Thus, an ionic seed solution having a predetermined ion concentration can be supplied by boiling or evaporating the liquid continuously or intermittently. As the liquid, various solutions can be used as long as they are conductive solutions, and solutions or conductive solutions in which water, alcohols, phenols, carboxylic acids, or derivatives thereof with conductivity are mixed and dissolved are used. Plasma can be generated by supplying various solutions containing ions or the like for imparting properties. In addition, an alkaline aqueous solution such as ammonia water, lime water, sodium hydroxide aqueous solution, or sodium bicarbonate water can be supplied as the liquid, and these liquids are filled in the container so that the electrode pair is immersed therein. The Moreover, not only a water supply system and a sewerage system, but it can purify these to-be-processed liquids by supplying manure, livestock waste water, factory waste water, etc. to the said container.
本発明の第2の形態によれば、前記高電圧電極が高電圧絶縁部を有する針状電極であるから、この針状電極の先端部により高密度に電界を集中させることができ、前記針状電極からなる高電圧電極近傍の液体を高効率にジュール加熱することができる。従って、前記針状電極の先端部少なくとも包囲する好適な気化泡領域を形成することができ、高電圧電界で気化泡領域内をプラズマ化し、所望のイオン種を持続的に供給することができる。
更に、前記電極対の接地側電極及び高電圧電極の両方を前記針状電極で構成することができ、液体中に浸漬する前記針状電極間の両先端部に好適な気化泡領域を構成できると共に、この気化泡領域内に高い電界勾配を発生させることができ、前記気化泡領域におけるプラズマ化を容易に行うことができる。
According to the second aspect of the present invention, since the high-voltage electrode is a needle-like electrode having a high-voltage insulating portion, the electric field can be concentrated at a high density by the tip of the needle-like electrode. The liquid in the vicinity of the high voltage electrode made of the electrode can be Joule-heated with high efficiency. Therefore, a suitable vaporized bubble region that surrounds at least the tip of the needle electrode can be formed, and the vaporized bubble region can be converted into plasma by a high-voltage electric field, and desired ion species can be continuously supplied.
Furthermore, both the ground-side electrode and the high-voltage electrode of the electrode pair can be constituted by the needle-like electrodes, and a suitable vaporization bubble region can be constituted at both tip portions between the needle-like electrodes immersed in the liquid. At the same time, a high electric field gradient can be generated in the vaporized bubble region, and plasmaization in the vaporized bubble region can be easily performed.
本発明の第3の形態によれば、前記プラズマ中のイオン種を前記液体中に過剰に浸透拡散させて前記液体から種々の活性イオン種液を生成できるから、飲用水や下水道の浄化に限らず、屎尿処理、畜産排水処理、工場排水処理などにおいて利用できる高い処理能力を有する活性イオン種液を供給することができる。また、容器内に供給される液体により、目的に応じて前記イオン種が液体中に過剰に浸透拡散した種々の活性イオン種液を生成することができる。また、前記ジュール熱により沸騰気化し、気化泡領域を形成することにより電離(プラズマ化)して分解させることも可能である。 According to the third aspect of the present invention, it is possible to generate various active ionic species liquids from the liquid by excessively osmotically diffusing ionic species in the plasma into the liquid, so that it is limited to purification of drinking water and sewerage. In addition, it is possible to supply an active ionic seed solution having a high treatment capacity that can be used in manure treatment, livestock wastewater treatment, factory wastewater treatment, and the like. In addition, various active ionic species liquids in which the ionic species excessively permeate and diffuse into the liquid can be generated according to the purpose by the liquid supplied into the container. It is also possible to vaporize by Joule heat and decompose by ionization (plasmaization) by forming a vaporized bubble region.
本発明の第4の形態によれば、前記高電圧電極又はこの高電圧電極の周辺部に設けられたガス供給口からイオン種源となる1種以上のガスを供給し、前記気化泡内に混和させて気化物と同時に電離させることができる。即ち、前記気化泡から形成されるイオン種に付加イオン種を補助的に混合することができる。従って、前記イオン種と前記供給ガスが電離して形成された付加イオン種を液体中に過剰に浸透拡散させて活性イオン種液を生成するから、使用目的に応じて適宜に含有されるイオン種を選択することができる。前記供給ガスとしては、酸素、水素、窒素、塩素などや化合物からなる無機系ガスの他、空気又は炭化水素系ガスなどの有機ガス類を目的に応じて供給することができ、上記の列挙したガスの混合気体を供給することもできる。例えば、飲用水や下水道の浄化施設又は各種排水処理施設などにおいて処理される物質や微生物などに応じて、付加イオン種を補助的に混合させることができる。 According to the fourth aspect of the present invention, one or more types of gases serving as ion species sources are supplied from the high voltage electrode or a gas supply port provided in the periphery of the high voltage electrode, and the vaporized bubbles are supplied. It can be mixed and ionized simultaneously with the vaporized product. That is, the additional ionic species can be supplementarily mixed with the ionic species formed from the vaporized bubbles. Accordingly, since the additional ionic species formed by ionizing the ionic species and the supply gas are excessively permeated and diffused in the liquid to generate an active ionic species liquid, the ionic species appropriately contained according to the purpose of use. Can be selected. As the supply gas, oxygen, hydrogen, nitrogen, chlorine, etc., inorganic gases composed of compounds, and organic gases such as air or hydrocarbon gases can be supplied according to the purpose. A gas mixture can also be supplied. For example, the additional ion species can be supplementarily mixed according to substances or microorganisms to be treated in drinking water or sewer purification facilities or various wastewater treatment facilities.
本発明の第5の形態によれば、前記液体は被分解物が混合状態にある液体であり、前記液体中に蓄積された活性イオン種により前記被分解物を分解するから、前記液体中に溶解する物質だけでなく、種々の被分解物を分解して液体の浄化処理又は改質処理などを行うことができる。即ち、非溶解性の有害物質、所定以上の大きさを有する固形物であり、溶解するまでに長時間を要する物質などを活性イオン種により分解することができる。 According to the fifth aspect of the present invention, the liquid is a liquid in which the decomposition target is in a mixed state, and the decomposition target is decomposed by the active ion species accumulated in the liquid. In addition to the substance to be dissolved, various substances to be decomposed can be decomposed to perform liquid purification treatment or reforming treatment. That is, non-soluble harmful substances, solid substances having a size larger than a predetermined size, and substances that take a long time to dissolve can be decomposed by the active ion species.
本発明の第6の形態によれば、前記液体が2種類以上の混合状態にある液体であるから、前記液体中に蓄積された活性イオン種により前記混合状態の液体間の化学反応を促進することができる。また、イオン種を選択することで、前記液体中に含まれる汚染物質などを分解することができる。目的に応じて種々の液体を2種以上混合することができ、例えば、水、アルコール類、フェノール類、カルボン酸類、これらの誘導体などから2種以上の溶液を混合し、所望の活性イオン種液を提供することができる。また、前記化学反応を促進すると共に、溶液に好適な導電性を有する溶液を混合して、電極間の導通性を向上させることができる。下水道に限らず、屎尿、畜産排水、工場排水などには、2種以上の有害廃液等が混合されており、これらの有害物質を同時に分解して2種以上が混合状態にある廃液を浄化することができる。 According to the sixth aspect of the present invention, since the liquid is a liquid in a mixed state of two or more types, the chemical reaction between the liquids in the mixed state is promoted by the active ion species accumulated in the liquid. be able to. Further, by selecting the ionic species, it is possible to decompose contaminants contained in the liquid. Two or more kinds of various liquids can be mixed according to the purpose. For example, two or more kinds of solutions can be mixed from water, alcohols, phenols, carboxylic acids, derivatives thereof, etc. Can be provided. Moreover, while promoting the said chemical reaction, the solution which has suitable electroconductivity for a solution can be mixed, and the electroconductivity between electrodes can be improved. Not only sewers, but also urine, livestock wastewater, factory wastewater, etc. are mixed with two or more types of hazardous waste liquids, and these harmful substances are simultaneously decomposed to purify waste liquids in which two or more types are mixed. be able to.
本発明の第7の形態によれば、前記液体が飲用水又はその原水であり、前記プラズマ中のイオン種がH+及びOH−を簡易に供給することができ、この活性イオン種液を用いて前記水に含有される被分解物(菌、微生物など)を分解及び/又は殺菌して前記水を高効率に浄化することができる。更に、飲用水又はその原水に対して補助的に前記ガスを供給して、付加イオン種とH+及びOH−を過剰に浸透拡散させるから、前記水に含有される有害な種々の微生物・菌類(大腸菌、バクテリアなど)などを確実に殺菌して浄化することができる。 According to the seventh aspect of the present invention, the liquid is potable water or its raw water, and the ionic species in the plasma can easily supply H + and OH − , and this active ionic species solution is used. Thus, the water can be purified with high efficiency by decomposing and / or sterilizing the substances to be decomposed (bacteria, microorganisms, etc.) contained in the water. Further, the gas is supplementarily supplied to the drinking water or its raw water to excessively permeate and diffuse the additional ion species and H + and OH − , so that various harmful microorganisms and fungi contained in the water (E. coli, bacteria, etc.) can be reliably sterilized and purified.
本発明の第8の形態によれば、前記被分解物が混合状態にある液体が下水、廃液又は汚水であるから、これらの液体を沸騰気化させて気化泡を形成し、前記気化物をプラズマ化すると共に、このプラズマに含まれるイオン種により、前記被分解物を効果的に分解することができる。従って、前記下水、廃液又は汚水に含まれる屎尿、液中に溶解した残留性有機汚染物質(POPs)、大腸菌、バクテリア等の有害微生物を簡易に分解及び/又は殺菌することができる。 According to the eighth aspect of the present invention, since the liquid in which the decomposition target is in a mixed state is sewage, waste liquid, or sewage, the liquid is boiled to form vaporized bubbles, and the vaporized substance is converted into plasma. In addition, the object to be decomposed can be effectively decomposed by the ion species contained in the plasma. Therefore, harmful microorganisms such as manure contained in the sewage, waste liquid or sewage, residual organic pollutants (POPs) dissolved in the liquid, Escherichia coli and bacteria can be easily decomposed and / or sterilized.
本発明の第9の形態によれば、前記被分解物が色素であり、この色素が含まれる液体を直接、電極対が配設された容器内供給するから、屎尿、廃液中などに含まれる色素の脱色を容易に行うことができる。従来、色素を完全に分解することは非常に困難であり、高コストであったが、本発明に係る液中プラズマ発生方法によれば、容易に前記色素をほぼ完全に分解することができる。 According to the ninth aspect of the present invention, the substance to be decomposed is a dye, and the liquid containing the dye is directly supplied into the container in which the electrode pair is disposed. The decolorization of the pigment can be easily performed. Conventionally, it has been very difficult and costly to completely decompose the dye, but according to the method for generating plasma in liquid according to the present invention, the dye can be easily decomposed almost completely.
本発明の第10の形態によれば、前記イオン種を過剰に浸透拡散なされた活性液を、さらに直流電圧が印加された電極間に流通させ、この流通過程で陽イオンを陰極側に、陰イオンを陽極側に分離するから、陰イオンリッチ又は陽イオンリッチなイオン液体を高効率に分離回収することができる。更に、分離回収された陰イオンリッチ又は陽イオンリッチなイオン液体を供給し、酸化還元反応を行えば、廃液として排出される種々の酸性溶液又はアルカリ性溶液を中和することができる。更に、飲料水としてアルカリイオン水や洗顔用の酸性イオン水は、健康水として普及されており、本発明に係る液中プラズマ発生方法を用いれば、上質なアルカリイオン水又は酸性イオン水からなる健康水を製造することができる。 According to the tenth aspect of the present invention, the active liquid in which the ionic species are excessively permeated and diffused is circulated between electrodes to which a DC voltage is further applied. Since ions are separated on the anode side, an anion-rich or cation-rich ionic liquid can be separated and recovered with high efficiency. Furthermore, if an anion-rich or cation-rich ionic liquid separated and recovered is supplied and an oxidation-reduction reaction is performed, various acidic solutions or alkaline solutions discharged as waste liquid can be neutralized. Furthermore, alkaline ionized water and facially ionized acidic ionized water are widely used as health water, and if the in-liquid plasma generation method according to the present invention is used, health consisting of high-quality alkaline ionized water or acidic ionized water. Water can be produced.
本発明の第11の形態によれば、液体を流通又は保持する容器と、液体中に配設された1つ以上の電極対と、前記電極対に連続的な高電圧パルスを印加する電圧印加手段から少なくとも構成され、前記電極対の少なくとも一方は1つ以上の突出部と高電圧絶縁部を有し、前記電圧印加手段によって前記電極間に高繰返しの高電圧パルスを印加して前記高電圧電極近傍の液体をジュール加熱して沸騰気化させるから、液中に電離可能な気化泡領域を連続的又は断続的に形成し、この気化泡領域内の気化物をプラズマ化することができる。更に詳細には、高電圧パルスにより、絶縁性の気化泡領域においてその上端部から高電圧電極に亘って高勾配の高い電位差が生じ、高電圧絶縁破壊放電により前記気化泡領域内の気化物がプラズマ化して、イオン種を持続的に発生させることができる。更に、このプラズマ中のイオン種を前記液体中に浸透拡散させて活性イオン種液を生成するから、高電圧パルスを調整して、連続的又は断続的に前記液体を沸騰気化させることにより、所定のイオン濃度を有するイオン種液を供給することができる。
更に、前記電極対を構成する高電圧電極は、1つ以上の突出部を有する導電性部材から形成されていれば良く、この導電性部材に高電圧絶縁部を設け、高電圧パルス印加手段を接続することにより、種々の導電性部材を高電圧電極として用いることができる。また、接地電極も導電性を有する種々の形状の部材を用いることができ、導電性容器本体を接地電極として用いることができる。更に、前記気化泡領域内に発生させるプラズマは、この気化泡に含まれるガス種に応じて、印加する高電圧パルスの最大電圧、繰返し数、パルス幅やパルス形状等のパラメーターを自在に調整して、好適なイオン種を生成させることができる。前記パラメーターは、電極対が浸漬される液体の種類に応じて好適な値に調整することができる。種々の液体において気化泡を発生させ、前記気化泡領域内に気化物の好適なプラズマを発生させるために、好ましい高電圧パルスの最大値は、約1kV〜50kV程度であり、1kHz〜100kHzの繰返周波数を有することが好ましい。また、好ましい高電圧パルスの時間幅は約1μs〜20μsであり、この範囲にある時間幅を有する矩形波の高電圧パルスを印加することが好ましい。
According to the eleventh aspect of the present invention, a container that circulates or holds a liquid, one or more electrode pairs disposed in the liquid, and a voltage application that applies a continuous high voltage pulse to the electrode pairs. At least one of the electrode pairs has one or more protrusions and a high voltage insulating portion, and the high voltage is applied by applying a high repetitive high voltage pulse between the electrodes by the voltage applying means. Since the liquid in the vicinity of the electrode is Joule-heated to be boiled and vaporized, a vaporized bubble region that can be ionized in the liquid can be formed continuously or intermittently, and the vaporized material in the vaporized bubble region can be converted into plasma. More specifically, a high voltage pulse causes a high potential difference with a high gradient from the upper end to the high voltage electrode in the insulating vaporized bubble region, and the vaporized material in the vaporized bubble region is caused by the high voltage breakdown discharge. It can be turned into plasma and ion species can be generated continuously. Furthermore, since the ionic species in the plasma are permeated and diffused into the liquid to generate an active ionic species solution, a high voltage pulse is adjusted to continuously evaporate the liquid to a predetermined level by boiling. An ionic seed solution having an ionic concentration of can be supplied.
Furthermore, the high voltage electrode constituting the electrode pair only needs to be formed of a conductive member having one or more protrusions. The high voltage insulating portion is provided on the conductive member, and high voltage pulse applying means is provided. By connecting, various conductive members can be used as high voltage electrodes. Also, the ground electrode can be made of various conductive members, and the conductive container body can be used as the ground electrode. Furthermore, the plasma generated in the vaporized bubble region can freely adjust parameters such as the maximum voltage, repetition rate, pulse width and pulse shape of the high voltage pulse to be applied according to the type of gas contained in the vaporized bubble. Thus, suitable ionic species can be generated. The parameter can be adjusted to a suitable value depending on the type of liquid in which the electrode pair is immersed. In order to generate vaporized bubbles in various liquids and generate a suitable plasma of vaporized material in the vaporized bubble region, the maximum value of a preferable high voltage pulse is about 1 kV to 50 kV, and the repetition rate is 1 kHz to 100 kHz. It is preferable to have a return frequency. Moreover, the time width of a preferable high voltage pulse is about 1 μs to 20 μs, and it is preferable to apply a rectangular wave high voltage pulse having a time width in this range.
本発明の第12の形態によれば、前記高電圧電極が高電圧絶縁部を有する針状電極であり、この針状電極が前記容器内部の液中に突出して配設されるから、この針状電極の先端部により高密度に電界を集中させ、高電圧電極近傍の液体を高効率にジュール加熱することができる。更に、前記電極対の接地側電極及び高電圧電極の両方を前記針状電極で構成することができ、前記気化泡領域における高電圧絶縁破壊放電を高効率に行うことができ、前記イオン種液の生成に費やされる消費電力を抑制することができ、エネルギー効率を向上させ、ランニングコストを格段に低減させることができる。また、2つの針状電極を電極対として用いる場合、針状電極先端間の間隔は、約1mm〜100mmであることが好ましく、約3mm〜50mm程度であることがより好ましく、好適な気化物の電離を行うことができる。 According to the twelfth aspect of the present invention, the high voltage electrode is a needle electrode having a high voltage insulating portion, and the needle electrode is disposed so as to protrude into the liquid inside the container. The electric field can be concentrated at a high density by the tip of the electrode, and the liquid in the vicinity of the high voltage electrode can be Joule-heated with high efficiency. Furthermore, both the ground-side electrode and the high-voltage electrode of the electrode pair can be constituted by the needle-like electrode, and a high-voltage breakdown discharge in the vaporized bubble region can be performed with high efficiency. It is possible to suppress the power consumption consumed for generating the energy, improve the energy efficiency, and significantly reduce the running cost. Moreover, when using two acicular electrodes as an electrode pair, the interval between the acicular electrode tips is preferably about 1 mm to 100 mm, more preferably about 3 mm to 50 mm, Ionization can be performed.
本発明の第13の形態によれば、前記高電圧電極部又はこの高電圧電極部周辺部からガスを供給する供給装置が設けられるから、イオン種源となる1種以上のガスを高電圧電極部近傍に供給することができる。従って、前記気化泡内に形成される気化ガス種に付加ガス種を補助的に混合することができる。更に、電離させるための高電圧パルスを電極対に印加する手段が設けられから、前記気化泡内に混和させて同時に電離させるから、前記液中に付加イオン種を補助的に混入させることができる。前記供給装置からは、酸素、水素、窒素、塩素などや化合物からなる無機系ガスの他、空気又は炭化水素系ガスなどの有機ガス類を目的に応じて供給することができる。 According to the thirteenth aspect of the present invention, since the supply device for supplying gas from the high voltage electrode portion or the peripheral portion of the high voltage electrode portion is provided, one or more kinds of gases serving as the ion species source are supplied to the high voltage electrode. It can supply to the part vicinity. Accordingly, the additional gas species can be supplementarily mixed with the vaporized gas species formed in the vaporized bubbles. Furthermore, since a means for applying a high voltage pulse for ionization to the electrode pair is provided, it is mixed in the vaporized bubble and simultaneously ionized, so that the additional ion species can be mixed in the liquid as an auxiliary. . From the supply device, it is possible to supply organic gases such as air or hydrocarbon gas in addition to inorganic gases composed of oxygen, hydrogen, nitrogen, chlorine, etc. or compounds.
本発明の第14の形態によれば、前記電極対の接地電極が前記容器の一部又は全部を構成する導電性容器又は導電性パイプであるから、接地電極を容器内に設置することなく、前記高電圧電極部のみを1つ以上配設することにより電極対を構成することができる。従って、本発明に係る液中プラズマ発生装置が比較的単純な構造を有し、簡易に製造できると共に、屎尿、廃液、排水などを流通させる導電性パイプやこれらの液体を滞留させる導電性容器に液中プラズマ発生装置を容易に設置することができ、イニシャルコストを大幅に低減させることができる。上記のパイプや容器を形成する材料は、好適な導電性を有していれば、種々の材質を用いることができ、金属材料では供給される液体に対する耐腐食性を有することが好ましい。 According to the fourteenth aspect of the present invention, since the ground electrode of the electrode pair is a conductive container or a conductive pipe constituting a part or all of the container, the ground electrode is not installed in the container, An electrode pair can be formed by disposing only one or more high-voltage electrode portions. Therefore, the in-liquid plasma generator according to the present invention has a relatively simple structure, can be easily manufactured, and is used for conductive pipes for distributing urine, waste liquid, waste water, etc. and conductive containers for retaining these liquids. The in-liquid plasma generator can be easily installed, and the initial cost can be greatly reduced. Various materials can be used for the material forming the pipe and the container as long as they have suitable conductivity, and the metal material preferably has corrosion resistance against the supplied liquid.
本発明の第15の形態によれば、前記電極対の接地電極が前記容器内に配設された板状電極であり、この板状電極が前記液体に接触して配設されるから、突出状又は針状の高電圧側電極の先端部に電界を集中させ、前記ジュール熱を高効率に発生させ、前記好適な気化泡領域が前記先端部を少なくとも含む範囲に形成される。従って、前記気化泡領域内を高電圧絶縁破壊放電で確実に電離(プラズマ化)させ、所望のイオン種を発生させることができる。 According to the fifteenth aspect of the present invention, the ground electrode of the electrode pair is a plate electrode disposed in the container, and the plate electrode is disposed in contact with the liquid. The electric field is concentrated on the tip of the high-voltage side electrode in the shape of a needle or needle, the Joule heat is generated with high efficiency, and the suitable vaporized bubble region is formed in a range including at least the tip. Accordingly, the inside of the vaporized bubble region can be reliably ionized (plasmaized) by high voltage dielectric breakdown discharge to generate a desired ion species.
本発明の第16の形態によれば、前記容器中に前記液体の流通方向に沿って前記電極対が複数配列されるから、流通される液体を連続する高電圧絶縁破壊放電で、イオン種の溶解濃度を確実に高めることができるので、高濃度の活性イオン種液を持続的に供給することができる。各電極対の各々には、電圧印加手段を接続しても良く、各電極対が共有する電圧印加手段を接続することもでき、いずれの場合においても制御手段を設けることにより好適な高電圧パルスを各電極対に印加することができる。 According to the sixteenth aspect of the present invention, since a plurality of the electrode pairs are arranged along the flow direction of the liquid in the container, the flowing liquid is continuously subjected to high-voltage breakdown discharge, Since the dissolution concentration can be reliably increased, a high concentration of active ionic seed solution can be continuously supplied. A voltage applying means may be connected to each electrode pair, or a voltage applying means shared by each electrode pair can be connected. In any case, a suitable high voltage pulse can be obtained by providing a control means. Can be applied to each electrode pair.
本発明の第17の形態によれば、前記第11〜16のいずれかの形態の液中プラズマ発生装置と、被分解物を含有する被処理液を供給する被処理液供給手段から構成され、前記液中イオン種液に前記被分解物の分解、殺菌及び脱色のうち1つ以上の作用を付与することができる。従って、屎尿、工場排水、畜産排水などに含有される有害な種々の被分解物を分解・殺菌・脱色して改質及び/又は除去することができ、被処理液を高効率に浄化することができる。 According to a seventeenth aspect of the present invention, the liquid plasma generator according to any one of the first to sixteenth aspects and a liquid supply means for supplying a liquid to be processed containing a decomposition target, One or more functions of decomposition, sterilization, and decolorization of the decomposition target can be imparted to the ionic seed solution in the liquid. Therefore, various harmful substances to be decomposed contained in manure, factory effluent, livestock effluent, etc. can be decomposed, sterilized and decolored for modification and / or removal, and the liquid to be treated can be purified with high efficiency. Can do.
本発明の第18の形態によれば、前記被処理液が飲用水、その原水、下水、廃液又は汚水であるから、分解、殺菌及び脱色のうち1つ以上の作用を有する前記イオン種により、これらの液体に溶解する残留性有機汚染物質(POPs)や有害な微生物などを分解・殺菌・脱色することができる。例えば、前記下水、廃液又は汚水に含まれる屎尿、液中のPOPs、大腸菌等の有害微生物を簡易に分解・殺菌・脱色して浄化することができる。 According to the eighteenth aspect of the present invention, since the liquid to be treated is potable water, its raw water, sewage, waste liquid or sewage, depending on the ionic species having one or more actions among decomposition, sterilization and decolorization, Persistent organic pollutants (POPs) and harmful microorganisms dissolved in these liquids can be decomposed, sterilized and decolorized. For example, harmful microorganisms such as manure contained in the sewage, waste liquid or sewage, POPs in the liquid, and Escherichia coli can be easily decomposed, sterilized and decolorized for purification.
本発明の第19の形態によれば、前記第11〜第17のいずれかの形態の液中プラズマ発生装置と、イオン分離手段から構成され、イオン分離手段は、前記液体を流通させる流路と、この流路の両側面に配設された少なくとも1対の電極対と、この電極対に直流電圧を印加する電源から構成されから、陽イオンリッチと陰イオンリッチを効率的に分離して回収して、所望のイオン液体を供給することができる。供給される液体が、本発明に係る液中プラズマ発生装置によりあらかじめ高濃度のOH−イオンとH+とをイオン種として含有する活性イオン種である場合、既存技術のように、乳酸カルシウムや食塩などの電界促進剤を加えることなく、更にイオン分離のためのイオン透過性隔膜を用いることなく、簡便かつ永続的に、安価な直流電界分離手段装置によりアルカリ水と酸性イオン水に高効率に分離することができる。 According to a nineteenth aspect of the present invention, the in-liquid plasma generator according to any one of the eleventh to seventeenth aspects and an ion separation unit are provided, and the ion separation unit includes a flow path for circulating the liquid. It is composed of at least one electrode pair disposed on both sides of the flow path and a power source that applies a DC voltage to the electrode pair, so that cation-rich and anion-rich are efficiently separated and recovered. Thus, a desired ionic liquid can be supplied. When the liquid to be supplied is an active ion species containing high concentration OH − ions and H + as ion species in advance by the in-liquid plasma generator according to the present invention, as in the existing technology, calcium lactate or salt Efficient separation into alkaline water and acidic ion water by an inexpensive DC electric field separation device without adding an electric field accelerator such as, and without using an ion permeable membrane for ion separation. can do.
以下に、本発明の実施形態を添付する図面に従って詳細に説明する。
図1は、本発明に係る液中プラズマ発生装置2の概略構成図である。容器4内には、高電圧電極として針状電極6と接地電極として板状電極8が配設されている。この板状電極8には接地側端子10を介してアース12に接続され、前記針状電極6は、針状電極部材6a及び高電圧絶縁部6bから構成され、高電圧側端子13により後述する高電圧パルス印加手段21に接続されている。この針状電極6と板状電極8から構成される電極対は、前記容器4内の液体14に浸漬されており、この液体14は流入管16から供給され、流出管18から装置外に供給されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of an in-
前記高電圧パルス印加手段21は、交流電源20、直流発生器22、インバータ23及びパルストランス24から構成される。前記交流電源20の電圧を直流発生器22により直流電圧化された後、インバータ23により繰返周波数1kHz〜100kHz、パルス幅(時間幅)1μs〜20μsを有する矩形波のパルス電圧に変換される。このパルス電圧は、前記パルストランス24により1kV〜50kVの電位差を有するように昇圧され、前記高電圧電極に印加される。
The high voltage
前述のように、上記高電圧パルスによる高電圧電界26が高電圧端子13を介して針状電極6と前記板状電極8(接地側)からなる電極対に印加される。後に詳述するように、針状電極部6aの先端部6cに電界が集中するから、高電圧パルスの印加と共に、液体14を沸騰気化するジュール熱が生じ、発生する気化泡から前記針状電極部6aの先端部6cを少なくとも包囲する気化泡領域28が形成される。更に、この気化泡領域28は、前記先端部6c又は針状電極部6aの周辺部に設けられたガス供給手段から補助的に供給されるガスを含む場合もあり、以下に説明する。尚、これ以降の図面において、前述の符号については、特に説明が必要でない限り省略する。
As described above, the high voltage
図2は、本発明に係るガス供給手段34の構成概略図である。前記高電圧絶縁部6bから突出する針状電極部6aの先端部6cには、ガス供給口30が設けられ、前記針状電極部6a内に形成されたガス供給管32を介してガス供給手段34から補助的なガスが前記ガス供給口30から放出される。この補助的なガスは1種以上のイオン種源であり、具体的には、酸素、水素、窒素、塩素などやこれらの化合物からなる無機系ガス、その他に、空気又は炭化水素系ガスなどの有機ガス類を目的に応じて1種以上混合して供給する。上記の補助的なガスは、ジュール熱により発生する気化泡と混和して気化泡領域28を形成し、液体から発生した気化泡から発生するイオン種と共に、補助的なガスはプラズマ化して付加イオン種を形成して、前記イオン種に補助的に混合する。
FIG. 2 is a schematic configuration diagram of the gas supply means 34 according to the present invention. A
図3は、本発明に係るプラズマ発生機構の説明図である。前述のように、(3A)では、前記高電圧パルス印加手段21により高電圧電界26が針状電極6と前記板状電極8(接地側)からなる電極対に印加され、前記針状電極部6aの先端部6cに電界が集中することにより電流密度が増大して、液体14を沸騰気化させる大きなジュール熱が生じる。(3B)に示すように、このジュール熱により前記針状電極6の先端近傍から気化泡28aが発生し、この気化泡28aの集合及び/又は成長により、前記先端部6cを少なくとも包囲し、絶縁性を有する気化泡領域28が形成される。更に、(3C)に示すように、前記高電圧電界26により、前記気化泡28aが多量に発生することにより成長した気化泡領域28に電界が集中して電界密度が増大し、高電圧絶縁破壊放電が引き起こされる。従って、気化泡領域28に存在する気化物が電離(プラズマ化)して、正負のイオン種からなる液中のプラズマ5が発生する。このプラズマ5は前記気化泡領域28内で火炎状に発光して持続的に気化物がプラズマ化されることにより、気化泡領域28の大きさに伴ってプラズマ状態が気化泡領域28内で火炎状に揺らぎながら保持される。
FIG. 3 is an explanatory diagram of a plasma generation mechanism according to the present invention. As described above, in (3A), the high voltage
本発明に係る液中プラズマ発生方法及び装置では、上述のように、高電圧パルスにより前記気化泡領域28内に高電圧電界26が集中して印加されており、図4は、本発明に係る電極対及び気化泡領域28における電位差と電極対に印加される高電圧パルスの概略図を示す。(4A)には、前記電極対間において、前記高電圧パルスにより生じる接地側電極(図3では板状電極8)から高電圧電極(図3では針状電極6)までの電位差Vが示されている。横軸は、接地側電極からの距離dを示しており、導電性を有する液中では前記気化泡領域の上端位置Pgasまで低勾配で電位差が増大する。前記気化泡領域は電気的に絶縁状態にあり、前記上端位置Pgasから高電圧電極の先端位置Peまでは急勾配に電位差が増大する。即ち、前述のように、前記気化泡領域には高電圧電界が印加され、高効率なプラズマ化が可能となる。従って、図3の(3C)において、前記プラズマ又はこのプラズマに含まれるイオン種は、高電圧パルスの繰返周波数に応じて連続的又は断続的に発生し、前記イオン種が液体14中に浸透拡散(溶解及び/又は拡散)することにより、活性イオン種液が生成される。高電圧パルス電源から与えられるエネルギーが前記気化胞領域28内におけるイオン種の生成及び液体への溶解・拡散と、正負のイオン種の結合(中性化)及び気化分子の液化とが平衡状態となり、プラズマの発生が好適に行われる程度の気化胞領域28を保持させる。
In the in-liquid plasma generation method and apparatus according to the present invention, as described above, the high-voltage
前記高電圧電界26は、高電圧パルス印加手段21により印加される高電圧パルスであり、図4の(4B)〜(4D)は、本発明に係る電極対に印加される高電圧パルスの種々の形状を示しており、高電圧パルス印加手段21により、(4B)に示されるような高電圧の矩形波パルスを発生させて前記電極対に印加する。図1のインバータ23により、繰返周波数1kHz〜100kHz、パルス幅Δtは1μs〜20μsの範囲に設定される。更に、パルストランス24により、図4(4A)に示す矩形波の高電圧パルスに変換されて1kV〜50kV、−50kV〜−1kVの範囲の電位差V+、V−を有するように昇圧され、高電圧パルスに変換される。また、パルストランスの後段で交流電圧を整流し、(4C)及び(4D)に示すような高電圧パルスを印加することができる。
The high voltage
図5は、本発明に係る電極対が2つの針状電極から構成される場合の構成概略図である。高電圧側端子13に接続される針状電極6は、前述と同様に、高電圧電極として機能として利用される。この実施例では、接地側端子10にも接地側針状電極9が接続される。この接地側針状電極9は、高電圧側の針状電極6と同様な構成を有し、針状電極部材9aと高電圧絶縁部9bから構成され、必要に応じて、図2に示した補助的なガス供給手段を先端部9c又は接地側針状電極9の周辺部に配設しても良い。
FIG. 5 is a schematic configuration diagram when the electrode pair according to the present invention is composed of two needle-like electrodes. The needle-
2つの針状電極6と接地側針状電極9から電極対が構成される場合、高電圧電界26が印加される電極間の間隔は、約1mm〜100mmであることが好ましく、約3mm〜50mm程度であることがより好ましい。特に、前記間隔が約3mm〜50mm程度である場合、好適な気泡化領域28が形成され、この気泡化領域28内の気化物を高効率にプラズマ化することができる。2つの針状電極の先端部6c、9cには、電界が高密度に集中するから、電極対の両先端部6c、9cから気化泡28aが発生し、前記両先端部6c、9cを少なくとも包囲する2つの気化泡領域28が形成されるから、前記気化物を高効率にプラズマ化して、イオン種を生成することができる。
When an electrode pair is constituted by the two needle-
図6は、本発明に係る針状電極6の種々の形態を示す構成概略図である。(6A)は円錐型針状電極6を示しており、先鋭化された針状電極部材6aの先端部6cに電界を高効率に集中させることができる。(6B)は、針状電極部材6aの先端が凹状に形成され、円柱状の針状電極部材に簡易な加工を施すことにより、先鋭な2つの先端部6cが形成される。この2つの先端部6cに電界を高密度に集中させることができ、先端な針状電極部材の製造コストを大幅に低減させることができる。(6C)は、ガス供給口30が円柱状の針状電極部材6aの側面に複数形成されており、前記気化泡領域内に補助的なイオン種源となる補助ガスを効率的に供給することができる。更に、各々のガス供給口30から別種の補助ガスを適宜に供給することが可能である。
FIG. 6 is a schematic configuration diagram showing various forms of the
(6D)は、高電圧絶縁部6bの先端より下部に円柱状の針状電極部材6aが配設されて構成される針状電極6である。針状電極部材6aの先端部6cのみが液中に露出することにより、前記先端部6cに高効率に前記高電圧電界を集中させることができ、気化泡領域の形成とプラズマ化を高効率に行われる。更に、先端部6cにはガス供給口が設けられ、生成される活性イオン種液に応じて種々の補助ガスを気化泡領域に混合させることができる。また、前記針状電極部材6aの側面が前記高電圧絶縁部6bに保護され、液中に曝されないことから、針状電極部材6aの液体による腐食や酸化等が防止され、針状電極の長寿命化が図られる。尚、(6D)に示した実施例では、前記先端部6cが高電圧絶縁部6bの先端より下に位置しているが、その先端と先端部6cが同一位置になるように配設しても良い。
(6D) is a needle-
図7は、本発明に係る液体供給ポンプ36を具備する液中プラズマ発生装置の構成概略図である。前記液体14は、滞留させて所望の活性イオン種液に改質してから外部に供給しても良いが、前記液体14を流通させることにより、前記活性イオン種液を持続的に供給することができる。即ち、高電圧パルスの各種パラメーター、補助ガスの種類や供給量だけでなく、液体供給ポンプ36による流量の調整によって前記活性イオン種液のイオン濃度を制御することができる。また、流入管16から供給される液体14が被処理物を含有する場合、イオン種を過剰に液体14中に溶解させ、順次、前記被処理物を分解及び/又は殺菌することが好ましい。前記液体供給ポンプ36により、処理速度に応じて被処理物を含有する液体14(以下、「被処理液体14」とも呼ぶ)の供給量を調整する。従って、ほぼ完全に分解及び/又は殺菌されて浄化された液体14を流出管18から外部に供給することができる。
FIG. 7 is a schematic configuration diagram of an in-liquid plasma generator equipped with the
図8は、本発明に係る金属容器38から構成される液中プラズマ発生装置の概略構成図である。前記電極対を構成する接地側の電極は、導電性容器を利用することができ、図に示す液中プラズマ発生装置では、アース12に接続された金属容器38を接地側の電極として用いる。従って、前記針状電極6の先端部6cと金属容器38の間に前記高電圧パルスが印加され、ジュール熱による気化泡領域28の形成と共に、この気化泡領域28内の気化物が高電圧絶縁破壊放電によりプラズマ化し、イオン種が溶液14に浸透拡散する。金属容器38を用いた場合においても、前記針状電極6の先端部6cには、高密度に電界が集中し、少なくともこの先端部6cを包囲するプラズマの発生に好適な気化泡領域が形成される。
FIG. 8 is a schematic configuration diagram of an in-liquid plasma generating apparatus including the
図9は、本発明に係る複数の電極対が液体流通パイプ39に配設された液中プラズマ発生装置の構成概略図である。この液中プラズマ発生装置は、液体流通パイプ39と複数の電極対から構成され、これらの電極対が流入管41から供給される液体14中に浸漬されるように配設されている。また、この実施例では、各針状電極にアース21aに接続された高電圧パルス印加手段21が接続されている。この実施例において、活性イオン種液が生成されるメカニズムは、図1に示した液中プラズマ発生装置と同一であり、前記流入管41側の第1針状電極45aの気化泡領域28近傍で生成された活性イオン種液が下流側の第2針状電極62の気化泡領域28近傍へ供給される。
FIG. 9 is a schematic configuration diagram of an in-liquid plasma generating apparatus in which a plurality of electrode pairs according to the present invention are disposed in a
図9の液中プラズマ発生装置では、液体流通パイプ39に複数の針状電極が配設されていると共に、供給される液体が液体流通パイプ39を常時流通するために、各電極対間に、それぞれ、第1誘導路42aと第2誘導路42bが形成されている。前記液体流通パイプ39の上部を流通し、イオン種の浸透拡散が十分に行われなかった比較的イオン濃度が低い液体は、第1誘導路42aにより第2針状電極の気泡化領域28近傍へ誘導される。また、第1針状電極45aの気化泡領域28近傍を流通し、比較的イオン濃度の高い活性イオン種液は、誘導路42aの外壁近傍に沿って上昇するから、前記液体流通パイプ39の上部の液体と混合してイオン濃度が均一化され、前記誘導路42a内を流通して第2針状電極の気泡化領域28近傍へ誘導される。
In the in-liquid plasma generator of FIG. 9, a plurality of needle-like electrodes are disposed in the
同様に、第2針状電極の気泡化領域28近傍へ供給された活性イオン種液は、第2誘導路42bによりイオン濃度が均一化されるように、第3針状電極45cの気泡化領域28近傍へ誘導され、活性イオン種液のイオン濃度の均一化が行われる。従って、前記液体流通パイプ39の流出管43からは、イオン濃度が均一かつ高濃度な活性イオン種液が供給される。更に、供給される液体が被処理物を含有する液体(被処理液)の場合、活性イオン種と反応する機会を均等にすることにより、前記被処理物の分解・殺菌・脱色を均一に行うことができ、ほぼ均一に浄化された被処理液を前記流出管43から供給することができる。
Similarly, the active ionic seed solution supplied to the vicinity of the bubbling
図10は、本発明に係る複数の電極対が液体流通用の金属パイプ44に配設された液中プラズマ発生装置の構成概略図である。液体14の流通メカニズムは、図9に示した液中プラズマ発生装置と同一であり、説明は省略するが、図10に示した実施例では、接地側の電極が接地側接続点48でアース12に接続された液体流通用の金属パイプ44から構成されている。即ち、図8に示した液中プラズマ発生装置と同様に、金属パイプ44と各針状電極45a〜45bから各電極対が構成され、各針状電極45a〜45bの先端部に電界を集中させて沸騰気化させることにより、各先端部を少なくとも包囲する気化泡領域が形成される。この実施例では、液体14が流通する既存の金属パイプ44に各針状電極45a〜45bと第1及び第2誘導路42a、42bを配設することにより、液中プラズマ発生装置を提供することができる。従って、導電性の廃水管などに廃水処理装置を簡易に設置することができ、廃水処理装置のイニシャルコストを大幅に低減させることができる。
FIG. 10 is a schematic configuration diagram of an in-liquid plasma generating apparatus in which a plurality of electrode pairs according to the present invention are arranged on a
図11は、本発明に係る高電圧パルスの分配手段50を具備し、複数の電極対が液体流通パイプに配設された液中プラズマ発生装置の構成概略図である。図9及び図10に示した複数の電極対を有する液中プラズマ発生装置では、各針状電極45a、45b、45cの夫々に高電圧パルス印加手段21が接続されている。しかし、図11に示すように、各針状電極45a〜45bの夫々に分配手段50を介して1つの高電圧パルス印加手段21を接続することにより、各電極対に好適な高電圧パルスを印加することができる。従って、高価な高電圧パルス電源を各々の電極対に対して設置する必要がなくなり、イニシャルコストの低減化が図れる。
FIG. 11 is a schematic configuration diagram of a submerged plasma generator having a high-voltage pulse distribution means 50 according to the present invention and having a plurality of electrode pairs arranged in a liquid circulation pipe. In the in-liquid plasma generator having a plurality of electrode pairs shown in FIGS. 9 and 10, a high voltage
図12は、本発明に係る高電圧電極が突状電極15から構成される液中プラズマ発生装置2の概略構成図である。この実施例では、高電圧電極が突状電極15から構成され、導電性突状部材15aの2つの先端部15cが液中に露出するように高電圧絶縁部15bが被覆されている。本発明に係る突状電極15は、1つ以上の突状部を有する種々の導電性部材に高電圧絶縁部15bを形成することにより、前記突状電極15として利用することができる。その他の構成は、図1の同一であり、前記針状電極6を前記突状電極15に置き換えたものである。即ち、前記突状電極15と板状電極により電極対を構成し、印加される高電圧電界26により先端部15cに電界を集中させ、電界強度を増大させることにより液体14を沸騰気化するジュール熱を発生させる。従って、前記先端部15cを少なくとも包囲する気化泡領域28が形成され、この気化泡領域28内の気化物がプラズマ化されてイオン種が液中に拡散される。
FIG. 12 is a schematic configuration diagram of the in-
図13は、本発明に係るイオン液体の分離回収手段を示す概略構成図である。上述の液中プラズマ発生装置にイオン液体の分離回収手段を配設することにより、イオン液体供給装置を構成される。前記分離回収手段は、分離容器54と、この分離容器54内の両側面に、それぞれ、設置された負電極56aと正電極56bと、これらの電極に電圧を印加する直流電源68(図14参照)から構成される。この分離容器54には、液中プラズマ発生装置から活性イオン種液が流入されるイオン種液供給管58が設置され、分離回収されたイオン液体を供給する陰イオン流出口59及び陽イオン流出口61が設けられている。前記分離容器54内には、第1〜第4隔壁54a、54b、54c、54dが形成され、更に最終段階の前段でイオン液体を分離する第1分離壁54eと、陰イオン種液及び陽イオン種液を最終的に分離する第2分離壁54fが形成されている。従って、前記分離容器54内には、第1〜第3分離槽60a、60b、60cが設けられ、更に第1陽イオン分離槽62a、第2陽イオン分離槽62b、第1陰イオン分離槽64a及び第2陰イオン分離槽64bが設けられている。
FIG. 13 is a schematic configuration diagram showing an ionic liquid separation and recovery means according to the present invention. An ionic liquid supply device is configured by disposing an ionic liquid separation and recovery means in the above-described in-liquid plasma generator. The separation / recovery means includes a
図14は、本発明に係る分離回収手段の上面図であり、イオン液体の分離回収方法を説明する。液中プラズマ発生装置2から供給された活性イオン種液は、前記第1分離槽60a〜第3分離槽60cへ流入するに従って、陰イオンは正電極側へ、陽イオンは負電極側へ分離されていく。図15の分離回収容器54のA−A線断面図に示すように、第1〜第4隔壁54a、54b、54c、54dには分離液誘導路55が設けられ、段階的に高さが低くなると共に、各隔壁の上部から流入したイオン種液を次槽へは隔壁下部から流出させる。段階的に各電極側へ陰イオンと陽イオンを分離しながら隣接する分離槽へ流入させる。図14及び図15に示されるように、第1分離槽60aに前記イオン種供給管58から供給された第1分離液65aが第2分離槽60bの第2分離液65bを経て第3分離槽60cに流入したとき、第3分離液65cは、ほぼ陰イオン種液と陽イオン種液に各電極側へ分離されている。
FIG. 14 is a top view of the separation / recovery means according to the present invention, and illustrates a method for separating and recovering ionic liquid. As the active ion seed solution supplied from the in-
更に、図14に示すように、第1分離壁54e及び第2分離壁54fが形成されて第1陽イオン分離槽62aと第1陰イオン分離槽64aに隔てられ、更に第2陽イオン分離槽62bと第2陰イオン分離槽64bでは、高純度な陰イオン種液と陽イオン種液に分離される。図14に示した実施例では、液中プラズマ発生装置2において水から活性イオン種液が生成されている。即ち、前記ジュール熱により水を沸騰気化し、水分子(H2O)からなる気化泡領域を形成させて、前記高電圧パルスにより水酸基(OH−)と水素イオン(H+)からなるプラズマを発生させている。従って、水酸基(OH−)と水素イオン(H+)が溶解した活性イオン種液が前記イオン種液供給管58から流入し、最終的にはアルカリイオン水と酸性イオン水が分離され、それぞれ、陰イオン種液流出管59aと陽イオン種液流出管61aから各々のイオン液体が供給される。
Further, as shown in FIG. 14, a
本発明は、上記実施形態や変形例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々変形例、設計変更などをその技術的範囲内に包含するものであることは云うまでもない。 The present invention is not limited to the above-described embodiments and modifications, and includes various modifications and design changes within the technical scope without departing from the technical idea of the present invention. Needless to say.
本発明に係る液中プラズマ発生方法及び液中プラズマ発生装置は、プラズマにより液中に活性イオン種を過剰に浸透拡散させ、この活性イオン種により被分解物(有害物質、菌、微生物、染料など)を分解・殺菌・脱色することができる。従って、液中プラズマ発生装置やこれを用いた液中プラズマ発生方法や被処理液浄化装置を下水道処理施設、屎尿処理施設、工場排水処理施設、畜産排水処理施設、湖水浄化施設などに設置又は適用することにより、活性汚泥処理法による生物処理では除去できない物質や微生物を、脱臭、脱色、殺菌することができ、汚染物質を高効率に処理することができる。また、本発明に係るイオン液体供給装置によれば、液中の気化泡領域内にプラズマを発生させて活性イオン種液を生成するから、直流電源により容易に上質なアルカリイオン水又は酸性イオン水の健康水や工業利用可能な処理水を製造することができる The in-liquid plasma generation method and the in-liquid plasma generation apparatus according to the present invention cause active ion species to permeate and diffuse excessively in the liquid by plasma, and to be decomposed substances (toxic substances, fungi, microorganisms, dyes, etc.) ) Can be decomposed, sterilized and decolorized. Therefore, install or apply submerged plasma generators, submerged plasma generation methods and treated liquid purifiers to sewerage treatment facilities, human waste treatment facilities, factory wastewater treatment facilities, livestock wastewater treatment facilities, lake water purification facilities, etc. By doing so, substances and microorganisms that cannot be removed by biological treatment by the activated sludge treatment method can be deodorized, decolorized and sterilized, and the pollutants can be treated with high efficiency. In addition, according to the ionic liquid supply device according to the present invention, plasma is generated in the vaporized bubble region in the liquid to generate the active ionic seed liquid. Health water and industrially available treated water can be manufactured
2 液中プラズマ発生装置
4 容器
5 プラズマ
6 針状電極
6a 針状電極部材
6b 高電圧絶縁部
6c 先端部
8 板状電極
9 接地側針状電極
9a 針状電極部材
9b 高電圧絶縁部
9c 先端部
10 接地側端子
12 アース
13 高電圧側端子
14 液体
15 突状電極
15a 導電性突状部材
15b 高電圧絶縁部
15c 先端部
16 流入管
18 流出管
20 交流電源
21 高電圧パルス印加手段
21a アース
22 直流発生器
23 インバータ
24 パルストランス
26 高電圧電界
28 気化泡領域
28a 気化泡
30 ガス供給口
32 ガス供給管
34 ガス供給手段
36 液体供給ポンプ
38 金属容器
39 液体流通パイプ
41 流入管
42a 第1誘導路
42b 第2誘導路
43 流出管
44 金属パイプ
45a 第1針状電極
45b 第2針状電極
45c 第3針状電極
48 接地側接続点
50 分配手段
54 分離容器
54a 第1隔壁
54b 第2隔壁
54c 第3隔壁
54d 第4隔壁
54e 第1分離壁
54f 第2分離壁
55 分離液誘導路
56a 負電極
56b 正電極
58 イオン種液流入管
59 陰イオン流出口
59a 陰イオン流出管
60a 第1分離槽
60b 第2分離槽
60c 第3分離槽
61 陽イオン流出口
61a 陽イオン流出管
62a 第1陽イオン分離槽
62b 第2陽イオン分離槽
64a 第1陰イオン分離槽
64b 第2陰イオン分離槽
65a 第1分離液
65b 第2分離液
65c 第3分離液
68 直流電源
120 単相交流
103 電磁開閉器
122 昇圧トランス
113 高電圧端子
106 電極106
126 電位差
104 トラフ(絶縁容器)
108 板状体
107 凸板107
110 接地側端子
114 被処理液
Pgas 上端位置
Pe 先端位置
Δt パルス幅
V+ パルス正電圧
V− パルス負電圧
2 Submerged Plasma Generator 4 Container 5 Plasma 6 Needle-like Electrode 6a Needle-like Electrode Member 6b High-Voltage Insulating Part 6c Tip 8 Plate-like Electrode 9 Ground-side Needle-like Electrode 9a Needle-like Electrode Member 9b High-Voltage Insulating Part 9c Tip DESCRIPTION OF SYMBOLS 10 Ground side terminal 12 Ground 13 High voltage side terminal 14 Liquid 15 Projection electrode 15a Conductive projection member 15b High voltage insulation part 15c Tip part 16 Inflow pipe 18 Outflow pipe 20 AC power supply 21 High voltage pulse application means 21a Ground 22 DC Generator 23 Inverter 24 Pulse transformer 26 High voltage electric field 28 Vaporized bubble region 28a Vaporized bubble 30 Gas supply port 32 Gas supply pipe 34 Gas supply means 36 Liquid supply pump 38 Metal container 39 Liquid distribution pipe 41 Inflow pipe 42a First induction path 42b Second guiding path 43 Outflow pipe 44 Metal pipe 45a First needle electrode 45b Second 45c 3rd acicular electrode 48 Ground side connection point 50 Distributing means 54 Separation container 54a 1st partition 54b 2nd partition 54c 3rd partition 54d 4th partition 54e 1st separation wall 54f 2nd separation wall 55 Separation liquid guide way 56a Negative electrode 56b Positive electrode 58 Ion seed liquid inflow pipe 59 Anion outflow port 59a Anion outflow pipe 60a First separation tank 60b Second separation tank 60c Third separation tank 61 Cation outflow pipe 61a Cation outflow pipe 62a First Cation separation tank 62b Second cation separation tank 64a First anion separation tank 64b Second anion separation tank 65a First separation liquid 65b Second separation liquid 65c Third separation liquid 68 DC power supply 120 Single-phase AC 103 Electromagnetic switching 122 Booster 113 High voltage terminal 106 Electrode 106
126
108 Plate-like body 107 Convex plate 107
110
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006024084A JP5295485B2 (en) | 2006-02-01 | 2006-02-01 | Liquid plasma type treatment liquid purification method and liquid plasma type treatment liquid purification apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006024084A JP5295485B2 (en) | 2006-02-01 | 2006-02-01 | Liquid plasma type treatment liquid purification method and liquid plasma type treatment liquid purification apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007207540A JP2007207540A (en) | 2007-08-16 |
JP5295485B2 true JP5295485B2 (en) | 2013-09-18 |
Family
ID=38486813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006024084A Expired - Fee Related JP5295485B2 (en) | 2006-02-01 | 2006-02-01 | Liquid plasma type treatment liquid purification method and liquid plasma type treatment liquid purification apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5295485B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104645370A (en) * | 2013-11-18 | 2015-05-27 | 松下知识产权经营株式会社 | Liquid treatment unit, toilet seat with washer, washing machine, and liquid treatment apparatus |
CN103340020B (en) * | 2011-02-08 | 2016-07-06 | 松下电器产业株式会社 | Plasma producing apparatus, the cleaning device employing this plasma producing apparatus and small electronic device |
KR101929244B1 (en) * | 2017-07-14 | 2018-12-14 | 두산중공업 주식회사 | Water treatment apparatus using plasma underwater discharge and water treatment system comprising the same |
KR20190008164A (en) * | 2018-12-06 | 2019-01-23 | 두산중공업 주식회사 | Water treatment apparatus using plasma underwater discharge and water treatment system comprising the same |
US10822255B2 (en) | 2017-07-14 | 2020-11-03 | Doosan Heavy Industries & Construction Co., Ld | Water treatment apparatus using underwater plasma discharge and water treatment system including same |
Families Citing this family (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4784624B2 (en) * | 2007-12-20 | 2011-10-05 | 三菱電機株式会社 | Sterilizer and air conditioner, hand dryer and humidifier using the device |
JP5070644B2 (en) * | 2007-12-28 | 2012-11-14 | 国立大学法人東北大学 | Reduced water generating apparatus and reduced water generating method |
US8994270B2 (en) | 2008-05-30 | 2015-03-31 | Colorado State University Research Foundation | System and methods for plasma application |
JP2011522381A (en) | 2008-05-30 | 2011-07-28 | コロラド ステート ユニバーシティ リサーチ ファンデーション | Plasma-based chemical source apparatus and method of use thereof |
JP4722165B2 (en) * | 2008-06-25 | 2011-07-13 | 三菱電機株式会社 | Air conditioner |
JP4789986B2 (en) * | 2008-08-29 | 2011-10-12 | 三菱電機株式会社 | Air conditioner |
JP4789988B2 (en) * | 2008-09-03 | 2011-10-12 | 三菱電機株式会社 | Water sterilizer, air conditioner, hand dryer, humidifier using the water sterilizer |
JP5364906B2 (en) * | 2009-02-16 | 2013-12-11 | 国立大学法人 東京大学 | Acid water production method and acid water production apparatus |
JP5330047B2 (en) * | 2009-03-24 | 2013-10-30 | 日本碍子株式会社 | Method for producing ceramic powder with improved dispersibility and method for producing dispersion of ceramic powder |
SG178616A1 (en) * | 2009-09-02 | 2012-04-27 | Korea Basic Science Inst | Liquid medium plasma discharge generating apparatus |
JP5204061B2 (en) * | 2009-09-11 | 2013-06-05 | 国立大学法人東京工業大学 | Gas-liquid two-phase flow plasma processing equipment |
JP5390315B2 (en) * | 2009-09-11 | 2014-01-15 | 国立大学法人北海道大学 | Metal carrier manufacturing apparatus and metal carrier manufacturing method |
EP2554028B1 (en) * | 2010-03-31 | 2016-11-23 | Colorado State University Research Foundation | Liquid-gas interface plasma device |
CA2794902A1 (en) * | 2010-03-31 | 2011-10-06 | Colorado State University Research Foundation | Liquid-gas interface plasma device |
JP5854491B2 (en) * | 2011-02-15 | 2016-02-09 | 株式会社栗田製作所 | Nanoparticle generation method and nanoparticle generation apparatus |
JP5362934B2 (en) * | 2011-05-17 | 2013-12-11 | パナソニック株式会社 | Plasma generating apparatus and plasma generating method |
US20140054242A1 (en) * | 2011-05-17 | 2014-02-27 | Panasonic Corporation | Liquid treating apparatus and liquid treating method |
JP6008359B2 (en) * | 2012-03-30 | 2016-10-19 | 公立大学法人大阪市立大学 | In-liquid plasma generation apparatus, liquid to be treated purification apparatus, and ion-containing liquid generation apparatus |
DE102012007500A1 (en) * | 2012-04-17 | 2013-10-17 | Eads Deutschland Gmbh | Extraction of oil by pulse discharges |
JP5842165B2 (en) * | 2012-06-28 | 2016-01-13 | パナソニックIpマネジメント株式会社 | Elemental analysis equipment in liquid |
JP2014010931A (en) * | 2012-06-28 | 2014-01-20 | Nippon Menaade Keshohin Kk | Plasma processing method and plasma processing unit |
IN2014CN03441A (en) * | 2012-07-24 | 2015-10-09 | Panasonic Corp | |
JP6296480B2 (en) * | 2012-09-26 | 2018-03-20 | 国立大学法人佐賀大学 | Liquid processing apparatus and liquid processing method |
AU2013321956C1 (en) | 2012-09-28 | 2016-11-24 | Daikin Industries, Ltd. | Water treatment device |
JP5522247B2 (en) * | 2012-09-28 | 2014-06-18 | ダイキン工業株式会社 | Discharge unit |
JP6136265B2 (en) * | 2012-09-28 | 2017-05-31 | ダイキン工業株式会社 | Water treatment equipment |
CN104797533B (en) * | 2012-11-13 | 2016-08-31 | 三菱电机株式会社 | Water treatment facilities and method for treating water |
KR101535402B1 (en) * | 2013-01-24 | 2015-07-08 | 한국기초과학지원연구원 | Apparatus for plasma processing of liquid |
CN104204781A (en) * | 2013-01-28 | 2014-12-10 | 松下电器产业株式会社 | Device for elemental analysis in liquid |
JP2014167880A (en) * | 2013-02-28 | 2014-09-11 | Nagoya Univ | Electrode for submerged plasma and submerged plasma generator |
US9532826B2 (en) | 2013-03-06 | 2017-01-03 | Covidien Lp | System and method for sinus surgery |
US9555145B2 (en) | 2013-03-13 | 2017-01-31 | Covidien Lp | System and method for biofilm remediation |
JP6202424B2 (en) * | 2013-03-18 | 2017-09-27 | 国立大学法人北海道大学 | Liquid plasma processing apparatus and liquid plasma processing method |
WO2014171138A1 (en) * | 2013-04-18 | 2014-10-23 | パナソニック株式会社 | Liquid treatment apparatus and liquid treatment method |
US9932252B2 (en) | 2013-05-01 | 2018-04-03 | Nch Corporation | System and method for treating water systems with high voltage discharge and ozone |
US9868653B2 (en) | 2013-05-01 | 2018-01-16 | Nch Corporation | System and method for treating water systems with high voltage discharge and ozone |
JP5906444B2 (en) | 2013-05-14 | 2016-04-20 | パナソニックIpマネジメント株式会社 | Liquid processing apparatus, liquid processing method, and plasma processing liquid |
JP5899455B2 (en) * | 2013-10-25 | 2016-04-06 | パナソニックIpマネジメント株式会社 | Liquid processing apparatus and liquid processing method |
JP5884065B2 (en) * | 2013-11-18 | 2016-03-15 | パナソニックIpマネジメント株式会社 | Liquid processing unit, toilet seat, washing machine and liquid processing apparatus |
EP3072854B1 (en) * | 2013-11-18 | 2020-09-02 | Panasonic Intellectual Property Management Co., Ltd. | Liquid treatment device and liquid treatment method |
JP5879530B2 (en) | 2013-11-18 | 2016-03-08 | パナソニックIpマネジメント株式会社 | Liquid processing equipment |
CN104649378B (en) | 2013-11-18 | 2018-12-07 | 松下知识产权经营株式会社 | Liquid handling device and method for treating liquids |
CN105271475A (en) | 2014-06-06 | 2016-01-27 | 松下知识产权经营株式会社 | Treatment liquid production device and treatment liquid production method |
KR101698957B1 (en) * | 2015-04-24 | 2017-01-23 | 한국기계연구원 | Plasma generating device and plasma treatment method |
KR101698958B1 (en) * | 2015-04-24 | 2017-01-23 | 한국기계연구원 | Plasma generating device and plasmas treatment method |
US10368939B2 (en) | 2015-10-29 | 2019-08-06 | Covidien Lp | Non-stick coated electrosurgical instruments and method for manufacturing the same |
US10441349B2 (en) | 2015-10-29 | 2019-10-15 | Covidien Lp | Non-stick coated electrosurgical instruments and method for manufacturing the same |
CN108496073B (en) * | 2015-12-17 | 2022-01-18 | 奥卢大学 | Device for generating ionization, optical measuring device and measuring method |
JP6804848B2 (en) * | 2016-02-25 | 2020-12-23 | ダイハツ工業株式会社 | Ammonia decomposition method |
JP6643649B2 (en) | 2016-03-31 | 2020-02-12 | パナソニックIpマネジメント株式会社 | Plasma generator |
JP6895636B2 (en) * | 2016-05-13 | 2021-06-30 | パナソニックIpマネジメント株式会社 | Liquid processing equipment |
JP6667166B2 (en) | 2016-06-15 | 2020-03-18 | パナソニックIpマネジメント株式会社 | Modified liquid generation apparatus and modified liquid generation method |
JP6804748B2 (en) * | 2016-06-22 | 2020-12-23 | 学校法人東京理科大学 | Nitrogen source production equipment, nutrient solution supply equipment, growing system, plant cultivation system, and method for producing nitrogen source |
JP2018131659A (en) * | 2017-02-16 | 2018-08-23 | アークレイ株式会社 | Electrolysis device |
JP6678336B2 (en) * | 2017-05-11 | 2020-04-08 | パナソニックIpマネジメント株式会社 | Washing machine rinse water purification device and washing device |
JP2018202282A (en) * | 2017-05-30 | 2018-12-27 | パナソニックIpマネジメント株式会社 | Storage tank water-treating apparatus, and storage-type hot water-supplying apparatus |
JP2018202281A (en) * | 2017-05-30 | 2018-12-27 | パナソニックIpマネジメント株式会社 | Device for treating bathtub water, and bathtub apparatus |
WO2018221325A1 (en) | 2017-05-31 | 2018-12-06 | 株式会社Screenホールディングス | Submerged plasma generation device and liquid treatment device |
JP6949775B2 (en) * | 2017-05-31 | 2021-10-13 | 株式会社Screenホールディングス | Liquid plasma generator and liquid processing device |
JP6442578B2 (en) * | 2017-08-31 | 2018-12-19 | 好浩 岡 | Submerged plasma processing equipment |
US10973569B2 (en) | 2017-09-22 | 2021-04-13 | Covidien Lp | Electrosurgical tissue sealing device with non-stick coating |
US10709497B2 (en) | 2017-09-22 | 2020-07-14 | Covidien Lp | Electrosurgical tissue sealing device with non-stick coating |
JP6854427B2 (en) | 2018-03-22 | 2021-04-07 | パナソニックIpマネジメント株式会社 | Liquid processing equipment |
JP6799824B2 (en) | 2018-05-16 | 2020-12-16 | パナソニックIpマネジメント株式会社 | Liquid processing equipment |
CN110167246A (en) * | 2019-04-15 | 2019-08-23 | 江苏大学 | A kind of device for realizing gaseous plasma macroscopic visual in a liquid |
US11207124B2 (en) | 2019-07-08 | 2021-12-28 | Covidien Lp | Electrosurgical system for use with non-stick coated electrodes |
CZ308532B6 (en) * | 2019-12-13 | 2020-10-29 | Vysoké Učení Technické V Brně | Apparatus for purifying liquids and a method for purifying liquids using this apparatus |
US11369427B2 (en) | 2019-12-17 | 2022-06-28 | Covidien Lp | System and method of manufacturing non-stick coated electrodes |
WO2021192154A1 (en) * | 2020-03-26 | 2021-09-30 | 日揮グローバル株式会社 | Liquid treatment apparatus |
CN112153798B (en) * | 2020-09-11 | 2022-08-23 | 河北大学 | Device and method for generating large-diameter uniform plasma plume by using inert gas |
JP7325126B2 (en) * | 2021-03-25 | 2023-08-14 | 国立大学法人東海国立大学機構 | Processing equipment and processing method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0515996Y2 (en) * | 1989-04-12 | 1993-04-27 | ||
US5464513A (en) * | 1994-01-11 | 1995-11-07 | Scientific Utilization, Inc. | Method and apparatus for water decontamination using electrical discharge |
JP2000126328A (en) * | 1998-10-29 | 2000-05-09 | Hitachi Zosen Corp | Decomposing treatment device and method for object to be treated |
JP3695628B2 (en) * | 1999-02-17 | 2005-09-14 | 株式会社荏原製作所 | Microorganism inactivation method and inactivation apparatus |
JP3624239B2 (en) * | 2002-10-29 | 2005-03-02 | 株式会社テクノネットワーク四国 | Liquid plasma generator, thin film forming method, and silicon carbide film |
AUPS220302A0 (en) * | 2002-05-08 | 2002-06-06 | Chang, Chak Man Thomas | A plasma formed within bubbles in an aqueous medium and uses therefore |
RU2322396C2 (en) * | 2003-01-17 | 2008-04-20 | КИМ Ок Сун | Underwater discharge element and sterilizing water provision system which uses that element |
JP4111858B2 (en) * | 2003-03-06 | 2008-07-02 | 正之 佐藤 | Underwater discharge plasma method and liquid treatment apparatus |
WO2005093394A1 (en) * | 2004-03-25 | 2005-10-06 | Japan Advanced Institute Of Science And Technology | Plasma generating equipment |
-
2006
- 2006-02-01 JP JP2006024084A patent/JP5295485B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103340020B (en) * | 2011-02-08 | 2016-07-06 | 松下电器产业株式会社 | Plasma producing apparatus, the cleaning device employing this plasma producing apparatus and small electronic device |
US9392680B2 (en) | 2011-02-08 | 2016-07-12 | Panasonic Intellectual Property Management Co., Ltd. | Plasma generator, and cleaning and purifying device apparatus and small-sized electrical appliance using plasma generator |
CN104645370A (en) * | 2013-11-18 | 2015-05-27 | 松下知识产权经营株式会社 | Liquid treatment unit, toilet seat with washer, washing machine, and liquid treatment apparatus |
KR101929244B1 (en) * | 2017-07-14 | 2018-12-14 | 두산중공업 주식회사 | Water treatment apparatus using plasma underwater discharge and water treatment system comprising the same |
US10822255B2 (en) | 2017-07-14 | 2020-11-03 | Doosan Heavy Industries & Construction Co., Ld | Water treatment apparatus using underwater plasma discharge and water treatment system including same |
KR20190008164A (en) * | 2018-12-06 | 2019-01-23 | 두산중공업 주식회사 | Water treatment apparatus using plasma underwater discharge and water treatment system comprising the same |
KR102012967B1 (en) * | 2018-12-06 | 2019-08-21 | 두산중공업 주식회사 | Water treatment apparatus using plasma underwater discharge and water treatment system comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JP2007207540A (en) | 2007-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5295485B2 (en) | Liquid plasma type treatment liquid purification method and liquid plasma type treatment liquid purification apparatus | |
JP4041224B2 (en) | Liquid processing method and liquid processing apparatus | |
US7615195B2 (en) | Photocatalyst water treating apparatus | |
JP4392354B2 (en) | High electrolysis cell | |
US6991735B2 (en) | Free radical generator and method | |
JP6008359B2 (en) | In-liquid plasma generation apparatus, liquid to be treated purification apparatus, and ion-containing liquid generation apparatus | |
JP2004268003A (en) | Underwater discharge plasma method and liquid treatment apparatus | |
KR101210558B1 (en) | Plasma water treatmant processing device | |
US7163664B2 (en) | Methods and devices for dispensing a potable product liquid | |
JP2009106910A (en) | Fluid treatment apparatus | |
Cui et al. | The types of plasma reactors in wastewater treatment | |
CN212559817U (en) | Antibiotic resistant bacteria and resistant gene removing device in sewage | |
JP2004143519A (en) | Water treatment method and water treatment device | |
SG183405A1 (en) | Ballast water treatment system using a highly efficient electrolysis device | |
US7989673B2 (en) | High energy disinfection of waste | |
WO2014165998A1 (en) | Treatment of a waste stream through production and utilization of oxyhydrogen gas | |
JP2001058179A (en) | Method and apparatus for water treatment | |
JP2009034624A (en) | Wastewater treatment apparatus and method | |
KR20060007369A (en) | High electric field electrolysis cell | |
CN105664525A (en) | Adsorption of contaminants from liquid and electrochemichal regeneration of adsorbent | |
JPH10130876A (en) | Electrolytic ozonized water producing unit and its regenerating method | |
WO2013075240A1 (en) | Treatment of a waste stream through production and utilization of oxyhydrogen gas | |
JP2012024711A (en) | Electrochemical accelerated oxidation treatment apparatus for generating oh radical and ozone, treatment method of the same, and liquid purification apparatus using the same | |
JP2000033379A (en) | Electrolytic sterilizer | |
JP2000279977A (en) | Fluid treatment and fluid treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110705 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120626 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130305 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130528 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130612 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |