Nothing Special   »   [go: up one dir, main page]

JP5288672B2 - Surface defect inspection equipment - Google Patents

Surface defect inspection equipment Download PDF

Info

Publication number
JP5288672B2
JP5288672B2 JP2001210905A JP2001210905A JP5288672B2 JP 5288672 B2 JP5288672 B2 JP 5288672B2 JP 2001210905 A JP2001210905 A JP 2001210905A JP 2001210905 A JP2001210905 A JP 2001210905A JP 5288672 B2 JP5288672 B2 JP 5288672B2
Authority
JP
Japan
Prior art keywords
optical axis
light
angle
illumination
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001210905A
Other languages
Japanese (ja)
Other versions
JP2003028621A (en
Inventor
健雄 大森
和彦 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001210905A priority Critical patent/JP5288672B2/en
Publication of JP2003028621A publication Critical patent/JP2003028621A/en
Application granted granted Critical
Publication of JP5288672B2 publication Critical patent/JP5288672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、ICチップ、液晶表示パネルに代表される半導体ウエハ等の製造工程において、この半導体ウエハ等の表面欠陥を検査する表面欠陥検査装置に関する。  The present invention relates to a surface defect inspection apparatus for inspecting a surface defect of a semiconductor wafer or the like in a manufacturing process of a semiconductor wafer or the like represented by an IC chip or a liquid crystal display panel.

ICチップや液晶表示パネルはウエハ表面に種々の異なる回路パターンを何層にも積み重ねて構成されており、各回路パターンはフォトリソグラフィー工程等を用いてウエハ上に一層ずつ積み重ねるようにして形成される。この回路パターンの形成に際してウエハ表面に傷等の欠陥があると、最終製品としてのICチップ等の作動不良等に結びつくため、製造工程における表面欠陥検査は非常に重要である。  IC chips and liquid crystal display panels are formed by stacking various different circuit patterns on the wafer surface in layers, and each circuit pattern is formed by stacking one layer on the wafer using a photolithography process or the like. . When there is a defect such as a scratch on the wafer surface during the formation of this circuit pattern, it will lead to malfunction of the IC chip or the like as the final product, so surface defect inspection in the manufacturing process is very important.

このような半導体ウエハ等の表面欠陥の検査は、従来は、ウエハ表面に種々の検査用照明光を様々な角度から照射し、被検物体となるウエハを回転又は揺動させながら検査員が目視観察して行われていた。但し、最近においては検査品質のバラツキを小さくし、検査の省力化、効率化を図るため、表面欠陥検査を自動化する要請も強くなっている。このようなことから、例えば、特開平10−339701号に開示されているように、ウエハの表面に80度〜89度という大きな入射角で検査用照明光を照射し、ウエハの表面からの散乱光に基づいて表面欠陥の検査を行う装置が知られている。  Conventionally, surface defects such as semiconductor wafers are inspected by inspectors visually irradiating the wafer surface with various inspection illumination lights from various angles and rotating or swinging the wafer to be inspected. It was done by observation. However, recently, in order to reduce the variation in inspection quality and save labor and increase the efficiency of inspection, there is a strong demand for automating surface defect inspection. For this reason, for example, as disclosed in JP-A-10-339701, the surface of the wafer is irradiated with inspection illumination light at a large incident angle of 80 to 89 degrees, and scattered from the surface of the wafer. Devices for inspecting surface defects based on light are known.

発明が解決しようとする課題Problems to be solved by the invention

このような散乱光を用いた表面欠陥検査では、上記のように80度〜90度という大きな入射角の照明光に対して、ウエハ表面上に付着した塵、ゴミや、ウエハ表面から突出するような傷からは確実に散乱光が発生するため、その検出が容易である。しかしながら、一般的にウエハ表面等に形成される傷は表面が凹状にえぐられて形成されており、上記のような大きな入射角の照明光に対して反射光があまり発生せず、散乱光を用いた従来の検査では凹状の傷等のような表面欠陥の検出が難しいという問題がある。  In the surface defect inspection using such scattered light, as described above, with respect to illumination light having a large incident angle of 80 degrees to 90 degrees, dust or dirt adhering to the wafer surface, or so as to protrude from the wafer surface. Since the scattered light is surely generated from the scratches, the detection is easy. However, in general, scratches formed on the wafer surface or the like are formed with a concave surface, and reflected light does not generate much with respect to illumination light with a large incident angle as described above. The conventional inspection used has a problem that it is difficult to detect surface defects such as concave scratches.

本発明はこのような問題に鑑み、被検物体の表面に形成された凹状の優等の有無を効率良く且つ確実に検出することができるような構成の表面欠陥検査装置を提供することを目的とする。  In view of such problems, the present invention has an object to provide a surface defect inspection apparatus having a configuration capable of efficiently and reliably detecting the presence / absence of a concave shape formed on the surface of a test object. To do.

課題を解決するための手段Means for solving the problem

【課題を解決するための手段】
このような目的達成のため、本発明においては、被検物体の被検面に検査用照明光を照射する照明ユニットと、この照明ユニットによる検査用照明光の照射を受けて被検面から出射される散乱光を受光する受光ユニットとを有して表面欠陥検査装置が構成される。そして、照明ユニットによる検査用照明光の照射を受けて被検面から反射される正反射光の出射光軸が、前記被検面の法線に対してなす角度を出射角θoとし、正反射光の開口角をδθoとし、正反射光の出射光軸から受光ユニットの光軸を見込む角度をθrとし、受光ユニットの開口角をδθrとしたときに、下記の式(1),(2),(3)の関係が成り立つように各角度が設定される。
[Means for Solving the Problems]
In order to achieve such an object, in the present invention, an illumination unit that irradiates an inspection illumination light onto a surface to be inspected, and an illumination unit that emits the illumination light for inspection emits from the surface to be inspected. The surface defect inspection apparatus is configured to include a light receiving unit that receives the scattered light. Then, the angle of the outgoing optical axis of the specularly reflected light that is reflected from the test surface upon receiving the illumination light for inspection by the illumination unit is the normal angle of the test surface, and the outgoing angle θo is the specular reflection. When the opening angle of light is δθo, the angle at which the optical axis of the light receiving unit is viewed from the outgoing optical axis of the regular reflection light is θr, and the opening angle of the light receiving unit is δθr, the following equations (1) and (2) , (3) is set so that each angle is established.

【数1】
δθo < (θr−δθr) ・・・(1)
θr ≦ 10度 ・・・(2)
θo ≦ 60度 ・・・(3)
[Expression 1]
δθo <(θr−δθr) (1)
θr ≦ 10 degrees (2)
θo ≦ 60 degrees (3)

表面欠陥検査装置をこのように構成すれば、照明ユニットからの検査用照明光は被検面に対して小さな入射角で上方から照射され、被検面に形成された凹状の傷等からも確実に散乱光が出射する。ここで、検査用照明光の正反射光を受光せず且つ散乱光を最も効率良く受光する位置に受光ユニットを配置すれば、この散乱光を効率良く検出し、凹状の傷を精度良く検出できる。上記の式(1),(2),(3)の関係が検査用照明光の正反射光を受光することなく散乱光を効率良く受光するために要求される受光ユニットの位置を規定するものであり、本発明では上記式(1),(2),(3)を満足する位置関係に各ユニットを配設して表面欠陥検査装置を構成しており、これにより被検面の凹状の傷等も確実に検出できる。  If the surface defect inspection apparatus is configured in this way, the illumination light for inspection from the illumination unit is irradiated from above at a small incident angle with respect to the surface to be inspected, and is surely also from a concave scratch formed on the surface to be inspected. Scattered light is emitted. Here, if the light receiving unit is arranged at a position where the specularly reflected light of the inspection illumination light is not received and the scattered light is received most efficiently, the scattered light can be detected efficiently and the concave flaw can be detected with high accuracy. . The relationship of the above formulas (1), (2), and (3) defines the position of the light receiving unit required to efficiently receive scattered light without receiving the specularly reflected light of the inspection illumination light. In the present invention, each unit is arranged in a positional relationship satisfying the above formulas (1), (2), and (3) to constitute a surface defect inspection apparatus, whereby the concave surface of the test surface is formed. Scratches and the like can be reliably detected.

なお、受光ユニットの光軸を見込む角度θrを正反射光に対して暗視野の光学系を構成する角度範囲内(すなわち、正反射光が入り込まない角度範囲内)で可能な限り小さな角度(すなわち、正反射光の出射光軸に近い角度)に設定し、且つ被検面から出射する回折光に対しても暗視野の光学系を構成する角度(すなわち、回折光が入り込まない角度)に設定するのが好ましい。これにより散乱光を効率良く受光することができるとともに回折光の影響を受けることもない。 It should be noted that the angle θr at which the optical axis of the light receiving unit is viewed is as small as possible (that is, within the angle range that constitutes the dark field optical system with respect to the regular reflection light (that is, within the angle range in which the regular reflection light does not enter)) , An angle close to the outgoing optical axis of specularly reflected light), and the angle that forms the dark field optical system (that is, the angle at which diffracted light does not enter) with respect to the diffracted light emitted from the test surface. It is preferable to do this. Thus, scattered light can be received efficiently and is not affected by diffracted light.

本発明において、照明ユニットの光軸および正反射光の出射光軸を含む照明光軸面内に受光ユニットの光軸が位置するように表面欠陥検査装置を構成することができる。この場合、被検物体、照明ユニットおよび受光ユニットの少なくともいずれかを、被検面と照明ユニットの光軸との交点を通り照明光軸面に垂直な回転軸を中心として回転可能に構成し、正反射光の出射角θoおよび受光ユニットの光軸を見込む角度θrの設定が変更可能とするのが好ましい。 In the present invention, the surface defect inspection apparatus can be configured such that the optical axis of the light receiving unit is positioned within the illumination optical axis plane including the optical axis of the illumination unit and the outgoing optical axis of the regular reflection light. In this case, at least one of the test object, the illumination unit, and the light receiving unit is configured to be rotatable around a rotation axis that passes through the intersection of the test surface and the optical axis of the illumination unit and is perpendicular to the illumination optical axis plane, It is preferable that the setting of the outgoing angle θo of the specularly reflected light and the angle θr in which the optical axis of the light receiving unit is expected can be changed.

また、本発明の表面欠陥検査装置を、正反射光の出射光軸を通り、照明ユニットの光軸および正反射光の出射光軸を含む照明光軸面に対して所定の角度θsを有する受光光軸面内に、受光ユニットの光軸が位置するように構成し、受光ユニットの光軸を見込む角度θrが、受光光軸面内において正反射光の出射光軸から受光ユニットの光軸を見込む角度となるように構成することもできる。この場合に、所定の角度θsが90度となるように構成しても良い。 The surface defect inspection apparatus of the present invention, light having a predetermined angle θs with respect to the specular reflection light through an emission optical axis of the optical axis and specular light illumination optical axis plane including the emitting optical axis of the lighting unit The optical axis of the light receiving unit is positioned within the optical axis plane, and the angle θr at which the optical axis of the light receiving unit is viewed is changed from the outgoing optical axis of the specularly reflected light within the light receiving optical axis plane to the optical axis of the light receiving unit. It can also be configured to have an expected angle. In this case, the predetermined angle θs may be configured to be 90 degrees.

なお、上記の構成の表面欠陥検査装置において、被検物体および照明ユニットの少なくともいずれかが被検面と照明ユニットの光軸との交点を通り照明光軸面に垂直な回転軸を中心として回転可能となるように構成して正反射光の出射角θoを可変設定可能となし、さらに、受光ユニットが照明ユニットの光軸と被検面との交点をとおり受光光軸面に垂直な回転軸を中心として回転可能となるように構成して受光ユニットの光軸を見込む角度θrの設定が変更可能とするのが好ましい。  In the surface defect inspection apparatus having the above-described configuration, at least one of the test object and the illumination unit rotates about the rotation axis that passes through the intersection of the test surface and the optical axis of the illumination unit and is perpendicular to the illumination optical axis surface. The output angle θo of specularly reflected light can be variably set so that the light receiving unit can be configured, and the light receiving unit passes through the intersection of the optical axis of the illumination unit and the test surface, and is a rotation axis perpendicular to the light receiving light axis surface. It is preferable that the angle θr for setting the optical axis of the light receiving unit to be set can be changed.

また、本発明の表面欠陥検査装置において、被検物体が被検面に垂直な軸を中心として回転可能となるように構成するのが好ましい。さらに、本発明の表面欠陥装置において、照明ユニットおよび受光ユニットの少なくともいずれかに波長選択手段を備えるのが好ましい。  In the surface defect inspection apparatus according to the present invention, it is preferable that the object to be inspected can be rotated about an axis perpendicular to the surface to be inspected. Furthermore, in the surface defect apparatus of the present invention, it is preferable that wavelength selection means is provided in at least one of the illumination unit and the light receiving unit.

以下、図面を参照して本発明の好ましい実施形態について説明する。本発明の第1の実施形態に係る表面欠陥検査装置の概略構成を図1に示している。この装置は、図示しないチャンバー内に、半導体ウエハ5(被検物体)を載置するウエハ支持テーブル1と、ウエハ支持テーブル1上に載置された半導体ウエハ5の被検面5aに検査用照明光を照射する照明ユニット10と、この照明ユニット10から検査用照明光が被検面5aに照射されたときにウエハ被検面5aから出射される散乱光を受光するための受光ユニット20とを配設して構成される。なお、受光ユニット20に配線30を介して繋がれた表示ユニット31および画像処理ユニット32がチャンバー外に配設されている。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of a surface defect inspection apparatus according to the first embodiment of the present invention. This apparatus includes a wafer support table 1 on which a semiconductor wafer 5 (object to be tested) is placed in a chamber (not shown), and a test illumination on a test surface 5 a of the semiconductor wafer 5 placed on the wafer support table 1. An illumination unit 10 for irradiating light, and a light receiving unit 20 for receiving scattered light emitted from the wafer test surface 5a when the illumination light for inspection is irradiated from the illumination unit 10 onto the test surface 5a. Arranged and configured. Note that a display unit 31 and an image processing unit 32 connected to the light receiving unit 20 via a wiring 30 are disposed outside the chamber.

ウエハ支持テーブル1は垂直に下方に延びる駆動軸2を有し、図示しない駆動機構により駆動軸2を回転駆動してウエハ支持テーブル1を駆動軸2の中心軸AX1を中心として水平面内で回転させることができるように構成されている。ウエハ支持テーブル1の上にはウエハ5がその上面の被検面5a(回路等が形成される面)を水平に位置させて真空吸着等により固定保持される。  The wafer support table 1 has a drive shaft 2 extending vertically downward, and the drive shaft 2 is rotationally driven by a drive mechanism (not shown) to rotate the wafer support table 1 in the horizontal plane around the central axis AX1 of the drive shaft 2. It is configured to be able to. On the wafer support table 1, the wafer 5 is fixed and held by vacuum suction or the like with the test surface 5 a (surface on which a circuit or the like is formed) on the upper surface positioned horizontally.

照明ユニット10は、検査用照明光を出射する光源11と、光源11の前に置かれた波長選択ユニット12と、光源11から出射されて波長選択ユニット12を通った検査用照明光を平行光束に変換してウエハ支持テーブル1の上に保持されたウエハ5のウエハ被検面5aに照射させる照明レンズ13とから構成される。この光源11としては、メタルハライドランプ、水銀ランプ、ハロゲンランプ等が用いられる。また、波長選択ユニット12は光源11から出射された照明光から所定の波長域以外の光を選択して通過させたりしてウエハ被検面5aに照射する光の波長を選択するもので、種々のダイクロイックミラー、干渉フィルタ等を交換使用して波長選択を行うように構成されている。  The illumination unit 10 includes a light source 11 that emits inspection illumination light, a wavelength selection unit 12 that is placed in front of the light source 11, and a parallel light flux that is emitted from the light source 11 and passes through the wavelength selection unit 12. And an illumination lens 13 for irradiating the wafer test surface 5a of the wafer 5 held on the wafer support table 1. As the light source 11, a metal halide lamp, a mercury lamp, a halogen lamp, or the like is used. The wavelength selection unit 12 selects the wavelength of light to be irradiated on the wafer surface 5a by selecting and passing light outside the predetermined wavelength range from the illumination light emitted from the light source 11, The dichroic mirror, the interference filter, and the like are used for wavelength selection.

このように光源11から出射されてウエハ被検面5aを照射する検査用照明光の入射光軸C1が被検面5aの法線C2に対してなす角度、すなわち入射角θiが60度以下の角度となるように、照明ユニット10が配設されている。このため、入射角θiで照射された検査用照明光がウエハ被検面5aで反射されて出射される正反射光の出射角θo(法線C2に対して出射光軸C3のなす角度)も60度以下の角度で、入射角θiと等しい角度(θi=θo)である。  Thus, the angle formed by the incident optical axis C1 of the inspection illumination light emitted from the light source 11 and irradiating the wafer test surface 5a with respect to the normal C2 of the test surface 5a, that is, the incident angle θi is 60 degrees or less. The lighting unit 10 is disposed so as to have an angle. For this reason, the emission angle θo (angle formed by the outgoing optical axis C3 with respect to the normal C2) of the specularly reflected light emitted from the inspection illumination light irradiated at the incident angle θi is reflected by the wafer test surface 5a. An angle equal to or smaller than 60 degrees and equal to the incident angle θi (θi = θo).

一方、受光ユニット20は第1および第2受光レンズ21,22と、CCD撮像素子23を有して構成される。この受光ユニット20の受光光軸C4は、図2に詳しく示すように、上述した入射光軸C1および出射光軸C3を含むウエハ被検面5aに垂直な面(これを照明光軸面P1と称する)内に位置し、この照明光軸面P1内において出射光軸C3に対して所定の見込み角(ずれ角)θrだけ傾いて受光光軸C4が延びるように受光ユニット20が配設されている。すなわち、光軸C1,C3,C4が全て照明光軸面P1上に位置する。  On the other hand, the light receiving unit 20 includes first and second light receiving lenses 21 and 22 and a CCD image sensor 23. As shown in detail in FIG. 2, the light receiving optical axis C4 of the light receiving unit 20 is a surface perpendicular to the wafer test surface 5a including the above-described incident optical axis C1 and outgoing optical axis C3 (this is referred to as the illumination optical axis plane P1). The light receiving unit 20 is disposed so that the light receiving optical axis C4 extends at a predetermined prospective angle (shift angle) θr with respect to the outgoing optical axis C3 in the illumination optical axis plane P1. Yes. That is, the optical axes C1, C3, and C4 are all located on the illumination optical axis plane P1.

ここで、上記正反射光の開口角δθoと受光ユニット20の開口角δθrとに対して上記見込み角θrは、次式(4)の関係となるように設定される。このように設定すれば、図2から分かるように、出射光軸C3を中心として開口角δθoの円錐状の広がりを有する正反射光の光束が受光光軸C4を中心として開口角δθrの円錐状の広がりを有する受光範囲内に入ることがなく、受光ユニット20は正反射光に対して暗視野の光学系となる。  Here, with respect to the opening angle δθo of the regular reflection light and the opening angle δθr of the light receiving unit 20, the prospective angle θr is set to have the relationship of the following equation (4). With this setting, as can be seen from FIG. 2, the light beam of specularly reflected light having a conical expanse with an opening angle δθo centered on the output optical axis C3 has a conical shape with an opening angle δθr centered on the light receiving optical axis C4. The light receiving unit 20 becomes a dark field optical system with respect to specularly reflected light.

【数2】
δθo < (θr−δθr) ・・・(4)
[Expression 2]
δθo <(θr−δθr) (4)

このような構成において、光源11から出射された検査用照明光が波長選択フィルタ12において波長選択がなされた後、照明レンズ13により平行光束に変換され、ウエハ支持テーブル1の上に保持されたウエハ5の上面すなわちウエハ被検面5aに入射角θiで照射される。ウエハ被検面5aは滑らかな平面であり、且つウエハ支持テーブル1により水平に保持されているため、通常は、上記のようにウエハ被検面5aに照射された検査用照明光はウエハ被検面5aにおいて正反射され、光軸C3で示す方向に出射角θo(=θi)を有して出射される。ここで受光ユニット20は上記式(4)の関係を有して配設されているため、この正反射光は受光ユニット20に受光されることがない。具体的には、正反射光は第1集光レンズ21によりCCD撮像素子23の受光面の外に集光される。  In such a configuration, the inspection illumination light emitted from the light source 11 is wavelength-selected by the wavelength selection filter 12, and then converted into a parallel light beam by the illumination lens 13 and held on the wafer support table 1. 5 is irradiated at an incident angle θi. Since the wafer test surface 5a is a smooth flat surface and is held horizontally by the wafer support table 1, the inspection illumination light irradiated on the wafer test surface 5a as described above is normally used as the wafer test surface. The light is regularly reflected on the surface 5a and emitted with an emission angle θo (= θi) in the direction indicated by the optical axis C3. Here, since the light receiving unit 20 is disposed so as to have the relationship of the above formula (4), the regular reflected light is not received by the light receiving unit 20. Specifically, the specularly reflected light is condensed outside the light receiving surface of the CCD image sensor 23 by the first condenser lens 21.

ところが、ウエハ被検面5a上に塵、ゴミが付着していたり、傷が合ったりすると、上記のようにウエハ被検面5aに照射された検査用照明光はこのように付着した塵、ゴミ等や、傷等に当たって乱反射(散乱)される。この乱反射光(散乱光)のうち、受光ユニット20の受光光軸C4に向かう光(より具体的には、受光光軸C4を中心とした開口角δθrの範囲内に向かう光)は第1および第2集光レンズ21,22により集光されてCCD撮像素子23の受光面に入射する。この結果、ウエハ被検面5a上の塵、ゴミ、傷等によって生じる散乱光によりこれら塵、ゴミ、傷等の像がCCD撮像素子23により撮影される。  However, if dust or debris adheres to the wafer test surface 5a or a flaw occurs, the inspection illumination light radiated to the wafer test surface 5a as described above causes the dust or debris adhering to the wafer test surface 5a to adhere. Etc., and is irregularly reflected (scattered) upon hitting a scratch or the like. Of the irregularly reflected light (scattered light), light traveling toward the light receiving optical axis C4 of the light receiving unit 20 (more specifically, light traveling within the range of the opening angle δθr centered on the light receiving optical axis C4) is the first and The light is condensed by the second condenser lenses 21 and 22 and enters the light receiving surface of the CCD image sensor 23. As a result, images of the dust, dust, scratches and the like are taken by the CCD image pickup device 23 by scattered light generated by dust, dust, scratches, etc. on the wafer test surface 5a.

ここで上述のように、検査用照明光の入射角θiおよび出射角θoが60度以下の角度となるように設定されており、検査用照明光は比較的上方からウエハ被検面5aに照射される。このため、ウエハ被検面5aに凹状にえぐられた傷が存在する場合にも確実に散乱光を発生させることができ、凹状の傷の像もCCD撮像素子23により良好に撮影することができる。  Here, as described above, the incident angle θi and the outgoing angle θo of the inspection illumination light are set to be 60 degrees or less, and the inspection illumination light is irradiated to the wafer test surface 5a from a relatively upper position. Is done. For this reason, even when the wafer test surface 5a has a concavely scratched surface, scattered light can be reliably generated, and an image of the concave surface can be well captured by the CCD image sensor 23. .

CCD撮像素子23により撮影された画像情報は配線30を介して表示ユニット31および画像処理ユニット32に送られる。表示ユニット31はCRTモニタ、液晶ディスプレイ等から構成され、CCD撮像素子23により撮影された塵、ゴミ、傷等の画像が表示ユニット31の画面に表示されるので、検査員はこの画面表示を見て、ウエハの表面欠陥の有無を判断可能である。さらに、画像処理ユニット32は、上記のようにCCD撮像素子23から送られる画像情報について画像処理を行い、撮影画面における輝度が所定閾値を越える部分に、塵、ゴミ、傷等による表面欠陥が存在すると判断する。これにより、ウエハ5の表面欠陥の有無を自動的に検査可能である。  Image information captured by the CCD image sensor 23 is sent to the display unit 31 and the image processing unit 32 via the wiring 30. The display unit 31 includes a CRT monitor, a liquid crystal display, and the like, and images of dust, dust, scratches and the like photographed by the CCD image pickup device 23 are displayed on the screen of the display unit 31, and the inspector views the screen display. Thus, the presence or absence of a surface defect on the wafer can be determined. Further, the image processing unit 32 performs image processing on the image information sent from the CCD image pickup device 23 as described above, and surface defects due to dust, dust, scratches, etc. exist in portions where the luminance on the shooting screen exceeds a predetermined threshold. Judge that. As a result, the presence or absence of surface defects on the wafer 5 can be automatically inspected.

一般的に、ウエハ5の上面には多数の回路パターンが形成されており、これら回路パターンは所定ピッチで配列された配線からなる繰り返しパターンを有している。このため、上記のようにウエハ被検面5aに検査用照明光が照射されると、この繰り返しパターンのピッチに応じて回折光も発生する。この回折光の出射方向は正反射光に対して所定角度ずれており、このずれ角が上述した受光ユニット20の光軸C4の見込み角θrに近いと、回折光が受光ユニット20に受光され、表面欠陥の検出精度が低下するという問題がある。  In general, a large number of circuit patterns are formed on the upper surface of the wafer 5, and these circuit patterns have a repetitive pattern composed of wirings arranged at a predetermined pitch. For this reason, when the illumination light for inspection is irradiated onto the wafer surface 5a as described above, diffracted light is also generated according to the pitch of the repeated pattern. The emission direction of the diffracted light is deviated from the specularly reflected light by a predetermined angle. When this deviation angle is close to the expected angle θr of the optical axis C4 of the light receiving unit 20, the diffracted light is received by the light receiving unit 20. There is a problem that the detection accuracy of the surface defect is lowered.

このため、受光ユニット20内に回折光が入り込まないようにする必要があり、受光ユニット20の光軸C4が上記式(4)を満足した上で、回折光の出射方向からずらせ、回折光に対して暗視野の光学系を構成するように受光ユニット20の配設位置が設定される。このようにして回折光の受光を回避するには、ウエハ被検面5aの全面(検査用照明光が照射される範囲全域)において、入射光θiが一定となり、回折光の方向一定となるように設定するのが好ましい。このため、照明ユニット10および受光ユニット20をともに、ウエハ被検面5a側がテレセントリックとなる光学系として構成するのが好ましい。 For this reason, it is necessary to prevent the diffracted light from entering the light receiving unit 20. The optical axis C4 of the light receiving unit 20 satisfies the above equation (4), and is shifted from the direction of emission of the diffracted light. On the other hand, the arrangement position of the light receiving unit 20 is set so as to constitute a dark field optical system. To avoid reception of the thus diffracted light, the entire surface of the wafer surface to be inspected 5a (entire range of inspection illumination light is irradiated), the incident light θi becomes constant, the direction of the diffracted light is constant It is preferable to set as follows. Therefore, both the illumination unit 10 and the light receiving unit 20 are preferably configured as an optical system in which the wafer test surface 5a side is telecentric.

回折光の光軸は正反射光の出射光軸とは所定の角度を有しており、受光ユニット20の光軸C4をできる限り正反射光の出射光軸C3に近づけるほうが、受光ユニット20への回折光の入射を防止できる。このため、上記見込み角θrは10度以下の角度に設定される。特に、被検物体が半導体ウエハの場合、一般に回折光の回折角度、すなわち、正反射光に対する回折光の見込み角が大きいため、上記見込み角θrを10度以下に設定することにより受光ユニット20が回折光を受光することを防止できる。  The optical axis of the diffracted light has a predetermined angle with respect to the outgoing optical axis of the specularly reflected light, and the optical axis C4 of the light receiving unit 20 is closer to the outgoing optical axis C3 of the specularly reflected light as much as possible. Of the diffracted light can be prevented. For this reason, the prospective angle θr is set to an angle of 10 degrees or less. In particular, when the object to be inspected is a semiconductor wafer, the diffraction angle of the diffracted light, that is, the expected angle of the diffracted light with respect to the specularly reflected light is generally large. Therefore, the light receiving unit 20 is set by setting the expected angle θr to 10 degrees or less. Receiving diffracted light can be prevented.

このような配設位置の設定は、ウエハ5の被検面5aを通り照明光軸面P1に垂直な軸AX2を中心として受光ユニット20を回転させることにより行われる。このため、受光ユニット20を軸AX2を中心として回転させることができる機構を設けても良い。さらに、ウエハ支持テーブル1を軸AX2を中心として回転させる機構や、照明ユニット10を軸AX2を中心として回転させる機構を設けても良い。これにより、照明光の入射角θiおよび出射角θoと、正反射光の出射光軸C3に対する受光ユニット20の光軸C4の見込み角(ずれ角)θrとを任意に調整可能となる。  Such an arrangement position is set by rotating the light receiving unit 20 around an axis AX2 that passes through the surface 5a to be measured of the wafer 5 and is perpendicular to the illumination optical axis plane P1. For this reason, a mechanism that can rotate the light receiving unit 20 around the axis AX2 may be provided. Furthermore, a mechanism for rotating the wafer support table 1 around the axis AX2 and a mechanism for rotating the illumination unit 10 around the axis AX2 may be provided. This makes it possible to arbitrarily adjust the incident angle θi and the outgoing angle θo of the illumination light, and the expected angle (shift angle) θr of the optical axis C4 of the light receiving unit 20 with respect to the outgoing optical axis C3 of the regular reflection light.

回折光が受光ユニット20内に受光しないようにするためには、上記のように照明光の入射角θiおよび出射角θoや、受光ユニット20の見込み角θrを調整すれば良いのであるが、回折光はウエハ5の被検面5aに形成された繰り返しパターンのピッチと、照明光の波長に応じて定まるため、照明光の波長を代えて回折光が受光ユニット20内に受光しないように調整することも可能である。このため、波長選択ユニット12が設けられており、この波長選択ユニット12により照明光の波長を選択設定し、回折光が受光ユニット20内に入射しないように回折角を調整したり、回折光が生じないような波長の照明光のみを照射するようにしている。  In order to prevent the diffracted light from being received in the light receiving unit 20, the incident angle θi and the outgoing angle θo of the illumination light and the expected angle θr of the light receiving unit 20 may be adjusted as described above. Since the light is determined according to the pitch of the repeated pattern formed on the test surface 5a of the wafer 5 and the wavelength of the illumination light, the wavelength of the illumination light is changed so that the diffracted light is not received in the light receiving unit 20. It is also possible. Therefore, a wavelength selection unit 12 is provided. The wavelength selection unit 12 selects and sets the wavelength of the illumination light, adjusts the diffraction angle so that the diffracted light does not enter the light receiving unit 20, or Only illumination light having a wavelength that does not occur is irradiated.

さらに、ウエハ5の被検面5aに形成された繰り返しパターンの方向と照明光の方向とが相違すると回折光の出射される方向すなわち回折角が変化するため、ウエハ支持テーブル1の駆動軸2を駆動機構により回転駆動してウエハ支持テーブル1を水平面内で回転させても良い。これによりウエハ5は垂直に延びる中心軸AX1を中心として回転され、回折角を変化させることができる。  Furthermore, if the direction of the repetitive pattern formed on the test surface 5a of the wafer 5 is different from the direction of the illumination light, the direction in which the diffracted light is emitted, that is, the diffraction angle changes, so the drive shaft 2 of the wafer support table 1 is moved. The wafer support table 1 may be rotated in a horizontal plane by being rotationally driven by a driving mechanism. As a result, the wafer 5 is rotated about the central axis AX1 extending vertically, and the diffraction angle can be changed.

以上説明した表面欠陥検査装置においては、入射光軸C1、出射光軸C3を含む照明光軸面P1内に受光光軸C4が位置するように受光ユニット20を配設しているが、受光ユニット20の配設位置はこれに限られるものではない。例えば、図1および図2の矢視III を示す図3に示すように、正反射光の出射光軸C3を通り照明光軸面P1に対して所定角度θS1を有する受光光軸面P2内に受光光軸C4が位置するようにしても良い。この場合には、受光光軸面P2内において、上述の式(4)を満足するように見込み角θrが設定される。  In the surface defect inspection apparatus described above, the light receiving unit 20 is disposed so that the light receiving optical axis C4 is positioned in the illumination optical axis plane P1 including the incident optical axis C1 and the outgoing optical axis C3. The arrangement position of 20 is not limited to this. For example, as shown in FIG. 3 showing an arrow III in FIGS. 1 and 2, the light passes through the outgoing optical axis C3 of the specularly reflected light and enters the light receiving optical axis P2 having a predetermined angle θS1 with respect to the illumination optical axis P1. The light receiving optical axis C4 may be positioned. In this case, the prospective angle θr is set so as to satisfy the above-described formula (4) in the light receiving optical axis plane P2.

なお、照明光軸面P1に対して90度となる所定角度θS2を有する受光光軸面P3内に受光光軸C4が位置するように受光ユニット20の配設位置を設定しても良い。このようにすれば、見込み角θrを一定に保持したまま、入射角θiおよび出射角θoを変化させることが容易である。  Note that the arrangement position of the light receiving unit 20 may be set such that the light receiving optical axis C4 is positioned within the light receiving optical axis plane P3 having a predetermined angle θS2 that is 90 degrees with respect to the illumination optical axis plane P1. In this way, it is easy to change the incident angle θi and the outgoing angle θo while keeping the prospective angle θr constant.

本発明に係る表面欠陥検査装置の第2の実施形態について、図4を参照して説明する。なお、この実施形態において図1に示した装置と同一構成部分については同一番号を付してその説明を省略する。この装置は、図示しないチャンバー内に、ウエハ支持テーブル1と、照明ユニット110と、受光ユニット120とを配設して構成され、チャンバー外に配設された表示ユニット31および画像処理ユニット32が配線30を介して受光ユニット120と繋がれている。  A second embodiment of the surface defect inspection apparatus according to the present invention will be described with reference to FIG. In this embodiment, the same components as those in the apparatus shown in FIG. This apparatus is configured by disposing a wafer support table 1, an illumination unit 110, and a light receiving unit 120 in a chamber (not shown), and a display unit 31 and an image processing unit 32 disposed outside the chamber are wired. It is connected to the light receiving unit 120 through 30.

この装置と図1に示す装置とは照明ユニットおよび受光ユニットの構成のみが異なり、この装置の照明ユニット110は図1に示す装置の照明ユニット10における照明レンズ13を照明球面反射鏡16に置き換えて構成され、この装置の受光ユニット120は図1に示す装置の受光ユニット20の第1受光レンズ21を受光球面反射鏡26に置き換えて構成されている。すなわち、図1の装置では照明および受光ユニットをレンズ光学系から構成しているが、図4の装置でこれらを反射光学系に置換して構成している。  This apparatus differs from the apparatus shown in FIG. 1 only in the configuration of the illumination unit and the light receiving unit. The illumination unit 110 of this apparatus replaces the illumination lens 13 in the illumination unit 10 of the apparatus shown in FIG. The light receiving unit 120 of this apparatus is configured by replacing the first light receiving lens 21 of the light receiving unit 20 of the apparatus shown in FIG. That is, in the apparatus of FIG. 1, the illumination and light receiving units are configured by lens optical systems, but in the apparatus of FIG. 4, these are replaced by reflective optical systems.

このように図4に示す装置はレンズを反射鏡に置換しただけであり、ウエハ支持テーブル1に載置保持されたウエハ5から見た各光軸C1,C2,C4の位置関係は図1の装置と同一である。すなわち、入射角θiおよび出射角θoは60度以下に設定され、正反射光の開口角δθo、受光ユニット120の開口角δθrおよび見込み角θrが上記式(4)の関係となるように設定され、見込み角θrは10度以下の角度に設定される。  In this way, the apparatus shown in FIG. 4 only replaces the lens with a reflecting mirror, and the positional relationship between the optical axes C1, C2, and C4 viewed from the wafer 5 placed and held on the wafer support table 1 is shown in FIG. Identical to the device. That is, the incident angle θi and the outgoing angle θo are set to 60 degrees or less, and the opening angle δθo of the regular reflection light, the opening angle δθr of the light receiving unit 120, and the expected angle θr are set to have the relationship of the above formula (4). The prospective angle θr is set to an angle of 10 degrees or less.

このため、照明ユニット110により光源11からの検査用照明光をウエハ被検面5aに照射し、ここからの散乱光を受光ユニット120により受光してウエハ被検面5a上のゴミ、塵、傷等の有無を良好に検査することができる。なお、この検査を行う方法は上述した図1の装置の場合と同一であるのでその説明は省略する。  For this reason, the illumination unit 110 irradiates the wafer test surface 5a with the inspection illumination light from the light source 11, and the scattered light from the light is received by the light receiving unit 120 so that dust, dust, scratches on the wafer test surface 5a are received. Etc. can be inspected satisfactorily. The method for performing this inspection is the same as that of the apparatus shown in FIG.

本発明に係る表面欠陥検査装置の第3の実施形態を図5に示している。この実施形態においても図1に示した装置と同一構成部分については同一番号を付してその説明を省略する。この装置は、図示しないチャンバー内に、ウエハ支持テーブル1と、照明ユニット210と、受光ユニット220とを配設して構成され、チャンバー外に配設された表示ユニット31および画像処理ユニット32が配線30を介して受光ユニット220と繋がれている。  A third embodiment of the surface defect inspection apparatus according to the present invention is shown in FIG. Also in this embodiment, the same components as those in the apparatus shown in FIG. This apparatus is configured by disposing a wafer support table 1, an illumination unit 210, and a light receiving unit 220 in a chamber (not shown), and a display unit 31 and an image processing unit 32 disposed outside the chamber are wired. 30 is connected to the light receiving unit 220.

この装置と図1に示す装置とは照明ユニットおよび受光ユニットの構成のみが異なり、図1に示す装置における照明ユニット10の照明レンズ13および受光ユニット20の第1受光レンズ21の役割を果たす大径のレンズ200がこの装置に設けられている。すなわち、図5に示す装置では、レンズ200が、照明ユニット210の照明レンズとしての役割と、受光ユニット220の受光レンズとしての役割を兼用している。  This apparatus differs from the apparatus shown in FIG. 1 only in the configuration of the illumination unit and the light receiving unit, and has a large diameter that serves as the illumination lens 13 of the illumination unit 10 and the first light receiving lens 21 of the light receiving unit 20 in the apparatus shown in FIG. The lens 200 is provided in this apparatus. That is, in the apparatus shown in FIG. 5, the lens 200 serves both as the illumination lens of the illumination unit 210 and as the light reception lens of the light receiving unit 220.

このように図5に示す装置においては、照明ユニット210および受光ユニット220がレンズ200を共用しているため、装置構成を簡単にすることができる。但し、両ユニット210,220を近づけて配設する必要があり、検査用照明光の入射および反射角θi,θoは小さな角度となる。この装置においても、入射角θiおよび出射角θoは60度以下に設定され、正反射光の開口角δθo、受光ユニット220の開口角δθrおよび見込み角θrが上記式(4)の関係となるように設定され、見込み角θrは10度以下の角度に設定される。  Thus, in the apparatus shown in FIG. 5, since the illumination unit 210 and the light receiving unit 220 share the lens 200, the apparatus configuration can be simplified. However, both units 210 and 220 need to be arranged close to each other, and the incident and reflection angles θi and θo of the inspection illumination light are small angles. Also in this apparatus, the incident angle θi and the emission angle θo are set to 60 degrees or less, and the opening angle δθo of the specularly reflected light, the opening angle δθr of the light receiving unit 220, and the expected angle θr have the relationship of the above formula (4). The prospective angle θr is set to an angle of 10 degrees or less.

このため、照明ユニット210により光源11からの検査用照明光をウエハ被検面5aに照射し、ここからの散乱光を受光ユニット220により受光してウエハ被検面5a上のゴミ、塵、傷等の有無を良好に検査することができる。なお、この検査を行う方法は上述した図1の装置の場合と同一であるのでその説明は省略する。  Therefore, the illumination unit 210 irradiates the wafer test surface 5a with the inspection illumination light from the light source 11, and the scattered light from the light is received by the light receiving unit 220 so that dust, dust, scratches on the wafer test surface 5a are received. Etc. can be inspected satisfactorily. The method for performing this inspection is the same as that of the apparatus shown in FIG.

本発明に係る表面欠陥検査装置の第4の実施形態を図6に示している。この実施形態に係る装置は、図5に示す装置のレンズ200を反射鏡300に置換した構成であり、その他の構成は図5の装置と同一である。すなわち、図6に示す装置は、図5に示すレンズ200からなるレンズ光学系を反射鏡300からなる反射光学系に置換して構成される。このように反射鏡300を用いることにより図5の装置に比較して、装置を小型コンパクトにすることができる。このように図5の装置と同一原理の構成であるため、これ以上の説明は省略する。  FIG. 6 shows a fourth embodiment of the surface defect inspection apparatus according to the present invention. The apparatus according to this embodiment has a configuration in which the lens 200 of the apparatus shown in FIG. 5 is replaced with a reflecting mirror 300, and other configurations are the same as those of the apparatus of FIG. That is, the apparatus shown in FIG. 6 is configured by replacing the lens optical system composed of the lens 200 shown in FIG. By using the reflecting mirror 300 in this way, the apparatus can be made smaller and more compact than the apparatus of FIG. Thus, since it is the structure of the same principle as the apparatus of FIG. 5, the description beyond this is abbreviate | omitted.

発明の効果Effect of the invention

【発明の効果】
以上説明したように、本発明によれば、照明ユニットによる検査用照明光の照射を受けて被検面から反射される正反射光の出射角をθoとし、正反射光の開口角をδθoとし、正反射光の出射光軸から受光ユニットの光軸を見込む角度をθrとし、受光ユニットの開口角をδθrとしたときに、前述の式(1),(2),(3)の関係が成り立つように各角度が設定されており、照明ユニットからの検査用照明光は被検面に対して小さな入射角で上方から照射され、被検面に形成された凹状の傷等からも確実に散乱光が出射し、この散乱光を受光ユニットにより良好に受光検出することができ、被検面の凹状の傷等も確実に検出できる。
【Effect of the invention】
As described above, according to the present invention, the outgoing angle of specularly reflected light that is reflected from the surface to be inspected upon irradiation of the inspection illumination light by the illumination unit is θo, and the opening angle of the specularly reflected light is δθo. When the angle at which the optical axis of the light receiving unit is viewed from the outgoing optical axis of the regular reflected light is θr, and the opening angle of the light receiving unit is δθr, the relations of the above-described equations (1), (2), and (3) are obtained. Each angle is set so as to hold, and the illumination light for inspection from the illumination unit is irradiated from above with a small incident angle with respect to the surface to be inspected, and also reliably from concave scratches etc. formed on the surface to be inspected Scattered light is emitted, and the scattered light can be received and detected satisfactorily by the light receiving unit, and a concave flaw or the like on the test surface can be reliably detected.

本発明の第1実施形態に係る表面欠陥検査装置の構成を示す概略図である。  It is the schematic which shows the structure of the surface defect inspection apparatus which concerns on 1st Embodiment of this invention. 上記表面欠陥検査装置におけるウエハ被検面に対する各光軸の方向および開口各の関係を示す説明図である。  It is explanatory drawing which shows the direction of each optical axis with respect to the wafer test surface in the said surface defect inspection apparatus, and the relationship of each opening. 上記各光軸の関係を図1および図2における矢印III の方向から見て示す説明図である。  It is explanatory drawing which shows the relationship of each said optical axis seeing from the direction of arrow III in FIG. 1 and FIG. 本発明の第2実施形態に係る表面欠陥検査装置の構成を示す概略図である。  It is the schematic which shows the structure of the surface defect inspection apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る表面欠陥検査装置の構成を示す概略図である。  It is the schematic which shows the structure of the surface defect inspection apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る表面欠陥検査装置の構成を示す概略図である。  It is the schematic which shows the structure of the surface defect inspection apparatus which concerns on 4th Embodiment of this invention.

1 ウエハ支持テーブル
5 ウエハ
5a ウエハ被検面
10 照明ユニット
11 光源
12 波長選択ユニット
20 受光ユニット
21,22 第1および第2受光レンズ
23 CCD撮像素子
31 表示ユニット
32 画像処理ユニット
DESCRIPTION OF SYMBOLS 1 Wafer support table 5 Wafer 5a Wafer to-be-tested surface 10 Illumination unit 11 Light source 12 Wavelength selection unit 20 Light reception unit 21, 22 1st and 2nd light reception lens 23 CCD image pick-up element 31 Display unit 32 Image processing unit

Claims (9)

被検物体の被検面に検査用照明光を照射する照明ユニットと、前記照明ユニットによる前記検査用照明光の照射を受けて前記被検面から出射される散乱光を受光する受光ユニットとを有して構成され、
前記照明ユニットによる前記検査用照明光の照射を受けて前記被検面から反射される正反射光の出射光軸が、前記被検面の法線に対してなす角度を出射角θoとし、前記正反射光の開口角をδθoとし、前記正反射光の出射光軸から前記受光ユニットの光軸を見込む角度をθrとし、前記受光ユニットの開口角をδθrとしたときに、
δθo < (θr−δθr)
θr ≦ 10度
θo ≦ 60度
に設定されていることを特徴とする被検物体の表面欠陥検査装置。
An illumination unit that irradiates a surface to be inspected with inspection illumination light; and a light receiving unit that receives the scattered light emitted from the surface to be inspected by irradiation with the inspection illumination light from the illumination unit. Configured with
The outgoing optical axis of the specularly reflected light that is reflected from the test surface upon receiving the illumination light for inspection by the lighting unit is defined as an outgoing angle θo that is an angle formed with respect to the normal of the test surface, When the opening angle of the regular reflection light is δθo, the angle at which the optical axis of the light receiving unit is viewed from the emission optical axis of the regular reflection light is θr, and the opening angle of the light reception unit is δθr,
δθo <(θr−δθr)
θr ≦ 10 degrees θo ≦ 60 degrees, a surface defect inspection apparatus for an object to be inspected.
前記受光ユニットの光軸を見込む角度θrが前記正反射光に対して暗視野の光学系を構成する角度範囲内で可能な限り小さな角度に設定され、且つ前記被検面から出射する回折光に対しても暗視野の光学系を構成する角度に設定されていることを特徴とする請求項1に記載の表面欠陥検査装置。
The angle θr at which the optical axis of the light receiving unit is viewed is set to be as small as possible within the angle range constituting the dark field optical system with respect to the specularly reflected light, and the diffracted light emitted from the test surface 2. The surface defect inspection apparatus according to claim 1, wherein the surface defect inspection apparatus is set at an angle that constitutes a dark field optical system.
前記照明ユニットの光軸および前記正反射光の出射光軸を含む照明光軸面内に前記受光ユニットの光軸が位置することを特徴とする請求項1もしくは2に記載の表面欠陥検査装置。
The surface defect inspection apparatus according to claim 1, wherein an optical axis of the light receiving unit is located in an illumination optical axis plane including an optical axis of the illumination unit and an outgoing optical axis of the regular reflection light.
前記被検物体、前記照明ユニットおよび前記受光ユニットの少なくともいずれかが、前記被検面と前記照明ユニットの光軸との交点を通り前記照明光軸面に垂直な回転軸を中心として回転可能に構成され、前記正反射光の出射角θoおよび前記受光ユニットの光軸を見込む角度θrの設定が変更可能であることを特徴とする請求項3に記載の表面欠陥検査装置。
At least one of the object to be inspected, the illumination unit, and the light receiving unit can rotate about an axis of rotation that passes through the intersection of the surface to be inspected and the optical axis of the illumination unit and is perpendicular to the surface of the illumination optical axis. 4. The surface defect inspection apparatus according to claim 3, wherein the surface defect inspection apparatus is configured to change the setting of the outgoing angle [theta] o of the regular reflection light and the angle [theta] r that allows an optical axis of the light receiving unit.
前記正反射光の出射光軸を通り、前記照明ユニットの光軸および前記正反射光の出射光軸を含む照明光軸面に対して所定の角度θsを有する受光光軸面内に、前記受光ユニットの光軸が位置しており、
前記受光ユニットの光軸を見込む角度θrが、前記受光光軸面内において前記正反射光の出射光軸から前記受光ユニットの光軸を見込む角度であることを特徴とする請求項1もしくは2に記載の表面欠陥検査装置。
The light receiving light passes through the outgoing optical axis of the specularly reflected light and is received in a light receiving optical axis plane having a predetermined angle θs with respect to an illumination optical axis plane including the optical axis of the illumination unit and the outgoing optical axis of the regular reflected light. The optical axis of the unit is located
The angle θr for viewing the optical axis of the light receiving unit is an angle for viewing the optical axis of the light receiving unit from the outgoing optical axis of the specularly reflected light in the surface of the light receiving optical axis. The surface defect inspection apparatus described.
前記所定の角度θsが90度であることを特徴とする請求項5に記載の表面欠陥検査装置。
The surface defect inspection apparatus according to claim 5, wherein the predetermined angle θs is 90 degrees.
前記被検物体および前記照明ユニットの少なくともいずれかが、前記被検面と前記照明ユニットの光軸との交点を通り前記照明光軸面に垂直な回転軸を中心として回転可能に構成され、前記正反射光の出射角θoを可変設定可能であり、
前記受光ユニットは、前記照明ユニットの光軸と前記被検面との交点を通り前記受光光軸面に垂直な回転軸を中心として回転可能に構成され、前記受光ユニットの光軸を見込む角度θrの設定が変更可能であることを特徴とする請求項5もしくは6に記載の表面欠陥検査装置。
At least one of the object to be examined and the illumination unit is configured to be rotatable around a rotation axis that passes through the intersection of the surface to be examined and the optical axis of the illumination unit and is perpendicular to the illumination optical axis plane, The emission angle θo of regular reflection light can be variably set.
The light receiving unit is configured to be rotatable about a rotation axis that passes through the intersection between the optical axis of the illumination unit and the test surface and is perpendicular to the light receiving optical axis surface, and an angle θr for viewing the optical axis of the light receiving unit. The surface defect inspection apparatus according to claim 5, wherein the setting of the surface defect can be changed.
前記被検物体が前記被検面に垂直な軸を中心として回転可能に構成されていることを特徴とする請求項1〜7のいずれかに記載の表面欠陥検査装置。
The surface defect inspection apparatus according to claim 1, wherein the test object is configured to be rotatable about an axis perpendicular to the test surface.
前記照明ユニットおよび前記受光ユニットの少なくともいずれかに波長選択手段を備えることを特徴とする請求項1〜8のいずれかに記載の表面欠陥検査装置。   The surface defect inspection apparatus according to claim 1, further comprising a wavelength selection unit in at least one of the illumination unit and the light receiving unit.
JP2001210905A 2001-07-11 2001-07-11 Surface defect inspection equipment Expired - Lifetime JP5288672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210905A JP5288672B2 (en) 2001-07-11 2001-07-11 Surface defect inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210905A JP5288672B2 (en) 2001-07-11 2001-07-11 Surface defect inspection equipment

Publications (2)

Publication Number Publication Date
JP2003028621A JP2003028621A (en) 2003-01-29
JP5288672B2 true JP5288672B2 (en) 2013-09-11

Family

ID=19046306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210905A Expired - Lifetime JP5288672B2 (en) 2001-07-11 2001-07-11 Surface defect inspection equipment

Country Status (1)

Country Link
JP (1) JP5288672B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520846B2 (en) * 2004-12-28 2010-08-11 日本分光株式会社 Near-field film thickness measurement system
JP2007064948A (en) * 2005-09-02 2007-03-15 Nikon Corp Device and method for inspecting surface defect
US7372557B2 (en) 2005-08-26 2008-05-13 Nikon Corporation Surface defect inspection apparatus and surface defect inspection method
JP4736629B2 (en) * 2005-08-26 2011-07-27 株式会社ニコン Surface defect inspection equipment
JPWO2007132925A1 (en) * 2006-05-15 2009-09-24 株式会社ニコン Surface inspection device
JP5078583B2 (en) * 2007-12-10 2012-11-21 インターナショナル・ビジネス・マシーンズ・コーポレーション Macro inspection device and macro inspection method
WO2009121628A2 (en) * 2008-04-04 2009-10-08 Nanda Technologies Gmbh Optical inspection system and method
JP5685120B2 (en) * 2011-03-18 2015-03-18 カヤバ工業株式会社 Appearance inspection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252334A (en) * 1999-03-04 2000-09-14 Nikon Corp Device and method for surface inspection
JP2001013085A (en) * 1999-06-30 2001-01-19 Nidek Co Ltd Flow inspection apparatus

Also Published As

Publication number Publication date
JP2003028621A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
TWI404926B (en) Surface defect inspection device and surface defect inspection method
US20110141272A1 (en) Apparatus and method for inspecting an object surface defect
JP2002529758A (en) Apparatus and method for making flat workpieces
JP2002139451A (en) Surface inspection apparatus
JP2007303905A (en) Surface inspection device
JP2002014057A (en) Defect checking device
JP5288672B2 (en) Surface defect inspection equipment
US20060158643A1 (en) Method and system of inspecting mura-defect and method of fabricating photomask
TWI817991B (en) Optical system, illumination module and automated optical inspection system
JP3482425B2 (en) Inspection device
US8223328B2 (en) Surface inspecting apparatus and surface inspecting method
JP4462232B2 (en) Surface inspection device
JP2009103494A (en) Surface inspection apparatus
JP2008021884A (en) Inspection apparatus
JP4736629B2 (en) Surface defect inspection equipment
WO2020170389A1 (en) Foreign matter inspection device and foreign matter inspection method
JP3078784B2 (en) Defect inspection equipment
JP2004006504A (en) Bump inspection method and apparatus
JP2003289035A (en) Resist outer-periphery removing width inspecting device
JP2000028535A (en) Defect inspecting device
KR100508190B1 (en) A Flood Light for appearance inspection of LCD surface
JP2010190740A (en) Substrate inspection device, method, and program
JP2008008777A (en) Surface inspection system
JP5299764B2 (en) Evaluation apparatus and evaluation method
JP2005533260A (en) Wafer inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120220

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5288672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term