Nothing Special   »   [go: up one dir, main page]

JP5288276B2 - Manufacturing method of RTB-based permanent magnet - Google Patents

Manufacturing method of RTB-based permanent magnet Download PDF

Info

Publication number
JP5288276B2
JP5288276B2 JP2009198029A JP2009198029A JP5288276B2 JP 5288276 B2 JP5288276 B2 JP 5288276B2 JP 2009198029 A JP2009198029 A JP 2009198029A JP 2009198029 A JP2009198029 A JP 2009198029A JP 5288276 B2 JP5288276 B2 JP 5288276B2
Authority
JP
Japan
Prior art keywords
powder
mass
rtb
permanent magnet
hddr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009198029A
Other languages
Japanese (ja)
Other versions
JP2011049440A (en
Inventor
宣介 野澤
武司 西内
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009198029A priority Critical patent/JP5288276B2/en
Publication of JP2011049440A publication Critical patent/JP2011049440A/en
Application granted granted Critical
Publication of JP5288276B2 publication Critical patent/JP5288276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明はR−T−B系永久磁石の製造方法に関し、特にR−T−B系合金粉末にZn粉末を混合し、HDDR処理することで磁気特性が向上したHDDR磁石の製造方法に関する。   The present invention relates to a method for producing an R-T-B system permanent magnet, and more particularly to a method for producing a HDDR magnet having improved magnetic properties by mixing Zn powder with a R-T-B system alloy powder and subjecting it to HDDR treatment.

高性能永久磁石として代表的なR−T−B系永久磁石(RはNdおよび/またはPrを含む希土類元素、TはFeまたはFeの一部をCoおよび/またはNiで置換したもの、Bはホウ素)は、三元系正方晶化合物であるR14B相を主相として含む組織を有し、優れた磁気特性を発揮する。 R-T-B permanent magnets typical as high-performance permanent magnets (R is a rare earth element containing Nd and / or Pr, T is Fe or a part of Fe substituted with Co and / or Ni, B is Boron) has a structure including an R 2 T 14 B phase, which is a ternary tetragonal compound, as a main phase, and exhibits excellent magnetic properties.

R−T−B系永久磁石の製造方法のひとつとして、HDDR(Hydrogenation−Disproportionation−Desorption−Recombination)処理法が知られている。HDDR処理法は水素化(Hydrogenation)および不均化(Disproportionation)と、脱水素(Desorption)および再結合(Recombination)とを順次実行するプロセスを意味しており、異方性ボンド磁石用の磁石粉末の製造方法として採用される。公知のHDDR処理によれば、R−T−B系合金のインゴットまたは粉末を、Hガス雰囲気またはHガスと不活性ガスとの混合雰囲気中で温度500℃〜1000℃に保持し、それによって上記インゴットまたは粉末に水素を吸蔵させた後、例えばH圧力が13Pa以下の真空雰囲気、またはH分圧が13Pa以下の不活性雰囲気になるまで温度500℃〜1000℃で脱水素処理し、次いで冷却することを特徴としている。 An HDDR (Hydrogenation-Deposition-Decomposition-Recombination) processing method is known as one of the methods for producing an R-T-B permanent magnet. The HDDR treatment method means a process of sequentially performing hydrogenation and disproportionation, dehydrogenation and recombination, and is a magnetic powder for anisotropic bonded magnets. It is adopted as a manufacturing method. According to the known HDDR treatment, an R-T-B alloy ingot or powder is maintained at a temperature of 500 ° C. to 1000 ° C. in an H 2 gas atmosphere or a mixed atmosphere of an H 2 gas and an inert gas. It said after ingot or powder in a hydrogen is occluded, such as H 2 pressure is 13Pa or less of vacuum atmosphere, or H 2 partial pressure is dehydrogenated at a temperature 500 ° C. to 1000 ° C. until the following inactive atmosphere 13Pa by Then, it is cooled.

上記処理において、典型的には、次のような反応が進行する。すなわち、前記水素を吸蔵させるための熱処理によって、水素化ならびに不均化反応(双方を合わせて「HD反応」と呼ぶ。反応式の例:NdFe14B+2H→2NdH+12Fe+FeB)が進行し微細組織が形成される。次いで脱水素させるための熱処理を行うことにより、脱水素ならびに再結合反応(双方を合わせて「DR反応」と呼ぶ。反応式の例:2NdH+12Fe+FeB→NdFe14B+2H)が起こり、微細なR14B結晶相を含む合金が得られる。なお、HD反応とDR反応をあわせてHDDR反応と呼び、HD反応を起こすための熱処理を「HD処理」、DR反応を起こすための熱処理を「DR処理」と呼ぶ。 In the above treatment, typically, the following reaction proceeds. That is, hydrogenation and disproportionation reactions (both are collectively referred to as “HD reaction” by heat treatment for occluding hydrogen). Examples of reaction formulas: Nd 2 Fe 14 B + 2H 2 → 2NdH 2 + 12Fe + Fe 2 B) It progresses and a fine structure is formed. Next, by performing heat treatment for dehydrogenation, dehydrogenation and recombination reaction (both are referred to as “DR reaction”. Example of reaction formula: 2NdH 2 + 12Fe + Fe 2 B → Nd 2 Fe 14 B + 2H 2 ) occur. An alloy containing a fine R 2 T 14 B crystal phase is obtained. The HD reaction and the DR reaction are collectively referred to as an HDDR reaction, the heat treatment for causing the HD reaction is called “HD treatment”, and the heat treatment for causing the DR reaction is called “DR treatment”.

HDDR処理を施して製造されたR−T−B系磁石粉末は、大きな保磁力を有し、磁気的な異方性を示している。このような性質を有する理由は、金属組織が実質的に0.1μm〜1μmと非常に微細で、かつ、反応条件や組成を適切に選択することによって、容易磁化軸が一方向にそろった結晶の集合体となるためである。より詳細には、HDDR処理によって得られる極微細結晶の粒径が正方晶R14B系化合物の単磁区臨界粒径に近いために高い保磁力を発揮する。この正方晶R14B系化合物の非常に微細な結晶の集合体を「再結晶集合組織」と呼ぶ。 The R-T-B magnet powder produced by the HDDR process has a large coercive force and exhibits magnetic anisotropy. The reason for having such a property is that the metallographic structure is substantially as fine as 0.1 μm to 1 μm, and a crystal with easy magnetization axes aligned in one direction by appropriately selecting reaction conditions and composition. It is because it becomes the aggregate of. More specifically, since the grain size of the ultrafine crystal obtained by the HDDR treatment is close to the single domain critical grain size of the tetragonal R 2 T 14 B-based compound, it exhibits a high coercive force. An aggregate of very fine crystals of this tetragonal R 2 T 14 B-based compound is called a “recrystallized texture”.

HDDR処理によって作製された磁石粉末(以下、「HDDR磁粉」と称する)は、通常、結合樹脂(バインダ)と混合され、混合物(コンパウンド)にされた後、磁界中で圧縮成形や射出成形することによって、異方性ボンド磁石を形成する。また、HDDR磁粉を熱間圧縮成形などにより緻密化し、バルク磁石として用いることも検討、報告されている。   Magnet powder (hereinafter referred to as “HDDR magnetic powder”) produced by the HDDR process is usually mixed with a binder resin (binder) to form a mixture (compound), and then compression molding or injection molding in a magnetic field. Thus, an anisotropic bonded magnet is formed. Further, it has been studied and reported that HDDR magnetic powder is densified by hot compression molding and used as a bulk magnet.

しかし、HDDR磁粉を含むR−T−B系永久磁石は耐熱性が十分高くなく、自動車用途など高温にさらされる用途では不可逆減磁が生じる可能性が高いため、使用することが困難であった。耐熱性を改善するためには保磁力を向上させる必要があり、これまで保磁力を向上させる方法がいくつか提案されている。
特許文献1には、希土類水素化物粉末とフェロボロン粉末、および鉄粉末を配合して得られた混合粉末に対してHDDR処理を行うことで、RFe14B相の生成と微細結晶組織を同時に行う方法、ならびに、希土類水素化物粉末にDy、Tb、Prを、鉄粉末にCo、C、Al、Ga、Si、Cr、Ti、V、Nbを添加することで、保磁力が向上する効果があることが開示されている。
また特許文献2には、合金鋳塊作製の際に添加すると蒸気圧が大きいため組成の制御が困難で、結果的に保磁力の向上がほとんど見られないDy、Tbなどの添加方法として、HDDR磁粉の表面にNd、Dy、Tb、Prまたはそれらを含有する合金によるコーティング層を持たせること、具体的には、HDDR磁粉とこれらの元素の水素化物または合金の粉末を混合して熱処理し、磁粉に拡散させることで保磁力が向上することが開示されている。
特許文献3には、RFeB系材料の水素化物粉末、Dy、Tb、Nd、Prなどの単体、合金、化合物、またはそれらの水素化物の粉末を混合して拡散熱処理後、脱水素工程を行う方法、ならびに、前記RFeB系材料にTi、V、Zr、Ni、Cu、Al、Si、Cr、Mn、Zn、Mo、Hf、W、Ta、Snのうち1種以上を含有することにより、磁石の保磁力、角形性を改善できることが開示されている
さらに特許文献4ではDy、Tb、Ho、Er、Tm、Gd、Nd、Sm、Pr、Ce、La、Y、Zr、Cr、Mo、V、Ga、Zn、Cu、Mg、Li、Al、Mn、Nb、Tiの中から選択される少なくとも一種の金属蒸気を磁粉に付着させ熱処理し拡散させることで、高磁気特性及び耐食性、耐候性が向上することが開示され、特にDy、Tb等が磁粉の粒界に拡散することで高磁気特性の磁石となることが開示されている。
また、特許文献5では、HDDR磁粉にZn粉末を混合し、真空中で300〜500℃まで加熱し、金属蒸気となったZnを磁粉に付着、拡散させ、磁粉表面および磁粉内部の結晶粒界に沿う領域に防錆層を形成することで、処理直後の保磁力は若干低下するものの、磁粉の耐食性が向上し、またその磁粉を用いて作製したボンド磁石の120℃における残留磁束密度Bの温度係数が向上することが開示されている。
However, R-T-B permanent magnets containing HDDR magnetic powder are not sufficiently high in heat resistance and are difficult to use because they are likely to cause irreversible demagnetization in applications exposed to high temperatures such as automobile applications. . In order to improve the heat resistance, it is necessary to improve the coercive force, and several methods for improving the coercive force have been proposed so far.
In Patent Document 1, the HDDR treatment is performed on a mixed powder obtained by blending a rare earth hydride powder, a ferroboron powder, and an iron powder, thereby simultaneously generating the R 2 Fe 14 B phase and the fine crystal structure. And the effect of improving the coercive force by adding Dy, Tb, Pr to the rare earth hydride powder and adding Co, C, Al, Ga, Si, Cr, Ti, V, Nb to the iron powder. It is disclosed that there is.
Patent Document 2 discloses HDDR as a method for adding Dy, Tb, etc., in which the composition is difficult to control due to the large vapor pressure when added during the production of an alloy ingot, and as a result, the coercive force is hardly improved. Having a coating layer of Nd, Dy, Tb, Pr or an alloy containing them on the surface of the magnetic powder, specifically, HDDR magnetic powder and a hydride or alloy powder of these elements are mixed and heat-treated, It is disclosed that the coercive force is improved by diffusing the magnetic powder.
Patent Document 3 discloses a method of performing a dehydrogenation step after diffusion heat treatment by mixing RFeB-based material hydride powder, simple substance such as Dy, Tb, Nd, and Pr, alloy, compound, or hydride powder thereof. In addition, the RFeB-based material contains at least one of Ti, V, Zr, Ni, Cu, Al, Si, Cr, Mn, Zn, Mo, Hf, W, Ta, and Sn. It is disclosed that coercive force and squareness can be improved. Further, Patent Document 4 discloses Dy, Tb, Ho, Er, Tm, Gd, Nd, Sm, Pr, Ce, La, Y, Zr, Cr, Mo, V, High magnetic properties, corrosion resistance, and weather resistance are improved by attaching at least one metal vapor selected from Ga, Zn, Cu, Mg, Li, Al, Mn, Nb, and Ti to the magnetic powder and heat-treating and diffusing. To be disclosed It is, in particular Dy, discloses that Tb or the like is a magnet of high magnetic properties by diffusing at the grain boundaries of the magnetic powder.
Moreover, in patent document 5, Zn powder is mixed with HDDR magnetic powder, it heats to 300-500 degreeC in a vacuum, Zn which became metal vapor adheres to a magnetic powder, is diffused, a magnetic grain surface, and the grain boundary inside a magnetic powder. Although the coercive force immediately after the treatment is slightly reduced by forming a rust preventive layer in the region along the magnetic field, the corrosion resistance of the magnetic powder is improved, and the residual magnetic flux density B r at 120 ° C. of the bond magnet produced using the magnetic powder is increased. It is disclosed that the temperature coefficient is improved.

これらの特許文献に開示されている使用元素のなかでも、特にGa、Dy、Tbは高い保磁力向上効果が知られている。しかしGa、Dy、Tbは高価で、特にDy、Tbは資源的に希少であり、これらの元素の使用量を最小限に抑えつつ、HDDR磁粉の保磁力を向上させる方法が望まれている。   Among the elements used disclosed in these patent documents, Ga, Dy, and Tb are particularly known to have a high coercive force improving effect. However, Ga, Dy, and Tb are expensive, and Dy and Tb are particularly scarce in resources. Therefore, a method for improving the coercive force of HDDR magnetic powder while minimizing the amount of these elements to be used is desired.

特開平2−217406号公報JP-A-2-217406 特開2000−96102号公報JP 2000-96102 A 特開2002−93610号公報JP 2002-93610 A 特開2008−69415号公報JP 2008-69415 A 特開2002−105503号公報JP 2002-105503 A

本発明は、上記の問題を解決し、HDDR磁粉に対し、Ga、Dy、Tb等の高価、または資源的に希少な元素の使用を抑制し、これらを含まない元素を利用してHD反応、DR反応を制御することで、HDDR磁粉の保磁力を向上させることを目的とする。   The present invention solves the above-mentioned problems, suppresses the use of expensive or resource-rare elements such as Ga, Dy, Tb, etc. for HDDR magnetic powder, and makes use of elements that do not contain these HD reactions, It aims at improving the coercive force of HDDR magnetic powder by controlling DR reaction.

上記のように、従来、HDDR磁粉に対して種々の添加元素を種々のタイミングで添加することによって保磁力を向上させることが検討されてきた。しかしながら、その際の添加元素として、Znは沸点が907℃と低く、また蒸気圧が高いため、蒸発あるいは昇華しやすいことから、溶解による組成の調整が困難であった。またHDDR処理時にもZnが昇華してしまうという問題があり、HDDR処理前における添加は困難であった。   As described above, it has been conventionally studied to improve the coercive force by adding various additive elements to the HDDR magnetic powder at various timings. However, as an additive element at that time, Zn has a boiling point as low as 907 ° C. and has a high vapor pressure, so that it is easy to evaporate or sublimate, and it is difficult to adjust the composition by dissolution. Also, there is a problem that Zn is sublimated during HDDR treatment, and addition before HDDR treatment is difficult.

特許文献4や特許文献5においては、HDDR磁粉に対してZnの金属蒸気を付着させて拡散熱処理する検討も行われているが、特許文献4では、保磁力の向上が大きく期待できるDy、Tbなどとの混合金属蒸気によって保磁力を向上させており、特許文献5では、Zn単独の金属蒸気による処理を行っているが、処理直後の保磁力は、逆に低下してしまっている。発明者らの検討においても、従来技術で使用されているHDDR磁粉と同様の組成(いずれも希土類量が13原子%(29mass%)以下の組成の合金粉末が用いられている)のHDDR磁粉に対してZn単独で金属蒸気を付着させ拡散熱処理を行っても保磁力は全く向上しなかった。   In Patent Document 4 and Patent Document 5, a study of diffusion heat treatment by attaching a metal vapor of Zn to HDDR magnetic powder is also being conducted. However, in Patent Document 4, Dy and Tb can be expected to greatly improve the coercive force. The coercive force is improved by the mixed metal vapor and the like, and in Patent Document 5, the treatment with the metal vapor of Zn alone is carried out, but the coercive force immediately after the treatment is decreased. In the study by the inventors, the HDDR magnetic powder having the same composition as that of the HDDR magnetic powder used in the prior art (although alloy powder having a rare earth content of 13 atomic% (29 mass%) or less is used) is used. On the other hand, the coercive force did not improve at all even when diffusion vapor heat treatment was performed by attaching metal vapor alone with Zn.

そこで発明者らは、Znをどのように添加すれば、保磁力向上効果が生じるか検討したところ、従来よりも希土類量の多いR−T−B系合金粉末に対し、粉末状のZnをR−T−B系合金粉末に混合してHDDR処理することで、HDDR反応を制御し、最終的にZnが蒸発、昇華してしまっても、得られるHDDR磁粉の保磁力を向上させられることを知見した。   Therefore, the inventors examined how to add Zn to improve the coercive force. As a result, the powdered Zn was added to the R—T—B alloy powder having a larger amount of rare earth than the conventional one. -By mixing with TB alloy powder and HDDR treatment, the HDDR reaction is controlled, and even if Zn eventually evaporates and sublimates, the coercive force of the HDDR magnetic powder obtained can be improved. I found out.

以上のようにして成された本発明のR−T−B系永久磁石の製造方法は、組成中の希土類量が29mass%超40mass%以下およびB量が0.3mass%以上2mass%以下であるR−T−B系合金粉末を用意する工程と、少なくともZnを30mass%以上含みGa、Dy、およびTbを含まない金属、合金のいずれかの粉末であるZn含有粉末を用意する工程と、前記R−T−B系合金粉末およびZn含有粉末を、Znが全体の0.50mass%以上1.5mass%以下となるように混合して混合粉末とする工程と、前記混合粉末をHDDR処理してR−T−B系永久磁石粉末を得る工程と、を含むことを特徴とする。
好ましい形態において、前記R−T−B系永久磁石粉末を熱間圧縮成形してバルク磁石を作製する。
好ましい形態において、前記R−T−B系永久磁石粉末または前記バルク磁石に対し、さらに真空中あるいは不活性ガス中で450℃以上700℃以下の温度で時効熱処理を行う工程を含む。
好ましい形態において、前記熱間圧縮成形を行う前に前記R−T−B系永久磁石粉末を磁界中で成形することによって圧粉体を仮成形し、前記圧粉体を熱間圧縮成形して磁気的異方性を有するバルク磁石を作製する。
The manufacturing method of the R-T-B system permanent magnet of the present invention formed as described above is such that the rare earth amount in the composition is more than 29 mass% and not more than 40 mass%, and the B amount is not less than 0.3 mass% and not more than 2 mass%. A step of preparing an RTB-based alloy powder, a step of preparing a Zn-containing powder which is a powder of any metal or alloy containing at least 30 mass% of Zn and not containing Ga, Dy, and Tb; The step of mixing the RTB alloy powder and the Zn-containing powder so that Zn is 0.50 mass% or more and 1.5 mass% or less of the whole to obtain a mixed powder; And obtaining a RTB-based permanent magnet powder.
In a preferred embodiment, the RTB-based permanent magnet powder is hot compression molded to produce a bulk magnet.
In a preferred embodiment, the method includes a step of subjecting the RTB-based permanent magnet powder or the bulk magnet to an aging heat treatment at a temperature of 450 ° C. or higher and 700 ° C. or lower in a vacuum or an inert gas.
In a preferred embodiment, before performing the hot compression molding, the RTB-based permanent magnet powder is molded in a magnetic field to temporarily form a green compact, and the green compact is subjected to hot compression molding. A bulk magnet having magnetic anisotropy is produced.

本発明によれば、Ga、Dy、Tbなどの、高価で希少な資源の使用を極力抑制しつつ、保磁力の向上した高特性なR−T−B系永久磁石を提供することができる。   According to the present invention, it is possible to provide a high-performance RTB-based permanent magnet with improved coercive force while suppressing the use of expensive and scarce resources such as Ga, Dy, and Tb as much as possible.

本発明によるR−T−B系永久磁石の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the RTB type permanent magnet by this invention. 混合粉末を熱間圧縮成形するための装置の構成例を示す図である。It is a figure which shows the structural example of the apparatus for carrying out hot compression molding of mixed powder.

本発明のR−T−B系永久磁石の製造方法は、組成中の希土類量が29mass%超40mass%以下およびB量が0.3mass%以上2mass%以下であるR−T−B系合金粉末を用意する工程と、少なくともZnを30mass%以上含みGaおよび重希土類金属を含まない金属、合金のいずれかの粉末であるZn含有粉末を用意する工程と、前記R−T−B系合金粉末およびZn含有粉末を、Znが全体の0.50mass%以上1.5mass%以下となるように混合して混合粉末とする工程と、前記混合粉末をHDDR処理してR−T−B系永久磁石粉末を得る工程と、を含むことを特徴とする。 The method for producing an RTB-based permanent magnet according to the present invention includes an RTB-based alloy powder in which the amount of rare earth in the composition is more than 29 mass% and not more than 40 mass% and the amount of B is not less than 0.3 mass% and not more than 2 mass%. A step of preparing a Zn-containing powder which is a powder of any metal or alloy containing at least 30 mass% of Zn and not containing Ga and heavy rare earth metal, and the RTB-based alloy powder and A step of mixing Zn-containing powder so that Zn is 0.50 mass% or more and 1.5 mass% or less of the whole to obtain a mixed powder, and HDDR treatment of the mixed powder to obtain an R-T-B permanent magnet Obtaining a powder.

発明者らの検討によれば、本発明において、HDDR処理後のR−T−B系永久磁石粉末中のZn量は、HDDR処理前に混合した量よりも遥かに減少し、およそ1/20以下となる。にもかかわらず、本発明のR−T−B系永久磁石の保磁力が、Zn粉末の混合量が適正でないものに比べて格段に向上しているのは、ZnがHDDR反応の際の組織変化に関与しており、そのために保磁力が向上している、と推察される。さらに、Zn粉末混合による保磁力の向上は、原料粉末であるR−T−B系合金粉末組成中の希土類量が、特許文献1〜5で使用されているHDDR磁粉(いずれも希土類量が13原子%(29mass%)以下の組成の合金粉末が用いられている)の組成中の希土類量よりも多い、29mass%超の場合でないと起こらないことがわかった。このことから、前記HDDR反応の際にZnが関与する反応には、希土類Rも関与しており、希土類量が29mass%以下の場合には、Rが前記反応に消費され、結晶粒界のRリッチ相を構成するR量が足りなくなるためではないか、と推察される。   According to the study by the inventors, in the present invention, the amount of Zn in the R-T-B system permanent magnet powder after the HDDR treatment is much smaller than the amount mixed before the HDDR treatment, and is about 1/20. It becomes as follows. Nevertheless, the coercive force of the R-T-B system permanent magnet of the present invention is remarkably improved compared to that in which the mixing amount of Zn powder is not appropriate, the structure of Zn during the HDDR reaction. It is presumed that the coercive force is improved due to the change. Furthermore, the improvement of the coercive force by mixing Zn powder is the same as that of the HDDR magnetic powder used in Patent Documents 1 to 5 (all rare earth content is 13). It has been found that this does not occur unless the amount of rare earth is greater than 29 mass%, which is larger than the amount of rare earth in the composition of an atomic percent (29 mass%) or less alloy powder is used. From this, the rare earth R is also involved in the reaction involving Zn in the HDDR reaction, and when the rare earth amount is 29 mass% or less, R is consumed in the reaction, and the R of the grain boundary It is presumed that the R amount constituting the rich phase is insufficient.

図1は、本発明によるR−T−B系永久磁石の製造工程を示すフローチャートである。以下、図1に沿って説明する。   FIG. 1 is a flowchart showing a manufacturing process of an RTB permanent magnet according to the present invention. Hereinafter, description will be given with reference to FIG.

<R−T−B系合金粉末(原料粉末)>
R−T−B系合金粉末は、原料合金(出発合金)を公知の方法で粉砕することによって作製される。以下、各工程を詳細に説明する。
<RTB alloy powder (raw material powder)>
The RTB-based alloy powder is produced by pulverizing a raw material alloy (starting alloy) by a known method. Hereinafter, each process will be described in detail.

〈出発合金〉
まず、硬磁性相としてR14B相(NdFe14B型化合物相。以下、「R14B」と略記する。)を有するR−T−B系合金(出発合金)のインゴットを用意する。ここで、「R」は、希土類元素であり、Ndおよび/またはPrを50mass%以上含む。本明細書における希土類元素Rはイットリウム(Y)を含んでもよい。「T」は、FeまたはFeの一部をCoおよび/またはNiで置換したものであり、Feを50mass%以上含む遷移金属元素である。「B」は一部をCで置換してもよい。
このR−T−B系合金(出発合金)は、R14B相を体積比率で50%以上含む。高い残留磁束密度Bを得るためには、R14B相を体積比率で80%以上含むことが好ましい。
<Starting alloy>
First, an RTB-based alloy (starting alloy) having an R 2 T 14 B phase (Nd 2 Fe 14 B type compound phase, hereinafter abbreviated as “R 2 T 14 B”) as a hard magnetic phase. Prepare an ingot. Here, “R” is a rare earth element and contains Nd and / or Pr at 50 mass% or more. The rare earth element R in this specification may contain yttrium (Y). “T” is a transition metal element in which Fe or a part of Fe is substituted with Co and / or Ni and contains 50 mass% or more of Fe. “B” may be partially substituted with C.
This R-T-B system alloy (starting alloy) contains R 2 T 14 B phase in a volume ratio of 50% or more. In order to obtain a high residual magnetic flux density Br , it is preferable that 80% or more of the R 2 T 14 B phase is included by volume ratio.

出発合金に含まれる希土類元素Rの大部分は、R14B相を構成しているが、一部は、Rリッチ相やRや、その他の相を構成している。発明者らの検討によれば、従来技術において、HDDR磁粉にZn粉末を混合し、熱処理しても保磁力が向上しなかった理由は、混合したZnの一部が熱処理時に希土類元素Rと化合物を形成することで、出発合金中のRの一部がそのZn化合物形成に費やされ、結晶粒界のRリッチ相を構成するR量が足りなくなるためであることがわかった。
発明者らの検討によれば、希土類元素Rの量は、29mass%超含まれることが必要である。Znの混合量が0.5mass%以上の場合は、Rの量は30mass%以上が好ましく、Znの混合量が1mass%以上の場合は、Rの量は31mass%以上が更に好ましい。Rの上限は、特に制限はないが、耐食性や残留磁束密度Bの低下を考慮すると、40mass%以下が好ましく、35mass%以下がより好ましい。出発合金のRの一部(全体の5mass%程度)をDyおよび/またはTbとすることで、保磁力の向上を図ることができ、本発明ではそれを否定するものではないが、高価で、且つ希少資源であるDy、Tbの使用量を極力抑えるという観点から、その量は2mass%以下が好ましく、1mass%以下がより好ましい。後から混合するZnによってDy、Tbの代替が可能である。
Most of the rare earth element R contained in the starting alloy constitutes the R 2 T 14 B phase, but a part constitutes the R rich phase, R 2 O 3 , and other phases. According to the study by the inventors, in the prior art, Zn powder was mixed with HDDR magnetic powder, and the coercive force was not improved even after heat treatment. It was found that a part of R in the starting alloy was consumed for forming the Zn compound, and the amount of R constituting the R-rich phase at the grain boundary was insufficient.
According to the study by the inventors, the amount of the rare earth element R needs to be contained in excess of 29 mass%. When the Zn content is 0.5 mass% or more, the amount of R is preferably 30 mass% or more, and when the Zn content is 1 mass% or more, the amount of R is more preferably 31 mass% or more. The upper limit of R is not particularly limited, considering the decrease in corrosion resistance and residual magnetic flux density B r, is preferably not more than 40 mass%, more preferably at most 35 mass%. By setting a part of R of the starting alloy (about 5 mass% of the whole) to Dy and / or Tb, it is possible to improve the coercive force. Further, from the viewpoint of minimizing the amount of rare resources Dy and Tb used, the amount is preferably 2 mass% or less, and more preferably 1 mass% or less. Substitution of Dy and Tb is possible by Zn mixed later.

R−T−B系永久磁石におけるBの量は、少なすぎるとR17相等の磁気特性を低下させる相が析出し、多すぎるとBリッチ相等の非磁性相が析出し残留磁束密度Bが低下するため、合金全体の0.5mass%以上、2mass%以下が好ましく、0.7mass%以上、1.5mass%以下がより好ましく、0.9mass%以上、1.2mass%以下がさらに好ましい。 If the amount of B in the R-T-B system permanent magnet is too small, a phase that lowers the magnetic properties such as the R 2 T 17 phase will precipitate, and if it is too large, a nonmagnetic phase such as the B-rich phase will precipitate and residual magnetic flux density B Since r decreases, the total alloy content is preferably 0.5 mass% or more and 2 mass% or less, more preferably 0.7 mass% or more and 1.5 mass% or less, and further preferably 0.9 mass% or more and 1.2 mass% or less. .

Tは残余を占める。前述したとおり、Tは、FeまたはFeの一部をCoおよび/またはNiで置換したものであり、Feを50%以上含む遷移金属元素である。キュリー点を高めること、耐食性を高めることなどを目的としてTの一部をCoおよび/またはNiとすることがある。R14B相の飽和磁化を高めるという観点から、NiよりもCoを選定することが望ましい。また、合金全体に対するCoの総量は、コストなどの観点から、20mass%以下であることが好ましく、8mass%以下であることがさらに好ましい。Coを全く含有しない場合でも高い磁気特性は得られるが、1mass%以上のCoを含有すると、より安定した磁気特性を得ることができる。 T occupies the remainder. As described above, T is a transition metal element in which Fe or a part of Fe is substituted with Co and / or Ni and contains 50% or more of Fe. A part of T may be Co and / or Ni for the purpose of increasing the Curie point and enhancing the corrosion resistance. From the viewpoint of increasing the saturation magnetization of the R 2 T 14 B phase, it is desirable to select Co rather than Ni. Further, the total amount of Co with respect to the entire alloy is preferably 20% by mass or less, and more preferably 8% by mass or less from the viewpoint of cost and the like. High magnetic properties can be obtained even when no Co is contained, but more stable magnetic properties can be obtained when containing 1 mass% or more of Co.

磁気特性向上などの効果を得るため、原料合金にAl、Ti、V、Cr、Ga、Nb、Mo、In、Sn、Hf、Ta、W、Cu、Si、Zrなどの元素を適宜添加してもよい。ただし、添加量の増加は、特に飽和磁化の低下を招くため、総量で10mass%以下とすることが好ましい。また、V、Ga、In、Hf、Taは高価なため、コストなどの観点から1mass%以下が好ましい。   In order to obtain effects such as improvement of magnetic properties, elements such as Al, Ti, V, Cr, Ga, Nb, Mo, In, Sn, Hf, Ta, W, Cu, Si, and Zr are appropriately added to the raw material alloy. Also good. However, since an increase in the amount of addition causes a decrease in saturation magnetization in particular, the total amount is preferably 10 mass% or less. In addition, since V, Ga, In, Hf, and Ta are expensive, 1 mass% or less is preferable from the viewpoint of cost.

出発合金はブックモールド法や遠心鋳造法、ストリップキャスト法など公知の方法によって作製される。ただしHDDR磁粉は、HDDR処理後に磁石粉末の各粒子が優れた磁気的異方性を示すために、原料粉末の各粒子の中で容易磁化軸が一方向にそろっている必要がある。このため出発合金は、粉砕する前の段階において、NdFe14B型結晶相の結晶方位が同一方向に揃った領域の平均サイズが、粉砕後の粉末粒子の平均粒径よりも大きな組織となるように作製方法を適宜選択する必要がある。ブックモールド法や遠心鋳造法によってNdFe14B型化合物を粗大化させた原料合金を用いる場合、鋳造の初晶であるα−Feを完全除去することが困難であり、原料合金における組織均質化などを目的として、粉砕前の原料合金に対して熱処理を施してもよい。このような熱処理は、真空または不活性雰囲気において、典型的には1000℃以上の温度で実行され得る。 The starting alloy is produced by a known method such as a book mold method, a centrifugal casting method, or a strip casting method. However, the HDDR magnetic powder needs to have an easy magnetization axis in one direction in each particle of the raw material powder in order that each particle of the magnet powder exhibits excellent magnetic anisotropy after the HDDR treatment. For this reason, the starting alloy has a structure in which the average size of the region in which the crystal orientations of the Nd 2 Fe 14 B type crystal phase are aligned in the same direction before the pulverization is larger than the average particle size of the pulverized powder particles It is necessary to select a manufacturing method as appropriate. When using a raw material alloy obtained by coarsening an Nd 2 Fe 14 B type compound by a book mold method or a centrifugal casting method, it is difficult to completely remove α-Fe, which is the primary crystal of casting, and the structure of the raw material alloy is homogeneous. Heat treatment may be applied to the raw material alloy before pulverization for the purpose of making it easier. Such heat treatment can be performed in a vacuum or inert atmosphere, typically at a temperature of 1000 ° C. or higher.

〈粉砕〉
次に、原料合金(出発合金)を公知の方法で粉砕することにより原料粉末を作製する。本実施形態では、まず、ジョークラッシャーなどの機械的粉砕法や公知の水素粉砕法などを用いて出発合金を粉砕し、大きさ50μm〜1000μm程度に粉砕粉を作製する。
<Crushing>
Next, a raw material powder is produced by pulverizing the raw material alloy (starting alloy) by a known method. In the present embodiment, first, the starting alloy is pulverized using a mechanical pulverization method such as a jaw crusher or a known hydrogen pulverization method to produce pulverized powder having a size of about 50 μm to 1000 μm.

<Zn含有粉末>
Zn含有粉末は、少なくともZnを30mass%以上含みGa、Dy、およびTbを含まない金属、合金のいずれかの粉末である。また取り扱い上の問題で一部酸化物などが含まれていても良い。ただし、不純物の混入による磁気特性の低下や、合金化した際の融点上昇による拡散効率低下の観点から、不純物以外はすべてZnで構成される粉末が好ましい。Zn含有粉末の粒径は100μm以下が好ましく、分散性の観点から10μm以下がより好ましい。また、このように微細なZn粉末は活性なため取り扱いは不活性ガス中で行うのが好ましい。
<Zn-containing powder>
The Zn-containing powder is a powder of any metal or alloy that contains at least 30 mass% of Zn and does not contain Ga, Dy, and Tb. Further, oxides and the like may be partially contained due to handling problems. However, from the viewpoint of lowering the magnetic properties due to the inclusion of impurities and lowering the diffusion efficiency due to the increase in melting point when alloyed, powders other than impurities are preferably composed of Zn. The particle size of the Zn-containing powder is preferably 100 μm or less, and more preferably 10 μm or less from the viewpoint of dispersibility. Moreover, since such fine Zn powder is active, it is preferable to handle it in an inert gas.

<混合>
R−T−B系合金粉末とZn含有粉末の混合は、ミキサー等の公知の技術を用い、Znが全体の0.50mass%以上1.5mass%以下となるように混合し、混合粉末を作製する。Znを0.50mass%以上混合することにより、保磁力の向上効果が発現する。Znの混合量が1.5mass%を超えると、逆に保磁力が低下する。合金粉末やZn含有粉末の酸化抑制のため、混合は不活性ガス中で行うのが好ましい。
<Mixed>
R-T-B alloy powder and Zn-containing powder are mixed using a known technique such as a mixer, so that Zn is 0.50 mass% to 1.5 mass% of the whole, and the mixed powder is mixed. Make it. By mixing Zn in an amount of 0.50 mass% or more, the effect of improving the coercive force is exhibited. If the amount of Zn mixed exceeds 1.5 mass%, the coercive force decreases. In order to suppress oxidation of the alloy powder or the Zn-containing powder, the mixing is preferably performed in an inert gas.

<HDDR処理>
次に、上記粉砕工程によって得られた混合粉末に対し、HDDR処理を施す。HD反応のための昇温工程は、水素分圧10kPa以上500kPa以下の水素ガス雰囲気または水素ガスと不活性ガス(ArやHeなど)の混合雰囲気、不活性ガス雰囲気、真空中のいずれかで行う。昇温工程を不活性ガス雰囲気または真空中で行うと、昇温時の反応速度制御の困難性に起因する磁気特性低下を抑制することができる。
<HDDR processing>
Next, the HDDR process is performed with respect to the mixed powder obtained by the said grinding | pulverization process. The temperature raising step for the HD reaction is performed in a hydrogen gas atmosphere with a hydrogen partial pressure of 10 kPa or more and 500 kPa or less, or a mixed atmosphere of hydrogen gas and an inert gas (such as Ar or He), an inert gas atmosphere, or in a vacuum. . When the temperature raising step is performed in an inert gas atmosphere or in a vacuum, it is possible to suppress a decrease in magnetic characteristics due to difficulty in controlling the reaction rate at the time of temperature raising.

HD処理は、水素分圧10kPa以上500kPa以下の水素ガス雰囲気または水素ガスと不活性ガス(ArやHeなど)の混合雰囲気で、650℃以上1000℃未満で行う。HD処理時の水素分圧は20kPa以上200kPa以下がより好ましい。処理温度は700℃以上900℃以下であることがより好ましい。HD処理に要する時間は、15分以上10時間以下であり、典型的には30分以上5時間以下の範囲に設定される。なお、R−T−B系合金中のTについて、Co量が合金全体の組成に対し、3mass%以下の場合は、昇温および/またはHD処理時の水素分圧を5kPa以上100kPa以下、より好ましくは、10kPa以上50kPa以下とすることで、HDDR処理における異方性の低下を抑制できる。   The HD treatment is performed at 650 ° C. or more and less than 1000 ° C. in a hydrogen gas atmosphere having a hydrogen partial pressure of 10 kPa or more and 500 kPa or less or in a mixed atmosphere of hydrogen gas and inert gas (Ar, He, etc.). The hydrogen partial pressure during HD processing is more preferably 20 kPa or more and 200 kPa or less. The treatment temperature is more preferably 700 ° C. or higher and 900 ° C. or lower. The time required for HD processing is 15 minutes or more and 10 hours or less, and is typically set in a range of 30 minutes or more and 5 hours or less. When T in the R-T-B alloy is 3 mass% or less with respect to the composition of the entire alloy, the hydrogen partial pressure during temperature rise and / or HD treatment is 5 kPa or more and 100 kPa or less. Preferably, a decrease in anisotropy in the HDDR process can be suppressed by setting the pressure to 10 kPa or more and 50 kPa or less.

HD処理のあと、DR処理を行う。HD処理とDR処理は同一の装置内で連続的に行うこともできるが、別々の装置を用いて不連続的に行うこともできる。
DR処理は、真空または不活性ガス雰囲気下において650℃以上1000℃未満で行う。処理時間は、通常、15分以上10時間以下であり、典型的には30分以上、2時間以下の範囲に設定される。なお、雰囲気を段階的に制御する(例えば水素分圧を段階的に下げたり、減圧圧力を段階的に下げたりする)ことができることは言うまでもない。このようにしてR−T−B系永久磁石粉末を得る。
DR processing is performed after HD processing. The HD process and the DR process can be performed continuously in the same apparatus, but can also be performed discontinuously using separate apparatuses.
The DR treatment is performed at 650 ° C. or higher and lower than 1000 ° C. in a vacuum or an inert gas atmosphere. The treatment time is usually 15 minutes or more and 10 hours or less, and is typically set in a range of 30 minutes or more and 2 hours or less. Needless to say, the atmosphere can be controlled stepwise (for example, the hydrogen partial pressure can be lowered stepwise or the reduced pressure can be lowered stepwise). In this way, an R-T-B permanent magnet powder is obtained.

HDDR処理を施した後のR−T−B系永久磁石粉末に対し、さらに磁気特性の向上を目的として真空中、あるいは不活性ガス中にて450℃以上700℃以下の温度で時効熱処理を施しても良い。   The R-T-B permanent magnet powder after the HDDR treatment is subjected to an aging heat treatment at a temperature of 450 ° C. to 700 ° C. in vacuum or in an inert gas for the purpose of further improving the magnetic properties. May be.

<熱間圧縮成形>
上記R−T−B系永久磁石粉末は、上記のように必要に応じて時効熱処理を行ってボンド磁石用磁粉として利用することができるが、ホットプレス法などの熱間圧縮成形を用いることによって、緻密化を行い、バルク磁石(フルデンス磁石)を得ることもできる。
<Hot compression molding>
The RTB-based permanent magnet powder can be used as a magnetic powder for a bonded magnet by performing an aging heat treatment as necessary as described above, but by using hot compression molding such as a hot press method. Then, it can be densified to obtain a bulk magnet.

以下に熱間圧縮成形によるフルデンス化について、具体的な実施形態の一例を示す。混合粉末に対する加熱圧縮は、公知の加熱圧縮技術を用いて行うことができる。例えば、ホットプレス、SPS(spark plasma sintering)法、HIP、熱間圧延などの加熱圧縮処理を行うことが可能である。なかでも、所望の形状を得やすいホットプレスやSPS法が好適に用いられ得る。本実施形態では以下の手順でホットプレスを行う。   An example of a specific embodiment will be shown below for full condensation by hot compression molding. Heat compression for the mixed powder can be performed using a known heat compression technique. For example, it is possible to perform heat compression treatment such as hot pressing, SPS (spark plasma sintering) method, HIP, hot rolling. Especially, the hot press and SPS method which are easy to obtain a desired shape can be used suitably. In this embodiment, hot pressing is performed according to the following procedure.

まず、上記のR−T−B系永久磁石粉末を用いて圧粉体を仮成形する。圧粉体を仮成形する工程は、10MPa〜200MPaの圧力を印加し、0.4MA/m〜16MA/mの磁界中(静磁界、パルス磁界など)で行うことが望ましい。仮成形は、公知の粉末プレス装置によって行うことができる。粉末プレス装置から取り出したときの圧粉体密度(仮成形体密度)は、3.5g/cm〜5.2g/cm程度である。 First, a green compact is temporarily formed using the above R-T-B system permanent magnet powder. The step of temporarily forming the green compact is preferably performed in a magnetic field (such as a static magnetic field or a pulsed magnetic field) of 0.4 MA / m to 16 MA / m by applying a pressure of 10 MPa to 200 MPa. The temporary molding can be performed by a known powder press apparatus. Compact density when taken out from the powder press machine (preformed body density) is 3.5g / cm 3 ~5.2g / cm 3 order.

上記の仮成形工程は、磁界を印加することなく実行してもよい。また仮成形工程を行わなくてもよい。磁界配向を行わない、または仮成形工程を行わず粉末のまま加熱圧縮処理を行った場合、最終的には等方性のフルデンス磁石が得られることになる。しかし、より高い磁気特性を得るためには、磁界配向を行いながら仮成形工程を実行し、最終的に異方性のフルデンス磁石を得ることが好ましい。   The temporary forming step may be performed without applying a magnetic field. Moreover, it is not necessary to perform a temporary forming process. When the magnetic field orientation is not performed, or when the heat compression treatment is performed while the powder is used without performing the provisional molding step, an isotropic fluence magnet is finally obtained. However, in order to obtain higher magnetic characteristics, it is preferable to perform a temporary forming step while performing magnetic field orientation, and finally obtain an anisotropic fluence magnet.

本実施形態では、図2に示す構成を有するホットプレス装置を用いる。この装置は、中央に開口部を有する金型(ダイ)27と、HDDR磁粉または圧粉体を加圧するための上パンチ28aおよび下パンチ28bと、これらのパンチ28a、28bを昇降する駆動部30a、30bとを備えている。   In this embodiment, a hot press apparatus having the configuration shown in FIG. 2 is used. This apparatus includes a die (die) 27 having an opening in the center, an upper punch 28a and a lower punch 28b for pressurizing HDDR magnetic powder or green compact, and a drive unit 30a for raising and lowering these punches 28a and 28b. , 30b.

上述した方法によって作製したHDDR磁粉または圧粉体を、図2に示す金型27に装填する。このとき、磁界方向(配向方向)とプレス方向とが一致するように装填を行うことが好ましい。金型27およびパンチ28a、28bは、使用する雰囲気ガス中で加熱温度および印加圧力に耐えうる材料から形成される。このような材料としては、カーボンや、超硬合金が好ましい。なお、圧粉体の場合、外形寸法を金型27の開口部寸法よりも小さく設定しておくことにより、異方性を高められる。次に、HDDR磁粉または圧粉体を装填した金型27をホットプレス装置にセットする。ホットプレス装置は、不活性ガス雰囲気または10−1Torr以上の真空に制御することが可能なチャンバ26を備えていることが好ましい。チャンバ26内には、例えば抵抗加熱によるカーボンヒーターや高周波加熱用のコイルといった加熱装置と、試料を加圧して圧縮するためのシリンダーとが備え付けられている。 The HDDR magnetic powder or green compact produced by the method described above is loaded into the mold 27 shown in FIG. At this time, it is preferable to perform loading so that the magnetic field direction (orientation direction) and the pressing direction coincide. The mold 27 and the punches 28a and 28b are formed of a material that can withstand the heating temperature and the applied pressure in the atmosphere gas to be used. As such a material, carbon and cemented carbide are preferable. In the case of a green compact, anisotropy can be increased by setting the outer dimension to be smaller than the opening dimension of the mold 27. Next, the mold 27 loaded with HDDR magnetic powder or green compact is set in a hot press apparatus. The hot press apparatus preferably includes a chamber 26 that can be controlled to an inert gas atmosphere or a vacuum of 10 −1 Torr or more. In the chamber 26, for example, a heating device such as a carbon heater by resistance heating or a coil for high-frequency heating, and a cylinder for pressurizing and compressing the sample are provided.

チャンバ26内を真空または不活性ガス雰囲気で満たした後、不図示の加熱装置により金型27を加熱し、金型27に装填されたHDDR磁粉または圧粉体の温度を600℃〜900℃に高める。このとき、20MPa〜1000MPaの圧力PでHDDR磁粉または圧粉体を加圧する。HDDR磁粉または圧粉体に対する加圧は、金型27の温度が設定レベルに到達してから開始することが好ましい。加圧しながら450℃以上900℃未満の温度で1分以上保持した後、冷却する。加熱圧縮によりフルデンス化された磁石が大気と接触して酸化しない程度の低い温度(100℃以下程度)まで冷却が進んだ後、本実施形態の磁石をチャンバから取り出す。こうして、上記のHDDR磁粉から本実施形態のバルク磁石を得ることができる。   After filling the chamber 26 with a vacuum or an inert gas atmosphere, the mold 27 is heated by a heating device (not shown), and the temperature of the HDDR magnetic powder or green compact loaded in the mold 27 is set to 600 ° C to 900 ° C. Increase. At this time, the HDDR magnetic powder or green compact is pressurized with a pressure P of 20 MPa to 1000 MPa. The pressurization of the HDDR magnetic powder or the green compact is preferably started after the temperature of the mold 27 reaches a set level. While maintaining pressure at a temperature of 450 ° C. or higher and lower than 900 ° C. for 1 minute or longer, cool. After the magnet fully condensed by heat compression is cooled to a low temperature (about 100 ° C. or less) that does not oxidize due to contact with the atmosphere, the magnet of this embodiment is taken out from the chamber. Thus, the bulk magnet of this embodiment can be obtained from the HDDR magnetic powder.

前述の磁気特性の向上を目的とした時効熱処理は、磁石の製造工程におけるすべての熱処理の最後に行うことが好ましく、バルク磁石を形成する場合は、バルク磁石に対して時効熱処理を施すことが好ましい。   The above-described aging heat treatment for the purpose of improving the magnetic properties is preferably performed at the end of all the heat treatment in the magnet manufacturing process. When a bulk magnet is formed, it is preferable to perform aging heat treatment on the bulk magnet. .

こうして得られた磁石の密度は真密度の95%以上に達する。また、本実施形態によれば、最終的な結晶相集合組織において、個々の結晶粒の最短粒径aと最長粒径bの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在する。この点において、本実施形態の磁石は、たとえば特開平02−39503号公報などに記載の従来の熱間塑性加工による異方性バルク磁石と大きく異なっている。熱間塑性加工による磁石の結晶組織においては、最短粒径aと最長粒径bの比b/aが2を超えた扁平な結晶粒が支配的である。   The density of the magnet thus obtained reaches 95% or more of the true density. In addition, according to the present embodiment, in the final crystal phase texture, the crystal grains in which the ratio b / a of the shortest grain size a to the longest grain size b of each crystal grain is less than 2 are 50 of the total crystal grains. It exists by volume% or more. In this respect, the magnet of the present embodiment is greatly different from the conventional anisotropic bulk magnet by hot plastic working described in, for example, Japanese Patent Laid-Open No. 02-39503. In the crystal structure of the magnet by hot plastic working, flat crystal grains in which the ratio b / a between the shortest particle diameter a and the longest particle diameter b exceeds 2 are dominant.

なお、本発明は、WO2007/135981に記載の、HDDR処理によるR−Fe−B系多孔質磁石の製造方法、および、WO2008/065903に記載の、HDDR処理によるR−Fe−B系微細結晶高密度磁石の製造方法にも適用できる。   The present invention relates to a method for producing an R—Fe—B based porous magnet by HDDR treatment described in WO2007 / 135981 and an R—Fe—B fine crystal height by HDDR treatment described in WO2008 / 065903. It is applicable also to the manufacturing method of a density magnet.

以下に、本発明による実施例と比較例を示して、本発明を具体的に説明する。
上述した公知の製造方法により、以下の表1に示す組成を有する鋳造合金を作製した。
Hereinafter, the present invention will be described in detail with reference to examples and comparative examples according to the present invention.
Cast alloys having the compositions shown in Table 1 below were produced by the known production method described above.

Figure 0005288276
Figure 0005288276

これらの合金を水素粉砕法によって粒径300μm以下の粉末に粉砕した。作製した粉末に粒径約7μmのZn粉末を表2に示す混合量でガラス瓶内で手混合した後、HDDR処理した。具体的には、粉砕した合金にZn粉末を混合した粉末を100kPa(大気圧)のアルゴン流気中で820℃まで加熱し、その後、雰囲気を100kPa(大気圧)の水素流気に切り替えた後、820℃を300分保持して水素化・不均化反応を行った。次に、820℃のまま5.3kPaに減圧したアルゴン流気中で60分保時し、脱水素・再結合処理を行った。さらにHDDR処理後の粉末を10Pa以下の真空中で500℃あるいは550℃で、15分の時効熱処理を行った。得られた試料の磁気特性を振動試料型磁束計(VSM:装置名VSM5(東英工業社製))で測定した。また得られたサンプルのZn残留量を、ICP発光分光分析法で測定した。結果を表2に示す。   These alloys were pulverized into a powder having a particle size of 300 μm or less by a hydrogen pulverization method. After the Zn powder having a particle diameter of about 7 μm was manually mixed in the glass bottle with the mixing amount shown in Table 2, it was subjected to HDDR treatment. Specifically, after the powder obtained by mixing Zn powder with the pulverized alloy is heated to 820 ° C. in an argon flow of 100 kPa (atmospheric pressure), and then the atmosphere is switched to a hydrogen flow of 100 kPa (atmospheric pressure). The hydrogenation / disproportionation reaction was carried out at 820 ° C. for 300 minutes. Next, the dehydrogenation and recombination treatment was performed by maintaining for 60 minutes in an argon flow reduced to 5.3 kPa while maintaining the temperature at 820 ° C. Further, the HDDR-treated powder was subjected to an aging heat treatment at 500 ° C. or 550 ° C. for 15 minutes in a vacuum of 10 Pa or less. The magnetic properties of the obtained sample were measured with a vibrating sample magnetometer (VSM: device name VSM5 (manufactured by Toei Kogyo Co., Ltd.)). Further, the residual amount of Zn in the obtained sample was measured by ICP emission spectroscopic analysis. The results are shown in Table 2.

Figure 0005288276
Figure 0005288276

表2において、Jmaxは、着磁したサンプルの着磁方向に1.6MA/mまで外部磁界Hを印加したときのサンプルの磁化J(T)の最大測定値である。 In Table 2, J max is the maximum measured value of the magnetization J (T) of the sample when an external magnetic field H is applied up to 1.6 MA / m in the magnetization direction of the magnetized sample.

Znを添加していない比較例1、比較例3、比較例5に比べ、Znを0.5mass%混合した実施例1〜6は熱処理後には0.04mass%以下の少量しか磁粉中に残留していないものの保磁力HcJが向上していることが分かる。また1.5mass%を超えてZnを混合した比較例2、比較例4、比較例6は熱処理後には0.02〜0.06mass%の磁粉中に残留しているが、Znを混合していない比較例1、比較例3、比較例5に比べ、保磁力HcJが低下していることが分かる。また、希土類量が29mass%以下の合金Dを使用した比較例7〜10では、Znを混合しても保磁力HcJは向上しなかった。 Compared with Comparative Example 1, Comparative Example 3, and Comparative Example 5 in which Zn was not added, Examples 1 to 6 in which 0.5 mass% of Zn was mixed remained in the magnetic powder only in a small amount of 0.04 mass% or less after heat treatment. It can be seen that the coercive force HcJ is improved. Moreover, Comparative Example 2, Comparative Example 4, and Comparative Example 6 in which Zn was mixed in excess of 1.5 mass% remained in the magnetic powder of 0.02 to 0.06 mass% after the heat treatment, but Zn was mixed. It can be seen that the coercive force H cJ is lower than those of Comparative Example 1, Comparative Example 3, and Comparative Example 5 that are not present. Further, in Comparative Examples 7 to 10 using the alloy D having a rare earth amount of 29 mass% or less, the coercive force HcJ was not improved even when Zn was mixed.

本発明によればGaなどの高価な添加元素や、Dy、Tbなどの希少資源の使用量を低減しつつ高性能な永久磁石が製造できる。   According to the present invention, a high-performance permanent magnet can be manufactured while reducing the amount of expensive additive elements such as Ga and rare resources such as Dy and Tb.

26 チャンバ
27 金型
28a 上パンチ
28b 下パンチ
26 Chamber 27 Mold 28a Upper punch 28b Lower punch

Claims (4)

組成中の希土類量が29mass%超40mass%以下およびB量が0.3mass%以上2mass%以下であるR−T−B系合金粉末を用意する工程と、
少なくともZnを30mass%以上含みGa、Dy、およびTbを含まない金属、合金のいずれかの粉末であるZn含有粉末を用意する工程と、
前記R−T−B系合金粉末およびZn含有粉末を、Znが全体の0.50mass%以上1.5mass%以下となるように混合して混合粉末とする工程と、
前記混合粉末をHDDR処理し、R−T−B系永久磁石粉末を得る工程と、
を含むことを特徴とする、R−T−B系永久磁石の製造方法。
A step of preparing an RTB-based alloy powder having a rare earth content in the composition of more than 29 mass% and not more than 40 mass% and a B content of not less than 0.3 mass% and not more than 2 mass%;
Preparing a Zn-containing powder which is a powder of any metal or alloy containing at least Zn of 30 mass% or more and not containing Ga, Dy, and Tb;
Mixing the RTB-based alloy powder and the Zn-containing powder so that Zn is 0.50 mass% or more and 1.5 mass% or less of the whole to obtain a mixed powder;
A step of subjecting the mixed powder to HDDR to obtain an R-T-B permanent magnet powder;
The manufacturing method of the RTB type | system | group permanent magnet characterized by including these.
前記R−T−B系永久磁石粉末を熱間圧縮成形してバルク磁石を作製することを特徴とする、請求項1記載のR−T−B系永久磁石の製造方法。   2. The method for producing an RTB-based permanent magnet according to claim 1, wherein the RTB-based permanent magnet powder is hot compression molded to produce a bulk magnet. 前記R−T−B系永久磁石粉末またはバルク磁石に対し、真空中あるいは不活性ガス中で450℃以上700℃以下の温度で時効熱処理を行う工程を含むことを特徴とする、請求項1または2記載のR−T−B系永久磁石の製造方法。   The aging heat treatment is performed at a temperature of 450 ° C. or higher and 700 ° C. or lower in vacuum or in an inert gas with respect to the RTB-based permanent magnet powder or bulk magnet. The manufacturing method of the RTB type | system | group permanent magnet of 2 description. 前記熱間圧縮成形を行う前に前記R−T−B系永久磁石粉末を磁界中で成形することによって圧粉体を仮成形し、前記圧粉体を熱間圧縮成形して磁気的異方性を有するバルク磁石を作製することを特徴とする、請求項2記載のR−T−B系永久磁石の製造方法。 Before performing the hot compression molding, the RTB-based permanent magnet powder is molded in a magnetic field to temporarily form a green compact, and the green compact is hot compression molded to be magnetically anisotropic. The manufacturing method of the RTB type | system | group permanent magnet of Claim 2 characterized by producing the bulk magnet which has property.
JP2009198029A 2009-08-28 2009-08-28 Manufacturing method of RTB-based permanent magnet Active JP5288276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198029A JP5288276B2 (en) 2009-08-28 2009-08-28 Manufacturing method of RTB-based permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198029A JP5288276B2 (en) 2009-08-28 2009-08-28 Manufacturing method of RTB-based permanent magnet

Publications (2)

Publication Number Publication Date
JP2011049440A JP2011049440A (en) 2011-03-10
JP5288276B2 true JP5288276B2 (en) 2013-09-11

Family

ID=43835470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198029A Active JP5288276B2 (en) 2009-08-28 2009-08-28 Manufacturing method of RTB-based permanent magnet

Country Status (1)

Country Link
JP (1) JP5288276B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140102892A1 (en) * 2011-05-10 2014-04-17 Idemitsu Kosan Co., Ltd. In2o3-zno sputtering target
JP2013098485A (en) * 2011-11-04 2013-05-20 Toyota Motor Corp Manufacturing apparatus and manufacturing method for rare earth magnet
KR101269408B1 (en) * 2012-10-10 2013-05-30 한국기계연구원 Method of manufacturing rare earth magnetic powder using of desorption-recombination step
JP6198103B2 (en) * 2013-02-22 2017-09-20 日立金属株式会社 Manufacturing method of RTB-based permanent magnet
JP6421645B2 (en) * 2015-02-28 2018-11-14 日立金属株式会社 Method for producing R-Fe-B permanent magnet alloy recycled material from which carbon has been removed
CN105869819A (en) * 2015-10-19 2016-08-17 东莞市海天磁业股份有限公司 Method for preparing anisotropic magnetic powder

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230845A (en) * 1985-08-01 1987-02-09 Sumitomo Special Metals Co Ltd Production of anisotropic permanent magnet material
JPH0831677A (en) * 1994-07-13 1996-02-02 Aichi Steel Works Ltd Manufacture of magnetic anisotropy resin bonding type magnet and magnetic anisotropy resin type magnet
JP3278647B2 (en) * 1999-01-27 2002-04-30 住友特殊金属株式会社 Rare earth bonded magnet
JP2001355050A (en) * 2001-06-29 2001-12-25 Sumitomo Special Metals Co Ltd R-t-b-c based rare earth magnet powder and bond magnet
JP4133686B2 (en) * 2002-08-29 2008-08-13 信越化学工業株式会社 Radial anisotropic ring magnet and manufacturing method thereof
WO2006085581A1 (en) * 2005-02-10 2006-08-17 Neomax Co., Ltd. Ultra small rare earth magnet and method for manufacturing same
JP4650218B2 (en) * 2005-11-07 2011-03-16 日立金属株式会社 Method for producing rare earth magnet powder
EP1970916B1 (en) * 2006-05-18 2015-04-01 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
EP2043114B1 (en) * 2006-11-30 2019-01-02 Hitachi Metals, Ltd. R-fe-b microcrystalline high-density magnet and process for production thereof

Also Published As

Publication number Publication date
JP2011049440A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5856953B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet
JP5288277B2 (en) Manufacturing method of RTB-based permanent magnet
JP5892139B2 (en) Rare earth anisotropic magnet and manufacturing method thereof
JP6156375B2 (en) Sintered magnet
JP6201446B2 (en) Sintered magnet
JP4702546B2 (en) Rare earth permanent magnet
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
WO2010113371A1 (en) Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
TWI738932B (en) R-Fe-B series sintered magnet and its manufacturing method
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
JP6471669B2 (en) Manufacturing method of RTB-based magnet
JP5757394B2 (en) Rare earth permanent magnet manufacturing method
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP6691666B2 (en) Method for manufacturing RTB magnet
JP4076178B2 (en) R-T-B rare earth permanent magnet
JP2009010305A (en) Method for manufacturing rare-earth magnet
WO2012029527A1 (en) Alloy material for r-t-b-based rare earth permanent magnet, production method for r-t-b-based rare earth permanent magnet, and motor
JP2013115156A (en) Method of manufacturing r-t-b-based permanent magnet
JP2012195392A (en) Method of manufacturing r-t-b permanent magnet
CN111724955A (en) R-T-B permanent magnet
JP2023052675A (en) R-t-b system based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Ref document number: 5288276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350