Nothing Special   »   [go: up one dir, main page]

JP5286313B2 - Depth filter type microfiltration membrane and manufacturing method thereof - Google Patents

Depth filter type microfiltration membrane and manufacturing method thereof Download PDF

Info

Publication number
JP5286313B2
JP5286313B2 JP2010064440A JP2010064440A JP5286313B2 JP 5286313 B2 JP5286313 B2 JP 5286313B2 JP 2010064440 A JP2010064440 A JP 2010064440A JP 2010064440 A JP2010064440 A JP 2010064440A JP 5286313 B2 JP5286313 B2 JP 5286313B2
Authority
JP
Japan
Prior art keywords
polylactic acid
solvent
filtration
membrane
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010064440A
Other languages
Japanese (ja)
Other versions
JP2011194325A (en
Inventor
孝明 田中
Original Assignee
国立大学法人 新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 新潟大学 filed Critical 国立大学法人 新潟大学
Priority to JP2010064440A priority Critical patent/JP5286313B2/en
Publication of JP2011194325A publication Critical patent/JP2011194325A/en
Application granted granted Critical
Publication of JP5286313B2 publication Critical patent/JP5286313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、食品産業、医薬品産業、化粧品産業などにおいて、微生物や、微生物、植物、動物由来の破片を除去するために用いられる濾過膜及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a filtration membrane used for removing microorganisms, microorganisms, plants, animal-derived debris in the food industry, pharmaceutical industry, cosmetics industry, and the like, and a method for producing the same.

現在、食品産業、医薬品産業、化粧品産業などの濾過工程においては、菌体や細胞の破片、高分子凝集物など、柔らかく圧縮性の高い粒子を除去し、タンパク質などの水溶性高分子やアミノ酸などの低分子を回収する必要があり、濾過助剤を用いる濾過、セラミック濾過膜を用いた濾過、及び合成高分子膜を用いた精密濾過が用いられている。   Currently, in the filtration process in the food industry, pharmaceutical industry, cosmetics industry, etc., soft and highly compressible particles such as bacterial cells, cell debris and polymer aggregates are removed, and water-soluble polymers such as proteins, amino acids, etc. It is necessary to collect a low molecular weight, and filtration using a filter aid, filtration using a ceramic filtration membrane, and microfiltration using a synthetic polymer membrane are used.

しかし、濾過助剤を用いる濾過は、珪藻土などの濾過助剤を大量に用いるため、難分解性の濾過残渣が大量に発生する点が問題であった。また、セラミック濾過膜は高価であり、再生にはアルカリなどの薬物を必要とする点が問題であった。そして、従来の合成高分子濾過膜は、焼却時の発熱量が大きく焼却炉を傷めるため、濾過膜の目詰まり後の廃棄法が問題であった。   However, the filtration using a filter aid is problematic in that a large amount of filter aid such as diatomaceous earth is used, and a large amount of hardly decomposable filter residues are generated. In addition, ceramic filtration membranes are expensive, and a problem is that regeneration requires a drug such as alkali. And since the conventional synthetic polymer filtration membrane has a large calorific value at the time of incineration and damages the incinerator, the disposal method after clogging of the filtration membrane has been a problem.

発明者は、すでにポリブチレンサクシネート、ポリ乳酸、ポリカプロラクトン、及びこれらのポリマーブレンドなどの生分解性ポリエステル製濾過膜を開発している(特許文献1、非特許文献1〜3)。このような生分解性ポリエステル製濾過膜を用いれば、使用後の濾過膜を堆肥化装置を用いて分解処理することが可能となり、従来の合成高分子膜を用いた場合に問題となっていた濾過膜の廃棄法に関する問題を解消することができる。   The inventor has already developed a biodegradable polyester filter membrane such as polybutylene succinate, polylactic acid, polycaprolactone, and a polymer blend thereof (Patent Document 1, Non-Patent Documents 1 to 3). If such a biodegradable polyester filter membrane is used, it becomes possible to decompose the used filter membrane using a composting apparatus, which is a problem when a conventional synthetic polymer membrane is used. Problems related to the disposal method of the filtration membrane can be solved.

一方、環境調和型の社会を目指して再生利用型の資源であるバイオマスを原料とする高分子材料が注目されており、ポリ乳酸はすべての構成炭素をバイオマス由来の炭素を用いて実用的に工業生産されているバイオマスプラスチックである(非特許文献4)。ポリ乳酸分離膜については、特許文献2〜4、非特許文献1〜2及び5に記載が見られる。ただし、特許文献2〜4に記載されているポリ乳酸膜では、粒子径1μm程度の粒子の除去可能であるが、タンパク質などの水溶性高分子を透過できる精密濾過膜を目指した検討は行われていない。非特許文献1〜2に記載されているポリ乳酸膜においては粒子径5μmの酵母の除去能力を指標に検討されているが、粒子径1μm程度の大腸菌を透過することが非特許文献1に示されている。一方、非特許文献5に記載されているポリ乳酸膜は水溶性高分子を阻止する限外濾過膜の性質を示している。   On the other hand, with the aim of creating an environmentally conscious society, polymer materials that use biomass, which is a recyclable resource, are attracting attention. Polylactic acid is an industrially practical product that uses carbon derived from biomass. It is a biomass plastic being produced (Non-patent Document 4). Descriptions of the polylactic acid separation membrane can be found in Patent Documents 2 to 4 and Non-Patent Documents 1 to 2 and 5. However, the polylactic acid membranes described in Patent Documents 2 to 4 can remove particles having a particle size of about 1 μm, but studies aimed at microfiltration membranes that can permeate water-soluble polymers such as proteins have been conducted. Not. The polylactic acid films described in Non-Patent Documents 1 and 2 have been studied using as an index the ability to remove yeast having a particle size of 5 μm, but Non-Patent Document 1 shows that it penetrates Escherichia coli having a particle size of about 1 μm. Has been. On the other hand, the polylactic acid membrane described in Non-Patent Document 5 shows the properties of an ultrafiltration membrane that blocks water-soluble polymers.

精密濾過において高い濾過速度を得るためには、濾過膜の内部構造が重要とされる。たとえば、特許文献5〜7および非特許文献6では粒子懸濁液の接する面の孔径が大きく、濾液側の方向に孔径が小さくなる非対称性構造を有する濾過膜を用いると、使用時における濾過抵抗の増加が抑えられ、高い濾過速度が得られることを記載している。このような濾過膜内で粒子を保持する濾過膜はデプスフィルターと呼ばれる。それに対して膜表面で粒子を阻止する濾過膜はスクリーンフィルターと呼ばれる。   In order to obtain a high filtration rate in microfiltration, the internal structure of the filtration membrane is important. For example, in Patent Documents 5 to 7 and Non-Patent Document 6, when a filtration membrane having an asymmetric structure in which the pore diameter on the surface in contact with the particle suspension is large and the pore diameter is small in the direction of the filtrate is used, the filtration resistance during use is reduced. It is described that an increase in the flow rate is suppressed and a high filtration rate can be obtained. Such a filtration membrane that retains particles in the filtration membrane is called a depth filter. On the other hand, a filtration membrane that blocks particles on the membrane surface is called a screen filter.

しかし、これらの非対称性濾過膜はポリスルホン膜など生分解性をもたない濾過膜であった。   However, these asymmetric filtration membranes are filtration membranes having no biodegradability such as polysulfone membranes.

特開2008−132415号公報JP 2008-132415 A 特開2002−20530号公報JP 2002-20530 A 特開2008−296123号公報JP 2008-296123 A 特開2009−226256号公報JP 2009-226256 A 特公平1−43619号公報Japanese Patent Publication No. 1-443619 特公平4−68966号公報Japanese Examined Patent Publication No. 4-68966 特開平7−222917号公報JP-A-7-222917

T.Tanaka, et al., J.Membr.Sci., 238, 65-73 (2004).T. Tanaka, et al., J. Membr. Sci., 238, 65-73 (2004). T.Tanaka, et al., J.Chem.Eng.Japan, 39, 144-153 (2006).T. Tanaka, et al., J. Chem. Eng. Japan, 39, 144-153 (2006). T.Tanaka, et al., Desalination, 193, 367-374 (2006).T. Tanaka, et al., Desalination, 193, 367-374 (2006). 日本バイオプラスチック協会編、『バイオプラスチック材料のすべて』、pp.37−41、日刊工業新聞社、2008年.Edited by Japan Bioplastics Association, "All about Bioplastic Materials", pp. 37-41, Nikkan Kogyo Shimbun, 2008. A.Moriya, et al., J.Membr.Sci., 342, 307-312 (2009).A. Moriya, et al., J. Membr. Sci., 342, 307-312 (2009). 田中孝明他, 化学工学論文集, 35, 81-86 (2009).Tanaka Takaaki et al., Chemical Engineering Papers, 35, 81-86 (2009).

そこで本発明では上記問題点に鑑み、生分解性であって、1μm程度の大きさの粒子を阻止するが水溶性高分子は透過させることができ、かつデプスフィルターとして利用可能な非対称性構造を有する、新規のポリ乳酸製の精密濾過膜及びその製造方法を提供することをその目的とする。   Therefore, in view of the above problems, the present invention has an asymmetric structure that is biodegradable, blocks particles having a size of about 1 μm, but allows water-soluble polymers to pass therethrough, and can be used as a depth filter. It is an object of the present invention to provide a novel polylactic acid microfiltration membrane and a method for producing the same.

上記課題を達成するため種々検討した結果、ポリ乳酸を材料として用い、高温で調製した溶液を熱のみを透過させる型に塗布して得られた薄膜を低温の非溶媒に浸漬することによって、生分解性であって、1μm程度の大きさの粒子を阻止するが水溶性高分子は透過させることができ、かつデプスフィルターとして利用可能な非対称性構造を有する精密濾過膜が得られることを見出し、本発明を完成させた。   As a result of various studies to achieve the above problems, a thin film obtained by applying polylactic acid as a material and applying a solution prepared at a high temperature to a mold that allows only heat to pass through is immersed in a low temperature non-solvent. It has been found that a microfiltration membrane having an asymmetric structure that is degradable, blocks particles having a size of about 1 μm, but can permeate water-soluble polymers and can be used as a depth filter, The present invention has been completed.

すなわち、本発明のデプスフィルター型精密濾過膜は、ポリ乳酸を溶媒に溶解して得たポリ乳酸の溶液を型に入れて薄膜状とし、前記型とともに前記溶液よりも低温に維持されたポリ乳酸の非溶媒に浸漬することによって得られたことを特徴とする。   That is, the depth filter type microfiltration membrane of the present invention has a polylactic acid solution obtained by dissolving polylactic acid in a solvent to form a thin film, and is maintained at a lower temperature than the solution together with the mold. It was obtained by soaking in a non-solvent.

また、前記溶媒はジメチルスルホキシドであり、前記非溶媒は水であることを特徴とする。   The solvent is dimethyl sulfoxide, and the non-solvent is water.

本発明のデプスフィルター型精密濾過膜の製造方法は、ポリ乳酸を溶媒に溶解して得たポリ乳酸の溶液を型に入れて薄膜状とし、前記型とともに前記溶液よりも低温に維持されたポリ乳酸の非溶媒に浸漬することを特徴とする。   The method for producing a depth filter type microfiltration membrane of the present invention comprises a polylactic acid solution obtained by dissolving polylactic acid in a solvent to form a thin film, and a polycrystal maintained at a lower temperature than the solution together with the mold. It is immersed in a non-solvent of lactic acid.

また、前記溶媒はジメチルスルホキシドであり、前記非溶媒は水であることを特徴とする。   The solvent is dimethyl sulfoxide, and the non-solvent is water.

本発明によれば、生分解性であって、1μm程度の大きさの粒子を阻止するが水溶性高分子は透過させることができ、かつデプスフィルターとして利用可能な非対称性構造を有する、新規のポリ乳酸製の精密濾過膜及びその製造方法を提供することができる。   According to the present invention, a novel biodegradable, blockable particle having a size of about 1 μm but capable of transmitting a water-soluble polymer and having an asymmetric structure that can be used as a depth filter. A microfiltration membrane made of polylactic acid and a method for producing the same can be provided.

本発明の実施例1におけるポリ乳酸をジメチルスルホキシドに溶解させたポリ乳酸溶液から作製した膜の断面と表面を示す電子顕微鏡写真である。It is an electron micrograph which shows the cross section and surface of a film | membrane produced from the polylactic acid solution which dissolved the polylactic acid in Example 1 of this invention in dimethylsulfoxide. 本発明の実施例1におけるポリ乳酸をジメチルスルホキシドに溶解後、精製水を溶解させたポリ乳酸溶液から作製した膜の断面と表面を示す電子顕微鏡写真である。It is an electron micrograph which shows the cross section and surface of a film | membrane produced from the polylactic acid solution which melt | dissolved the polylactic acid in Example 1 of this invention in dimethylsulfoxide, and refine | purified water. 本発明の実施例1における乳酸菌懸濁液の濾過実験における濾液量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the filtrate amount in the filtration experiment of the lactic acid bacteria suspension in Example 1 of this invention.

本発明のデプスフィルター型精密濾過膜は、ポリ乳酸を溶媒に溶解して得たポリ乳酸の溶液を型に入れて薄膜状とし、前記型とともに前記溶液よりも低温に維持されたポリ乳酸の非溶媒に浸漬することによって得られたものである。以下、本発明の濾過膜の製造方法について説明する。   The depth filter type microfiltration membrane of the present invention is a polylactic acid solution obtained by dissolving a polylactic acid in a solvent into a mold to form a thin film, and the non-polylactic acid that is maintained at a lower temperature than the solution together with the mold. It was obtained by immersing in a solvent. Hereinafter, the manufacturing method of the filtration membrane of this invention is demonstrated.

はじめに、ポリ乳酸を溶媒に溶解して、ポリ乳酸の溶液を得る。溶媒としては、ポリ乳酸を溶解できるものであれば、特定のものに限定されないが、均一な微細孔を有する多孔質膜が得られることから、本発明においては特に、ジメチルスルホキシドが好適に用いられる。また、溶液のポリ乳酸濃度は5〜15%の範囲とするのが好ましい。5%未満であると十分な厚さ、強度を有する濾過膜が得られにくく、15%を超えるとポリ乳酸の溶解に長時間要するため、好ましくない。なお、溶解する際には、溶媒としてジメチルスルホキシドを用いる場合は、溶媒の沸点やポリ乳酸の溶解速度を考慮すると、溶液の温度を120〜140℃に保持するのが好ましい。溶解後は、例えば、70〜90℃に保持することにより、つぎの工程で型に流し込むときの流動性を維持しつつ、操作における安全性を確保することができる。   First, polylactic acid is dissolved in a solvent to obtain a polylactic acid solution. The solvent is not particularly limited as long as it can dissolve polylactic acid, but dimethyl sulfoxide is particularly preferably used in the present invention because a porous film having uniform fine pores can be obtained. . The polylactic acid concentration in the solution is preferably in the range of 5 to 15%. If it is less than 5%, it is difficult to obtain a filtration membrane having sufficient thickness and strength, and if it exceeds 15%, it takes a long time to dissolve polylactic acid. When dimethyl sulfoxide is used as a solvent when dissolving, it is preferable to keep the temperature of the solution at 120 to 140 ° C. in consideration of the boiling point of the solvent and the dissolution rate of polylactic acid. After dissolution, for example, by maintaining the temperature at 70 to 90 ° C., it is possible to ensure safety in operation while maintaining fluidity when pouring into a mold in the next step.

つぎに、ポリ乳酸の溶液を型に入れて薄膜状とする。溶液を入れる型としては、例えば、平面のガラス板を用いることができ、或いは、連続型の製造装置を利用する場合には、曲面のロール型を用いてもよい。型の材質としては、つぎの工程における製膜を首尾よく行うために、熱伝導性の高いものが好適に用いられる。なお、型に入れるときに溶液が冷却されてしまうと、つぎの工程における製膜に支障をきたす虞があるため、溶液を入れる型は、予め所定の温度、例えば、50〜70℃に保持しておくことが望ましい。   Next, a polylactic acid solution is put into a mold to form a thin film. As a mold into which the solution is placed, for example, a flat glass plate can be used, or when using a continuous production apparatus, a curved roll mold may be used. As the material of the mold, a material having high thermal conductivity is suitably used in order to successfully perform film formation in the next step. If the solution is cooled when it is put into the mold, there is a possibility that the film formation in the next step may be hindered. Therefore, the mold into which the solution is put is held in advance at a predetermined temperature, for example, 50 to 70 ° C. It is desirable to keep it.

そして、型とともに溶液よりも低温に維持されたポリ乳酸の非溶媒に浸漬する。ポリ乳酸の非溶媒としては、ポリ乳酸を溶解せず、上記溶媒と高い親和性を有するものであれば、特定のものに限定されない。溶媒にジメチルスルホキシドを用いる場合は、非溶媒としては、特に水が好適に用いられる。   Then, it is immersed in a non-solvent of polylactic acid maintained at a lower temperature than the solution together with the mold. The non-solvent of polylactic acid is not limited to a specific one as long as it does not dissolve polylactic acid and has high affinity with the above solvent. When dimethyl sulfoxide is used as the solvent, water is particularly preferably used as the non-solvent.

型に入れて薄膜状としたポリ乳酸の溶液を、型とともに溶液よりも低温に維持されたポリ乳酸の非溶媒に浸漬することで、溶液が急速に冷却される。その結果、非溶媒に接する側からはポリ乳酸溶液へ非溶媒溶液分子が拡散することにより相分離し、緻密な多孔質構造が得られると同時に、型に接する側からはポリ乳酸溶液の冷却により相分離し、粗い多孔質構造が形成されることにより、非対称な多孔質構造を有する濾過膜が形成される。なお、ポリ乳酸の非溶媒の温度は、浸漬する溶液の温度より低ければよいが、非対称な多孔質構造を有する濾過膜を得るためには非溶媒と溶液の温度差がある程度必要である。例えば、溶液と型の温度が50〜70℃の場合は、非溶媒の温度を室温の20〜30℃とすれば、確実に非対称な多孔質構造を有する濾過膜を得ることができる。   The polylactic acid solution made into a thin film by putting it in a mold is immersed in a non-solvent of polylactic acid maintained at a lower temperature than the solution together with the mold, whereby the solution is rapidly cooled. As a result, the non-solvent solution molecules are diffused into the polylactic acid solution from the side in contact with the non-solvent, and phase separation is obtained, and at the same time, the side in contact with the mold is cooled by the polylactic acid solution. By performing phase separation and forming a coarse porous structure, a filtration membrane having an asymmetric porous structure is formed. The temperature of the non-solvent of polylactic acid should be lower than the temperature of the solution to be immersed, but in order to obtain a filtration membrane having an asymmetric porous structure, a certain temperature difference between the non-solvent and the solution is necessary. For example, when the temperature of the solution and the mold is 50 to 70 ° C., a filtration membrane having an asymmetric porous structure can be surely obtained by setting the temperature of the non-solvent to 20 to 30 ° C. of room temperature.

その後、溶媒を完全に抽出し除去するために、得られた濾過膜を非溶媒中に保存するとともに、非溶媒を1〜数回交換することが望ましい。   Thereafter, in order to completely extract and remove the solvent, it is desirable to store the obtained filtration membrane in a non-solvent and exchange the non-solvent one to several times.

以上のようにして得られた本発明の濾過膜はシート状であって、不織布や織物などの支持体を必要としない自立型の濾過膜であり、既存のメンブレンフォルダーなどに使用可能な平膜型である。そして、1μm程度の大きさの粒子を阻止し、タンパク質などの水溶性高分子を透過させることができる精密濾過膜として機能する。また、非対称性構造を有するため、膜内粒子捕捉型の濾過膜であって濾過に伴う粒子層の形成が抑制されて高い濾過速度が得られるデプスフィルターとしても機能する。さらに、生分解性プラスチックであるポリ乳酸を材料としているため、使用後に堆肥化装置による分解が可能である。したがって、本発明の濾過膜、濾過残渣を堆肥として有効利用することが可能となる。   The filtration membrane of the present invention obtained as described above is a sheet-like, self-supporting filtration membrane that does not require a support such as a nonwoven fabric or a woven fabric, and is a flat membrane that can be used for an existing membrane folder or the like It is a type. And it functions as a microfiltration membrane that can block particles having a size of about 1 μm and allow water-soluble polymers such as proteins to permeate. In addition, since it has an asymmetric structure, it is an in-membrane particle trapping type filtration membrane, and functions as a depth filter that suppresses formation of a particle layer accompanying filtration and obtains a high filtration rate. Furthermore, since the material is polylactic acid, which is a biodegradable plastic, it can be decomposed by a composting device after use. Therefore, the filtration membrane and filtration residue of the present invention can be effectively used as compost.

なお、本発明は上記実施形態に限定されるものではなく、本発明の思想を逸脱しない範囲で種々の変形実施が可能である。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明によるポリ乳酸製のデプスフィルターとして利用可能な精密濾過膜を作製し、その性能評価を行った。   A microfiltration membrane that can be used as a polylactic acid depth filter according to the present invention was prepared, and its performance was evaluated.

1 材料
ポリ乳酸として分子量12万のポリ−L−乳酸を使用した。
1 Material Poly-L-lactic acid having a molecular weight of 120,000 was used as polylactic acid.

ポリ乳酸の溶媒として和光純薬製の特級ジメチルスルホキシド、非溶媒としてイオン交換樹脂を用いた装置で製造した精製水を用いた。   Purified water produced by an apparatus using a special grade dimethyl sulfoxide manufactured by Wako Pure Chemical Industries as a solvent for polylactic acid and an ion exchange resin as a non-solvent was used.

2 濾過膜の作製
はじめに、ポリ乳酸の最終濃度が15%になるように、100mLの三角フラスコ中でポリ乳酸7.5gをジメチルスルホキシド42.5gに溶解した。より詳細には、ポリ乳酸、ジメチルスルホキシド、回転子を三角フラスコへ入れ、ヘッドスペースを窒素ガスで置換し、アルミホイルで覆ったコルク栓にて蓋をした。さらに、密閉のためにコルク栓の側面にテフロン(登録商標)テープを巻きつけた。そして、この三角フラスコを130℃に設定したホットスターラー上に載置し、約6時間攪拌してポリ乳酸をジメチルスルホキシドに溶解した。さらに、80℃の恒温水槽にポリ乳酸溶液を30分間以上保温した。
2 Production of Filtration Membrane First, 7.5 g of polylactic acid was dissolved in 42.5 g of dimethyl sulfoxide in a 100 mL Erlenmeyer flask so that the final concentration of polylactic acid was 15%. More specifically, polylactic acid, dimethyl sulfoxide, and a rotor were placed in an Erlenmeyer flask, the head space was replaced with nitrogen gas, and the cap was covered with a cork stopper covered with aluminum foil. Further, Teflon (registered trademark) tape was wrapped around the side of the cork stopper for sealing. The Erlenmeyer flask was placed on a hot stirrer set at 130 ° C. and stirred for about 6 hours to dissolve polylactic acid in dimethyl sulfoxide. Further, the polylactic acid solution was kept in a constant temperature water bath at 80 ° C. for 30 minutes or more.

つぎに、濾過膜を作製した。なお、膜の作製は室温を25℃に設定した室内で行った。76mm×70mmのガラス板の周縁部に、幅8mm×厚さ1mmのテフロン(登録商標)のシートを両面テープにより貼り付け、このシートを枠とする深さ1mmの型を作製した。同様に、幅8mm×厚さ0.5mmのシートを用いて、深さ0.5mmの型を作製した。作製した型を60℃に設定したホットスターラー上に載置して保温した。そして、80℃に保温したポリ乳酸溶液を型の枠内に、少し多めに流し込んだ。余分なポリ乳酸溶液は、直線の縁をもつヘラを用いてすりきった。その後、ポリ乳酸溶液を流し込んだ型を400mLの精製水を入れたステンレスバットに入れると、ジメチルスルホキシドが抽出され、ポリ乳酸の膜が形成した。2時間後にステンレスバットの水を新しい400mLの精製水と交換した。そして、2時間後に、この膜を500mLの精製水を入れた密閉可能なプラスチック容器(容器:ポリプロピレン;蓋:ポリエチレン)に移した。さらに1日後に精製水を交換した。作製した膜は精製水中で保存した。   Next, a filtration membrane was produced. The film was produced in a room where the room temperature was set to 25 ° C. A sheet of Teflon (registered trademark) having a width of 8 mm and a thickness of 1 mm was attached to a peripheral portion of a 76 mm × 70 mm glass plate with a double-sided tape, and a mold having a depth of 1 mm with this sheet as a frame was produced. Similarly, a mold having a depth of 0.5 mm was produced using a sheet having a width of 8 mm and a thickness of 0.5 mm. The produced mold was placed on a hot stirrer set at 60 ° C. and kept warm. Then, a slightly larger amount of the polylactic acid solution kept at 80 ° C. was poured into the mold frame. Excess polylactic acid solution was ground using a spatula with straight edges. Then, when the mold into which the polylactic acid solution was poured was put into a stainless steel vat containing 400 mL of purified water, dimethyl sulfoxide was extracted to form a polylactic acid film. Two hours later, the stainless steel vat water was replaced with fresh 400 mL purified water. After 2 hours, the membrane was transferred to a sealable plastic container (container: polypropylene; lid: polyethylene) containing 500 mL of purified water. After another day, the purified water was changed. The produced membrane was stored in purified water.

3 濾過膜の性能評価
(1)電子顕微鏡観察
作製した濾過膜を水分で湿らせて、液体窒素中で割断した。試料台に設置後、金−パラジウム−合金をスパッタ・コーティングした。走査型電子顕微鏡を用いて15kVの加速電圧で膜の断面と表面を観察した。図1にポリ乳酸7.5gをジメチルスルホキシド42.5gに溶解させたポリ乳酸溶液と深さ0.5mmの型から作製したポリ乳酸膜の断面と表面を示す。水と接する面では緻密な膜構造が、型のガラス板側である平板側では粗い膜構造が形成された。
3 Performance Evaluation of Filtration Membrane (1) Electron Microscope Observation The produced filtration membrane was moistened with moisture and cleaved in liquid nitrogen. After being placed on the sample stage, gold-palladium-alloy was sputter coated. The cross section and surface of the film were observed with an acceleration voltage of 15 kV using a scanning electron microscope. FIG. 1 shows the cross section and surface of a polylactic acid film prepared from a polylactic acid solution prepared by dissolving 7.5 g of polylactic acid in 42.5 g of dimethyl sulfoxide and a mold having a depth of 0.5 mm. A dense film structure was formed on the surface in contact with water, and a rough film structure was formed on the flat plate side which is the glass plate side of the mold.

ポリ乳酸を溶解するジメチルスルホキシドに精製水を添加すると粗い膜構造の粒子を変化させることが可能であった。図2にポリ乳酸7.5gをジメチルスルホキシド42.1gに溶解後、精製水0.4gを溶解させたポリ乳酸溶液と深さ0.5mmの型から作製したポリ乳酸膜の断面と表面を示す。製膜時の平板側の粗い膜構造の粒子が小さくなった。   When purified water was added to dimethyl sulfoxide, which dissolves polylactic acid, it was possible to change the particles having a rough membrane structure. FIG. 2 shows the cross section and surface of a polylactic acid film prepared from a polylactic acid solution in which 0.4 g of purified water is dissolved after 7.5 g of polylactic acid is dissolved in 42.1 g of dimethyl sulfoxide, and a mold having a depth of 0.5 mm. . Particles with a rough film structure on the flat plate side during film formation became smaller.

(2)膜濾過抵抗の測定
膜直径25mm用の濾過装置(有効濾過面積A=4.1cm=4.1×10−4)を用いて精製水の濾過実験を行った。なお、この濾過実験は、本実施例の濾過膜と、その比較のために市販の公称孔径0.2μmのセルロースアセテート膜を用いてそれぞれ行った。濾過圧力ΔP[Pa]は窒素ガスボンベを用いて10kPaに設定した。濾過圧力ΔP[Pa]、精製水の透過流束J[m/s](=濾液量[m]/(時間[s]×有効濾過面積[m])と、水の粘度μ=8.9×10−4[Pa.s](25℃)から、R=ΔP/(μ・J)の式を用いて濾過膜の濾過抵抗R[1/m]を計算した。
(2) Measurement of membrane filtration resistance A filtration experiment for purified water was conducted using a filtration device for a membrane diameter of 25 mm (effective filtration area A = 4.1 cm 2 = 4.1 × 10 −4 m 2 ). This filtration experiment was performed using the filtration membrane of this example and a commercially available cellulose acetate membrane having a nominal pore diameter of 0.2 μm for comparison. The filtration pressure ΔP [Pa] was set to 10 kPa using a nitrogen gas cylinder. Filtration pressure ΔP [Pa], purified water permeation flux J [m / s] (= filtrate amount [m 3 ] / (time [s] × effective filtration area [m 2 ]) and water viscosity μ = 8 The filtration resistance R m [1 / m] of the filtration membrane was calculated from the formula of 9 × 10 −4 [Pa.s] (25 ° C.) using the formula of R m = ΔP / (μ · J).

本発明の濾過膜の濾過抵抗は、表1に示すように市販の濾過膜の1.2〜6.9倍程度であった。   As shown in Table 1, the filtration resistance of the filtration membrane of the present invention was about 1.2 to 6.9 times that of a commercially available filtration membrane.

(3)乳酸菌懸濁液の濾過実験
直径0.7μm×長さ2.5μmの乳酸菌(Lactobacillus plantarum NBRC 15891T)を用いて濾過実験を行った。この乳酸菌をMRS培地で静置培養した培養液を精製水で10倍に希釈して乳酸菌懸濁液(0.2kg/mに相当)とした。圧力10kPaにて濾過した。懸濁液と濾液の660nmの吸光度を測定して乳酸菌の阻止率を評価した。なお、この濾過実験は、本実施例の濾過膜と、その比較のために市販の公称孔径0.2μmのセルロースアセテート膜を用いてそれぞれ行った。
(3) Filtration Experiment of Lactic Acid Bacteria Suspension A filtration experiment was performed using a lactic acid bacterium (Lactobacillus plantarum NBRC 15891 T ) having a diameter of 0.7 μm and a length of 2.5 μm. A culture solution obtained by stationary culture of the lactic acid bacteria in MRS medium was diluted 10-fold with purified water to obtain a lactic acid bacteria suspension (corresponding to 0.2 kg / m 3 ). Filtration was performed at a pressure of 10 kPa. The inhibition rate of lactic acid bacteria was evaluated by measuring the absorbance of the suspension and the filtrate at 660 nm. This filtration experiment was performed using the filtration membrane of this example and a commercially available cellulose acetate membrane having a nominal pore diameter of 0.2 μm for comparison.

表2に示すように、濾過前後の液の濁度から求めた乳酸菌(φ0.7×2.5μm)の見かけの阻止率は98%以上であった。乳酸菌懸濁液の濾液の濁度は市販の公称孔径0.2μmのセルロースアセテート膜と同程度であったことから、培養液中の着色性の溶解成分が原因と考えられた。   As shown in Table 2, the apparent blocking rate of lactic acid bacteria (φ0.7 × 2.5 μm) determined from the turbidity of the liquid before and after filtration was 98% or more. The turbidity of the filtrate of the lactic acid bacteria suspension was similar to that of a commercially available cellulose acetate membrane having a nominal pore size of 0.2 μm. Therefore, it was considered that this was caused by a colored dissolved component in the culture solution.

図3に乳酸菌懸濁液の濾過実験における濾液量の経時変化の一例を示す。粗面側から濾過するとデプスフィルターとしての特性を示すことを検証した。比較として緻密面側から濾過を行ったスクリーンフィルターとしての濾過実験の結果をあわせて示す。濾過膜としては、ポリ乳酸7.5gをジメチルスルホキシド42.5gに溶解させたポリ乳酸溶液と深さ1.0mmの型から作製したポリ乳酸膜を用いた。いずれの場合も菌体の阻止率は99%以上であった。デプスフィルターとして用いるとスクリーンフィルターの場合と比較して短時間で濾過が可能であり、本実施例で作製した濾過膜の有用性が示された。   FIG. 3 shows an example of the change over time in the amount of filtrate in the filtration experiment of lactic acid bacteria suspension. It was verified that when filtered from the rough surface side, it exhibits characteristics as a depth filter. As a comparison, the results of a filtration experiment as a screen filter that has been filtered from the dense surface side are also shown. As a filtration membrane, a polylactic acid membrane prepared from a polylactic acid solution in which 7.5 g of polylactic acid was dissolved in 42.5 g of dimethyl sulfoxide and a mold having a depth of 1.0 mm was used. In any case, the cell blocking rate was 99% or more. When used as a depth filter, filtration is possible in a shorter time compared to the case of a screen filter, and the usefulness of the filter membrane produced in this example was shown.

(4)タンパク質溶液の濾過実験
牛血清アルブミン溶液の濾過実験により、タンパク質の透過性を確認した。牛血清アルブミンにはシグマ−アルドリッチ製、Fraction Vを用いた。タンパク質溶液は牛血清アルブミンをpH6.8の10mMリン酸ナトリウム緩衝液中に濃度が100g/mになるように溶解して調製した。濾過前のタンパク質溶液と濾液のタンパク質濃度をピアス製BCAタンパク質定量キットを用いて測定し、透過率を計算した。濾過膜としては、ポリ乳酸7.5gをジメチルスルホキシド42.5gに溶解させたポリ乳酸溶液と深さ1.0mmの型から作製した濾過膜を用いた。
(4) Filtration experiment of protein solution The permeability of protein was confirmed by the filtration experiment of the bovine serum albumin solution. For bovine serum albumin, Fraction V manufactured by Sigma-Aldrich was used. The protein solution was prepared by dissolving bovine serum albumin in 10 mM sodium phosphate buffer at pH 6.8 to a concentration of 100 g / m 3 . The protein concentration before filtration and the protein concentration of the filtrate were measured using a Pierce BCA protein quantification kit, and the transmittance was calculated. As the filtration membrane, a filtration membrane prepared from a polylactic acid solution prepared by dissolving 7.5 g of polylactic acid in 42.5 g of dimethyl sulfoxide and a mold having a depth of 1.0 mm was used.

表3にタンパク質の透過率を示す。粗面側、緻密面側のいずれの場合もタンパク質の透過率は75%以上であったが、特にデプスフィルターとしての特性を示す粗面側から濾過した場合は88.5%と高い透過率であった。表2と表3の結果から本実施例で作製した濾過膜は1μm程度の粒子を阻止し、かつ、高分子を透過させる精密濾過膜としての特性を有することが示された。   Table 3 shows protein permeability. The protein transmittance was 75% or more on both the rough surface side and the dense surface side. However, when the filtration was performed from the rough surface side showing the characteristics as a depth filter, the transmittance was as high as 88.5%. there were. From the results of Tables 2 and 3, it was shown that the filtration membrane produced in this example has characteristics as a microfiltration membrane that blocks particles of about 1 μm and permeates the polymer.

Claims (4)

ポリ乳酸を溶媒に溶解して得たポリ乳酸の溶液を型に入れて薄膜状とし、前記型とともに前記溶液よりも低温に維持されたポリ乳酸の非溶媒に浸漬することによって得られたことを特徴とするデプスフィルター型精密濾過膜。 A polylactic acid solution obtained by dissolving polylactic acid in a solvent is put into a thin film and immersed in a non-solvent of polylactic acid maintained at a lower temperature than the solution together with the mold. A depth filter type microfiltration membrane. 前記溶媒はジメチルスルホキシドであり、前記非溶媒は水であることを特徴とする請求項1記載のデプスフィルター型精密濾過膜。 The depth filter type microfiltration membrane according to claim 1, wherein the solvent is dimethyl sulfoxide and the non-solvent is water. ポリ乳酸を溶媒に溶解して得たポリ乳酸の溶液を型に入れて薄膜状とし、前記型とともに前記溶液よりも低温に維持されたポリ乳酸の非溶媒に浸漬することを特徴とするデプスフィルター型精密濾過膜の製造方法。 A depth filter characterized in that a polylactic acid solution obtained by dissolving polylactic acid in a solvent is placed in a mold to form a thin film and immersed in a non-solvent of polylactic acid maintained at a lower temperature than the solution together with the mold Type microfiltration membrane manufacturing method. 前記溶媒はジメチルスルホキシドであり、前記非溶媒は水であることを特徴とする請求項3記載のデプスフィルター型精密濾過膜の製造方法。 4. The method for producing a depth filter type microfiltration membrane according to claim 3, wherein the solvent is dimethyl sulfoxide and the non-solvent is water.
JP2010064440A 2010-03-19 2010-03-19 Depth filter type microfiltration membrane and manufacturing method thereof Expired - Fee Related JP5286313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010064440A JP5286313B2 (en) 2010-03-19 2010-03-19 Depth filter type microfiltration membrane and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010064440A JP5286313B2 (en) 2010-03-19 2010-03-19 Depth filter type microfiltration membrane and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011194325A JP2011194325A (en) 2011-10-06
JP5286313B2 true JP5286313B2 (en) 2013-09-11

Family

ID=44873202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010064440A Expired - Fee Related JP5286313B2 (en) 2010-03-19 2010-03-19 Depth filter type microfiltration membrane and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5286313B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6611230B2 (en) * 2015-07-07 2019-11-27 東芝インフラシステムズ株式会社 Membrane cleaning control method, membrane cleaning control device, and water treatment system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139116A (en) * 1987-11-25 1989-05-31 Fuji Photo Film Co Ltd Asymmetric microporous membrane
JPH04317708A (en) * 1991-04-18 1992-11-09 Fuji Photo Film Co Ltd New filtration using filtration assistant
JP4565944B2 (en) * 2004-09-16 2010-10-20 ダイセル化学工業株式会社 Filter material and manufacturing method thereof
JP4784143B2 (en) * 2005-04-28 2011-10-05 滋賀県 Method for producing polylactic acid porous body
JP2009226256A (en) * 2008-03-19 2009-10-08 Kobe Univ Polylactic acid separation membrane

Also Published As

Publication number Publication date
JP2011194325A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
Minbu et al. Preparation of poly (L-lactic acid) microfiltration membranes by a nonsolvent-induced phase separation method with the aid of surfactants
Jiang et al. Deep eutectic solvent as novel additive for PES membrane with improved performance
Bohonak et al. Compaction and permeability effects with virus filtration membranes
Abdelrasoul et al. Morphology control of polysulfone membranes in filtration processes: a critical review
Arthanareeswaran et al. Synthesis, characterization and thermal studies on cellulose acetate membranes with additive
JP7348196B2 (en) Pleated self-supporting porous block copolymer material and method for producing the same
Tanaka et al. Formation of depth filter microfiltration membranes of poly (l-lactic acid) via phase separation
Al Aani et al. Investigation of UF membranes fouling and potentials as pre-treatment step in desalination and surface water applications
Gonzalez-Ortiz et al. Development of novel h-BNNS/PVA porous membranes via Pickering emulsion templating
Koseoglu-Imer The determination of performances of polysulfone (PS) ultrafiltration membranes fabricated at different evaporation temperatures for the pretreatment of textile wastewater
Yan et al. Development of a new polymer membrane—PVB/PVDF blended membrane
Tanaka et al. Poly (L-lactic acid) microfiltration membrane formation via thermally induced phase separation with drying
Venault et al. Antifouling PVDF membrane prepared by VIPS for microalgae harvesting
Tomietto et al. Biobased polyhydroxyalkanoate (PHA) membranes: Structure/performances relationship
Xiong et al. PDLA/PLLA ultrafiltration membrane with excellent permeability, rejection and fouling resistance via stereocomplexation
Huang et al. Effect of ferrosoferric oxide content on the performances of polysulfone–ferrosoferric oxide ultrafiltration membranes
JP2012120996A (en) Filter membrane made from polylactic acid, and method for manufacturing the same
Kee et al. Modification of cellulose acetate membrane using monosodium glutamate additives prepared by microwave heating
JP5286313B2 (en) Depth filter type microfiltration membrane and manufacturing method thereof
Sun et al. Preparation of PVDF/poly (tetrafluoroethylene‐co‐vinyl alcohol) blend membranes with antifouling propensities via nonsolvent induced phase separation method
JP4710018B2 (en) Filtration membrane and method for producing the same
Tanaka et al. Formation of biodegradable polyesters membranes via thermally induced phase separation
JP2013081910A (en) Filter membrane made from polylactic acid and method for producing the same
Minbu et al. Poly (l-lactic acid) depth filter membrane prepared by nonsolvent-induced phase separation with the aid of a nonionic surfactant
Lin et al. Preparation and characterization of low-pressure and high MgSO 4 rejection thin-film composite NF membranes via interfacial polymerization process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5286313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees