Nothing Special   »   [go: up one dir, main page]

JP5262638B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system Download PDF

Info

Publication number
JP5262638B2
JP5262638B2 JP2008308173A JP2008308173A JP5262638B2 JP 5262638 B2 JP5262638 B2 JP 5262638B2 JP 2008308173 A JP2008308173 A JP 2008308173A JP 2008308173 A JP2008308173 A JP 2008308173A JP 5262638 B2 JP5262638 B2 JP 5262638B2
Authority
JP
Japan
Prior art keywords
unit
flow rate
reaction temperature
combustion
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008308173A
Other languages
Japanese (ja)
Other versions
JP2010135125A (en
Inventor
弘樹 藤岡
邦弘 鵜飼
智倫 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008308173A priority Critical patent/JP5262638B2/en
Publication of JP2010135125A publication Critical patent/JP2010135125A/en
Application granted granted Critical
Publication of JP5262638B2 publication Critical patent/JP5262638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generation system including a reforming part for stably supplying optimum hydrogen-containing gas for operation. <P>SOLUTION: The fuel cell power generation system 100 includes the reforming part 30 for producing hydrogen-containing gas, a reforming temperature detecting part 21, a combustion air supply part 18, an air flow amount measuring part 31, a fuel cell 8, a combustion part 2 for supplying heat required for reforming reaction, a steam generating part 23 for generating steam, a detecting part for determining whether the measuring operation of the air flow amount measuring part 31 is adequate or not, and an operation control part 16. The operation control part 16 controls the operation of the combustion air supply part 18 in accordance with at least a flow amount measured by the air flow amount-measuring part 31, and determines whether the measuring operation of the air flow amount-measuring part 31 is adequate or not in accordance with a value detected by the detecting part. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、化石原料などから一酸化炭素濃度の低い水素含有ガスを生成する改質部を備えた燃料電池発電システムに関する。   The present invention relates to a fuel cell power generation system including a reforming unit that generates a hydrogen-containing gas having a low carbon monoxide concentration from a fossil raw material.

近年、分散型エネルギー供給源として、小型で高効率な発電が可能である燃料電池スタック(以下、単に「燃料電池」という)を用いた燃料電池発電システムの開発が進められている。なお、燃料電池発電システムは、発電部の本体である燃料電池に、水素含有ガスと酸素含有ガスとを供給して、水素と酸素との電気化学反応により発生する化学的なエネルギーを、電気的なエネルギーとして取り出して発電するシステムである。   In recent years, development of a fuel cell power generation system using a fuel cell stack (hereinafter simply referred to as “fuel cell”) capable of generating power with a small size and high efficiency as a distributed energy supply source has been promoted. The fuel cell power generation system supplies a hydrogen-containing gas and an oxygen-containing gas to a fuel cell, which is a main body of a power generation unit, and electrically generates chemical energy generated by an electrochemical reaction between hydrogen and oxygen. It is a system that generates electricity by taking it out as valuable energy.

しかし、現状では、燃料電池に必要な水素含有ガスを供給するインフラストラクチャーは整備されていない。   However, at present, an infrastructure for supplying the hydrogen-containing gas necessary for the fuel cell has not been established.

そこで、従来の燃料電池発電システムは、都市ガスまたはLPGなどを原料とし、Ru触媒やNi触媒を用いて600〜700℃の温度で水蒸気と改質反応させる水蒸気改質部を介して水素含有ガスを発生する水素生成装置が設けられている。   Therefore, the conventional fuel cell power generation system uses a gas containing hydrogen via a steam reforming section that uses city gas or LPG as a raw material and reforms with steam at a temperature of 600 to 700 ° C. using a Ru catalyst or Ni catalyst. A hydrogen generator for generating

しかし、改質反応により得られる水素含有ガスには、通常、原料に由来する一酸化炭素が含まれ、その濃度が高いと、燃料電池の発電特性が低下する。   However, the hydrogen-containing gas obtained by the reforming reaction usually contains carbon monoxide derived from the raw material, and when the concentration thereof is high, the power generation characteristics of the fuel cell deteriorate.

そこで、水素生成装置には、水蒸気改質部の他に、一酸化炭素を低減させるために、変成部や選択酸化部などの反応部が設けられている。   Therefore, in addition to the steam reforming unit, the hydrogen generator is provided with a reaction unit such as a shift unit and a selective oxidation unit in order to reduce carbon monoxide.

また、燃料電池発電システムは、燃料電池のアノードから排出される水素含有ガス(以下、「アノードオフガス」という)を水素生成装置に戻して燃焼させて、改質反応により、効率の向上をはかる方法が一般的である。   The fuel cell power generation system is a method for improving efficiency by reforming reaction by returning a hydrogen-containing gas (hereinafter referred to as “anode off-gas”) discharged from the anode of the fuel cell to the hydrogen generator and burning it. Is common.

一般に、燃料電池発電システムは、上述のような、燃料電池や水素生成装置などの多くの装置で構成されるため、高い効率で運転するには、それぞれの装置を適切な条件で運転することが必要となる。特に、運転に最適な水素含有ガスの安定供給には、水素生成装置でのアノードオフガスの燃焼を安定化して改質反応を行うことが重要である。   In general, since a fuel cell power generation system is composed of many devices such as the fuel cell and the hydrogen generator as described above, each device can be operated under appropriate conditions in order to operate with high efficiency. Necessary. In particular, in order to stably supply the hydrogen-containing gas optimal for operation, it is important to perform the reforming reaction by stabilizing the combustion of the anode off gas in the hydrogen generator.

そこで、アノードオフガスの燃焼を安定化させるために、水蒸気改質部の改質触媒温度に応じて、燃料電池の負荷電流を一時的に増減させて、アノードオフガス流量や燃焼用空気の流量を制御し、適正に燃焼させる例が開示されている(例えば、特許文献1参照)。   Therefore, in order to stabilize the combustion of the anode off gas, the load current of the fuel cell is temporarily increased or decreased according to the reforming catalyst temperature of the steam reforming section to control the anode off gas flow rate and the combustion air flow rate. An example of proper combustion is disclosed (for example, see Patent Document 1).

また、アノードオフガスの燃焼状態を検出して、燃焼空気供給装置の燃焼用空気の流量を適正に制御する例が開示されている(例えば、特許文献2参照)。   In addition, an example is disclosed in which the combustion state of the anode off gas is detected to appropriately control the flow rate of combustion air in the combustion air supply device (see, for example, Patent Document 2).

また、例えばフィルターの目詰まりなどにより、燃焼用空気流量が設定量で供給されていない場合、改質触媒温度の温度変化を検出して燃焼用空気流量を補正し、長期間の運転時においても各装置を適切な条件で運転する例が開示されている(例えば、特許文献3参照)。
特開昭63−146367号公報 特開2004−178962号公報 特開2007−200777号公報
Also, if the combustion air flow rate is not supplied in the set amount due to, for example, clogging of the filter, the temperature change of the reforming catalyst temperature is detected to correct the combustion air flow rate, and even during long-term operation An example in which each device is operated under appropriate conditions is disclosed (for example, see Patent Document 3).
JP 63-146367 A JP-A-2004-178862 JP 2007-200777 A

特許文献1、2に開示された燃料電池発電システムによれば、燃焼用空気の流量を計測する検出器などを介して制御することにより、水素生成装置でのアノードオフガスの燃焼を安定化させることができる。しかしながら、上記従来の構成では、検出器の動作が適正でなく、例えば検出値が正確でなければ、水素生成装置でのアノードオフガスの燃焼を安定化できない。   According to the fuel cell power generation systems disclosed in Patent Documents 1 and 2, the combustion of the anode off gas in the hydrogen generator is stabilized by controlling it through a detector or the like that measures the flow rate of the combustion air. Can do. However, in the conventional configuration described above, the operation of the detector is not appropriate, for example, if the detected value is not accurate, the combustion of the anode off gas in the hydrogen generator cannot be stabilized.

また、特許文献3に開示された燃料電池発電システムによれば、燃焼用空気の流量を計測する検出器は不要となるが、発電運転中に発生する短期的な燃焼空気の流量変化を検出できないという課題がある。   Further, according to the fuel cell power generation system disclosed in Patent Document 3, a detector for measuring the flow rate of combustion air is not required, but a short-term change in the flow rate of combustion air generated during power generation operation cannot be detected. There is a problem.

本発明は、上記従来の課題を解決するもので、運転に最適な水素含有ガスを安定に供給する改質部を備えた燃料電池発電システムを提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a fuel cell power generation system including a reforming unit that stably supplies a hydrogen-containing gas optimum for operation.

上記従来の課題を解決するために、本発明の燃料電池発電システムでは、原料と水蒸気との改質反応により水素含有ガスを生成させる改質部と、改質反応における反応温度を検出する改質温度検出部と、燃焼用空気を供給する燃焼空気供給部と、燃焼用空気の流量を計測する空気流量計測部と、水素含有ガスおよび酸素含有ガスが供給されて発電する燃料電池と、燃料電池から戻される水素含有ガスを燃焼させ、改質反応に必要な熱を供給する燃焼部と、燃焼部から供給される熱により水蒸気を発生させる水蒸気発生部と、空気流量計測部の計測動作が適正かどうかを判断する検出部と、運転制御部と、を少なくとも備え、運転制御部は、少なくとも空気流量計測部で計測される流量に基づいて燃焼空気供給部の動作を制御するとともに、検出部の検出値に基づいて空気流量計測部の計測動作が適正かどうかを判断する構成を有する。   In order to solve the above-described conventional problems, in the fuel cell power generation system of the present invention, a reforming unit that generates a hydrogen-containing gas by a reforming reaction between a raw material and steam, and a reforming that detects a reaction temperature in the reforming reaction A temperature detection unit; a combustion air supply unit that supplies combustion air; an air flow rate measurement unit that measures the flow rate of combustion air; a fuel cell that is supplied with a hydrogen-containing gas and an oxygen-containing gas to generate power; and a fuel cell Combustion unit that burns the hydrogen-containing gas returned from the reactor and supplies heat necessary for the reforming reaction, a steam generation unit that generates steam by the heat supplied from the combustion unit, and the measurement operation of the air flow measurement unit are appropriate At least a detection unit for determining whether or not the operation control unit controls the operation of the combustion air supply unit based on at least the flow rate measured by the air flow rate measurement unit. Detection value measurement operation of the air flow measuring unit based on the parts having a configuration to determine whether proper.

この構成により、燃焼用空気の流量を空気流量計測部の計測値で制御するとともに、その計測値が正しいか否かを検出部の検出値で判断し、最適に制御できる。その結果、空気流量計測部と検出部の2段階で燃焼用空気の流量を制御して、安全で信頼性の高い燃料電池発電システムを実現できる。   With this configuration, the flow rate of the combustion air is controlled by the measurement value of the air flow rate measurement unit, and whether or not the measurement value is correct is determined by the detection value of the detection unit and can be optimally controlled. As a result, it is possible to realize a safe and highly reliable fuel cell power generation system by controlling the flow rate of combustion air in two stages of an air flow rate measurement unit and a detection unit.

本発明によれば、検出器の検出値で、空気流量計測部の計測動作が適正かどうかを判断して運転制御部で制御することにより、信頼性に優れた燃料電池発電システムを実現できる。   According to the present invention, it is possible to realize a highly reliable fuel cell power generation system by determining whether the measurement operation of the air flow rate measurement unit is appropriate based on the detection value of the detector and controlling the operation by the operation control unit.

第1の発明は、原料と水蒸気との改質反応により水素含有ガスを生成させる改質部と、改質反応における反応温度を検出する改質温度検出部と、燃焼用空気を供給する燃焼空気供給部と、燃焼用空気の流量を計測する空気流量計測部と、水素含有ガスおよび酸素含有ガスが供給されて発電する燃料電池と、燃料電池から戻される水素含有ガスを燃焼させ、改質反応に必要な熱を供給する燃焼部と、燃焼部から供給される熱により水蒸気を発生させる水蒸気発生部と、空気流量計測部の計測動作が適正かどうかを判断する検出部と、運転制御部と、を少なくとも備え、運転制御部は、少なくとも空気流量計測部で計測される流量に基づいて燃焼空気供給部の動作を制御するとともに、検出部の検出値に基づいて空気流量計測部の計測動作が適正かどうかを判断する燃料電池発電システムである。   The first invention includes a reforming unit that generates a hydrogen-containing gas by a reforming reaction between a raw material and steam, a reforming temperature detecting unit that detects a reaction temperature in the reforming reaction, and combustion air that supplies combustion air A supply unit, an air flow rate measurement unit for measuring the flow rate of combustion air, a fuel cell that is supplied with hydrogen-containing gas and an oxygen-containing gas to generate power, and a hydrogen-containing gas returned from the fuel cell is burned to perform a reforming reaction A combustion section that supplies heat necessary for the operation, a steam generation section that generates steam by heat supplied from the combustion section, a detection section that determines whether the measurement operation of the air flow measurement section is appropriate, and an operation control section, The operation control unit controls the operation of the combustion air supply unit based on at least the flow rate measured by the air flow rate measurement unit, and the measurement operation of the air flow rate measurement unit is performed based on the detection value of the detection unit. Appropriate It is a fuel cell power generation system to determine whether.

この構成により、燃焼用空気の流量を空気流量計測部の計測値で制御するとともに、その計測値が正しいか否かを検出部の検出値で判断し、最適に制御できる。その結果、空気流量計測部と検出部の2段階で燃焼用空気の流量を制御して、安全で信頼性の高い燃料電池発電システムを実現できる。   With this configuration, the flow rate of the combustion air is controlled by the measurement value of the air flow rate measurement unit, and whether or not the measurement value is correct is determined by the detection value of the detection unit and can be optimally controlled. As a result, it is possible to realize a safe and highly reliable fuel cell power generation system by controlling the flow rate of combustion air in two stages of an air flow rate measurement unit and a detection unit.

第2の発明は、第1の発明において、燃焼部に火炎中のイオン電流値を検出する燃焼検出部を設け、運転制御部は、検出部の検出値である、改質温度検出部で検出される反応温度と、燃焼検出部で検出されるイオン電流値に基づいて、空気流量計測部の計測動作が適正かどうかを判断して制御する。   According to a second invention, in the first invention, the combustion unit is provided with a combustion detection unit for detecting an ionic current value in the flame, and the operation control unit is detected by the reforming temperature detection unit which is a detection value of the detection unit. On the basis of the reaction temperature to be detected and the ion current value detected by the combustion detection unit, it is determined whether or not the measurement operation of the air flow rate measurement unit is appropriate.

これにより、反応温度とイオン電流値を検出部の検出値として、空気流量計測部の計測動作が適正かを判断して制御できる。   Thereby, it can be controlled by determining whether the measurement operation of the air flow rate measurement unit is appropriate using the reaction temperature and the ion current value as the detection value of the detection unit.

第3の発明は、第2の発明において、運転制御部は、反応温度が減少し、かつイオン電流値が減少する場合、または、反応温度が増加し、かつイオン電流値が増加する場合に、空気流量計測部の計測動作が予め設定される適正計測動作の範囲外と判断して制御する。   According to a third invention, in the second invention, the operation control unit is configured such that the reaction temperature decreases and the ion current value decreases, or the reaction temperature increases and the ion current value increases. Control is performed by determining that the measurement operation of the air flow rate measurement unit is outside the range of the appropriate measurement operation set in advance.

これにより、空気流量計測部の動作不良を短期間で判断して燃料電池発電システムを制御できる。   Accordingly, it is possible to control the fuel cell power generation system by judging the malfunction of the air flow rate measurement unit in a short period of time.

第4の発明は、第2の発明において、反応温度に所定の反応温度閾値、およびイオン電流値に所定の電流値閾値を設け、運転制御部は、反応温度が反応温度閾値を下回る、およびイオン電流値が電流値閾値を下回る場合、または、反応温度が反応温度閾値を上回る、およびイオン電流値が電流値閾値を上回る場合に、空気流量計測部の計測動作が予め設定される適正計測動作の範囲外と判断して制御する。   According to a fourth aspect, in the second aspect, the reaction temperature is set to a predetermined reaction temperature threshold value and the ion current value is set to a predetermined current value threshold value. When the current value falls below the current value threshold value, or when the reaction temperature exceeds the reaction temperature threshold value and the ion current value exceeds the current value threshold value, the measurement operation of the air flow rate measurement unit is set to a proper measurement operation. Control outside the range.

第5の発明は、第1の発明において、水蒸気発生部に水蒸気雰囲気温度を検出する水蒸気温度検出部を設け、運転制御部は、検出部の検出値である、改質温度検出部で検出される反応温度と、水蒸気温度検出部で検出される水蒸気雰囲気温度に基づいて、空気流量計測部の計測動作が適正かどうかを判断して制御する。   According to a fifth invention, in the first invention, the water vapor generation unit is provided with a water vapor temperature detection unit for detecting a water vapor atmosphere temperature, and the operation control unit is detected by the reforming temperature detection unit, which is a detection value of the detection unit. On the basis of the reaction temperature and the water vapor atmosphere temperature detected by the water vapor temperature detector, it is determined whether or not the measurement operation of the air flow rate measurement unit is appropriate.

これにより、反応温度と水蒸気雰囲気温度を検出部の検出値として、空気流量計測部の計測動作が適正かを判断して制御できる。   Thereby, it can be controlled by determining whether the measurement operation of the air flow rate measurement unit is appropriate using the reaction temperature and the water vapor atmosphere temperature as the detection values of the detection unit.

第6の発明は、第5の発明において、運転制御部は、反応温度が減少し、かつ水蒸気雰囲気温度が増加する場合、または、反応温度が増加し、かつ水蒸気雰囲気温度が減少する場合に、空気流量計測部の計測動作が予め設定される適正計測動作の範囲外と判断して制御する。   In a sixth aspect based on the fifth aspect, the operation control unit, when the reaction temperature decreases and the water vapor atmosphere temperature increases, or when the reaction temperature increases and the water vapor atmosphere temperature decreases, Control is performed by determining that the measurement operation of the air flow rate measurement unit is outside the range of the appropriate measurement operation set in advance.

第7の発明は、第5の発明において、反応温度に予め反応温度閾値、および水蒸気雰囲気温度に予め水蒸気温度閾値を設け、運転制御部は、反応温度が反応温度閾値を上回る、および水蒸気雰囲気温度が水蒸気温度閾値を下回る場合、または、反応温度が反応温度閾値を下回る、および水蒸気雰囲気温度が水蒸気温度閾値を上回る場合に、空気流量計測部の計測動作が予め設定される適正計測動作の範囲外と判断する。   In a fifth aspect based on the fifth aspect, the reaction temperature threshold is set in advance in the reaction temperature, and the water vapor temperature threshold is set in advance in the water vapor atmosphere temperature, and the operation control unit is configured so that the reaction temperature exceeds the reaction temperature threshold, and the water vapor atmosphere temperature. Is below the water vapor temperature threshold, or when the reaction temperature falls below the reaction temperature threshold, and the water vapor atmosphere temperature exceeds the water vapor temperature threshold, the measurement operation of the air flow measurement unit is outside the range of the appropriate measurement operation set in advance. Judge.

弟8の発明は、第1の発明において、燃料電池に発電電圧を検出する電圧検出部を設け、運転制御部は、検出部の検出値である、改質温度検出部で検出される反応温度と、電圧検出部で検出される発電電圧に基づいて、空気流量計測部の計測動作が適正かどうかを判断して制御する。   According to the invention of the younger brother 8, in the first invention, the fuel cell is provided with a voltage detection unit for detecting the generated voltage, and the operation control unit is a reaction temperature detected by the reforming temperature detection unit, which is a detection value of the detection unit. Then, based on the generated voltage detected by the voltage detector, it is determined whether or not the measurement operation of the air flow rate measurement unit is appropriate.

これにより、反応温度と発電電圧を検出部の検出値として、空気流量計測部の計測動作が適正かを判断して制御できる。   Thereby, it can be controlled by determining whether the measurement operation of the air flow rate measurement unit is appropriate using the reaction temperature and the generated voltage as detection values of the detection unit.

第9の発明は、第8の発明において、運転制御部は、反応温度が減少し、かつ発電電圧が減少する場合、または、反応温度が増加し、かつ発電電圧が増加する場合に、空気流量計測部の計測動作が異常と判断して制御する。   In a ninth aspect based on the eighth aspect, the operation control unit determines whether the air flow rate when the reaction temperature decreases and the generated voltage decreases, or when the reaction temperature increases and the generated voltage increases. Control is performed by determining that the measurement operation of the measurement unit is abnormal.

第10の発明は、第8の発明において、反応温度に予め反応温度閾値、および発電電圧に予め電圧閾値を設け、運転制御部は、反応温度の反応温度閾値、および発電電圧の電圧閾値を上回る場合、または、反応温度の反応温度閾値、および発電電圧の電圧閾値を下回る場合に、空気流量計測部の計測動作が異常と判断して制御する。   According to a tenth aspect, in the eighth aspect, a reaction temperature threshold is set in advance for the reaction temperature and a voltage threshold is set for the generated voltage in advance, and the operation control unit exceeds the reaction temperature threshold for the reaction temperature and the voltage threshold for the generated voltage. In the case, or when the reaction temperature falls below the reaction temperature threshold of the reaction temperature and the voltage threshold of the generated voltage, the measurement operation of the air flow rate measurement unit is determined to be abnormal and is controlled.

これらにより、空気流量計測部の動作不良を短期間で判断して燃料電池発電システムを制御できる。   Accordingly, it is possible to control the fuel cell power generation system by judging the malfunction of the air flow rate measurement unit in a short period of time.

以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the same components as those of the above-described embodiments will be denoted by the same reference numerals, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
まず、以下に本発明の実施の形態1における燃料電池発電システムの構成について、詳細に説明する。
(Embodiment 1)
First, the configuration of the fuel cell power generation system according to Embodiment 1 of the present invention will be described in detail below.

図1は、本発明の実施の形態1における燃料電池発電システムを示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing a fuel cell power generation system according to Embodiment 1 of the present invention.

図1に示すように、燃料電池発電システム100は、水素含有ガスを生成させる水素生成装置1と、水素生成装置1から供給された水素含有ガスを用いて発電を行う燃料電池8と、水素生成装置1から燃料電池8へ水素含有ガスを供給する水素ガス供給経路12と、燃料電池8で排出される水素含有ガス(アノードオフガス)を水素生成装置1の燃焼部2に供給するオフガス経路14と、燃焼ガス供給経路15とを備えている。   As shown in FIG. 1, a fuel cell power generation system 100 includes a hydrogen generator 1 that generates a hydrogen-containing gas, a fuel cell 8 that generates power using the hydrogen-containing gas supplied from the hydrogen generator 1, and a hydrogen generator. A hydrogen gas supply path 12 for supplying a hydrogen-containing gas from the apparatus 1 to the fuel cell 8; an off-gas path 14 for supplying a hydrogen-containing gas (anode offgas) discharged from the fuel cell 8 to the combustion unit 2 of the hydrogen generator 1; And a combustion gas supply path 15.

そして、オフガス経路14には、水素生成装置1から水素含有ガスの供給を封止する封止部9が設けられ、封止部9は水素生成装置バイパス経路11と燃料電池バイパス経路13に接続されている。また、水素ガス供給経路12には、水素生成装置1から水素含有ガスの供給を封止する封止部9Aが設けられ、封止部9Aは燃料電池バイパス経路13に接続されている。ここで、封止部9,9Aは、複数の電磁弁を組み合わせた構成(詳細説明は省略する)からなり、水素ガス供給経路12、水素生成装置バイパス経路11および燃料電池バイパス経路13から供給されるガスの流通を切り替える切替機能も備えている。   The off-gas path 14 is provided with a sealing portion 9 that seals the supply of the hydrogen-containing gas from the hydrogen generator 1, and the sealing portion 9 is connected to the hydrogen generator bypass path 11 and the fuel cell bypass path 13. ing. The hydrogen gas supply path 12 is provided with a sealing portion 9A that seals the supply of the hydrogen-containing gas from the hydrogen generator 1, and the sealing portion 9A is connected to the fuel cell bypass path 13. Here, the sealing portions 9 and 9A are configured by combining a plurality of solenoid valves (detailed explanation is omitted), and are supplied from the hydrogen gas supply path 12, the hydrogen generator bypass path 11, and the fuel cell bypass path 13. It also has a switching function to switch the distribution of gas.

また、燃料電池8は、酸素含有ガスとしての空気を供給する燃料電池空気ブロア17と、燃料電池8の発電電圧を検出する電圧検出部28を備えている。そして、燃料電池8の他の構成は、一般的な固体高分子型の燃料電池と同等であるので詳細な説明は省略する。   Further, the fuel cell 8 includes a fuel cell air blower 17 that supplies air as an oxygen-containing gas, and a voltage detection unit 28 that detects a power generation voltage of the fuel cell 8. Since the other configuration of the fuel cell 8 is the same as that of a general solid polymer fuel cell, detailed description thereof is omitted.

また、水素生成装置1は、水を供給する水供給部3と、炭化水素系の原料に含まれる硫黄成分を吸着して除去する脱硫部5と、原料と水とを用いて水素含有ガスを生成させる改質部30と、原料の流量(原料流量)を制御する原料供給部4と、原料供給部4や水供給部3の動作を少なくとも制御する運転制御部16とを備えている。なお、脱硫部5に供給される炭化水素系の原料は、炭化水素などの少なくとも炭素および水素元素から構成される有機化合物を含む原料であればよく、例えばメタンを主成分とする都市ガス、天然ガス、LPGなどである。   The hydrogen generator 1 also uses a water supply unit 3 that supplies water, a desulfurization unit 5 that adsorbs and removes sulfur components contained in hydrocarbon-based raw materials, and a hydrogen-containing gas using the raw materials and water. A reforming unit 30 to be generated, a raw material supply unit 4 that controls the flow rate of raw material (raw material flow rate), and an operation control unit 16 that controls at least the operations of the raw material supply unit 4 and the water supply unit 3 are provided. The hydrocarbon-based raw material supplied to the desulfurization section 5 may be a raw material containing an organic compound composed of at least carbon and hydrogen elements such as hydrocarbons. For example, city gas mainly composed of methane, natural gas Gas, LPG, etc.

そして、図1に示すように、本実施の形態では、原料の供給源として、例えば都市ガスのガスインフラライン6を用い、そのガスインフラライン6が脱硫部5に接続されている。なお、脱硫部5は、上流側および下流側に配置された脱硫接続部7に着脱可能な形状を有し、脱硫部5の硫黄成分に対する吸着量が飽和して吸着特性が低下した場合に、新しい脱硫部5と交換できる構成となっている。このとき、脱硫部5には、都市ガス中の付臭成分である硫黄化合物を吸着させる、ゼオライト系吸着除去剤が充填されている。   As shown in FIG. 1, in the present embodiment, for example, a gas infrastructure line 6 of city gas is used as a raw material supply source, and the gas infrastructure line 6 is connected to the desulfurization section 5. In addition, the desulfurization part 5 has a shape that can be attached to and detached from the desulfurization connection part 7 disposed on the upstream side and the downstream side, and when the adsorption amount for the sulfur component of the desulfurization part 5 is saturated and the adsorption characteristics are reduced, It can be replaced with a new desulfurization section 5. At this time, the desulfurization section 5 is filled with a zeolite-based adsorption / removal agent that adsorbs a sulfur compound that is an odorant component in the city gas.

また、脱硫接続部7は、原料の流通を制御する、例えば電磁弁で構成される弁機能も有している。なお、脱硫部5は、水添脱硫(水素化脱硫)を用いた構成としてもよい。   Moreover, the desulfurization connection part 7 also has the valve function comprised, for example with a solenoid valve which controls the distribution | circulation of a raw material. In addition, the desulfurization part 5 is good also as a structure using hydrodesulfurization (hydrodesulfurization).

また、水供給部3は、流量調節機能を有するポンプを有している。   Moreover, the water supply part 3 has a pump having a flow rate adjusting function.

また、原料供給部4は、脱硫部5と改質部30とを接続する原料供給経路10に配置され、改質部30に供給される原料の流量を制御することによって、ガスインフラライン6から脱硫部5に供給される原料の流量を制御している。なお、原料供給部4は、脱硫部5に供給される原料の流量を制御できればよく、脱硫部5の上流側に配置してもよい。本実施の形態では、原料供給部4はブースターポンプを有し、例えば入力する電流パルスや入力電力などを制御することにより、脱硫部5に供給される原料の流量を調節できる。   The raw material supply unit 4 is disposed in the raw material supply path 10 that connects the desulfurization unit 5 and the reforming unit 30, and controls the flow rate of the raw material supplied to the reforming unit 30, so that the gas infrastructure line 6 The flow rate of the raw material supplied to the desulfurization part 5 is controlled. In addition, the raw material supply part 4 should just be able to control the flow volume of the raw material supplied to the desulfurization part 5, and may be arrange | positioned upstream of the desulfurization part 5. FIG. In this Embodiment, the raw material supply part 4 has a booster pump, and can control the flow volume of the raw material supplied to the desulfurization part 5 by controlling the input current pulse, input electric power, etc., for example.

また、運転制御部16は、改質部30の運転動作を制御する制御部で、原料供給部4から改質部30に供給される原料の供給量、水供給部3から改質部30に供給される水の供給量などの制御および脱硫接続部7や封止部9,9Aの動作の制御を行う。さらに、以下で詳細に説明するように、改質温度検出器で検出される反応温度と燃焼検出部で検出されるイオン電流値などの検出部の検出値に基づいて、空気流量計測部の計測動作が適正かを判断して、燃焼用空気の流量を最適に制御する。   The operation control unit 16 is a control unit that controls the operation of the reforming unit 30, and the amount of raw material supplied from the raw material supply unit 4 to the reforming unit 30, and the water supply unit 3 to the reforming unit 30. Control of the amount of supplied water and the operation of the desulfurization connecting part 7 and the sealing parts 9 and 9A are performed. Further, as will be described in detail below, the measurement of the air flow measurement unit is performed based on the detection value of the detection unit such as the reaction temperature detected by the reforming temperature detector and the ion current value detected by the combustion detection unit. Judging whether the operation is appropriate, the flow rate of combustion air is optimally controlled.

また、運転制御部は16、燃焼検出部22で測定されたイオン電流値に基づき、燃焼部2での燃焼状態を判断する。例えば、検出するイオン電流値が、予め設定される値以下になった場合、消火と判断し、燃焼部2の燃焼を停止するように制御する。これは、燃焼検出部22で検出される、火炎中の有機化合物イオンに起因するイオン電流値と有機化合物濃度とに比例関係があることに基づくものである。具体的には、例えばイオン電流値が減少した場合、燃焼部2の火炎中の有機化合物濃度が減少していると判断できる。   Further, the operation control unit 16 determines the combustion state in the combustion unit 2 based on the ion current value measured by the combustion detection unit 22. For example, when the detected ion current value is equal to or less than a preset value, it is determined that the fire is extinguished, and control is performed so as to stop the combustion of the combustion unit 2. This is based on the fact that there is a proportional relationship between the ionic current value caused by the organic compound ions in the flame and the organic compound concentration detected by the combustion detector 22. Specifically, for example, when the ionic current value is decreased, it can be determined that the concentration of the organic compound in the flame of the combustion unit 2 is decreased.

また、運転制御部16は、燃料電池8の運転動作も制御するが、詳細な説明は省略する。   The operation control unit 16 also controls the operation of the fuel cell 8, but detailed description thereof is omitted.

なお、運転制御部16は、例えば半導体メモリーやCPUなどにより構成される。そして、改質部30の運転動作シーケンス、原料積算流量など運転情報などを記憶し、状況に応じた適切な動作条件を演算し、かつ、水供給部3や原料供給部4などの運転に必要な動作条件を指令する。   The operation control unit 16 is configured by, for example, a semiconductor memory or a CPU. Then, the operation information such as the operation sequence of the reforming unit 30 and the raw material integrated flow rate is stored, the appropriate operation conditions according to the situation are calculated, and necessary for the operation of the water supply unit 3 and the raw material supply unit 4 Specific operating conditions.

以下に、本発明の実施の形態1の改質部について、図面を用いて詳細に説明する。図2は、本発明の実施の形態1の燃料電池発電システムにおける改質部30を示す要部断面図である。   Below, the modification part of Embodiment 1 of this invention is demonstrated in detail using drawing. FIG. 2 is a cross-sectional view showing a main part of the reforming unit 30 in the fuel cell power generation system according to Embodiment 1 of the present invention.

図2に示すように、改質部30は、水蒸気発生部23と、水蒸気改質部20と、変成部25を少なくとも備えている。ここで、水蒸気発生部23は、水供給部3から供給される水を蒸発させて水蒸気を生成するとともに、原料と水蒸気の混合ガスを予熱する。そして、水蒸気改質部20は、原料と水蒸気との改質反応を進行させる。さらに、変成部25は、水蒸気改質部20で生成した水素含有ガス中の一酸化炭素と水蒸気とを変成反応させて、水素含有ガスの一酸化炭素濃度を低減させる。なお、変成部25を通過した後の水素含有ガス中に残留する一酸化炭素を、空気供給部19から変成部25を通過した後の水素含有ガスに供給される空気を用いて、主に酸化させて除去する選択酸化部26を設けてもよい。   As shown in FIG. 2, the reforming unit 30 includes at least a steam generating unit 23, a steam reforming unit 20, and a metamorphic unit 25. Here, the water vapor generation unit 23 evaporates the water supplied from the water supply unit 3 to generate water vapor, and preheats a mixed gas of the raw material and water vapor. And the steam reforming part 20 advances the reforming reaction of a raw material and water vapor | steam. Further, the shift unit 25 shifts the carbon monoxide in the hydrogen-containing gas generated in the steam reforming unit 20 and water vapor to reduce the carbon monoxide concentration of the hydrogen-containing gas. The carbon monoxide remaining in the hydrogen-containing gas after passing through the shift unit 25 is mainly oxidized using air supplied from the air supply unit 19 to the hydrogen-containing gas after passing through the shift unit 25. Alternatively, the selective oxidation unit 26 to be removed may be provided.

このとき、水蒸気改質部20には、例えばRu系の改質触媒、変成部25には、例えばCu−Zn系の変成触媒、選択酸化部26には、例えばRu系の選択酸化触媒を有している。   At this time, the steam reforming unit 20 includes, for example, a Ru-based reforming catalyst, the shift unit 25 includes, for example, a Cu—Zn-based shift catalyst, and the selective oxidation unit 26 includes, for example, a Ru-based selective oxidation catalyst. doing.

また、改質部30は、水蒸気改質部20における改質触媒(あるいは水素含有ガス)の温度(反応温度)を検出する改質温度検出部21、水蒸気発生部23における水蒸気雰囲気(あるいは原料と水蒸気の混合ガス)の温度を検出する水蒸気温度検出部24を備えている。このとき、水蒸気改質部20と水蒸気発生部23には、燃焼部2で発生させた燃焼排ガスが、燃焼部2との改質部30の壁面を介して供給される構成となっている。   In addition, the reforming unit 30 includes a reforming temperature detecting unit 21 that detects the temperature (reaction temperature) of the reforming catalyst (or hydrogen-containing gas) in the steam reforming unit 20 and a steam atmosphere (or a raw material) in the steam generating unit 23. A water vapor temperature detector 24 for detecting the temperature of the water vapor mixed gas) is provided. At this time, the exhaust gas generated by the combustion unit 2 is supplied to the steam reforming unit 20 and the steam generation unit 23 via the wall surface of the reforming unit 30 with the combustion unit 2.

また、改質部30は、水蒸気改質部20における改質反応に必要な反応熱を供給するための、例えば燃焼ガスを燃焼させるバーナーなどからなる燃焼部2を備えている。このとき、燃焼部2で燃焼させる燃焼ガスは、燃焼ガス供給経路15を介して燃焼部2に供給される。さらに、燃焼部2は、燃焼部2の燃焼状態を検知する、例えばフレームロッドなどの燃焼検出部22と、燃焼部2に燃料用空気を供給する、例えば燃焼ファンなどの燃焼空気供給部18と、燃焼用空気の流量を計測する空気流量計測部31を備えている。なお、フレームロッドは、火炎が形成される時に発生するイオンに電圧を印加し、その時に流れるイオン電流値を測定するデバイスである。   Further, the reforming unit 30 includes a combustion unit 2 made of, for example, a burner for burning combustion gas for supplying reaction heat necessary for the reforming reaction in the steam reforming unit 20. At this time, the combustion gas burned in the combustion unit 2 is supplied to the combustion unit 2 via the combustion gas supply path 15. Further, the combustion unit 2 detects the combustion state of the combustion unit 2, for example, a combustion detection unit 22 such as a frame rod, and supplies combustion air to the combustion unit 2, for example, a combustion air supply unit 18 such as a combustion fan An air flow rate measurement unit 31 that measures the flow rate of combustion air is provided. The flame rod is a device that applies a voltage to ions generated when a flame is formed and measures the value of the ionic current that flows at that time.

そして、改質部30で生成された水素含有ガスは、図1に示す水素ガス供給経路12を介して燃料電池8に供給される。   Then, the hydrogen-containing gas generated in the reforming unit 30 is supplied to the fuel cell 8 via the hydrogen gas supply path 12 shown in FIG.

なお、上記水蒸気改質部20、変成部25および選択酸化部26の一般的な構成については、図示や詳細な説明を省略する。   The general configuration of the steam reforming unit 20, the shift unit 25, and the selective oxidation unit 26 is not illustrated or described in detail.

つぎに、燃料電池発電システムの運転動作について、具体的に説明する。   Next, the operation of the fuel cell power generation system will be specifically described.

以下では、燃料電池発電システムの起動時、通常の発電時、および停止時の運転動作を、水素生成装置1の動作を中心に説明する。   Hereinafter, the operation of the fuel cell power generation system at the time of start-up, normal power generation, and stop will be described focusing on the operation of the hydrogen generator 1.

まず、燃料電池発電システムの起動時から通常の発電時までの水素生成装置1の運転動作について、説明する。   First, the operation of the hydrogen generator 1 from the start of the fuel cell power generation system to the normal power generation will be described.

すなわち、停止状態から水素生成装置1を起動させる場合、運転制御部16からの指令により、原料供給部4から水素生成装置バイパス経路11、封止部9、燃焼ガス供給経路15を経由して、原料が燃焼部2に供給される。そして、燃焼部2で原料が燃焼することにより、改質部30の加熱が開始する。   That is, when the hydrogen generator 1 is started from a stopped state, according to a command from the operation controller 16, the raw material supplier 4 passes through the hydrogen generator bypass path 11, the sealing part 9, and the combustion gas supply path 15, The raw material is supplied to the combustion unit 2. Then, when the raw material is combusted in the combustion unit 2, heating of the reforming unit 30 is started.

つぎに、加熱開始後、改質部30に原料供給経路10を経由して原料が、また水供給部3により水が供給され、水と原料との改質反応が開始する。本実施の形態では、メタンを主成分とする都市ガス(13A)を原料の例に説明する。このとき、水供給部3から水は、都市ガスの平均分子式中の炭素原子数1モルに対して水蒸気が3モル(スチームカーボン比(S/C)で3)程度となるように制御して供給される。これにより、改質部30では、水蒸気改質部20で水蒸気改質反応、変成部25で変成反応、選択酸化部26で一酸化炭素の選択酸化反応が進行し、水素含有ガスが生成する。   Next, after the start of heating, raw material is supplied to the reforming unit 30 via the raw material supply path 10, and water is supplied from the water supply unit 3, and the reforming reaction between water and the raw material starts. In the present embodiment, city gas (13A) mainly composed of methane will be described as an example of a raw material. At this time, water from the water supply unit 3 is controlled so that water vapor is about 3 mol (3 in terms of steam carbon ratio (S / C)) with respect to 1 mol of carbon atoms in the average molecular formula of city gas. Supplied. As a result, in the reforming unit 30, the steam reforming reaction is performed in the steam reforming unit 20, the modification reaction is performed in the modification unit 25, and the selective oxidation reaction of carbon monoxide is performed in the selective oxidation unit 26, thereby generating a hydrogen-containing gas.

そして、生成された水素含有ガスの一酸化炭素濃度が、所定濃度(例えば、ドライガスベースで20ppm以下)に減少するまで、封止部9,9A、燃料電池バイパス経路13を経由して、循環して燃焼部2に供給される。このとき、運転制御部16は、改質温度検出部21で検出される反応温度に基づいて、水蒸気改質部20、変成部25、選択酸化部26が各反応に適した温度になるように、燃焼部2の燃焼を制御する。   Then, until the carbon monoxide concentration of the generated hydrogen-containing gas decreases to a predetermined concentration (for example, 20 ppm or less on a dry gas basis), it circulates via the sealing portions 9 and 9A and the fuel cell bypass path 13. And supplied to the combustion section 2. At this time, based on the reaction temperature detected by the reforming temperature detection unit 21, the operation control unit 16 causes the steam reforming unit 20, the shift unit 25, and the selective oxidation unit 26 to have temperatures suitable for each reaction. The combustion of the combustion unit 2 is controlled.

つぎに、改質部30に供給された原料が燃焼部2に供給され、加熱部での燃焼状態が安定化した後は、水素生成装置バイパス経路11からの原料の供給を停止する。   Next, after the raw material supplied to the reforming unit 30 is supplied to the combustion unit 2 and the combustion state in the heating unit is stabilized, the supply of the raw material from the hydrogen generator bypass path 11 is stopped.

つぎに、改質部30で生成された水素含有ガスの一酸化炭素の濃度を所定濃度まで減少させた後、封止部9を動作させ、水素ガス供給経路12を経由して、運転に最適な水素含有ガスを燃料電池8に供給する。このとき、運転制御部16は、原料供給部4の動作を制御することにより、原料の供給量を調整して燃料電池8に供給する。これにより、燃料電池8で水素含有ガス中の水素と酸素含有ガス中の酸素とが反応し、定常的な発電動作が開始する。   Next, after reducing the carbon monoxide concentration of the hydrogen-containing gas generated in the reforming unit 30 to a predetermined concentration, the sealing unit 9 is operated and is optimal for operation via the hydrogen gas supply path 12. A hydrogen-containing gas is supplied to the fuel cell 8. At this time, the operation control unit 16 controls the operation of the raw material supply unit 4 to adjust the supply amount of the raw material and supply it to the fuel cell 8. As a result, hydrogen in the hydrogen-containing gas and oxygen in the oxygen-containing gas react in the fuel cell 8 to start a steady power generation operation.

以下に、燃料電池発電システムの運転停止時の水素生成装置1の運転動作について、説明する。   Hereinafter, the operation of the hydrogen generator 1 when the operation of the fuel cell power generation system is stopped will be described.

すなわち、燃料電池発電システム100の運転を停止させる場合、運転制御部16は、封止部9,9Aを作動させることにより、燃料電池8への水素含有ガスの供給を停止し、燃料電池バイパス経路13を経由して燃焼部2に供給するように指令して制御する。   That is, when the operation of the fuel cell power generation system 100 is stopped, the operation control unit 16 operates the sealing units 9 and 9A to stop the supply of the hydrogen-containing gas to the fuel cell 8, and the fuel cell bypass path 13 is instructed to be supplied to the combustion section 2 via the control 13.

つぎに、水供給部3と原料供給部4に指令して、水と原料の供給を停止することにより水素生成装置1の動作を停止させる。このとき、水素生成装置1の停止動作時に、改質部30内に外気の混入を極力防止する動作を併設して行うことが好ましい。なお、外気の混入を防止する動作とは、例えば封止部9,9Aを動作させて改質部30を封止する動作や、改質部30が降温して体積減少する量に相当する量の原料を供給する動作などである。   Next, the operation of the hydrogen generator 1 is stopped by instructing the water supply unit 3 and the raw material supply unit 4 to stop the supply of water and the raw material. At this time, it is preferable to perform an operation for preventing contamination of outside air as much as possible in the reforming unit 30 when the hydrogen generator 1 is stopped. In addition, the operation | movement which prevents mixing of external air is the quantity corresponded to the operation | movement which operates the sealing parts 9 and 9A, for example, seals the modification | reformation part 30, and the quantity by which the modification | reformation part 30 cools down and volume decreases. Operation of supplying the raw material.

以下に、本実施の形態の発明のポイントである、燃焼用空気の流量計測部の計測動作が適正かどうか判断する検出部の動作について、詳細に説明する。   Hereinafter, the operation of the detection unit that determines whether the measurement operation of the flow rate measurement unit for combustion air, which is the point of the present invention, is appropriate will be described in detail.

つまり、空気流量計測部の計測値が正しく、精度よく燃焼用空気の流量が制御される場合には、問題ない。しかし、何らかの原因で、空気流量計測部の計測値が、実際の値と異なる値を運転制御部に返し、その値に基づいて改質部を制御する場合、安全性や信頼性、発電効率の低下などの問題を生じる。そのため、空気流量計測部の計測動作が適正かどうか判断することが重要となる。   That is, there is no problem when the measurement value of the air flow rate measurement unit is correct and the flow rate of the combustion air is accurately controlled. However, if for some reason the measured value of the air flow rate measurement unit returns a value different from the actual value to the operation control unit and the reforming unit is controlled based on that value, the safety, reliability, and power generation efficiency This causes problems such as degradation. Therefore, it is important to determine whether the measurement operation of the air flow rate measurement unit is appropriate.

本実施の形態の水素生成装置1では、改質温度検出部21と燃焼検出部22を検出部として、改質温度検出部21で検出される反応温度と燃焼検出部22で検出されるイオン電流値の検出値に基づいて、燃焼部2に供給される燃焼用空気の流量に対する空気流量計測部の計測動作が適正かどうか判断するものである。   In the hydrogen generator 1 of the present embodiment, the reforming temperature detector 21 and the combustion detector 22 are used as detectors, the reaction temperature detected by the reforming temperature detector 21 and the ionic current detected by the combustion detector 22. Based on the detected value, it is determined whether or not the measurement operation of the air flow rate measurement unit with respect to the flow rate of the combustion air supplied to the combustion unit 2 is appropriate.

以下に、検出部の具体的な動作について説明する。   Hereinafter, a specific operation of the detection unit will be described.

まず、燃焼空気供給部18から供給される燃焼用空気の流量が減少した場合、燃焼排ガス量が減少する。その結果、燃焼排ガスによって水素生成装置1から持ち出される熱量が減少するため、改質温度検出部21で検出する反応温度が上昇する。また、燃焼部2に供給される燃焼ガスの量が変化しない状態で、燃焼用空気の流量が減少した場合、火炎中の有機化合物濃度が増加するため、燃焼検出部22で検出するイオン電流値が増加する。   First, when the flow rate of combustion air supplied from the combustion air supply unit 18 decreases, the amount of combustion exhaust gas decreases. As a result, the amount of heat taken out from the hydrogen generator 1 by the combustion exhaust gas decreases, so that the reaction temperature detected by the reforming temperature detector 21 increases. In addition, when the flow rate of the combustion air decreases while the amount of the combustion gas supplied to the combustion unit 2 does not change, the concentration of the organic compound in the flame increases, so that the ionic current value detected by the combustion detection unit 22 Will increase.

一方、燃焼空気供給部18から供給される燃焼用空気の流量が増加した場合、燃焼排ガス量が増加する。その結果、燃焼排ガスによって水素生成装置1から持ち出される熱量が増加するため、改質温度検出部21で検出する反応温度が減少する。また、燃焼部2に供給される燃焼ガスの量が変化しない状態で、燃焼用空気の流量が増加した場合、火炎中の有機化合物濃度が減少するため、燃焼検出部22で検出するイオン電流値が減少する。   On the other hand, when the flow rate of the combustion air supplied from the combustion air supply unit 18 increases, the amount of combustion exhaust gas increases. As a result, the amount of heat taken out from the hydrogen generator 1 by the combustion exhaust gas increases, so that the reaction temperature detected by the reforming temperature detector 21 decreases. In addition, when the flow rate of combustion air increases while the amount of combustion gas supplied to the combustion unit 2 does not change, the concentration of the organic compound in the flame decreases, so the ionic current value detected by the combustion detection unit 22 Decrease.

つまり、検出部の検出値である、改質温度検出部21の反応温度と燃焼検出部22のイオン電流値の変化を運転制御部16で判断することにより、燃焼用空気の流量を計測する空気流量計測部31の計測動作(計測値)が適正かどうかを判断できることになる。   That is, the air for measuring the flow rate of the combustion air is determined by the operation control unit 16 determining the change in the reaction temperature of the reforming temperature detection unit 21 and the ionic current value of the combustion detection unit 22 as the detection value of the detection unit. It can be determined whether or not the measurement operation (measurement value) of the flow rate measurement unit 31 is appropriate.

そして、燃焼用空気の流量が減少したと判断した場合、改質温度検出部21で検出する反応温度と、燃焼検出部22で検出するイオン電流値を減少させるように、燃焼空気供給部18の動作を制御する。なお、燃焼用空気の流量が増加したと判断した場合には、その逆の動作で制御する。   When it is determined that the flow rate of the combustion air has decreased, the reaction temperature detected by the reforming temperature detection unit 21 and the ion current value detected by the combustion detection unit 22 are reduced. Control the behavior. If it is determined that the flow rate of the combustion air has increased, control is performed by the reverse operation.

さらに、空気流量計測部31の計測動作が適正でなく、適正計測動作の範囲外と判断した場合、燃料電池発電システム100の運転を停止させる制御をする。   Furthermore, when it is determined that the measurement operation of the air flow rate measurement unit 31 is not appropriate and is outside the range of the appropriate measurement operation, control is performed to stop the operation of the fuel cell power generation system 100.

なお、本実施の形態では、空気流量計測部31の計測動作(計測値)が適正かどうかを、改質温度検出部21の反応温度と燃焼検出部22のイオン電流値の変化を運転制御部16で判断し制御する例で説明したが、これに限られない。例えば、空気流量計測部31の計測動作に応じて、予め改質温度検出部21で検出する反応温度に反応温度閾値、燃焼検出部22で検出するイオン電流値に電流値閾値を設けて制御してもよい。具体的には、運転制御部16は、反応温度閾値と電流値閾値を下回る場合、または反応温度閾値と電流値閾値を上回る場合、空気流量計測部31の計測動作が予め設定される適正計測動作の範囲外であると判断して燃料電池発電システム100の運転を停止させる制御をする。ここで、反応温度閾値やイオン電流値閾値は、水素生成装置1で、燃焼部2での燃焼状態が不安定となる、燃焼用空気の流量と、反応温度およびイオン電流値との関係を、予め測定して設定されるものである。例えば、燃焼用空気の流量が多くなり希薄燃焼して燃焼排ガス中の一酸化炭素量が増加する、あるいは燃焼用空気の流量が少なくなり燃焼排ガス中の一酸化炭素量が増加するような燃焼用空気の流量である。   In the present embodiment, whether or not the measurement operation (measurement value) of the air flow rate measurement unit 31 is appropriate is determined by changing the reaction temperature of the reforming temperature detection unit 21 and the ionic current value of the combustion detection unit 22. Although the example of determining and controlling in 16 has been described, the present invention is not limited to this. For example, according to the measurement operation of the air flow rate measuring unit 31, a reaction temperature threshold is set for the reaction temperature detected in advance by the reforming temperature detection unit 21, and a current value threshold is set for the ion current value detected by the combustion detection unit 22. May be. Specifically, when the operation control unit 16 falls below the reaction temperature threshold and the current value threshold or exceeds the reaction temperature threshold and the current value threshold, the measurement operation of the air flow rate measurement unit 31 is set in advance. It is determined that the fuel cell power generation system 100 is out of the range, and the operation of the fuel cell power generation system 100 is stopped. Here, the reaction temperature threshold value and the ionic current value threshold value indicate the relationship between the flow rate of combustion air, the reaction temperature, and the ionic current value at which the combustion state in the combustion unit 2 becomes unstable in the hydrogen generator 1. It is set by measuring in advance. For example, for combustion where the flow rate of combustion air increases and lean combustion increases the amount of carbon monoxide in the combustion exhaust gas, or the flow rate of combustion air decreases and the amount of carbon monoxide in the combustion exhaust gas increases. The air flow rate.

(実施の形態2)
以下に、本発明の実施の形態2における燃料電池発電システムについて説明する。なお、燃料電池発電システムは、空気流量計測部の計測動作が適正かどうか判断する検出部が、実施の形態1と異なる。他の構成や各動作は、実施の形態1の燃料電池発電システム100と、ほぼ同じであるので説明を省略する場合がある。つまり、検出部として、改質温度検出部と水蒸気温度検出部を用い、改質温度検出部の反応温度と水蒸気温度検出部の水蒸気雰囲気温度を検出値として用いた点で、実施の形態1と異なる。
(Embodiment 2)
Hereinafter, a fuel cell power generation system according to Embodiment 2 of the present invention will be described. In the fuel cell power generation system, the detection unit that determines whether the measurement operation of the air flow rate measurement unit is appropriate is different from the first embodiment. Other configurations and operations are substantially the same as those of the fuel cell power generation system 100 of the first embodiment, and thus description thereof may be omitted. That is, as the detection unit, the reforming temperature detection unit and the steam temperature detection unit are used, and the reaction temperature of the reforming temperature detection unit and the steam atmosphere temperature of the steam temperature detection unit are used as detection values. Different.

そこで、以下では、空気流量計測部の計測動作が適正かどうか判断する検出部である、改質温度検出部と水蒸気温度検出部の動作を主に、詳細に説明する。   Therefore, in the following, operations of the reforming temperature detection unit and the water vapor temperature detection unit, which are detection units that determine whether the measurement operation of the air flow rate measurement unit is appropriate, will be mainly described in detail.

本実施の形態の水素生成装置1では、改質温度検出部21と水蒸気温度検出部24を検出部とする。そして、改質温度検出部21で検出される反応温度と水蒸気温度検出部24で検出される水蒸気雰囲気温度の検出値に基づいて、燃焼部2に供給される燃焼用空気の流量に対する空気流量計測部の計測動作が適正かどうか判断するものである。   In the hydrogen generator 1 of the present embodiment, the reforming temperature detector 21 and the steam temperature detector 24 are used as detectors. Then, based on the reaction temperature detected by the reforming temperature detector 21 and the detected value of the steam atmosphere temperature detected by the steam temperature detector 24, the air flow rate is measured with respect to the flow rate of the combustion air supplied to the combustion unit 2. This is to determine whether the measurement operation of the part is appropriate.

以下に、検出部の具体的な動作について説明する。   Hereinafter, a specific operation of the detection unit will be described.

まず、燃焼空気供給部18から供給されている燃焼用空気の流量が減少した場合、燃焼排ガス量が減少する。その結果、燃焼排ガスによって水素生成装置1から持ち出される熱量が減少するため、改質温度検出部21で検出する反応温度が上昇する。また、燃焼排ガス量が減少するため、水蒸気発生部23における燃焼排ガスと、水(水蒸気を含む)と原料との熱交換性能が低下して、水蒸気温度検出部24で検出される水蒸気雰囲気温度が減少する。   First, when the flow rate of combustion air supplied from the combustion air supply unit 18 decreases, the amount of combustion exhaust gas decreases. As a result, the amount of heat taken out from the hydrogen generator 1 by the combustion exhaust gas decreases, so that the reaction temperature detected by the reforming temperature detector 21 increases. Further, since the amount of combustion exhaust gas is reduced, the heat exchange performance between the combustion exhaust gas in the steam generation unit 23, water (including steam) and the raw material is lowered, and the steam atmosphere temperature detected by the steam temperature detection unit 24 is reduced. Decrease.

一方、燃焼空気供給部18から供給されている燃焼用空気の流量が増加した場合、燃焼排ガス量が増加する。その結果、燃焼排ガスによって水素生成装置1から持ち出される熱量が増加するため、改質温度検出部21で検出する反応温度が減少する。また、燃焼排ガス量が増加するため、水蒸気発生部23における燃焼排ガスと、水(水蒸気を含む)と原料との熱交換性能が向上して、水蒸気温度検出部24で検出される水蒸気雰囲気温度が増加する。   On the other hand, when the flow rate of combustion air supplied from the combustion air supply unit 18 increases, the amount of combustion exhaust gas increases. As a result, the amount of heat taken out from the hydrogen generator 1 by the combustion exhaust gas increases, so that the reaction temperature detected by the reforming temperature detector 21 decreases. Further, since the amount of combustion exhaust gas increases, the heat exchange performance between the combustion exhaust gas in the steam generation unit 23, water (including steam) and the raw material is improved, and the steam atmosphere temperature detected by the steam temperature detection unit 24 is increased. To increase.

つまり、検出部の検出値である、改質温度検出部21の反応温度と水蒸気温度検出部24の水蒸気雰囲気温度の変化を、運転制御部16で判断することにより、空気流量計測部31の計測動作(計測値)が適正かどうかが判断できることになる。   In other words, the operation control unit 16 determines changes in the reaction temperature of the reforming temperature detection unit 21 and the water vapor atmosphere temperature in the water vapor temperature detection unit 24, which are detection values of the detection unit, thereby measuring the air flow rate measurement unit 31. It is possible to determine whether the operation (measurement value) is appropriate.

そして、燃焼用空気の流量が減少したと判断した場合、改質温度検出部21で検出する反応温度が減少し、水蒸気温度検出部24で検出される水蒸気雰囲気温度が増加するように、燃焼空気供給部18の動作を制御する。なお、燃焼用空気の流量が増加したと判断した場合には、その逆の動作で制御する。   When it is determined that the flow rate of the combustion air has decreased, the combustion air is such that the reaction temperature detected by the reforming temperature detector 21 decreases and the steam atmosphere temperature detected by the steam temperature detector 24 increases. The operation of the supply unit 18 is controlled. If it is determined that the flow rate of the combustion air has increased, control is performed by the reverse operation.

さらに、空気流量計測部31の計測動作が適正でなく、適正計測動作の範囲外と判断した場合、燃料電池発電システム100の運転を停止させる制御をする。   Furthermore, when it is determined that the measurement operation of the air flow rate measurement unit 31 is not appropriate and is outside the range of the appropriate measurement operation, control is performed to stop the operation of the fuel cell power generation system 100.

なお、本実施の形態では、空気流量計測部31の計測動作(計測値)が適正かどうかを、改質温度検出部21の反応温度と水蒸気温度検出部24の水蒸気雰囲気温度の変化を運転制御部16で判断し制御する例で説明したが、これに限られない。例えば、空気流量計測部31の計測動作に応じて、予め改質温度検出部21で検出する反応温度に反応温度閾値、水蒸気温度検出部24で検出する水蒸気雰囲気温度に水蒸気温度閾値を設けて制御してもよい。具体的には、運転制御部16は、反応温度閾値を下回る、および水蒸気温度閾値を上回る場合、または反応温度閾値を上回る、および水蒸気温度閾値を下回る場合、空気流量計測部31の計測動作が予め設定される適正計測動作の範囲外と判断して燃料電池発電システム100の運転を停止させる制御をする。ここで、反応温度閾値や水蒸気温度閾値は、水素生成装置1において、燃焼部2での燃焼状態が不安定となる、燃焼用空気の流量と、反応温度および水蒸気雰囲気温度との関係を、予め測定して設定されるものである。例えば、燃焼用空気の流量が多くなり希薄燃焼して燃焼排ガス中の一酸化炭素量が増加する、あるいは燃焼用空気の流量が少なくなり燃焼排ガス中の一酸化炭素量が増加するような燃焼用空気の流量である。   In the present embodiment, whether or not the measurement operation (measured value) of the air flow rate measurement unit 31 is appropriate is controlled by changing the reaction temperature of the reforming temperature detection unit 21 and the change in the steam atmosphere temperature of the steam temperature detection unit 24. Although the example which judges and controls by the part 16 was demonstrated, it is not restricted to this. For example, in accordance with the measurement operation of the air flow rate measurement unit 31, the reaction temperature threshold is set in advance to the reaction temperature detected by the reforming temperature detection unit 21, and the water vapor atmosphere temperature detected by the water vapor temperature detection unit 24 is controlled. May be. Specifically, when the operation control unit 16 falls below the reaction temperature threshold and exceeds the water vapor temperature threshold, or exceeds the reaction temperature threshold and falls below the water vapor temperature threshold, the measurement operation of the air flow rate measurement unit 31 is performed in advance. Control is performed to stop the operation of the fuel cell power generation system 100 by determining that it is outside the range of the proper measurement operation to be set. Here, the reaction temperature threshold value and the water vapor temperature threshold value indicate the relationship between the flow rate of combustion air, the reaction temperature, and the steam atmosphere temperature at which the combustion state in the combustion unit 2 becomes unstable in the hydrogen generator 1. It is set by measurement. For example, for combustion where the flow rate of combustion air increases and lean combustion increases the amount of carbon monoxide in the combustion exhaust gas, or the flow rate of combustion air decreases and the amount of carbon monoxide in the combustion exhaust gas increases. The air flow rate.

(実施の形態3)
以下に、本発明の実施の形態3における燃料電池発電システムについて説明する。なお、燃料電池発電システムは、空気流量計測部の計測動作が適正かどうか判断する検出部が、実施の形態1と異なる。他の構成や各動作は、実施の形態1の燃料電池発電システム100と、ほぼ同じであり、説明を省略する場合がある。つまり、検出部として、改質温度検出部と電圧検出部を用い、改質温度検出部の反応温度と電圧検出部で検出される発電電圧を検出値として用いた点で、実施の形態1と異なる。
(Embodiment 3)
Hereinafter, a fuel cell power generation system according to Embodiment 3 of the present invention will be described. In the fuel cell power generation system, the detection unit that determines whether the measurement operation of the air flow rate measurement unit is appropriate is different from the first embodiment. Other configurations and operations are substantially the same as those of the fuel cell power generation system 100 of the first embodiment, and a description thereof may be omitted. That is, as the detection unit, the reforming temperature detection unit and the voltage detection unit are used, and the reaction temperature of the reforming temperature detection unit and the generated voltage detected by the voltage detection unit are used as detection values. Different.

そこで、以下では、空気流量計測部の計測動作が適正かどうか判断する検出部である、改質温度検出部と電圧検出部の動作を主に、詳細に説明する。   Therefore, in the following, operations of the reforming temperature detection unit and the voltage detection unit, which are detection units that determine whether the measurement operation of the air flow rate measurement unit is appropriate, will be mainly described in detail.

本実施の形態の水素生成装置1では、改質温度検出部21と電圧検出部28を検出部とする。そして、改質温度検出部21で検出する反応温度と電圧検出部28で検出される発電電圧の検出値に基づいて、燃焼部2に供給される燃焼用空気の流量に対する空気流量計測部の計測動作が適正かどうか判断するものである。   In the hydrogen generator 1 according to the present embodiment, the reforming temperature detector 21 and the voltage detector 28 are used as detectors. Then, based on the reaction temperature detected by the reforming temperature detector 21 and the detected value of the generated voltage detected by the voltage detector 28, the air flow rate measurement unit measures the flow rate of combustion air supplied to the combustion unit 2. This is to determine whether the operation is appropriate.

以下に、検出部の具体的な動作について説明する。   Hereinafter, a specific operation of the detection unit will be described.

まず、燃焼空気供給部18から供給されている燃焼用空気の流量が減少した場合、燃焼排ガス量が減少する。その結果、燃焼排ガスによって水素生成装置1から持ち出される熱量が減少するため、改質温度検出部21で検出する反応温度が上昇する。なお、改質温度検出部21の反応温度の上昇は、水蒸気改質部20における改質触媒(あるいは水素含有ガス)の温度(反応温度)の上昇と同義なので、原料と水との改質反応の進行により、改質部30出口での水素含有ガスの水素濃度も増加する。その結果、燃料電池8の電圧検出部28で検出される発電電圧が上昇する。   First, when the flow rate of combustion air supplied from the combustion air supply unit 18 decreases, the amount of combustion exhaust gas decreases. As a result, the amount of heat taken out from the hydrogen generator 1 by the combustion exhaust gas decreases, so that the reaction temperature detected by the reforming temperature detector 21 increases. Note that an increase in the reaction temperature of the reforming temperature detection unit 21 is synonymous with an increase in the temperature (reaction temperature) of the reforming catalyst (or hydrogen-containing gas) in the steam reforming unit 20, and thus the reforming reaction between the raw material and water. As a result, the hydrogen concentration of the hydrogen-containing gas at the outlet of the reforming unit 30 also increases. As a result, the power generation voltage detected by the voltage detector 28 of the fuel cell 8 increases.

一方、燃焼空気供給部18から供給されている燃焼用空気の流量が増加した場合、燃焼排ガス量が増加する。その結果、燃焼排ガスによって水素生成装置1から持ち出される熱量が増加するため、改質温度検出部21で検出する反応温度が減少する。なお、改質温度検出部21の反応温度の減少は、水蒸気改質部20における改質触媒(あるいは水素含有ガス)の温度(反応温度)の減少と同義なので、原料と水との改質反応が抑制され、改質部30出口での水素含有ガスの水素濃度が減少する。その結果、燃料電池8の電圧検出部28で検出される発電電圧が低下することになる。   On the other hand, when the flow rate of combustion air supplied from the combustion air supply unit 18 increases, the amount of combustion exhaust gas increases. As a result, the amount of heat taken out from the hydrogen generator 1 by the combustion exhaust gas increases, so that the reaction temperature detected by the reforming temperature detector 21 decreases. Note that the reduction in the reaction temperature of the reforming temperature detection unit 21 is synonymous with the reduction in the temperature (reaction temperature) of the reforming catalyst (or hydrogen-containing gas) in the steam reforming unit 20, and thus the reforming reaction between the raw material and water. Is suppressed, and the hydrogen concentration of the hydrogen-containing gas at the outlet of the reforming unit 30 decreases. As a result, the generated voltage detected by the voltage detection unit 28 of the fuel cell 8 decreases.

つまり、検出部の検出値である、改質温度検出部21の反応温度と電圧検出部28で検出される発電電圧の変化を、運転制御部16で判断することにより、燃焼用空気の流量を計測する空気流量計測部31の計測動作(計測値)が適正かどうかを判断できることになる。   That is, the operation control unit 16 determines changes in the reaction temperature of the reforming temperature detection unit 21 and the generated voltage detected by the voltage detection unit 28, which are detection values of the detection unit, thereby reducing the flow rate of combustion air. It can be determined whether the measurement operation (measurement value) of the air flow rate measurement unit 31 to be measured is appropriate.

そして、燃焼用空気の流量が減少したと判断した場合、改質温度検出部21で検出する反応温度が減少し、電圧検出部28で検出される発電電圧が減少するように、燃焼空気供給部18の動作を制御する。なお、燃焼用空気の流量が増加したと判断した場合は、その逆の動作で制御する。   When it is determined that the flow rate of the combustion air has decreased, the combustion air supply unit is configured so that the reaction temperature detected by the reforming temperature detection unit 21 decreases and the power generation voltage detected by the voltage detection unit 28 decreases. 18 operations are controlled. If it is determined that the flow rate of the combustion air has increased, control is performed by the reverse operation.

さらに、空気流量計測部31の計測動作が適正でなく、適正計測動作の範囲外と判断した場合、燃料電池発電システム100の運転を停止させる制御をする。   Furthermore, when it is determined that the measurement operation of the air flow rate measurement unit 31 is not appropriate and is outside the range of the appropriate measurement operation, control is performed to stop the operation of the fuel cell power generation system 100.

なお、本実施の形態では、空気流量計測部31の計測動作(計測値)が適正かどうかを、改質温度検出部21の反応温度と電圧検出部28の発電電圧の変化を運転制御部16で判断し制御する例で説明したが、これに限られない。例えば、空気流量計測部31の計測動作に応じて、予め改質温度検出部21で検出する反応温度に反応温度閾値、電圧検出部28で検出する発電電圧に電圧閾値を設けて制御してもよい。具体的には、運転制御部16は、反応温度閾値および電圧閾値を上回る場合、または反応温度閾値および水蒸気温度閾値を下回る場合、空気流量計測部31の計測動作が予め設定される適正計測動作の範囲外と判断して燃料電池発電システム100の運転を停止させる制御をする。ここで、反応温度閾値や電圧閾値は、水素生成装置1において、燃焼部2での燃焼状態が不安定となる燃焼用空気の流量と、反応温度および発電電圧との関係を、予め測定して設定されるものである。例えば、燃焼用空気の流量が多くなり希薄燃焼して燃焼排ガス中の一酸化炭素量が増加する、あるいは燃焼用空気の流量が少なくなり燃焼排ガス中の一酸化炭素量が増加するような燃焼用空気の流量である。   In the present embodiment, whether or not the measurement operation (measured value) of the air flow rate measurement unit 31 is appropriate is determined based on the change in the reaction temperature of the reforming temperature detection unit 21 and the generated voltage of the voltage detection unit 28. However, the present invention is not limited to this. For example, according to the measurement operation of the air flow rate measuring unit 31, the reaction temperature detected by the reforming temperature detection unit 21 may be controlled in advance by setting the reaction temperature threshold and the generated voltage detected by the voltage detection unit 28 by controlling the voltage threshold. Good. Specifically, when the operation control unit 16 exceeds the reaction temperature threshold and the voltage threshold, or falls below the reaction temperature threshold and the water vapor temperature threshold, the operation control unit 16 performs an appropriate measurement operation in which the measurement operation of the air flow rate measurement unit 31 is set in advance. It is determined that the fuel cell power generation system 100 is out of the range and the operation of the fuel cell power generation system 100 is stopped. Here, the reaction temperature threshold and the voltage threshold are obtained by measuring in advance the relationship between the flow rate of combustion air at which the combustion state in the combustion unit 2 becomes unstable, the reaction temperature, and the power generation voltage in the hydrogen generator 1. Is set. For example, for combustion where the flow rate of combustion air increases and lean combustion increases the amount of carbon monoxide in the combustion exhaust gas, or the flow rate of combustion air decreases and the amount of carbon monoxide in the combustion exhaust gas increases. The air flow rate.

なお、上記各実施の形態では、改質温度検出部、燃焼検出部、水蒸気温度検出部および電圧検出部のすべてを含む構成の燃料電池発電システムを例に説明したが、これに限られず、少なくとも空気流量計測部の計測動作(計測値)が適正かどうかを判断する検出部を有する構成を適宜選択して構成してもよいことはいうまでもない。   In each of the above embodiments, the fuel cell power generation system having a configuration including all of the reforming temperature detection unit, the combustion detection unit, the water vapor temperature detection unit, and the voltage detection unit has been described as an example. Needless to say, a configuration having a detection unit that determines whether the measurement operation (measurement value) of the air flow rate measurement unit is appropriate may be selected as appropriate.

また、上記各実施の形態では、改質部に選択酸化部を設けた例で説明したが、変成部で原料の一酸化炭素の濃度を燃料電池の動作に支障のない程度まで低減できる場合には、特に設けなくてもよい。これにより、改質部の構成や運転制御部の簡略化がはかれる。   In each of the above embodiments, the example in which the selective oxidation unit is provided in the reforming unit has been described. However, when the concentration of the raw material carbon monoxide can be reduced to a level that does not hinder the operation of the fuel cell in the transformation unit. Need not be provided. This simplifies the configuration of the reforming unit and the operation control unit.

本発明は、高い安全性と信頼性が要望される燃料電池発電システムの技術分野に有用である。   The present invention is useful in the technical field of fuel cell power generation systems that require high safety and reliability.

本発明の実施の形態1における燃料電池発電システムの概略構成図1 is a schematic configuration diagram of a fuel cell power generation system according to Embodiment 1 of the present invention. 本発明の実施の形態1の燃料電池発電システムにおける改質部の要部断面図Sectional drawing of the principal part of the modification | reformation part in the fuel cell power generation system of Embodiment 1 of this invention

符号の説明Explanation of symbols

1 水素生成装置
2 燃焼部
3 水供給部
4 原料供給部
5 脱硫部
6 ガスインフラライン
7 脱硫接続部
8 燃料電池
9,9A 封止部
10 原料供給経路
11 水素生成装置バイパス経路
12 水素ガス供給経路
13 燃料電池バイパス経路
14 オフガス経路
15 燃焼ガス供給経路
16 運転制御部
17 燃料電池空気ブロア
18 燃焼空気供給部
19 空気供給部
20 水蒸気改質部
21 改質温度検出部
22 燃焼検出部
23 水蒸気発生部
24 水蒸気温度検出部
25 変成部
26 選択酸化部
28 電圧検出部
30 改質部
31 空気流量計測部
100 燃料電池発電システム
DESCRIPTION OF SYMBOLS 1 Hydrogen generator 2 Combustion part 3 Water supply part 4 Raw material supply part 5 Desulfurization part 6 Gas infrastructure line 7 Desulfurization connection part 8 Fuel cell 9, 9A Sealing part 10 Raw material supply path 11 Hydrogen generator bypass path 12 Hydrogen gas supply path DESCRIPTION OF SYMBOLS 13 Fuel cell bypass path 14 Off gas path 15 Combustion gas supply path 16 Operation control part 17 Fuel cell air blower 18 Combustion air supply part 19 Air supply part 20 Steam reforming part 21 Reforming temperature detection part 22 Combustion detection part 23 Steam generation part 23 24 Steam Temperature Detection Unit 25 Transformer 26 Selective Oxidation Unit 28 Voltage Detection Unit 30 Reformation Unit 31 Air Flow Measurement Unit 100 Fuel Cell Power Generation System

Claims (10)

原料と水蒸気との改質反応により水素含有ガスを生成させる改質部と、
前記改質反応における反応温度を検出する改質温度検出部と、
燃焼用空気を供給する燃焼空気供給部と、
前記燃焼用空気の流量を計測する空気流量計測部と、
前記水素含有ガスおよび酸素含有ガスが供給されて発電する燃料電池と、
前記燃料電池から戻される前記水素含有ガスを燃焼させ、前記改質反応に必要な熱を供給する燃焼部と、
前記燃焼部から供給される熱により前記水蒸気を発生させる水蒸気発生部と、
前記燃焼部に設けられる火炎中のイオン電流値を検出する燃焼検出部と、
運転制御部と、を少なくとも備え、
前記運転制御部は、少なくとも前記空気流量計測部で計測される流量に基づいて前記燃焼空気供給部の動作を制御するとともに、
前記改質温度検出部で検出される前記反応温度と、前記燃焼検出部で検出される前記イオン電流値に基づいて前記空気流量計測部の計測動作が適正かどうかを判断して制御する燃料電池発電システム。
A reforming section for generating a hydrogen-containing gas by a reforming reaction between the raw material and steam;
A reforming temperature detector for detecting a reaction temperature in the reforming reaction;
A combustion air supply unit for supplying combustion air;
An air flow rate measurement unit for measuring the flow rate of the combustion air;
A fuel cell that is supplied with the hydrogen-containing gas and the oxygen-containing gas to generate electricity;
A combustion section for burning the hydrogen-containing gas returned from the fuel cell and supplying heat necessary for the reforming reaction;
A water vapor generating unit that generates the water vapor by heat supplied from the combustion unit;
A combustion detection unit for detecting an ion current value in a flame provided in the combustion unit;
An operation control unit,
The operation control unit controls the operation of the combustion air supply unit based on at least the flow rate measured by the air flow rate measurement unit,
A fuel cell that determines and controls whether the measurement operation of the air flow rate measurement unit is appropriate based on the reaction temperature detected by the reforming temperature detection unit and the ion current value detected by the combustion detection unit Power generation system.
前記運転制御部は、前記燃焼用空気の流量が減少し、前記反応温度が減少し、かつ前記イオン電流値が減少する場合、または、前記燃焼用空気の流量が増加し、前記反応温度が増加し、かつ前記イオン電流値が増加する場合に、前記空気流量計測部の計測動作が異常と判断して制御する請求項に記載の燃料電池発電システム。 When the flow rate of the combustion air is decreased, the reaction temperature is decreased, and the ion current value is decreased, or the flow rate of the combustion air is increased, and the reaction temperature is increased. and, and wherein when the ion current value increases, the fuel cell power generation system of claim 1, measuring operation of the air flow measuring unit controls is determined that abnormality. 前記反応温度に所定の反応温度閾値、および前記イオン電流値に所定の電流値閾値を設け、
前記運転制御部は、前記空気流量計測部で計測される流量が適正範囲であるにもかかわらず、前記反応温度が前記反応温度閾値を下回る、および前記イオン電流値が前記電流値閾値を下回る場合、または、前記反応温度が前記反応温度閾値を上回る、および前記イオン電流値が前記電流値閾値を上回る場合に、前記空気流量計測部の計測動作が予め設定される適正計測動作の範囲外と判断して制御する請求項に記載の燃料電池発電システム。
A predetermined reaction temperature threshold is set for the reaction temperature, and a predetermined current value threshold is set for the ion current value,
The operation control unit, when the flow rate measured by the air flow rate measurement unit is in an appropriate range, the reaction temperature is below the reaction temperature threshold, and the ion current value is below the current value threshold Or, when the reaction temperature exceeds the reaction temperature threshold value and the ion current value exceeds the current value threshold value, it is determined that the measurement operation of the air flow rate measurement unit is outside the range of the appropriate measurement operation set in advance. The fuel cell power generation system according to claim 1 , which is controlled as described above.
原料と水蒸気との改質反応により水素含有ガスを生成させる改質部と、
前記改質反応における反応温度を検出する改質温度検出部と、
燃焼用空気を供給する燃焼空気供給部と、
前記燃焼用空気の流量を計測する空気流量計測部と、
前記水素含有ガスおよび酸素含有ガスが供給されて発電する燃料電池と、
前記燃料電池から戻される前記水素含有ガスを燃焼させ、前記改質反応に必要な熱を供給する燃焼部と、
前記燃焼部から供給される熱により前記水蒸気を発生させる水蒸気発生部と、
前記水蒸気発生部に設けられる水蒸気雰囲気温度を検出する水蒸気温度検出部と、
運転制御部と、を少なくとも備え、
前記運転制御部は、少なくとも前記空気流量計測部で計測される流量に基づいて前記燃焼空気供給部の動作を制御するとともに、
前記改質温度検出部で検出される前記反応温度と、前記水蒸気温度検出部で検出される前記水蒸気雰囲気温度に基づいて、前記空気流量計測部の計測動作が適正かどうかを判断して制御する燃料電池発電システム。
A reforming section for generating a hydrogen-containing gas by a reforming reaction between the raw material and steam;
A reforming temperature detector for detecting a reaction temperature in the reforming reaction;
A combustion air supply unit for supplying combustion air;
An air flow rate measurement unit for measuring the flow rate of the combustion air;
A fuel cell that is supplied with the hydrogen-containing gas and the oxygen-containing gas to generate electricity;
A combustion section for burning the hydrogen-containing gas returned from the fuel cell and supplying heat necessary for the reforming reaction;
A water vapor generating unit that generates the water vapor by heat supplied from the combustion unit;
A water vapor temperature detection unit for detecting a water vapor atmosphere temperature provided in the water vapor generation unit ;
An operation control unit,
The operation control unit controls the operation of the combustion air supply unit based on at least the flow rate measured by the air flow rate measurement unit,
Based on the reaction temperature detected by the reforming temperature detection unit and the water vapor atmosphere temperature detected by the water vapor temperature detection unit, whether or not the measurement operation of the air flow rate measurement unit is appropriate is controlled. fuel cell power generation system that.
前記運転制御部は、前記燃焼用空気の流量が減少し、前記反応温度が減少し、かつ前記水蒸気雰囲気温度が増加する場合、または、前記燃焼用空気の流量が増加し、前記反応温度が増加し、かつ前記水蒸気雰囲気温度が減少する場合に、前記空気流量計測部の計測動作が異常と判断して制御する請求項に記載の燃料電池発電システム。 The operation control unit increases the reaction temperature when the flow rate of the combustion air decreases, the reaction temperature decreases, and the water vapor atmosphere temperature increases, or the flow rate of the combustion air increases. The fuel cell power generation system according to claim 4 , wherein when the water vapor atmosphere temperature decreases, the measurement operation of the air flow rate measurement unit is determined to be abnormal and controlled. 前記反応温度に予め反応温度閾値、および前記水蒸気雰囲気温度に予め水蒸気温度閾値を設け、
前記運転制御部は、前記空気流量計測部で計測される流量が適正範囲であるにもかかわらず、前記反応温度が前記反応温度閾値を上回る、および前記水蒸気雰囲気温度が前記水蒸気温度閾値を下回る場合、または、前記反応温度が前記反応温度閾値を下回る、および前記水蒸気雰囲気温度が前記水蒸気温度閾値を上回る場合に、前記空気流量計測部の計測動作が予め設定される適正計測動作の範囲外と判断して制御する請求項に記載の燃料電池発電システム。
A reaction temperature threshold is set in advance for the reaction temperature, and a water vapor temperature threshold is set in advance for the water vapor atmosphere temperature;
The operation control unit, when the flow rate measured by the air flow rate measurement unit is in an appropriate range, the reaction temperature exceeds the reaction temperature threshold, and the water vapor atmosphere temperature is lower than the water vapor temperature threshold Or, when the reaction temperature is lower than the reaction temperature threshold value and the water vapor atmosphere temperature is higher than the water vapor temperature threshold value, it is determined that the measurement operation of the air flow rate measurement unit is outside the range of the appropriate measurement operation set in advance. The fuel cell power generation system according to claim 4 , wherein the fuel cell power generation system is controlled as described above.
原料と水蒸気との改質反応により水素含有ガスを生成させる改質部と、
前記改質反応における反応温度を検出する改質温度検出部と、
燃焼用空気を供給する燃焼空気供給部と、
前記燃焼用空気の流量を計測する空気流量計測部と、
前記水素含有ガスおよび酸素含有ガスが供給されて発電する燃料電池と、
前記燃料電池から戻される前記水素含有ガスを燃焼させ、前記改質反応に必要な熱を供給する燃焼部と、
前記燃焼部から供給される熱により前記水蒸気を発生させる水蒸気発生部と、
前記燃料電池に設けられる発電電圧を検出する電圧検出部と、
運転制御部と、を少なくとも備え、
前記運転制御部は、少なくとも前記空気流量計測部で計測される流量に基づいて前記燃焼空気供給部の動作を制御するとともに、
前記改質温度検出部で検出される前記反応温度と、前記電圧検出部で検出される前記発電電圧に基づいて、前記空気流量計測部の計測動作が適正かどうかを判断して制御する燃料電池発電システム。
A reforming section for generating a hydrogen-containing gas by a reforming reaction between the raw material and steam;
A reforming temperature detector for detecting a reaction temperature in the reforming reaction;
A combustion air supply unit for supplying combustion air;
An air flow rate measurement unit for measuring the flow rate of the combustion air;
A fuel cell that is supplied with the hydrogen-containing gas and the oxygen-containing gas to generate electricity;
A combustion section for burning the hydrogen-containing gas returned from the fuel cell and supplying heat necessary for the reforming reaction;
A water vapor generating unit that generates the water vapor by heat supplied from the combustion unit;
A voltage detector for detecting a power generation voltage provided in the fuel cell ;
An operation control unit,
The operation control unit controls the operation of the combustion air supply unit based on at least the flow rate measured by the air flow rate measurement unit,
Wherein a reaction temperature detected by the reforming temperature detection section, based on said generated voltage detected by the voltage detection unit, the measurement operation of the air flow measuring unit that controls to determine whether the proper retardant Battery power generation system.
前記運転制御部は、前記燃焼用空気の流量が減少し、前記反応温度が減少し、かつ前記発電電圧が減少する場合、または、前記燃焼用空気の流量が増加し、前記反応温度が増加し、かつ前記発電電圧が増加する場合に、前記空気流量計測部の計測動作が異常と判断して制御する請求項に記載の燃料電池発電システム。 When the flow rate of the combustion air decreases, the reaction temperature decreases, and the power generation voltage decreases, or the operation control unit increases the flow rate of the combustion air, the reaction temperature increases. The fuel cell power generation system according to claim 7 , wherein when the power generation voltage increases, the measurement operation of the air flow rate measurement unit is determined to be abnormal and controlled. 前記反応温度に予め反応温度閾値、および前記発電電圧に予め電圧閾値を設け、
前記運転制御部は、前記空気流量計測部で計測される流量が適正範囲であるにもかかわらず、前記反応温度前記反応温度閾値を上回る、および前記発電電圧前記電圧閾値を上回る場合、または、前記反応温度前記反応温度閾値を下回る、および前記発電電圧前記電圧閾値を下回る場合に、前記空気流量計測部の計測動作が予め設定される適正計測動作の範囲外と判断して制御する請求項に記載の燃料電池発電システム。
A reaction temperature threshold is set in advance for the reaction temperature, and a voltage threshold is set in advance for the generated voltage;
The operation control unit, even though the flow rate measured by the air flow measuring section is appropriate range, the reaction temperature is higher than the reaction temperature threshold value, and when said generated voltage exceeds the voltage threshold, or When the reaction temperature is lower than the reaction temperature threshold value and the generated voltage is lower than the voltage threshold value, it is determined that the measurement operation of the air flow rate measurement unit is outside the range of the preset proper measurement operation. The fuel cell power generation system according to claim 7 .
前記運転制御部は、前記空気流量計測部の計測動作が適正でないと判断した場合に、運転を停止するよう制御する請求項1〜9のいずれか1つに記載の燃料電池発電システム。 The fuel cell power generation system according to any one of claims 1 to 9, wherein the operation control unit controls the operation to be stopped when it is determined that the measurement operation of the air flow rate measurement unit is not appropriate .
JP2008308173A 2008-12-03 2008-12-03 Fuel cell power generation system Expired - Fee Related JP5262638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308173A JP5262638B2 (en) 2008-12-03 2008-12-03 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308173A JP5262638B2 (en) 2008-12-03 2008-12-03 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JP2010135125A JP2010135125A (en) 2010-06-17
JP5262638B2 true JP5262638B2 (en) 2013-08-14

Family

ID=42346226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308173A Expired - Fee Related JP5262638B2 (en) 2008-12-03 2008-12-03 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP5262638B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478987B2 (en) * 2021-02-24 2024-05-08 パナソニックIpマネジメント株式会社 Method for operating fuel processor, computer program, recording medium, and fuel processor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697618B2 (en) * 1986-12-08 1994-11-30 富士電機株式会社 Fuel cell power generator
JP3694448B2 (en) * 2000-08-25 2005-09-14 松下電器産業株式会社 Fuel cell system
JP4045894B2 (en) * 2002-08-19 2008-02-13 株式会社デンソー Engine and fuel cell cooling system
JP3879631B2 (en) * 2002-08-29 2007-02-14 日産自動車株式会社 Fuel cell system
JP4145641B2 (en) * 2002-11-29 2008-09-03 本田技研工業株式会社 Sensor alternative estimation control device for fuel cell system
JP4707948B2 (en) * 2003-11-14 2011-06-22 本田技研工業株式会社 Humidification system for fuel cell
JP5063110B2 (en) * 2004-07-14 2012-10-31 パナソニック株式会社 Fuel cell power generation system
JP5105218B2 (en) * 2005-06-06 2012-12-26 トヨタ自動車株式会社 Abnormality judgment device
JP4669408B2 (en) * 2006-02-23 2011-04-13 アイシン精機株式会社 Reformer
JP2008269887A (en) * 2007-04-18 2008-11-06 Aisin Seiki Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP2010135125A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5135209B2 (en) HYDROGEN GENERATOR, FUEL CELL SYSTEM HAVING THE SAME, AND METHOD FOR OPERATING THE SAME
JP4870909B2 (en) Fuel cell power generator
JP5340933B2 (en) HYDROGEN GENERATOR, FUEL CELL POWER GENERATION SYSTEM HAVING THE SAME, AND METHOD FOR STOPPING HYDROGEN GENERATOR
JP2018010860A (en) Fuel cell system and method for operating the same
JP5262638B2 (en) Fuel cell power generation system
JP5353214B2 (en) Hydrogen generator and fuel cell power generation system including the same
JP2012119244A (en) Fuel cell system
JP2007137719A (en) Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method
JP2010275118A (en) Hydrogen production apparatus
WO2012132409A1 (en) Hydrogen producing device and method for operating same
JP2010262747A (en) Reforming device for fuel cell
JP2017027668A (en) Fuel battery system and operation method for the same
JP6722893B2 (en) Fuel cell system
JP2011090863A (en) Fuel cell system
JP2009283268A (en) Fuel cell power generation system
JP5592760B2 (en) Fuel cell power generation system
JP2011204430A (en) Fuel cell system
JP2013134920A (en) Fuel cell system
JP5147198B2 (en) Fuel cell system
JP2014002921A (en) Fuel cell system
WO2011036886A1 (en) Fuel cell system and operation method for fuel cell system
JP2011090864A (en) Fuel cell system
JP2005150044A (en) Control method of water flow rate for reforming steam
JP5728497B2 (en) Fuel cell system
JP2008214121A (en) Hydrogen generator and fuel cell system using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

LAPS Cancellation because of no payment of annual fees