JP5255240B2 - Cement concrete hardened body, method for producing the same, and cement concrete used therefor - Google Patents
Cement concrete hardened body, method for producing the same, and cement concrete used therefor Download PDFInfo
- Publication number
- JP5255240B2 JP5255240B2 JP2007193341A JP2007193341A JP5255240B2 JP 5255240 B2 JP5255240 B2 JP 5255240B2 JP 2007193341 A JP2007193341 A JP 2007193341A JP 2007193341 A JP2007193341 A JP 2007193341A JP 5255240 B2 JP5255240 B2 JP 5255240B2
- Authority
- JP
- Japan
- Prior art keywords
- cement concrete
- cement
- parts
- curing
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、主に土木・建築分野において使用されるセメントコンクリート硬化体、その製造方法、及びそれに使用するセメントコンクリートに関する。 The present invention relates to a hardened cement concrete used mainly in the field of civil engineering and architecture, a method for producing the same, and a cement concrete used therefor.
化学薬品を、製造したり取り扱う化学工場や、様々な化学薬品や汚染物質等を取り扱う下水道施設や高度浄水処理場等においては、化学劣化に対する抵抗性の高いコンクリートを用いて、構造物を構築することが求められている。 In chemical factories that manufacture and handle chemicals, sewerage facilities that handle various chemicals and pollutants, and advanced water treatment plants, construct structures using concrete that is highly resistant to chemical degradation. It is demanded.
また、化学的に厳しい環境に置かれるコンクリート構造物の補修や補強については、劣化部位を覆うように保護材を設置したり、さらに修復後に表面に保護材を設置したりしている。
このような補修や補強に用いる保護材として、化学抵抗性の高い塗料やセメントを塗布したりして、表面を保護したり、定期的に補修を施す必要があった。
In addition, for repair and reinforcement of concrete structures that are placed in a chemically harsh environment, protective materials are installed to cover the deteriorated parts, and protective materials are installed on the surface after repair.
As a protective material used for such repair and reinforcement, it is necessary to apply a paint or cement with high chemical resistance to protect the surface or to periodically repair.
化学劣化に対する抵抗性が高いセメントとして、アルミナセメントが知られている(特許文献1参照)。 Alumina cement is known as a cement having high resistance to chemical degradation (see Patent Document 1).
また、アルミナセメントやスラグ組成物を含むセメント・モルタル組成物を30℃以上の温度で養生する高強度モルタル硬化体の製造方法等も知られている(特許文献2参照)。 Moreover, the manufacturing method of the high intensity | strength mortar hardening body etc. which age the cement mortar composition containing an alumina cement and a slag composition at the temperature of 30 degreeC or more are also known (refer patent document 2).
しかしながら、アルミナセメントは、ポルトランドセメントに比べて初期の強度発現が速やかであるが、水和物の転化により長期強度が低下するという課題があった。 Alumina cement, however, has rapid initial strength development compared to Portland cement, but has a problem that long-term strength is reduced due to hydrate conversion.
化学劣化抵抗性が高くても、コンクリートにひび割れが生じると塩分や硫酸塩等がコンクリート中に入り込み、鉄筋や躯体を劣化させることがあり、ひび割れ抵抗性の向上が求められていた。 Even if the chemical deterioration resistance is high, if cracks occur in concrete, salt, sulfate, etc. may enter the concrete and deteriorate the reinforcing bars and the frame, and there has been a demand for improved crack resistance.
本発明は、アルミナセメントと、SiO2とAl2O3を含有する流動接触分解用触媒又は廃活性白土焼却である無機物質からなる結合材、骨材、及び水を混練りしてなり、SiO2とAl2O3を含有する無機物質のSiO2が40〜98部でAl2O3が0.5〜40部であり、水/結合材比が22〜60%であるセメントコンクリートを、練り混ぜてから加温養生するまでの前置時間が8時間以内、昇温速度が5℃/hr〜30℃/hr、養生温度が40〜80℃、養生温度の保持時間が3〜7時間で硬化してなるセメントコンクリート硬化体であり、該セメントコンクリート硬化体の製造方法であり、該セメントコンクリート硬化体の製造方法で使用するセメントコンクリートである。 The present invention is made by kneading an alumina cement, a binder for fluid catalytic cracking containing SiO 2 and Al 2 O 3 or an inorganic substance that is a waste activated clay incineration, an aggregate, and water. 2 and Al 2 O 3 containing inorganic material SiO 2 40-98 parts, Al 2 O 3 0.5-40 parts, water / binder ratio 22-60% cement concrete knead Curing time is within 8 hours, heating rate is 5 ° C / hr-30 ° C / hr, curing temperature is 40-80 ° C, curing temperature holding time is 3-7 hours A cement concrete hardened body, a method for producing the cement concrete hardened body, and cement concrete used in the method for producing the cement concrete hardened body.
本発明方法でセメントコンクリートを養生することによって、膨張性が付与することができ、従来からの化学劣化抵抗性に加え、ひび割れ抵抗性も付与することが可能になる。 By curing cement concrete by the method of the present invention, expandability can be imparted, and crack resistance can be imparted in addition to conventional chemical degradation resistance.
本発明で使用する部や%は、特に規定のない限り質量基準である。
また、本発明で言うセメントコンクリートとは、セメントペースト、モルタル、及びコンクリートを総称するものである。
The parts and% used in the present invention are based on mass unless otherwise specified.
Moreover, the cement concrete said by this invention is a general term for cement paste, mortar, and concrete.
本発明で使用するアルミナセメントは、モノカルシウムアルミネートを主要鉱物として含有するクリンカー粉砕物から得られるものであり、例えば、市販品では、電気化学工業株式会社製商品名「デンカアルミナセメント1号」、「デンカアルミナセメント2号」、及び「デンカハイアルミナセメント」、ラファージュ社製商品名「セカール71」や「セカール80」などを用いることができる。 The alumina cement used in the present invention is obtained from a clinker pulverized product containing monocalcium aluminate as a main mineral. For example, in a commercial product, trade name “DENKA ALUMINUM CEMENT 1” manufactured by Denki Kagaku Kogyo Co., Ltd. “Denka Alumina Cement No. 2”, “Denka High Alumina Cement”, trade names “SECAR 71” and “SECAR 80” manufactured by Lafarge can be used.
アルミナセメントの粉末度は水和活性の面で、ブレーン値で2,000〜8,000cm2/gが好ましい。2,000cm2/g未満ではSiO2とAl2O3を含有する無機物質との反応性が悪くなるおそれがあり、8,000cm2/gを超えると硬化が早くなり、作業性が確保しにくくなるおそれがある。 The fineness of the alumina cement is preferably 2,000 to 8,000 cm 2 / g in terms of hydration activity in terms of hydration activity. Is less than 2,000 cm 2 / g may result in reactivity with inorganic material containing SiO 2 and Al 2 O 3 is deteriorated, 8,000cm 2 / g greater than the curing becomes faster, the workability becomes difficult to ensure There is a fear.
本発明で使用するSiO2とAl2O3を含有する無機物質(以下、シリカ物質という)は、化学成分としてSiO2とAl2O3を主成分とするものである。
シリカ物質としては、流動接触分解用触媒のFCC、廃活性白土焼却の「ハイクレー」、及び石炭灰(フライアッシュ)が挙げられる。
The inorganic substance (hereinafter referred to as silica substance) containing SiO 2 and Al 2 O 3 used in the present invention is composed mainly of SiO 2 and Al 2 O 3 as chemical components.
Examples of the silica material include FCC as a fluid catalytic cracking catalyst, “high clay” of waste activated clay incineration, and coal ash (fly ash).
シリカ物質中のSiO2とAl2O3成分の配合割合は、SiO2が40〜98部でAl2O3が0.5〜40部が好ましく、SiO2が50〜85部でAl2O3が5〜35部がより好ましい。この範囲外では充分な膨張量と強度が得られなくなるおそれがある。
また、原料中には、MgO、Fe2O3、TiO2、及びZrO2などの不純物が含有されているが、本発明の効果を阻害しない範囲であれば、含有していても構わない。ただし、K2O、Na2O、及びMgOの含有量は少ない方が好ましい。
The mixing ratio of SiO 2 and Al 2 O 3 component in the silica substance is, Al 2 O 3 is preferably 0.5 to 40 parts of SiO 2 is 40 to 98 parts of the Al 2 O 3 with SiO 2 50 to 85 parts 5-35 parts are more preferred. Outside this range, sufficient expansion and strength may not be obtained.
Further, the raw materials contain impurities such as MgO, Fe 2 O 3 , TiO 2 , and ZrO 2 , but they may be contained as long as the effects of the present invention are not impaired. However, it is preferable that the content of K 2 O, Na 2 O, and MgO is small.
本発明で使用するシリカ物質の粉末度は、ブレーン比表面積値(以下、ブレーン値という)で、1,000〜7,000cm2/gが好ましく、2,000〜6,000cm2/gがより好ましい。1,000cm2/g未満では水和活性が不充分で強度や膨張が不足するおそれがあり、7,000cm2/gを超えると粉砕動力がかかりすぎて不経済になるおそれがある。 Fineness of the silica material used in the present invention, Blaine specific surface area value (hereinafter, referred to as Blaine value) is preferably 1,000~7,000cm 2 / g, 2,000~6,000cm 2 / g is more preferable. If it is less than 1,000 cm 2 / g, the hydration activity is insufficient and the strength and expansion may be insufficient, and if it exceeds 7,000 cm 2 / g, the pulverization power is excessively applied, which may be uneconomical.
本発明において、アルミナセメントと、シリカ物質からなる結合材100部中、シリカ物質は5〜50部が好ましく、10〜40部がより好ましい。5部未満では充分な膨張量が得られなくなるおそれがあり、50部を超えると充分な膨張量と圧縮強度が得られなくなるおそれがある。 In the present invention, the silica material is preferably 5 to 50 parts, more preferably 10 to 40 parts, in 100 parts of the binder composed of alumina cement and silica material. If it is less than 5 parts, a sufficient expansion amount may not be obtained, and if it exceeds 50 parts, a sufficient expansion amount and compressive strength may not be obtained.
本発明で使用する骨材は特に限定されるものではなく、砕砂、川砂、海砂、珪砂、石灰砂、砕石、川砂利、及び石灰石等、通常セメントコンクリート製造に用いられる材料を使用することが可能である。
骨材の使用量は特に限定されるものではないが、結合材100部に対して、50〜500部が好ましい。50部未満では結合材量が多くなり不経済になるおそれがあり、500部を超えると流動性や膨張性が得られなくなるおそれがある。
The aggregate used in the present invention is not particularly limited, and it is possible to use materials usually used for cement concrete production, such as crushed sand, river sand, sea sand, quartz sand, lime sand, crushed stone, river gravel, and limestone. Is possible.
The amount of aggregate used is not particularly limited, but is preferably 50 to 500 parts with respect to 100 parts of the binder. If the amount is less than 50 parts, the amount of the binder may increase, which may be uneconomical. If the amount exceeds 500 parts, fluidity and expandability may not be obtained.
本発明で使用する水の量は特に限定されるものではないが、水/結合材比で22〜60%が好ましく、30〜50%がより好ましい。22%未満では所定の流動性を確保することが難しくなるおそれがあり、60%を超えると充分な膨張量や強度が得られなくなるおそれがある。 The amount of water used in the present invention is not particularly limited, but the water / binder ratio is preferably 22 to 60%, more preferably 30 to 50%. If it is less than 22%, it may be difficult to ensure the predetermined fluidity, and if it exceeds 60%, sufficient expansion and strength may not be obtained.
本発明では、セメント組成物の他に、減水剤、高性能減水剤、AE減水剤、流動化剤、消泡剤、増粘剤、防錆剤、防凍剤、ポリマ−、収縮低減剤、凝結調整剤、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、並びに、ビニロン繊維、アクリル繊維、及び炭素繊維等の繊維状物質のうちの一種又は二種以上を本発明の目的を阻害しない範囲で使用することが可能である。 In the present invention, in addition to the cement composition, a water reducing agent, a high performance water reducing agent, an AE water reducing agent, a fluidizing agent, an antifoaming agent, a thickening agent, a rust preventive agent, a defrosting agent, a polymer, a shrinkage reducing agent, a setting agent. One or two or more of modifiers, clay minerals such as bentonite, anion exchangers such as hydrotalcite, and fibrous substances such as vinylon fibers, acrylic fibers, and carbon fibers do not impair the object of the present invention. It can be used in a range.
本発明における各材料の混合方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、あらかじめその一部あるいは全部を混合しておいても差し支えない。 The mixing method of each material in this invention is not specifically limited, Each material may be mixed at the time of construction, and a part or all of them may be mixed beforehand.
混合装置としては、既存のいかなる装置も使用可能であり、例えば傾胴ミキサ、ヘンシェルミキサ、V型ミキサ、及びナウターミキサなどが挙げられる。 Any existing apparatus can be used as the mixing apparatus, and examples thereof include a tilting cylinder mixer, a Henschel mixer, a V-type mixer, and a Nauter mixer.
本発明における混練方法は特に限定されるものではなく、例えば、10〜20分で混合した材料を、傾胴ミキサ、二軸強制ミキサ、及びオムニミキサなどを使用し、水投入から、60〜180秒程度で混練することが通常である。 The kneading method in the present invention is not particularly limited. For example, the material mixed in 10 to 20 minutes is used for 60 to 180 seconds from the addition of water using a tilting barrel mixer, a biaxial forced mixer, an omni mixer, and the like. It is usual to knead to the extent.
本発明では、例えば、練混ぜから8時間以内に、40〜80℃で加温養生することによって、膨張性を付与することが可能である。
加温養生の方法は特に限定されるものではなく、蒸気養生、オートクレーブ養生、いずれも可能である。
養生温度は、40〜80℃が好ましく、50〜65℃がより好ましい。養生温度が前記範囲外では膨張量が小さくなるおそれがある。
In the present invention, for example, expansion can be imparted by heating and curing at 40 to 80 ° C. within 8 hours after mixing.
The method of heating curing is not particularly limited, and both steam curing and autoclave curing are possible.
The curing temperature is preferably 40-80 ° C, more preferably 50-65 ° C. If the curing temperature is outside the above range, the expansion amount may be small.
本発明で、コンクリートを練り混ぜてから加温養生するまでの前置時間は特に重要であり、8時間以内が好ましく、4時間以内がより好ましい。前置時間がこの範囲外では膨張量が小さくなるおそれがある。ただし、凝結調整剤等を用いて硬化を遅らせた場合にはこの限りではない。 In the present invention, the pre-treatment time from mixing the concrete to heating and curing is particularly important, preferably within 8 hours, and more preferably within 4 hours. If the preposition time is outside this range, the amount of expansion may be small. However, this does not apply when curing is delayed using a setting modifier or the like.
昇温速度も特に重要であり、10℃/hr以上が好ましく、20℃/hrがより好ましい。昇温速度が遅いと膨張量が小さくなるおそれがあり、昇温速度が早すぎるとひび割れが発生するおそれがある。 The rate of temperature increase is also particularly important, and is preferably 10 ° C./hr or more, more preferably 20 ° C./hr. If the rate of temperature rise is slow, the amount of expansion may be small, and if the rate of temperature rise is too fast, cracks may occur.
養生温度の保持時間は特に限定されるものではないが、通常3〜6時間程度が好ましい。3時間未満では膨張量が小さくなるおそれがあり、6時間を超えて養生してもさらなる膨張量の増加は見込めない。 The holding time of the curing temperature is not particularly limited, but is usually preferably about 3 to 6 hours. If it is less than 3 hours, the amount of expansion may be small, and even if it is cured beyond 6 hours, further increase in the amount of expansion cannot be expected.
以下、本発明の実験例に基づいて、本発明をさらに説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be further described based on experimental examples of the present invention, but the present invention is not limited thereto.
実験例1
結合材として、アルミナセメント80部とシリカ物質(FCC)20部を用いた。
表1に示す水/結合材比と結合材/砂比の配合でモルタルを調製し、20℃環境下で型枠に充填し、前置時間4時間で、昇温速度15℃/hrの速度で昇温し、表1に示す温度で保持時間5時間の蒸気養生を行い、供試体を成形した。
材齢1日で脱型後、圧縮強度と膨張量の測定を行い、その後水中養生を行い材齢7日で膨張量の測定を行った。結果を表1に併記する。
なお、水/結合材比が小さく、練り混ぜが困難な場合には、型詰できる程度に減水剤を添加した。
Experimental example 1
As a binder, 80 parts of alumina cement and 20 parts of silica material (FCC) were used.
A mortar is prepared by mixing the water / binder ratio and binder / sand ratio shown in Table 1, filled in a mold in a 20 ° C. environment, and heated at a rate of 15 ° C./hr with a pre-set time of 4 hours. The sample was molded by performing steam curing at a temperature shown in Table 1 for a holding time of 5 hours.
After demolding at a material age of 1 day, the compressive strength and the amount of expansion were measured, followed by water curing and the expansion amount was measured at a material age of 7 days. The results are also shown in Table 1.
When the water / binder ratio was small and mixing was difficult, a water reducing agent was added to such an extent that mold filling was possible.
<使用材料>
アルミナセメント:電気化学工業株式会社製商品名「デンカアルミナセメント1号」、密度3.00g/cm3、ブレーン値5,000cm2/g
シリカ物質:流動接触分解用触媒のFCC、市販品、Al2O3 27.5%、SiO2 65.7%、密度2.70g/cm3
砂 :JIS標準砂
水 :水道水
減水剤 :ポリカルボン酸系高性能減水剤、市販品
<Materials used>
Alumina cement: Trade name “Denka Alumina Cement No. 1” manufactured by Denki Kagaku Kogyo Co., Ltd., density 3.00g / cm 3 , brain value 5,000cm 2 / g
Silica material: FCC of fluid catalytic cracking catalyst, commercial product, Al 2 O 3 27.5%, SiO 2 65.7%, density 2.70 g / cm 3
Sand: JIS standard sandwater: Tap water reducing agent: Polycarboxylic acid-based high-performance water reducing agent, commercial product
<測定方法>
圧縮強度 :JIS R 5201に準拠
膨張量 :JIS A 6202に準拠
<Measurement method>
Compressive strength: Conforms to JIS R 5201 Expansion amount: Conforms to JIS A 6202
実験例2
表2に示す結合材を用い、水/結合材比50%、結合材/砂比1/2としたモルタルを調製し、前置時間4時間、昇温速度15℃/hr、養生温度65℃、及び保持時間5時間とした蒸気養生をしたこと以外は実験例1と同様に行った。結果を表2に併記する。
Experimental example 2
Using the binders shown in Table 2, prepare a mortar with a water / binder ratio of 50% and a binder / sand ratio of 1/2, a pre-treatment time of 4 hours, a heating rate of 15 ° C / hr, and a curing temperature of 65 ° C. The test was performed in the same manner as in Experimental Example 1 except that steam curing was performed with a holding time of 5 hours. The results are also shown in Table 2.
<使用材料>
ハイクレー:HK、市販品、Al2O3 9.25%、SiO2 79.8%、密度1.97g/cm3
フライアッシュ:FA、セメント混和用、市販品、Al2O3 27.0%、SiO2 60.0%、密度2.05g/cm3
<Materials used>
High clay: HK, commercial product, Al 2 O 3 9.25%, SiO 2 79.8%, density 1.97 g / cm 3
Fly ash: FA, cement admixture, commercial product, Al 2 O 3 27.0%, SiO 2 60.0%, density 2.05g / cm 3
実験例3
アルミナセメント80部、FCC20部からなる結合材を用い、水/結合材比50%、結合材/砂比1/2としたモルタルを調製し、表3に示す前置き時間、昇温速度15℃/hr、養生温度65℃、及び保持時間5時間とした蒸気養生をしたこと以外は実験例1と同様に行った。結果を表3に併記する。
Experimental example 3
Using a binder consisting of 80 parts of alumina cement and 20 parts of FCC, a mortar having a water / binder ratio of 50% and a binder / sand ratio of 1/2 was prepared. The test was performed in the same manner as in Experimental Example 1 except that steam curing was performed at hr, a curing temperature of 65 ° C., and a holding time of 5 hours. The results are also shown in Table 3.
実験例4
アルミナセメント80部、FCC20部からなる結合材を用い、水/結合材比50%、結合材/砂比1/2としたモルタルを調製し、前置時間4時間、表4に示す昇温速度、養生温度65℃、及び保持時間5時間とした蒸気養生以外は実験例1と同様に行った。結果を表4に併記する。
Experimental Example 4
Using a binder consisting of 80 parts of alumina cement and 20 parts of FCC, a mortar having a water / binder ratio of 50% and a binder / sand ratio of 1/2 was prepared, and the heating rate shown in Table 4 was 4 hours. The same procedure as in Experimental Example 1 was conducted except for steam curing with a curing temperature of 65 ° C. and a holding time of 5 hours. The results are also shown in Table 4.
実験例5
アルミナセメント80部、FCC20部からなる結合材を用い、水/結合材比50%、結合材/砂比1/2としたモルタルを調製し、前置時間4時間、昇温速度15℃/hr、養生温度65℃、及び保持時間を表5に示す蒸気養生以外は実験例1と同様に行った。結果を表5に併記する。
Experimental Example 5
Using a binder consisting of 80 parts of alumina cement and 20 parts of FCC, a mortar with a water / binder ratio of 50% and a binder / sand ratio of 1/2 was prepared, the pre-treatment time was 4 hours, and the heating rate was 15 ° C / hr. The curing temperature was 65 ° C., and the holding time was the same as in Experimental Example 1 except for the steam curing shown in Table 5. The results are also shown in Table 5.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007193341A JP5255240B2 (en) | 2007-07-25 | 2007-07-25 | Cement concrete hardened body, method for producing the same, and cement concrete used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007193341A JP5255240B2 (en) | 2007-07-25 | 2007-07-25 | Cement concrete hardened body, method for producing the same, and cement concrete used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009029646A JP2009029646A (en) | 2009-02-12 |
JP5255240B2 true JP5255240B2 (en) | 2013-08-07 |
Family
ID=40400571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007193341A Active JP5255240B2 (en) | 2007-07-25 | 2007-07-25 | Cement concrete hardened body, method for producing the same, and cement concrete used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5255240B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101625970B1 (en) | 2015-10-06 | 2016-05-31 | 강욱중 | Concrete admixture and a method of manufacturing the steam curing concrete |
WO2023075686A2 (en) * | 2021-11-01 | 2023-05-04 | Nanyang Technological University | A cementitious binder, method, and products thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS605055A (en) * | 1983-06-20 | 1985-01-11 | 電気化学工業株式会社 | Manufacture of alumina cement molded body |
JP4173780B2 (en) * | 2003-08-01 | 2008-10-29 | 電気化学工業株式会社 | Hydraulic cement composition |
JP4681359B2 (en) * | 2004-06-23 | 2011-05-11 | 大成建設株式会社 | High-strength mortar, high-strength concrete, method for producing high-strength mortar hardened body, method for improving durability of structure, and premix material for high-strength mortar |
JP4634213B2 (en) * | 2005-04-27 | 2011-02-16 | 電気化学工業株式会社 | Alumina cement composition and repair method using the same |
JP4634212B2 (en) * | 2005-04-27 | 2011-02-16 | 電気化学工業株式会社 | Alumina cement composition and repair method using the same |
-
2007
- 2007-07-25 JP JP2007193341A patent/JP5255240B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009029646A (en) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4981462B2 (en) | Salt-blocking cement mortar, concrete and its hardened body | |
JP6392553B2 (en) | Method for producing hardened cement and hardened cement | |
JP2009269786A (en) | Hydraulic composition and concrete using the hydraulic composition | |
JP5804470B2 (en) | Binding material for paving material, paving material and method of using the paving material | |
JP2017193470A (en) | Concrete product and manufacturing method of concrete product | |
JP5069073B2 (en) | Manufacturing method of cement concrete pipe using cement for centrifugal force forming and its cement concrete pipe | |
WO2019172349A1 (en) | Acid-resistant concrete, precast concrete, and method for producing acid-resistant concrete | |
JP6238579B2 (en) | A binder for carbonated building materials and a method for producing the same. | |
JP5255240B2 (en) | Cement concrete hardened body, method for producing the same, and cement concrete used therefor | |
JP5345821B2 (en) | Cement admixture and cement composition | |
JP2017149639A (en) | Artificial aggregate and cement curing body | |
WO2024048364A1 (en) | Hardening accelerator for hydraulic materials, cement composition and hardened body | |
Rabehi et al. | Potential use of calcined silt of dam as a pozzolan in blended Portland cement | |
JP5144849B2 (en) | Cement composition, hardened cement concrete, and method for producing hardened cement concrete | |
JP5165436B2 (en) | Concrete composition and hardened concrete | |
JP4516530B2 (en) | Explosion resistant hardened cement and method for producing the same | |
JP2015189628A (en) | Method of producing crack-reduced cement product and crack-reduced cement product | |
JP6383417B2 (en) | Method for producing binder for carbonated building materials | |
JP2018016510A (en) | Surface modifier of concrete and method for improving surface quality of concrete using the same | |
JP4681359B2 (en) | High-strength mortar, high-strength concrete, method for producing high-strength mortar hardened body, method for improving durability of structure, and premix material for high-strength mortar | |
JP2010030862A (en) | Cement additive and cement composition | |
KR20170044402A (en) | High sulfate resistant inorganic binders, cement paste, mortar and concrete composite with crack self-healing function | |
JP5177963B2 (en) | Method for imparting expansibility to hardened cement concrete | |
JP5030248B2 (en) | Repair method for concrete structures | |
JP6003900B2 (en) | Cement admixture manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130419 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5255240 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160426 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |