Nothing Special   »   [go: up one dir, main page]

JP5249203B2 - Polyimide film - Google Patents

Polyimide film Download PDF

Info

Publication number
JP5249203B2
JP5249203B2 JP2009508988A JP2009508988A JP5249203B2 JP 5249203 B2 JP5249203 B2 JP 5249203B2 JP 2009508988 A JP2009508988 A JP 2009508988A JP 2009508988 A JP2009508988 A JP 2009508988A JP 5249203 B2 JP5249203 B2 JP 5249203B2
Authority
JP
Japan
Prior art keywords
polyimide
polyimide film
group
general formula
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009508988A
Other languages
Japanese (ja)
Other versions
JPWO2008126559A1 (en
Inventor
康弘 安達
広徳 永岡
宏遠 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2009508988A priority Critical patent/JP5249203B2/en
Publication of JPWO2008126559A1 publication Critical patent/JPWO2008126559A1/en
Application granted granted Critical
Publication of JP5249203B2 publication Critical patent/JP5249203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、耐引き裂き性が良好で、配線基板の絶縁層として適したポリイミドフィルムに関する。   The present invention relates to a polyimide film having good tear resistance and suitable as an insulating layer of a wiring board.

一般に、ポリイミド樹脂は非常に優れた耐熱性・耐薬品性・電気特性・機械特性を有していることから、電気・電子機器の材料として、特に耐熱性を要する電気絶縁材料などの用途に広く利用されている。そして、これまでポリイミドを絶縁層とする様々なフレキシブル銅張積層板が検討されてきており、例えば、特許文献1には、特定の樹脂構造を有するポリイミド樹脂からなるフレキシブル銅張積層板が開示されている。しかし、従来のポリイミド樹脂は、他の有機ポリマーに比べ耐熱性や電気絶縁性は優れているものの、吸湿率が大きいためにこれを加工して得られるフレキシブル配線基板を半田浴に浸漬した際に生じる膨れや、ポリイミド樹脂の吸湿後の寸法変化による電子機器の接続不良等の懸念があった。   In general, polyimide resin has excellent heat resistance, chemical resistance, electrical properties, and mechanical properties. Therefore, it is widely used as an electrical and electronic equipment material, especially for electrical insulation materials that require heat resistance. It's being used. Various flexible copper clad laminates having polyimide as an insulating layer have been studied so far. For example, Patent Document 1 discloses a flexible copper clad laminate made of a polyimide resin having a specific resin structure. ing. However, although conventional polyimide resin has better heat resistance and electrical insulation than other organic polymers, it has a high moisture absorption rate, so when a flexible wiring board obtained by processing this is immersed in a solder bath There were concerns such as the occurrence of blisters and poor connection of electronic equipment due to dimensional changes after moisture absorption of the polyimide resin.

そこで、ポリイミド樹脂の湿度環境変化による寸法安定性を改善するために、ポリイミド樹脂層を形成するポリイミド樹脂として、4,4’−ジアミノ−2,2’−ジメチルビフェニルを20モル%以上含有するジアミンを使用して得られたポリイミド樹脂の層を有する積層体が特許文献2に示されている。   Therefore, in order to improve the dimensional stability due to changes in the humidity environment of the polyimide resin, a diamine containing 20 mol% or more of 4,4′-diamino-2,2′-dimethylbiphenyl is used as the polyimide resin for forming the polyimide resin layer. Patent Document 2 discloses a laminate having a polyimide resin layer obtained by using.

近年、電子機器の高性能化、高機能化が急速に進んでおり、これに伴い電子機器に用いられる電子部品やそれらを実装する基板に対しても、より高密度で高性能なものへと要求が高まっている。そして、電子機器は益々軽量化、小型化、薄型化の傾向にあり、電子部品を収容するスペースは狭まる一方である。これらの課題を解決する技術の1つに、フレキシブル配線基板上に半導体チップを実装する技術が注目されている。このいわゆるCOF(チップ・オン・フィルム)用途に使用されるフレキシブル配線基板は、製造工程の搬送のためにスプロケットホールを有しているが、その部分が破断や変形を生じやすいという問題から、これまでのフレキシブル配線基板の絶縁層は、その信頼性を維持するために40μm程度以上の一定の厚みを必要としていた。   In recent years, the performance and functionality of electronic devices have been rapidly increasing, and with this, electronic components used in electronic devices and the boards on which they are mounted have become higher density and higher performance. The demand is growing. Electronic devices are becoming lighter, smaller, and thinner, and the space for storing electronic components is becoming narrower. As one of the techniques for solving these problems, a technique for mounting a semiconductor chip on a flexible wiring board has attracted attention. The flexible wiring board used for this so-called COF (chip-on-film) application has sprocket holes for conveyance in the manufacturing process. However, this part is prone to breakage and deformation. In order to maintain the reliability, the insulating layer of the flexible wiring board up to the above requires a certain thickness of about 40 μm or more.

一方、折畳み型携帯電話や摺動型携帯電話等の可動部に用いられるフレキシブル配線基板においても同様に配線の高密度化が求められ、それに伴い高耐屈曲性も要求されるようになった。しかしながら、従来のフレキシブル配線基板は多層化や小屈曲半径化すると長期間の使用後に断線を発生するといった問題があり、折畳み型携帯電話や摺動型携帯電話の可動部に十分な耐屈曲性を有するものは必ずしも得られていなかった。   On the other hand, a flexible wiring board used for a movable part such as a folding cellular phone or a sliding cellular phone is also required to have a high wiring density, and accordingly, a high bending resistance is also required. However, conventional flexible wiring boards have the problem of disconnection after a long period of use if they are multilayered or have a small bending radius, and sufficient bending resistance is provided for the movable parts of folding and sliding mobile phones. What it has was not necessarily obtained.

屈曲性向上の手段の一つとしてポリイミドフィルムの低弾性化の検討がなされている(特許文献3)。弾性率が3GPa以下と低弾性化することにより積層体の屈曲性は向上するが、基材との熱膨張係数を合わせるために熱処理に時間がかかるという問題がある。また、COF用途では高温での実装が行われるため、弾性率の低いポリイミドでは実装時にICチップが沈み込んでしまう可能性があり、不良の原因となる。   As one means for improving flexibility, studies have been made to reduce the elasticity of polyimide films (Patent Document 3). Although the flexibility of the laminate is improved by lowering the elastic modulus to 3 GPa or less, there is a problem that it takes time for heat treatment to match the thermal expansion coefficient with the substrate. In addition, since COF is used for mounting at a high temperature, the polyimide having a low elastic modulus may cause the IC chip to sink at the time of mounting, which causes a defect.

他の屈曲性向上の手段として有効なのが絶縁層であるポリイミドの薄膜化であるが、従来のポリイミドフィルムでは薄膜化によってフィルムが弱くなり、破断や変形がしやすいという問題が生じる。そのため薄膜でも充分な耐引き裂き性を有するポリイミドフィルムの開発が望まれていた。   Another effective means for improving flexibility is the thinning of the polyimide, which is an insulating layer. However, the conventional polyimide film has a problem that the film is weakened by thinning, and is easily broken or deformed. Therefore, development of a polyimide film having sufficient tear resistance even in a thin film has been desired.

特開昭63−245988号公報JP-A 63-245988 WO01/028767号公報WO01 / 028767 特開2003−192788号公報JP 2003-192788 A

本発明は、熱膨張係数に代表される寸法安定性、耐熱性、その他のポリイミドの優れた特性を生かしながら、薄膜においても優れた耐引き裂き性を有するポリイミドフィルムを提供することを目的とする。   An object of this invention is to provide the polyimide film which has the tear resistance outstanding also in the thin film, making use of the dimensional stability represented by the thermal expansion coefficient, heat resistance, and the outstanding characteristic of other polyimides.

本発明者らは、上記課題を解決するために検討を重ねた結果、ポリイミドフィルムを構成するポリイミドが特定の構造を有し、かつ一定の関係式を満たすポリイミドフィルムとすることで上記課題を解決し得ることを見出し、本発明を完成するに至った。   As a result of repeated studies to solve the above-mentioned problems, the present inventors solved the above-mentioned problems by forming a polyimide film that has a specific structure and satisfies a certain relational expression. As a result, the present invention has been completed.

すなわち、本発明は、下記一般式(1)で表される構造単位を60モル%以上含有するポリイミドから得られ、厚さが5〜40μmで、数式(I)
Z=Y/X1.5 (I)
(式中、Yは引き裂き伝播抵抗の値(mN)であり、Xはポリイミドフィルムの厚み(μm)である。)で計算されるZの値が0.7以上で、かつ熱膨張係数が30ppm/K以下であることを特徴とするポリイミドフィルムである。

Figure 0005249203

ここで、Ar1は芳香環を1個以上有する4価の有機基であり、Rは炭素数1〜6の低級アルキル基、低級アルコキシ基、フェニル基、フェノキシ基又はハロゲンである。That is, this invention is obtained from the polyimide which contains 60 mol% or more of structural units represented by following General formula (1), is 5-40 micrometers in thickness, Formula (I)
Z = Y / X 1.5 (I)
(In the formula, Y is a tear propagation resistance value (mN), and X is a polyimide film thickness (μm)). The value of Z is 0.7 or more and the thermal expansion coefficient is 30 ppm. It is a polyimide film characterized by being / K or less.
Figure 0005249203

Here, Ar 1 is a tetravalent organic group having one or more aromatic rings, and R is a lower alkyl group having 1 to 6 carbon atoms, a lower alkoxy group, a phenyl group, a phenoxy group, or a halogen.

以下に本発明について詳細に説明する。   The present invention is described in detail below.

本発明のポリイミドフィルムは、上記一般式(1)で表される構造単位を60モル%以上含有するポリイミドから得られる。一般式(1)において、Ar1は芳香環を1個以上有する4価の有機基であり、芳香族テトラカルボン酸二無水物から生じる残基ともいえる。したがって、Ar1は使用する芳香族テトラカルボン酸二無水物を説明することで理解される。使用する芳香族テトラカルボン酸二無水物はピロメリット酸二無水物が好ましいが30モル%以下の割合で他の芳香族テトラカルボン酸二無水物を含むことができる。Rは炭素数1〜6の低級アルキル基、低級アルコキシ基、フェニル基、フェノキシ基又はハロゲンである。好ましくは、メチル基、エチル基、メトキシ基又はエトキシ基である。The polyimide film of this invention is obtained from the polyimide which contains 60 mol% or more of structural units represented by the said General formula (1). In the general formula (1), Ar 1 is a tetravalent organic group having one or more aromatic rings, and can be said to be a residue generated from an aromatic tetracarboxylic dianhydride. Therefore, Ar 1 is understood by describing the aromatic tetracarboxylic dianhydride used. The aromatic tetracarboxylic dianhydride used is preferably pyromellitic dianhydride, but can contain other aromatic tetracarboxylic dianhydrides in a proportion of 30 mol% or less. R is a lower alkyl group having 1 to 6 carbon atoms, a lower alkoxy group, a phenyl group, a phenoxy group, or a halogen. Preferably, they are a methyl group, an ethyl group, a methoxy group or an ethoxy group.

本発明のポリイミドフィルムを構成する好ましいポリイミドとしては、下記一般式(2)で表される構造単位を含有し、さらに好ましくは下記一般式(3)及び(4)で表される構造単位の何れか一方又は両方を一定範囲で含有することが良い。   The preferred polyimide constituting the polyimide film of the present invention contains a structural unit represented by the following general formula (2), more preferably any of the structural units represented by the following general formulas (3) and (4). Either one or both may be contained within a certain range.

Figure 0005249203
Figure 0005249203

一般式(2)において、Rは一般式(1)のRと同じ意味である。一般式(3)において、Ar2は下記式(a)及び(b)から選択される2価の芳香族基の少なくとも1種を示し、Ar4は下記式(c)及び(d)から選択される2価の芳香族基の少なくとも1種を示す。一般式(4)において、Ar3は3,4'-ジアミノジフェニルエーテル及び4,4'-ジアミノジフェニルエーテルから選択される少なくとも1種のジアミンからアミノ基をとった2価の残基を示す。In the general formula (2), R has the same meaning as R in the general formula (1). In the general formula (3), Ar 2 represents at least one divalent aromatic group selected from the following formulas (a) and (b), and Ar 4 is selected from the following formulas (c) and (d) And at least one of divalent aromatic groups to be produced. In the general formula (4), Ar 3 represents a divalent residue obtained by removing an amino group from at least one diamine selected from 3,4′-diaminodiphenyl ether and 4,4′-diaminodiphenyl ether.

Figure 0005249203
Figure 0005249203

一般式(2)、(3)及び(4)において、l、m及びnは存在モル比を示し、ポリイミドが一般式(2)及び(3)で表される構造単位で構成される場合、lは0.6〜0.9、mは0.1〜0.4の範囲の数であることがよく、ポリイミドが一般式(2)、(3)及び(4)で表される構造単位で構成される場合、lは0.6〜0.9、mは0.09〜0.3、nは0.01〜0.2の範囲の数であることがよい。   In the general formulas (2), (3), and (4), l, m, and n represent the molar ratio, and when the polyimide is composed of the structural units represented by the general formulas (2) and (3), l is preferably a number in the range of 0.6 to 0.9, m is a number in the range of 0.1 to 0.4, and polyimide is a structural unit represented by the general formulas (2), (3) and (4) 1 is preferably a number in the range of 0.6 to 0.9, m is 0.09 to 0.3, and n is 0.01 to 0.2.

上記一般式(2)の構造単位は主に低熱膨張性と高耐熱性等の性質を向上させ、一般式(3)の構造単位は主に強靭性や接着性等の性質を向上させると考えられるが、相乗効果や分子量の影響があるため厳密ではない。しかし、強靭性等を増加させるためには、一般式(3)の構造単位を増やすことが通常、有効である。一般式(4)の構造単位は低熱膨張性と強靭性のバランスを調整するために有効である。   The structural unit of the above general formula (2) mainly improves the properties such as low thermal expansion and high heat resistance, and the structural unit of the general formula (3) mainly improves the properties such as toughness and adhesiveness. However, it is not exact because of synergistic effects and molecular weight effects. However, in order to increase toughness and the like, it is usually effective to increase the structural unit of the general formula (3). The structural unit of the general formula (4) is effective for adjusting the balance between low thermal expansion and toughness.

一般式(2)で表される構造単位の好ましい例としては、下記式(5)で表される構造単位が例示される。

Figure 0005249203
Preferable examples of the structural unit represented by the general formula (2) include a structural unit represented by the following formula (5).
Figure 0005249203

一般式(3)において、Ar2は上記式(a)又は(b)で表される2価の芳香族基を示し、Ar4は上記(c)又は(d)で表される2価の芳香族基を示す。Ar2の好ましい例としては、下記式(e)、(f)及び(g)で表される2価の芳香族基が例示される。In General Formula (3), Ar 2 represents a divalent aromatic group represented by the above formula (a) or (b), and Ar 4 represents a divalent aromatic group represented by (c) or (d) above. Indicates an aromatic group. Preferred examples of Ar 2 include divalent aromatic groups represented by the following formulas (e), (f) and (g).

Figure 0005249203
Figure 0005249203

また、一般式(4)において、Ar3は3,4'-ジアミノジフェニルエーテル又は4,4'-ジアミノジフェニルエーテルの残基(アミノ基をとって残る基)を示す。In the general formula (4), Ar 3 represents a residue of 3,4′-diaminodiphenyl ether or 4,4′-diaminodiphenyl ether (a group remaining after taking an amino group).

本発明のポリイミドフィルムは、好ましくは重量平均分子量(Mw)が150,000〜800,000、より好ましくは200,000〜800,000の範囲にあるポリイミド前駆体であるポリアミック酸をイミド化して得られる。重量平均分子量の値が150,000万に満たないと、フィルムの引き裂き伝播抵抗が弱くなる傾向があり、800,000を超えると均一なフィルムの作製が困難となる恐れがある。重量平均分子量はGPC法によってポリスチレン換算の値を求めることができる。なお、ポリアミック酸をイミド化して得られるポリイミド樹脂の重量平均分子量も、ポリアミック酸状態で測定されるものと略等しいため、ポリアミック酸の重量平均分子量をもってポリイミド樹脂の重量平均分子量と見做すことができる。   The polyimide film of the present invention is preferably obtained by imidizing a polyamic acid which is a polyimide precursor having a weight average molecular weight (Mw) in the range of 150,000 to 800,000, more preferably 200,000 to 800,000. If the value of the weight average molecular weight is less than 150,000,000, the tear propagation resistance of the film tends to be weak, and if it exceeds 800,000, it may be difficult to produce a uniform film. The weight average molecular weight can be determined in terms of polystyrene by the GPC method. In addition, since the weight average molecular weight of the polyimide resin obtained by imidizing the polyamic acid is substantially equal to that measured in the polyamic acid state, the weight average molecular weight of the polyamic acid can be regarded as the weight average molecular weight of the polyimide resin. it can.

ポリイミドフィルムの厚みは、5〜40μmの範囲にあり、好ましくは5〜35μm、特に好ましくは10〜30μmである。この範囲とすることで折り曲げ性と耐引き裂き性に優れたポリイミドフィルムとすることができる。   The thickness of the polyimide film is in the range of 5 to 40 μm, preferably 5 to 35 μm, and particularly preferably 10 to 30 μm. By setting it as this range, it can be set as the polyimide film excellent in bending property and tear resistance.

また、本発明では、数式(I)で表されるZの値が0.7以上、有利には0.9〜2.5の範囲とすることで、破断や変形のしにくいポリイミドフィルムとすることができる。数式(I)において、Yは引き裂き伝播抵抗の値(mN)であり、Xはポリイミドフィルムの厚み(μm)である。引き裂き伝播抵抗は実施例に記載の方法で測定される。   Moreover, in this invention, it is set as the polyimide film which is hard to fracture | rupture and deform | transform by making the value of Z represented by numerical formula (I) into 0.7 or more, preferably 0.9-2.5. be able to. In formula (I), Y is the tear propagation resistance value (mN), and X is the thickness (μm) of the polyimide film. The tear propagation resistance is measured by the method described in the examples.

また、ポリイミドフィルムの線熱膨張係数は30×10-6/K以下とする必要があり、有利には25×10-6/K以下とすることで、フレキシブル配線基板に適用したときにカール等の変形を抑制することができる。In addition, the linear thermal expansion coefficient of the polyimide film needs to be 30 × 10 −6 / K or less, preferably 25 × 10 −6 / K or less, so that it can be curled when applied to a flexible wiring board. Can be suppressed.

更に、ポリイミドフィルムのガラス転移温度は310℃以上、有利には310〜500℃とし、400℃における弾性率は0.1GPa以上、有利には0.15〜5GPaの範囲とすることで、高温実装が可能となり、COF用途に特に適したフレキシブル配線基板又はそれを製造するための積層体に使用することができる。   Furthermore, the glass transition temperature of the polyimide film is 310 ° C. or higher, preferably 310 to 500 ° C., and the elastic modulus at 400 ° C. is 0.1 GPa or higher, preferably 0.15 to 5 GPa. Therefore, it can be used for a flexible wiring board particularly suitable for COF applications or a laminate for manufacturing the flexible wiring board.

イミド化は、ポリアミック酸を銅箔などの任意の基材上にアプリケータを用いて塗布し、150℃以下の温度で2〜20分予備乾燥した後、溶剤除去、イミド化のために通常130〜360℃程度の温度で2〜30分程度熱処理することにより行われる。イミド化時に使用した基材はエッチングや剥離等により除去することによりポリイミドフィルムを得ることができる。   For imidation, polyamic acid is applied onto an arbitrary substrate such as copper foil using an applicator, pre-dried at a temperature of 150 ° C. or lower for 2 to 20 minutes, and then usually 130 for solvent removal and imidization. The heat treatment is performed at a temperature of about ~ 360 ° C for about 2 to 30 minutes. The polyimide film can be obtained by removing the substrate used at the time of imidation by etching or peeling.

本発明のポリイミドフィルムを製造する方法は、特に限定されるものではないが、例えば、ポリイミドフィルムの原料であるポリイミド前駆体(ポリアミック酸)の樹脂溶液を任意の支持基体上に流延塗布してフィルム状に成型し、支持体上で加熱乾燥することにより自己支持性を有するゲルフィルムとした後、支持体より剥離して、更に高温で熱処理してイミド化させてポリイミドフィルムとする方法が一般的である。ポリアミック酸を銅箔などの任意の基材上にアプリケータを用いて流延塗布し、予備乾燥した後、更に、溶剤除去、イミド化のために熱処理し、イミド化時に使用した基材を剥離又はエッチング等により除去する方法も挙げられる。この際、乾燥条件は150℃以下で2〜30分、また、イミド化のための熱処理は130〜360℃程度の温度で2〜30分程度行うことが適当である。   The method for producing the polyimide film of the present invention is not particularly limited. For example, a polyimide precursor (polyamic acid) resin solution, which is a raw material of the polyimide film, is cast on an arbitrary support substrate. After forming into a film and heating and drying on a support to form a gel film having a self-supporting property, it is generally peeled off from the support and then heat-treated at a high temperature to be imidized to form a polyimide film. Is. Polyamic acid is cast-applied on an arbitrary substrate such as copper foil using an applicator, pre-dried, and then heat-treated for solvent removal and imidization, and the substrate used during imidation is peeled off. Or the method of removing by etching etc. is also mentioned. At this time, it is appropriate that the drying condition is 150 ° C. or lower for 2 to 30 minutes, and the heat treatment for imidization is performed at a temperature of about 130 to 360 ° C. for about 2 to 30 minutes.

ポリイミドフィルムの原料となるポリアミック酸は芳香族ジアミンと芳香族テトラカルボン酸二無水物とを実質的に等モル使用し、有機極性溶媒中で重合する公知の方法によって製造することができる。すなわち、窒素気流下N,N−ジメチルアセトアミドなどの有機極性溶媒に芳香族ジアミンを溶解させた後、芳香族テトラカルボン酸二無水物を加えて、室温で3〜5時間程度反応させることにより得られる。原料として使用する芳香族ジアミンと芳香族テトラカルボン酸は一般式(2)、(3)及び(4)の説明から理解されるが、具体的に例を挙げると、ジアミンとして2,2’-ジメチルベンジジン(m−TB)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE−R)、3,4’-ジアミノジフェニルエーテル(3,4’−DAPE)等があり、芳香族テトラカルボン酸二無水物としてはピロメリット酸二無水物(PMDA)がある。   The polyamic acid used as the raw material of the polyimide film can be produced by a known method of polymerizing in an organic polar solvent using substantially equimolar amounts of aromatic diamine and aromatic tetracarboxylic dianhydride. That is, it is obtained by dissolving an aromatic diamine in an organic polar solvent such as N, N-dimethylacetamide under a nitrogen stream, adding aromatic tetracarboxylic dianhydride, and reacting at room temperature for about 3 to 5 hours. It is done. The aromatic diamine and aromatic tetracarboxylic acid used as the raw material can be understood from the explanations of the general formulas (2), (3) and (4), but specific examples include 2,2′- Dimethylbenzidine (m-TB), 1,3-bis (4-aminophenoxy) benzene (TPE-R), 3,4'-diaminodiphenyl ether (3,4'-DAPE), etc., aromatic tetracarboxylic acid An example of a dianhydride is pyromellitic dianhydride (PMDA).

本発明のポリイミドフィルムは、フレキシブル配線基板用の積層体(CCL)の絶縁層として適する。CCLの金属層を回路パターンにエッチング加工する等によりフレキシブル配線基板(FPC)を製造することができる。CCLは絶縁層の片面又は両面に金属層を有し、絶縁層はポリイミド層又はポリイミド層を主とする層からなる。ポリイミド層は本発明のポリイミドフィルムをその厚みの50%以上、好ましくは70〜95%含むことがよい。   The polyimide film of the present invention is suitable as an insulating layer of a laminate (CCL) for a flexible wiring board. A flexible printed circuit board (FPC) can be manufactured by etching a metal layer of CCL into a circuit pattern. CCL has a metal layer on one or both sides of an insulating layer, and the insulating layer is composed of a polyimide layer or a layer mainly composed of a polyimide layer. The polyimide layer contains 50% or more, preferably 70 to 95% of the thickness of the polyimide film of the present invention.

以下、実施例に基づいて、本発明の内容を具体的に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。
実施例等に用いた略号を下記に示す。
・PMDA :ピロメリット酸二無水物
・TPE-R :1,3-ビス(4-アミノフェノキシ)ベンゼン
・APB :1,3-ビス(3-アミノフェノキシ)ベンゼン
・m-TB :2,2’-ジメチルベンジジン
・3,4’-DAPE :3,4’-ジアミノジフェニルエーテル
・MABA :4-アミノ-N-(4-アミノ-2-メトキシフェニル)-ベンズアミド
・DMAc :N,N-ジメチルアセトアミド
Hereinafter, the content of the present invention will be specifically described based on examples, but the present invention is not limited to the scope of these examples.
Abbreviations used in Examples and the like are shown below.
• PMDA: pyromellitic dianhydride • TPE-R: 1,3-bis (4-aminophenoxy) benzene • APB: 1,3-bis (3-aminophenoxy) benzene • m-TB: 2,2 ' -Dimethylbenzidine, 3,4'-DAPE: 3,4'-diaminodiphenyl ether, MABA: 4-amino-N- (4-amino-2-methoxyphenyl) -benzamide, DMAc: N, N-dimethylacetamide

また、実施例中の各種物性の測定方法と条件を以下に示す。なお、以下ポリイミドフィルムと表現したものは、銅箔を支持基体とした積層体の銅箔をエッチング除去して得られたポリイミドフィルムを指す。   In addition, measurement methods and conditions for various physical properties in the examples are shown below. In addition, what was expressed as a polyimide film below refers to the polyimide film obtained by carrying out the etching removal of the copper foil of the laminated body which used copper foil as a support base.

引き裂き伝播抵抗(TDR)の測定:
ポリイミドフィルムから63.5mm×50mmの試験片を準備し、試験片に長さ12.7mmの切り込みを入れ、東洋精機製の軽荷重引き裂き試験機を用い、ASTM D1922に準拠し測定した。
Measurement of Tear Propagation Resistance (TDR):
A 63.5 mm × 50 mm test piece was prepared from the polyimide film, a 12.7 mm long cut was made into the test piece, and measurement was performed in accordance with ASTM D1922 using a light load tear tester manufactured by Toyo Seiki.

熱膨張係数(CTE)の測定:
ポリイミドフィルム(3mm×15mm)を、熱機械分析(TMA)装置にて5.0gの荷重を加えながら一定の昇温速度で30℃から260℃の温度範囲で引張り試験を行った。温度に対するポリイミドフィルムの伸び量から熱膨張係数を測定した。
Measurement of coefficient of thermal expansion (CTE):
The polyimide film (3 mm × 15 mm) was subjected to a tensile test in a temperature range of 30 ° C. to 260 ° C. at a constant temperature increase rate while applying a 5.0 g load with a thermomechanical analysis (TMA) apparatus. The thermal expansion coefficient was measured from the amount of elongation of the polyimide film with respect to temperature.

ガラス転移温度(Tg)、貯蔵弾性率(E'):
ポリイミドフィルム(10mm×22.6mm)をDMAにて20℃から500℃まで5℃/分で昇温させたときの動的粘弾性を測定し、ガラス転移温度Tg(tanδ極大値)及び400℃の貯蔵弾性率(E')を求めた。
Glass transition temperature (Tg), storage modulus (E ′):
The dynamic viscoelasticity when a polyimide film (10 mm × 22.6 mm) was heated from 20 ° C. to 500 ° C. at a rate of 5 ° C./min was measured by DMA. The storage elastic modulus (E ′) of was determined.

合成例1〜6
ポリアミック酸(ポリイミド前駆体樹脂)A〜Fを合成するため、窒素気流下で、表1に示したジアミンを500mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc200〜300g程度に溶解させた。次いで、表1に示したテトラカルボン酸二無水物を加えた。その後、溶液を室温で4時間攪拌を続けて重合反応を行い、ポリイミド前駆体樹脂A〜Fの黄〜茶褐色の粘稠な溶液を得た。それぞれのポリアミック酸の樹脂溶液の25℃での粘度を測定し、表1にまとめた。
Synthesis Examples 1-6
In order to synthesize polyamic acids (polyimide precursor resins) A to F, the diamines shown in Table 1 were dissolved in about 200 to 300 g of solvent DMAc while stirring in a 500 ml separable flask under a nitrogen stream. Subsequently, the tetracarboxylic dianhydride shown in Table 1 was added. Thereafter, the solution was stirred at room temperature for 4 hours to carry out a polymerization reaction to obtain a yellow-brown viscous solution of polyimide precursor resins A to F. The viscosity of each polyamic acid resin solution at 25 ° C. was measured and summarized in Table 1.

粘度は、恒温水槽付のコーンプレート式粘度計(トキメック社製)にて、25℃で測定した。また、GPCにより測定した重量平均分子量(Mw)を表1に示した。表1中、ジアミン及びテトラカルボン酸二無水物の使用量の単位はgである。   The viscosity was measured at 25 ° C. with a cone plate viscometer (manufactured by Tokimec Co., Ltd.) equipped with a constant temperature water bath. Table 1 shows the weight average molecular weight (Mw) measured by GPC. In Table 1, the unit of the amount of diamine and tetracarboxylic dianhydride used is g.

Figure 0005249203
Figure 0005249203

実施例1〜4
A〜Dのポリアミック酸の溶液を、それぞれ厚さ12μmの電解銅箔(表面粗さRz:0.7μm)上にアプリケータを用いて塗布し、50〜130℃で2〜60分間乾燥した後、更に130℃、160℃、200℃、230℃、280℃、320℃、360℃で各2〜30分段階的な熱処理を行い、銅箔上にポリイミド層を形成して、積層体を得た。
Examples 1-4
After applying the solution of A to D polyamic acid on an electrolytic copper foil (surface roughness Rz: 0.7 μm) each having a thickness of 12 μm using an applicator and drying at 50 to 130 ° C. for 2 to 60 minutes Further, stepwise heat treatment is performed at 130 ° C., 160 ° C., 200 ° C., 230 ° C., 280 ° C., 320 ° C. and 360 ° C. for 2 to 30 minutes each to form a polyimide layer on the copper foil, thereby obtaining a laminate. It was.

塩化第二鉄水溶液を用いて積層体の銅箔をエッチング除去してポリイミドフィルムA〜Dを作成し、引き裂き伝播抵抗、熱膨張係数(CTE)、ガラス転移温度(Tg)、400℃での貯蔵弾性率(E’)を求めた。結果を表2に示す。
なお、ポリイミドフィルムA〜Dは、対応するポリアミック酸A〜Dから得られたことを意味する。
Etching away the copper foil of the laminate using ferric chloride aqueous solution to create polyimide films AD, tear propagation resistance, thermal expansion coefficient (CTE), glass transition temperature (Tg), storage at 400 ° C The elastic modulus (E ′) was determined. The results are shown in Table 2.
In addition, the polyimide films A to D mean that they were obtained from the corresponding polyamic acids A to D.

比較例1、2
ポリアミック酸としてE、Fを使用した以外は、実施例1と同様にして、ポリイミドフィルムE、Fを作成し、物性を測定した。ポリイミドフィルムE、Fの特性を表2に示す。
Comparative Examples 1 and 2
Polyimide films E and F were prepared in the same manner as in Example 1 except that E and F were used as the polyamic acid, and the physical properties were measured. Table 2 shows the characteristics of the polyimide films E and F.

Figure 0005249203
Figure 0005249203

実施例5〜8
ポリアミック酸Dの溶液を厚さ12μmの電解銅箔(表面粗さRz:0.7μm)上にアプリケータを用いて各実施例で厚みを変化させて塗布し、50〜130℃で2〜60分間乾燥した後、更に130℃、160℃、200℃、230℃、280℃、320℃、360℃で各2〜30分段階的な熱処理を行い、銅箔上に表3に記載した厚みのポリイミド樹脂層を形成した積層体を得た。
塩化第二鉄水溶液を用いて銅箔をエッチング除去してポリイミドフィルムG〜Jを作成し、引き裂き伝播抵抗、熱膨張係数(CTE)を求めた。結果を表3に示す。
Examples 5-8
The solution of polyamic acid D was applied onto an electrolytic copper foil having a thickness of 12 μm (surface roughness Rz: 0.7 μm) using an applicator while changing the thickness in each example, and the solution was applied at 50 to 130 ° C. for 2 to 60 After drying for a minute, further heat treatment is performed at 130 ° C., 160 ° C., 200 ° C., 230 ° C., 280 ° C., 320 ° C., 360 ° C. for 2-30 minutes each, and the thickness of the copper foil is as shown in Table 3 A laminate having a polyimide resin layer formed thereon was obtained.
The copper foil was etched away using a ferric chloride aqueous solution to prepare polyimide films G to J, and the tear propagation resistance and the coefficient of thermal expansion (CTE) were determined. The results are shown in Table 3.

Figure 0005249203
Figure 0005249203

産業上の利用の可能性Industrial applicability

本発明のポリイミドフィルムは寸法安定性、耐熱性に優れるだけでなく耐引き裂き性が良好であることから厚みを薄くすることができ、携帯電話の屈曲部位に使用されるFPCの絶縁層や、スプロケットホールを有するCOFの絶縁層に適している。   The polyimide film of the present invention not only has excellent dimensional stability and heat resistance, but also has good tear resistance, so that the thickness can be reduced, and an FPC insulating layer or sprocket used in a bent part of a mobile phone. Suitable for COF insulating layer having holes.

Claims (2)

下記一般式(2)で表される構造単位、下記一般式(3)及び(4)で表される構造単位を含有するポリイミドから得られ、厚さが5〜40μmで、熱膨張係数が30ppm/K以下であり、かつ引き裂き伝播抵抗の値(mN)をYとし、ポリイミドフィルムの厚み(μm)をXとしたとき、数式(I)
Z=Y/X1.5 (I)
で計算されるZの値が0.7以上であることを特徴とするポリイミドフィルム。
Figure 0005249203
一般式(2)において、Rは炭素数1〜6の低級アルキル基、低級アルコキシ基、フェニル基、フェノキシ基又はハロゲンである。一般式(3)において、Arは上記式(a)及び(b)から選択される2価の芳香族基の少なくとも1種を示し、Arは上記式(c)及び(d)から選択される2価の芳香族基の少なくとも1種を示す。一般式(4)において、Arは3,4’−ジアミノジフェニルエーテル及び4,4’−ジアミノジフェニルエーテルから選択される少なくとも1種のジアミンからアミノ基をとった2価の残基を示す。また、一般式(2)、(3)及び(4)において、l、m及びnは存在モル比を示し、lは0.6〜0.9、mは0.09〜0.3、nは0.01〜0.2の範囲の数である。
Figure 0005249203
It is obtained from a polyimide containing a structural unit represented by the following general formula (2) and a structural unit represented by the following general formulas (3) and (4), has a thickness of 5 to 40 μm, and a thermal expansion coefficient of 30 ppm. / K or less, when the tear propagation resistance value (mN) is Y and the thickness (μm) of the polyimide film is X, Formula (I)
Z = Y / X 1.5 (I)
A polyimide film characterized in that the value of Z calculated in (1) is 0.7 or more.
Figure 0005249203
In General formula (2), R is a C1-C6 lower alkyl group, a lower alkoxy group, a phenyl group, a phenoxy group, or a halogen. In the general formula (3), Ar 2 represents at least one divalent aromatic group selected from the above formulas (a) and (b), and Ar 4 is selected from the above formulas (c) and (d). And at least one kind of divalent aromatic group to be produced. In the general formula (4), Ar 3 represents a divalent residue obtained by removing an amino group from at least one diamine selected from 3,4′-diaminodiphenyl ether and 4,4′-diaminodiphenyl ether. In the general formulas (2), (3), and (4), l, m, and n represent the molar ratio, l is 0.6 to 0.9, m is 0.09 to 0.3, n Is a number in the range of 0.01 to 0.2.
Figure 0005249203
ガラス転移温度が310℃以上で、かつ400℃における弾性率が0.1GPa以上である請求項1記載のポリイミドフィルム。  The polyimide film according to claim 1, wherein the glass transition temperature is 310 ° C or higher and the elastic modulus at 400 ° C is 0.1 GPa or higher.
JP2009508988A 2007-03-30 2008-03-11 Polyimide film Active JP5249203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009508988A JP5249203B2 (en) 2007-03-30 2008-03-11 Polyimide film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007092730 2007-03-30
JP2007092730 2007-03-30
PCT/JP2008/054363 WO2008126559A1 (en) 2007-03-30 2008-03-11 Polyimide film
JP2009508988A JP5249203B2 (en) 2007-03-30 2008-03-11 Polyimide film

Publications (2)

Publication Number Publication Date
JPWO2008126559A1 JPWO2008126559A1 (en) 2010-07-22
JP5249203B2 true JP5249203B2 (en) 2013-07-31

Family

ID=39863706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009508988A Active JP5249203B2 (en) 2007-03-30 2008-03-11 Polyimide film

Country Status (3)

Country Link
JP (1) JP5249203B2 (en)
TW (1) TWI422645B (en)
WO (1) WO2008126559A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691996B2 (en) * 2011-10-21 2015-04-01 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5985940B2 (en) * 2012-09-18 2016-09-06 東レ・デュポン株式会社 COF substrate for tablet devices
JP6528578B2 (en) * 2015-07-23 2019-06-12 大日本印刷株式会社 Polyimide resin and laminate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028767A1 (en) * 1999-10-21 2001-04-26 Nippon Steel Chemical Co., Ltd. Laminate and process for producing the same
JP2004322441A (en) * 2003-04-24 2004-11-18 Nippon Steel Chem Co Ltd Method for producing polyimide film
WO2005066242A1 (en) * 2003-12-26 2005-07-21 Nippon Steel Chemical Co., Ltd. Aromatic polyamic acid and polyimide
WO2005084088A1 (en) * 2004-02-26 2005-09-09 Nippon Steel Chemical Co., Ltd. Laminate for wiring board
JP2005314630A (en) * 2004-03-30 2005-11-10 Nippon Steel Chem Co Ltd Aromatic polyamic acid and polyimide
JP2006117791A (en) * 2004-10-21 2006-05-11 Nippon Steel Chem Co Ltd Method for producing polyimide film
WO2006090658A1 (en) * 2005-02-23 2006-08-31 Nippon Steel Chemical Co., Ltd. Laminate for wiring board
JP2006269558A (en) * 2005-03-22 2006-10-05 Nippon Steel Chem Co Ltd Method of producing flexible laminate substrate
JP2006272626A (en) * 2005-03-28 2006-10-12 Nippon Steel Chem Co Ltd Method for manufacturing flexible laminated substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028767A1 (en) * 1999-10-21 2001-04-26 Nippon Steel Chemical Co., Ltd. Laminate and process for producing the same
JP2004322441A (en) * 2003-04-24 2004-11-18 Nippon Steel Chem Co Ltd Method for producing polyimide film
WO2005066242A1 (en) * 2003-12-26 2005-07-21 Nippon Steel Chemical Co., Ltd. Aromatic polyamic acid and polyimide
WO2005084088A1 (en) * 2004-02-26 2005-09-09 Nippon Steel Chemical Co., Ltd. Laminate for wiring board
JP2005314630A (en) * 2004-03-30 2005-11-10 Nippon Steel Chem Co Ltd Aromatic polyamic acid and polyimide
JP2006117791A (en) * 2004-10-21 2006-05-11 Nippon Steel Chem Co Ltd Method for producing polyimide film
WO2006090658A1 (en) * 2005-02-23 2006-08-31 Nippon Steel Chemical Co., Ltd. Laminate for wiring board
JP2006269558A (en) * 2005-03-22 2006-10-05 Nippon Steel Chem Co Ltd Method of producing flexible laminate substrate
JP2006272626A (en) * 2005-03-28 2006-10-12 Nippon Steel Chem Co Ltd Method for manufacturing flexible laminated substrate

Also Published As

Publication number Publication date
TWI422645B (en) 2014-01-11
TW200902627A (en) 2009-01-16
JPWO2008126559A1 (en) 2010-07-22
WO2008126559A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP6908590B2 (en) Polyamic acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board
JP5180814B2 (en) Laminated body for flexible wiring board
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
JP5297740B2 (en) Laminate for heat conductive flexible substrate
CN111385967B (en) Metal clad laminate for flexible circuit board and flexible circuit board
JP6403460B2 (en) Metal-clad laminate, circuit board and polyimide
JP7053208B2 (en) Polyimide film, metal-clad laminate and circuit board
JP2015127117A (en) Metal-clad laminate and circuit board
KR101333808B1 (en) Laminate for wiring board
KR20240049536A (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
JP7428646B2 (en) Metal-clad laminates and circuit boards
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
JP5249203B2 (en) Polyimide film
TW202319444A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
JP2015193117A (en) metal-clad laminate and circuit board
JP5129108B2 (en) Polyamic acid varnish composition, polyimide resin, and metal-polyimide composite
JP5567283B2 (en) Polyimide film
KR20210084275A (en) Metal-clad laminate and circuit board
JP2015127118A (en) Metal-clad laminate and circuit board
JP2020104390A (en) Metal-clad laminate, method for manufacturing the same, and circuit board
JP2020015237A (en) Method for manufacturing metal-clad laminate and method for manufacturing circuit board
TW202010634A (en) Laminated board with metal-coated layer, adhesive sheet, adhesive polyimide resin composition and circuit substrate having adhesive layer with excellent adhesion, dielectric constant, small dielectric dissipation factor and capable of reducing transmission loss even for high-frequency transmission
JP7195848B2 (en) Polyamic acid, polyimide, resin film, metal-clad laminate and manufacturing method thereof
JP2009091441A (en) Polyimide precursor and polyimide
JP5844853B2 (en) Polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5249203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250