Nothing Special   »   [go: up one dir, main page]

JP5242086B2 - Hydrogen production ethanol reforming catalyst and hydrogen production method - Google Patents

Hydrogen production ethanol reforming catalyst and hydrogen production method Download PDF

Info

Publication number
JP5242086B2
JP5242086B2 JP2007166656A JP2007166656A JP5242086B2 JP 5242086 B2 JP5242086 B2 JP 5242086B2 JP 2007166656 A JP2007166656 A JP 2007166656A JP 2007166656 A JP2007166656 A JP 2007166656A JP 5242086 B2 JP5242086 B2 JP 5242086B2
Authority
JP
Japan
Prior art keywords
ethanol
catalyst
hydrogen
hydrogen production
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007166656A
Other languages
Japanese (ja)
Other versions
JP2009000667A (en
Inventor
伸彦 森
俊之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007166656A priority Critical patent/JP5242086B2/en
Priority to PCT/JP2008/059145 priority patent/WO2009001632A1/en
Publication of JP2009000667A publication Critical patent/JP2009000667A/en
Application granted granted Critical
Publication of JP5242086B2 publication Critical patent/JP5242086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、エタノールの改質により水素を製造するための水素製造エタノール改質触媒、及びそれを用いた水素製造方法に関する。   The present invention relates to a hydrogen production ethanol reforming catalyst for producing hydrogen by reforming ethanol, and a hydrogen production method using the same.

水素(ガス)は、従来、石油化学の基本素材ガスとして大量に使用されてきており、近年、クリーンなエネルギー源として大きな期待が寄せられている。このような水素は、メタン、ブタン、灯油等の炭化水素やメタノール、エタノール、ジメチルエーテル等の含酸素炭化水素(酸素原子を含む炭化水素)を主原料ガスとし、水(水蒸気)、二酸化炭素、酸素等を副原料ガスとして用い、それら原料ガスから、改質反応、部分酸化反応、分解反応等の化学反応を利用して得ることが出来る。   Hydrogen (gas) has heretofore been used in large quantities as a basic raw material gas for petrochemicals, and in recent years, great expectations are placed on it as a clean energy source. Such hydrogen is mainly composed of hydrocarbons such as methane, butane and kerosene, and oxygen-containing hydrocarbons (hydrocarbons containing oxygen atoms) such as methanol, ethanol and dimethyl ether, and water (steam), carbon dioxide, oxygen Can be obtained from these source gases using chemical reactions such as reforming reaction, partial oxidation reaction, and decomposition reaction.

上記主原料ガスのうち、とりわけエタノールは、バイオマス由来のカーボンニュートラルな次世代の原料として期待されており、エタノールを原料とした水蒸気改質は以下の化学式で表される。
OH+3HO=2CO+6H
Among the main raw material gases, ethanol is expected as a carbon-neutral next-generation raw material derived from biomass, and steam reforming using ethanol as a raw material is represented by the following chemical formula.
C 2 H 5 OH + 3H 2 O = 2CO 2 + 6H 2

上記の反応は熱力学的には400℃程度で進行が可能である。しかしながら、従来一般に用いられるNi/AlやRh/Alのような改質触媒では、メタンが副生するために、実質、メタン水蒸気改質となり、十分は反応率を得るために700〜800℃の高温を必要とした。そのため、近年、低温でエタノールを改質するための触媒(メタンを副生しない触媒)の開発が行われている。 The above reaction can proceed thermodynamically at about 400 ° C. However, in reforming catalysts such as Ni / Al 2 O 3 and Rh / Al 2 O 3 that are generally used in the past, since methane is by-produced, methane steam reforming is substantially achieved, and a sufficient reaction rate is obtained. Required a high temperature of 700-800 ° C. Therefore, in recent years, a catalyst for reforming ethanol at a low temperature (a catalyst that does not produce methane as a by-product) has been developed.

特許文献1,2では、それぞれルテニウム系触媒(ZrO、CeO、ZrO−CeO担体)、コバルト系触媒(ZrO−CeO担体)によるエタノール水蒸気改質が提案されている。前者では250〜500℃で、後者では300〜500℃で水素が製造出来るとされている。 Patent Documents 1 and 2 propose ethanol steam reforming using a ruthenium-based catalyst (ZrO 2 , CeO 2 , ZrO 2 -CeO 2 support) and a cobalt-based catalyst (ZrO 2 -CeO 2 support), respectively. It is said that hydrogen can be produced at 250 to 500 ° C. in the former and 300 to 500 ° C. in the latter.

また、非特許文献1では、コバルト系触媒(ZnO、La担体)が400〜500℃にて高い収率にて水素を生成することが報告されている。 In Non-Patent Document 1, it is reported that a cobalt-based catalyst (ZnO, La 2 O 3 support) generates hydrogen at a high yield at 400 to 500 ° C.

特開2005−131468号公報JP 2005-131468 A 特開2005−131469号公報JP 2005-131469 A Applied Catalysis A: General 243(2003)261−269Applied Catalysis A: General 243 (2003) 261-269

しかしながら、これらの先行技術では、水素収率(エタノール水蒸気改質において、エタノール1molあたり水素は最大6mol生成するが、この最大値の6molに対して、実際に得られた水素の割合を本願では水素収率と定義する)が低かったり、コーキングを抑制するために有効と思われる反応条件(原料ガスが希薄であったり、HO/EtOHが高い)にて評価が行われて、実用的な条件では、短時間でコーキングが生じ、耐久性に欠けたりする問題点がある。 However, in these prior arts, the hydrogen yield (in the ethanol steam reforming, a maximum of 6 mol of hydrogen is generated per 1 mol of ethanol, the actual hydrogen ratio to the maximum value of 6 mol is expressed as hydrogen in this application. (E.g., defined as the yield) is low, and evaluation is performed under reaction conditions (raw gas is dilute or H 2 O / EtOH is high) that seems to be effective for suppressing coking. Under the conditions, there is a problem that coking occurs in a short time and lacks durability.

本発明の課題は、コーキングを抑制しつつ従来よりも低温でエタノールを改質し、効率よく水素を製造するための水素製造エタノール改質触媒、及びそれを用いた水素製造方法を提供することにある。   An object of the present invention is to provide a hydrogen production ethanol reforming catalyst for reforming ethanol at a lower temperature than before and efficiently producing hydrogen while suppressing coking, and a hydrogen production method using the same. is there.

本発明者らは、水素製造エタノール改質触媒が、改質反応のための水蒸気改質触媒と、シフト反応のためのシフト反応触媒とを混合して含むことにより、上記課題を解決しうることを見出した。すなわち、本発明によれば、以下の水素製造エタノール改質触媒、及びそれを用いた水素製造方法が提供される。   The inventors of the present invention can solve the above-mentioned problems by including a hydrogen production ethanol reforming catalyst in a mixture of a steam reforming catalyst for the reforming reaction and a shift reaction catalyst for the shift reaction. I found. That is, according to the present invention, the following hydrogen production ethanol reforming catalyst and a hydrogen production method using the same are provided.

[1] エタノールを含む炭化水素と水蒸気との反応により、水素、及び一酸化炭素または二酸化炭素を含む混合ガスを生成する改質反応のための水蒸気改質触媒と、一酸化炭素と水蒸気との反応により、水素及び二酸化炭素を生成するシフト反応のためのシフト反応触媒と、エタノールから脱水素する機能を有するエタノール脱水素触媒と、を混合して含み、前記水蒸気改質触媒は、活性金属として、Co、及びRuのいずれか、担体として、ZnO、及びLaのいずれかを含み、前記シフト反応触媒は、活性触媒/担体として、Fe/Cr 、及びPt/TiOのいずれかを含み、前記エタノール脱水素触媒は、活性金属として、Cu、担体として、塩基性担体の、ZnO、MgO、及びLaのいずれかを含む水素製造エタノール改質触媒。 [1] A steam reforming catalyst for a reforming reaction that generates a mixed gas containing hydrogen and carbon monoxide or carbon dioxide by a reaction between a hydrocarbon containing ethanol and steam; A shift reaction catalyst for a shift reaction that generates hydrogen and carbon dioxide by reaction and an ethanol dehydrogenation catalyst having a function of dehydrogenating from ethanol are mixed, and the steam reforming catalyst is used as an active metal. , Co, and any Ru, as a carrier, wherein ZnO, and one of La 2 O 3, wherein the shift reaction catalyst, as active catalyst / carrier, Fe 2 O 3 / Cr 2 O 3, beauty Pt / comprise any TiO 2, wherein the ethanol dehydrogenation catalysts, as an active metal, Cu, as a carrier, the basic carrier, ZnO, MgO, and any La 2 O 3 A hydrogen production ethanol reforming catalyst containing the above.

] 前記[1]に記載の水素製造エタノール改質触媒を用いて、エタノールと水蒸気とを含む原料ガスの反応により水素を製造する水素製造方法。 [ 2 ] A hydrogen production method for producing hydrogen by reaction of a raw material gas containing ethanol and water vapor using the hydrogen production ethanol reforming catalyst according to [1 ] .

] 300〜550℃にてエタノールと水蒸気とを反応させる前記[]に記載の水素製造方法。 [ 3 ] The method for producing hydrogen according to [ 2 ], wherein ethanol and water vapor are reacted at 300 to 550 ° C.

] 1〜5atmにてエタノールと水蒸気とを反応させる前記[]または[]に記載の水素製造方法。 [ 4 ] The method for producing hydrogen according to [ 2 ] or [ 3 ], wherein ethanol and water vapor are reacted at 1 to 5 atm.

] 前記原料ガスを反応させて生成する生成ガスにおけるCH/(CH+CO+CO)が0.4以下である前記[]〜[]のいずれかに記載の水素製造方法。 [ 5 ] The method for producing hydrogen according to any one of [ 2 ] to [ 4 ], wherein CH 4 / (CH 4 + CO + CO 2 ) in a product gas generated by reacting the raw material gas is 0.4 or less.

] 前記原料ガスのエタノール(COH)に対する水蒸気(HO)のモル比は、1.5〜5である前記[]〜[]のいずれかに記載の水素製造方法。 [6] The molar ratio of water vapor (H 2 O), to ethanol of the material gas (C 2 H 5 OH) is the production of hydrogen according to any one of the is 1.5 to 5 [2-5] Method.

] 前記原料ガス100cc/minに対して、前記水素製造エタノール改質触媒は、0.1〜10gである前記[]〜[]のいずれかに記載の水素製造方法。 [ 7 ] The hydrogen production method according to any one of [ 2 ] to [ 6 ], wherein the hydrogen production ethanol reforming catalyst is 0.1 to 10 g with respect to 100 cc / min of the source gas.

水素製造エタノール改質触媒は、水蒸気改質触媒を含むことにより、従来よりも低温にて、改質反応を行うことができる。また、シフト反応触媒を含むため、コーキングを抑制しつつ、効率よく水素を製造することができる。このため、製造コストを削減することができる。   By including a steam reforming catalyst, the hydrogen production ethanol reforming catalyst can perform a reforming reaction at a lower temperature than conventional. Moreover, since the shift reaction catalyst is included, hydrogen can be efficiently produced while suppressing coking. For this reason, manufacturing cost can be reduced.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明の水素製造エタノール改質触媒は、エタノールを含む炭化水素と水蒸気との反応により、水素、及び一酸化炭素または二酸化炭素を含む混合ガスを生成する改質反応のための水蒸気改質触媒と、一酸化炭素と水蒸気との反応により、水素及び二酸化炭素を生成するシフト反応のためのシフト反応触媒と、を混合して含む。本発明の水素製造エタノール改質触媒により、エタノールと水蒸気とを反応させて、従来よりも低温にて効率よく水素を製造することができる。   The hydrogen production ethanol reforming catalyst of the present invention includes a steam reforming catalyst for reforming reaction that generates hydrogen and a mixed gas containing carbon monoxide or carbon dioxide by a reaction between a hydrocarbon containing ethanol and steam. And a shift reaction catalyst for the shift reaction that generates hydrogen and carbon dioxide by the reaction of carbon monoxide and water vapor. With the hydrogen production ethanol reforming catalyst of the present invention, ethanol and water vapor can be reacted to produce hydrogen more efficiently at a lower temperature than conventional.

水蒸気改質触媒は、例えば、下記式のように、エタノールと水蒸気から水素を生成する機能、またはエタノールから生成されたアセトアルデヒドから水素を生成する機能を有する触媒である。
OH+HO→2CO+4H
CHCHO+HO→2CO+4H
The steam reforming catalyst is, for example, a catalyst having a function of generating hydrogen from ethanol and steam, or a function of generating hydrogen from acetaldehyde generated from ethanol, as in the following formula.
C 2 H 5 OH + H 2 O → 2CO + 4H 2
CH 3 CHO + H 2 O → 2CO + 4H 2

水蒸気改質触媒の活性金属として、Co、Ruが好ましい。また、担体として、ZnO、Laが好ましい。そして、水蒸気改質触媒は、活性金属と担体が、Co/ZnO、Co/Laであることが、特に好ましい。 As the active metal of the steam reforming catalyst, Co and Ru are preferable. Further, ZnO and La 2 O 3 are preferable as the carrier. The steam reforming catalyst, the active metal and carrier, Co / ZnO, be a Co / La 2 O 3, particularly preferred.

シフト反応触媒は、下記式のように、一酸化炭素から水素及び二酸化炭素を生成する機能を有する。
CO+HO→CO+H
The shift reaction catalyst has a function of generating hydrogen and carbon dioxide from carbon monoxide as shown in the following formula.
CO + H 2 O → CO 2 + H 2

シフト反応触媒は、特に限定されず、一般に用いられるものを用いることができるが、活性触媒/担体が、Fe/Cr、Cu/ZnO、Pt/TiOであるものを使用することが好ましい。 The shift reaction catalyst is not particularly limited, and those generally used can be used, but those in which the active catalyst / support is Fe 2 O 3 / Cr 2 O 3 , Cu / ZnO, Pt / TiO 2 are used. It is preferable to do.

コーキングの原因となるCO不均化反応(2CO=C+CO)を抑制する効果があると考えられるシフト反応(CO+HO=CO+H)を促進する触媒(シフト反応触媒)を、水蒸気改質触媒と混合して水素製造エタノール改質触媒とすることで、コーキングを抑制しつつ低温で効率良く水素を得ることができる。シフト反応が進行するために水素収率が向上するというメリットも有する。 A catalyst (shift reaction catalyst) that promotes a shift reaction (CO + H 2 O = CO 2 + H 2 ), which is considered to be effective in suppressing CO disproportionation reaction (2CO = C + CO 2 ) that causes coking, Hydrogen can be efficiently obtained at a low temperature while suppressing coking by mixing with a catalyst to form a hydrogen production ethanol reforming catalyst. Since the shift reaction proceeds, the hydrogen yield is also improved.

本発明の水素製造エタノール改質触媒は、水蒸気改質触媒及びシフト反応触媒を混合したものであり、これにより、コーキングを抑制しつつ、従来よりも低温にて水素を効率よく製造することができるが、水蒸気改質触媒とシフト反応触媒に加え、さらにエタノール脱水素触媒を混合して含むことがより好ましい。   The hydrogen production ethanol reforming catalyst of the present invention is a mixture of a steam reforming catalyst and a shift reaction catalyst, and thereby can efficiently produce hydrogen at a lower temperature than before while suppressing coking. However, in addition to the steam reforming catalyst and the shift reaction catalyst, it is more preferable that an ethanol dehydrogenation catalyst is further mixed and contained.

エタノール脱水素触媒は、例えば、下記式のように、エタノールから脱水素する機能を有する。
OH→CHCHO+H
The ethanol dehydrogenation catalyst has a function of dehydrogenating from ethanol, for example, as in the following formula.
C 2 H 5 OH → CH 3 CHO + H 2

エタノール脱水素触媒は、活性金属として、Cuを含むことが好ましい。エタノール脱水素触媒は、担体としてはAlやシリカアルミナ、ゼオライトに代表される強い固体酸としての性質を有する担体でなければよく、SiOなどの酸点を有さない担体を用いることができるが、MgO、Laなどの塩基性担体が好適に用いられ、特にZnOが好ましい。 The ethanol dehydrogenation catalyst preferably contains Cu as an active metal. The ethanol dehydrogenation catalyst may be a carrier that does not have a property as a strong solid acid typified by Al 2 O 3 , silica alumina, or zeolite, and a carrier having no acid sites such as SiO 2 should be used. However, basic carriers such as MgO and La 2 O 3 are preferably used, and ZnO is particularly preferable.

そして、水素製造エタノール改質触媒は、例えば、個別に作製された複数種類の触媒が物理的に混合された物理混合、個別に作製された複数種類の触媒がすり鉢等ですり潰されて合わせられた接触混合、複数種類の活性金属が同一担体へ担持された同一担体混合等のいずれかにより混合されていればよく、その形状は特に限定されないが、粉末、ペレット形状、或いは、ハニカム等のセラミック構造体に担持したもの等にすることができる。このようにエタノール改質反応に用いる水素製造エタノール改質触媒は、各反応の活性成分を混在して存在させるような形態であれば、特に限定されない。   The hydrogen production ethanol reforming catalyst is, for example, a physical mixture in which a plurality of types of individually produced catalysts are physically mixed, and a plurality of types of individually produced catalysts are ground and combined in a mortar or the like. The shape is not particularly limited as long as it is mixed by contact mixing, the same carrier mixture in which a plurality of types of active metals are supported on the same carrier, or the like, but the powder, pellet shape, or ceramic such as honeycomb It can be carried on a structure. Thus, the hydrogen production ethanol reforming catalyst used in the ethanol reforming reaction is not particularly limited as long as the active component of each reaction is present in a mixed manner.

次に本発明の水素製造エタノール改質触媒を用いて、エタノールと水蒸気との反応により水素を製造する水素製造方法について説明する。水素製造装置は、原料ガス源として、水、エタノールを使用出来るようにライン接続し、水、エタノールをそれぞれ気化器によって気化して混合して反応器に供給出来るように構成された一般的なものを使用することができる。   Next, a hydrogen production method for producing hydrogen by a reaction between ethanol and steam using the hydrogen production ethanol reforming catalyst of the present invention will be described. The hydrogen production equipment is a general equipment that is configured so that water and ethanol can be used as a raw material gas source, and water and ethanol can be vaporized and mixed by a vaporizer to be supplied to the reactor. Can be used.

反応器の触媒層には、水素、及び一酸化炭素または二酸化炭素を含む混合ガスを生成する改質反応のための水蒸気改質触媒と、水素及び二酸化炭素を生成するシフト反応のためのシフト反応触媒と、を少なくとも混合して含む本発明の水素製造エタノール改質触媒を備える。   The catalyst layer of the reactor has a steam reforming catalyst for a reforming reaction that generates a mixed gas containing hydrogen and carbon monoxide or carbon dioxide, and a shift reaction for a shift reaction that generates hydrogen and carbon dioxide. A hydrogen production ethanol reforming catalyst of the present invention comprising at least a catalyst and a mixture.

上記水素製造装置の反応器に、気化したHO(水蒸気)及びエタノールを導入し、水素製造エタノール改質触媒に接触させて、300〜550℃、より好ましくは、400〜500℃にてエタノールとHOとを反応させる。1〜5atm、より好ましくは1〜3atmにてエタノールと水蒸気とを反応させる。原料ガスのエタノール(COH)に対する水蒸気(HO)のモル比は、1.5〜5、より好ましくは、2〜3.5とする。また原料ガス100cc/minに対して、水素製造エタノール改質触媒は、0.1〜10g、より好ましくは、0.5〜5gであるようにして反応させる。 Gasified H 2 O (steam) and ethanol are introduced into the reactor of the hydrogen production apparatus, and brought into contact with the hydrogen production ethanol reforming catalyst, and ethanol at 300 to 550 ° C., more preferably at 400 to 500 ° C. And H 2 O are reacted. Ethanol and water vapor are reacted at 1 to 5 atm, more preferably 1 to 3 atm. The molar ratio of water vapor (H 2 O) to ethanol (C 2 H 5 OH) of the raw material gas is 1.5 to 5, more preferably 2 to 3.5. Further, the hydrogen production ethanol reforming catalyst is reacted in an amount of 0.1 to 10 g, more preferably 0.5 to 5 g with respect to 100 cc / min of the raw material gas.

分離膜や吸着剤を組み合わせ、選択透過膜型反応器等により、生成物の二酸化炭素や水素を選択的に分離しながら反応を行っても良い。水素を分離する際には、膜としてはパラジウム合金膜やシリカやゼオライトなどの多孔質セラミック膜、或いは炭素膜、吸着剤としては、ニッケル、マンガン、バナジウムなどを含む水素吸蔵合金を用いることができる。二酸化炭素除去手段としては、二酸化炭素吸着剤や、二酸化炭素分離膜などが好適に使用できる。吸着剤としては、例えば、酸化カルシウムやリチウムシリケートのような無機化合物や、アルカリ溶液、イオン性溶液、あるいはアルカリ溶液やイオン性溶液を担持したアルミナやシリカ等の無機質多孔体などを好適に用いることができる。二酸化炭素分離膜としては、例えば、高分子膜やゼオライト膜などを好適に用いることができる。   The reaction may be carried out by selectively separating the carbon dioxide and hydrogen of the product with a selectively permeable membrane reactor or the like by combining a separation membrane and an adsorbent. When separating hydrogen, a palladium alloy membrane or a porous ceramic membrane such as silica or zeolite can be used as the membrane, or a carbon membrane and a hydrogen storage alloy containing nickel, manganese, vanadium, etc. can be used as the adsorbent. . As the carbon dioxide removing means, a carbon dioxide adsorbent, a carbon dioxide separation membrane, or the like can be suitably used. As the adsorbent, for example, an inorganic compound such as calcium oxide or lithium silicate, an alkali solution, an ionic solution, or an inorganic porous material such as alumina or silica carrying an alkali solution or an ionic solution is preferably used. Can do. As the carbon dioxide separation membrane, for example, a polymer membrane or a zeolite membrane can be suitably used.

以上のような水素製造方法によれば、コーキングを抑制しつつ、従来よりも低温の300〜550℃にて、水素を効率よく製造することができる。このため、製造コストを従来よりも低減することができる。   According to the hydrogen production method as described above, hydrogen can be efficiently produced at 300 to 550 ° C., which is lower than conventional, while suppressing coking. For this reason, manufacturing cost can be reduced more than before.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(評価装置及び評価方法)
実施例及び比較例の触媒について、それぞれ評価を行った。水素製造装置は、加熱により気化したエタノールと水とが触媒を充填した反応器に供給出来るようになっている。反応器の下流には、生成ガス量を測定するための流量計と、ガス成分を定量するためのガスクロマトグラフが接続されている。なお、流量計の上流側には水等の液体成分を捕集するための、約5℃に設定された液体トラップが設けられている。
(Evaluation device and evaluation method)
The catalysts of Examples and Comparative Examples were evaluated. The hydrogen production apparatus can supply ethanol and water vaporized by heating to a reactor filled with a catalyst. A flow meter for measuring the amount of product gas and a gas chromatograph for quantifying gas components are connected downstream of the reactor. Note that a liquid trap set at about 5 ° C. is provided on the upstream side of the flow meter to collect liquid components such as water.

Rh/Al、Fe/Cr及びCu/ZnOについては市販のものを粉砕し、0.5〜1mmに整粒したものを用いた。Co/ZnO、Co/Laは含浸法により作製した。Coの担体に対する重量割合は16wt%である。なお使用にあたっては、Fe/Crと同様に0.5〜1mmに整粒して用いた。 Regarding Rh / Al 2 O 3 , Fe 2 O 3 / Cr 2 O 3 and Cu / ZnO, commercially available products were pulverized and sized to 0.5 to 1 mm. Co / ZnO and Co / La 2 O 3 were prepared by an impregnation method. The weight ratio of Co to the carrier is 16 wt%. In use, the particles were sized to 0.5 to 1 mm in the same manner as Fe 2 O 3 / Cr 2 O 3 .

原料ガス流量、反応温度、反応圧力を適宜、それぞれの調節器で所望の値に設定して反応を実施した。生成ガス流量及びその組成から水素収率を求めた。
水素収率[%]=100×出口水素流量/(入口エタノール流量×6)
The reaction was carried out by appropriately setting the raw material gas flow rate, the reaction temperature, and the reaction pressure to desired values with the respective regulators. The hydrogen yield was determined from the product gas flow rate and its composition.
Hydrogen yield [%] = 100 × outlet hydrogen flow rate / (inlet ethanol flow rate × 6)

参考例1、2)
水蒸気改質触媒としてCo/ZnO、シフト反応触媒としてFe/Crを混合した水素製造エタノール改質触媒を用いた。
( Reference Examples 1 and 2)
A hydrogen production ethanol reforming catalyst in which Co / ZnO was mixed as a steam reforming catalyst and Fe 2 O 3 / Cr 2 O 3 was mixed as a shift reaction catalyst was used.

参考例3)
水蒸気改質触媒としてCo/La、シフト反応触媒としてFe/Crを混合した水素製造エタノール改質触媒を用いた。
( Reference Example 3)
Steam reforming catalyst as Co / La 2 O 3, with a shift reaction catalyst as Fe 2 O 3 / Cr 2 O 3 were mixed hydrogen ethanol reforming catalysts.

(実施例
エタノール脱水素触媒としてCu/ZnO、水蒸気改質触媒としてCo/ZnO、シフト反応触媒としてFe/Crを混合した水素製造エタノール触媒を用いた。
(Example 1 )
A hydrogen production ethanol catalyst in which Cu / ZnO was mixed as the ethanol dehydrogenation catalyst, Co / ZnO as the steam reforming catalyst, and Fe 2 O 3 / Cr 2 O 3 mixed as the shift reaction catalyst was used.

(比較例1)
水蒸気改質触媒のRh/Alからなり、シフト反応触媒を含まない触媒を用いた。
(Comparative Example 1)
A catalyst comprising a steam reforming catalyst Rh / Al 2 O 3 and containing no shift reaction catalyst was used.

(比較例2)
水蒸気改質触媒のCo/ZnOからなり、シフト反応触媒を含まない触媒を用いた。以上の実施例1、参考例1〜3、比較例1〜2の結果を表1に示す。なお、水素収率等は、定常になってからの平均(反応開始後約15分から1〜2時間程度)であるが、比較例2は、失活したので、初期(反応開始後約15分)における値である。また、表1の反応温度、反応圧力にて、エタノールと水蒸気とを反応させた。
(Comparative Example 2)
A catalyst made of Co / ZnO as a steam reforming catalyst and containing no shift reaction catalyst was used. The results of the above Example 1 , Reference Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1. The hydrogen yield and the like are averages after steady state (about 15 minutes to about 1 to 2 hours after the start of the reaction), but since Comparative Example 2 was deactivated, it was initially (about 15 minutes after the start of the reaction). ). Moreover, ethanol and water vapor were reacted at the reaction temperature and reaction pressure shown in Table 1.

Figure 0005242086
Figure 0005242086

実施例1、参考例1〜3は、水蒸気改質触媒及びシフト反応触媒を混合した触媒を使用しており、従来よりも低温の450℃にて長時間水素を製造することができた。具体的には、参考例1は、比較例2の触媒とシフト反応触媒を混合したものであり、低温活性が向上し、失活しなかった。また、参考例2は、比較例2の触媒とシフト反応触媒を混合、参考例3は、Co/Laとシフト反応触媒を混合、実施例は、Cu/ZnOとCo/ZnO、シフト反応触媒を混合したものであるが、参考例1と同様に低温活性が向上し、失活しなかった。そして、実施例1、参考例1〜3は、原料ガスを反応させて生成する生成ガスにおけるCH/(CH+CO+CO)が、0.4以下であり、高温で改質する必要のあるCHの生成を減少させることができたため、高い水素収率が得られた。 In Example 1 and Reference Examples 1 to 3 , a catalyst in which a steam reforming catalyst and a shift reaction catalyst were mixed was used, and hydrogen could be produced at a lower temperature of 450 ° C. for a longer time. Specifically, Reference Example 1 was a mixture of the catalyst of Comparative Example 2 and a shift reaction catalyst, and the low-temperature activity was improved and was not deactivated. Reference Example 2 is a mixture of the catalyst of Comparative Example 2 and a shift reaction catalyst, Reference Example 3 is a mixture of Co / La 2 O 3 and a shift reaction catalyst, Example 1 is Cu / ZnO and Co / ZnO, Although a shift reaction catalyst was mixed, the low-temperature activity was improved as in Reference Example 1 and was not deactivated. In Example 1 and Reference Examples 1 to 3 , CH 4 / (CH 4 + CO + CO 2 ) in the product gas generated by reacting the raw material gas is 0.4 or less and needs to be reformed at a high temperature. High yields of hydrogen were obtained because the production of CH 4 could be reduced.

一方、比較例1は、一般的な改質触媒であり、CO/COは高いものの、CH/(CH+CO+CO)の割合が高いために低温での活性が低く、水素収率が低かった。比較例2は、低温での活性が高く、また水素収率も高いが、シフト反応触媒を含まないため、2時間で失活してしまった。 On the other hand, Comparative Example 1 is a general reforming catalyst. Although CO 2 / CO is high, the ratio of CH 4 / (CH 4 + CO + CO 2 ) is high, so the activity at low temperature is low, and the hydrogen yield is low. It was low. Comparative Example 2 had high activity at low temperature and high hydrogen yield, but was deactivated in 2 hours because it contained no shift reaction catalyst.

図1及び図2に、水素収率の経時変化を示す。図1は、参考例1(Co/ZnOとFe/Crの混合)、図2は、比較例1(Co/ZnOのみ)である。参考例1では、図1に示すように、6時間経過した後でも、良好な水素収率を維持することができた。一方、シフト反応触媒を含まない比較例1では、図2に示すように、2時間経過すると、水素収率が極度に低下した。本願では、長時間にわたって水素収率が高い触媒が望ましく、この観点から実施例1、参考例1〜3の触媒は、比較例1〜2の触媒に比べて優れている。 1 and 2 show the change over time in the hydrogen yield. FIG. 1 shows Reference Example 1 (mixture of Co / ZnO and Fe 2 O 3 / Cr 2 O 3 ), and FIG. 2 shows Comparative Example 1 (Co / ZnO only). In Reference Example 1, as shown in FIG. 1, a good hydrogen yield could be maintained even after 6 hours. On the other hand, in Comparative Example 1 not including the shift reaction catalyst, as shown in FIG. 2, the hydrogen yield extremely decreased after 2 hours. In the present application, a catalyst having a high hydrogen yield over a long time is desirable. From this viewpoint, the catalysts of Example 1 and Reference Examples 1 to 3 are superior to the catalysts of Comparative Examples 1 and 2.

本発明の触媒は、エタノールを改質して水素を製造するための水素製造エタノール改質触媒として利用することができる。また、本発明の製造方法は、従来よりも低温で効率のよい水素製造方法として利用することができる。   The catalyst of the present invention can be used as a hydrogen production ethanol reforming catalyst for reforming ethanol to produce hydrogen. In addition, the production method of the present invention can be used as a hydrogen production method that is more efficient at a lower temperature than in the past.

参考例1の水素収率の経時変化を示すグラフである。 4 is a graph showing the change over time in the hydrogen yield of Reference Example 1. 比較例1の水素収率の経時変化を示すグラフである。6 is a graph showing the change over time in the hydrogen yield of Comparative Example 1.

Claims (7)

エタノールを含む炭化水素と水蒸気との反応により、水素、及び一酸化炭素または二酸化炭素を含む混合ガスを生成する改質反応のための水蒸気改質触媒と、
一酸化炭素と水蒸気との反応により、水素及び二酸化炭素を生成するシフト反応のためのシフト反応触媒と、
エタノールから脱水素する機能を有するエタノール脱水素触媒と、を混合して含み、
前記水蒸気改質触媒は、活性金属として、Co、及びRuのいずれか、担体として、ZnO、及びLaのいずれかを含み、
前記シフト反応触媒は、活性触媒/担体として、Fe/Cr 、及びPt/TiOのいずれかを含み、
前記エタノール脱水素触媒は、活性金属として、Cu、担体として、塩基性担体の、ZnO、MgO、及びLaのいずれかを含む水素製造エタノール改質触媒。
A steam reforming catalyst for a reforming reaction that generates a mixed gas containing hydrogen and carbon monoxide or carbon dioxide by a reaction between a hydrocarbon containing ethanol and steam;
A shift reaction catalyst for the shift reaction that generates hydrogen and carbon dioxide by the reaction of carbon monoxide and water vapor;
An ethanol dehydrogenation catalyst having a function of dehydrogenating from ethanol,
The steam reforming catalyst includes any one of Co and Ru as an active metal, and any one of ZnO and La 2 O 3 as a support,
The shift reaction catalyst comprises as active catalyst / carrier, Fe 2 O 3 / Cr 2 O 3, one of beauty Pt / TiO 2,
The ethanol dehydrogenation catalyst is a hydrogen production ethanol reforming catalyst containing Cu as an active metal and any one of ZnO, MgO, and La 2 O 3 as a basic support as a support.
請求項1に記載の水素製造エタノール改質触媒を用いて、エタノールと水蒸気とを含む原料ガスの反応により水素を製造する水素製造方法。   A hydrogen production method for producing hydrogen by a reaction of a raw material gas containing ethanol and water vapor using the hydrogen production ethanol reforming catalyst according to claim 1. 300〜550℃にてエタノールと水蒸気とを反応させる請求項2に記載の水素製造方法。   The method for producing hydrogen according to claim 2, wherein ethanol and water vapor are reacted at 300 to 550 ° C. 1〜5atmにてエタノールと水蒸気とを反応させる請求項2または3に記載の水素製造方法。   The hydrogen production method according to claim 2 or 3, wherein ethanol and water vapor are reacted at 1 to 5 atm. 前記原料ガスを反応させて生成する生成ガスにおけるCH/(CH+CO+CO)が0.4以下である請求項2〜4のいずれか1項に記載の水素製造方法。 5. The hydrogen production method according to claim 2, wherein CH 4 / (CH 4 + CO + CO 2 ) in a product gas generated by reacting the raw material gas is 0.4 or less. 前記原料ガスのエタノール(COH)に対する水蒸気(HO)のモル比は、1.5〜5である請求項2〜5のいずれか1項に記載の水素製造方法。 Molar ratio to a method of producing hydrogen according to any one of claims 2 to 5 is a 1.5-5 water vapor (H 2 O) to ethanol (C 2 H 5 OH) of the raw material gas. 前記原料ガス100cc/minに対して、前記水素製造エタノール改質触媒は、0.1〜10gである請求項2〜6のいずれか1項に記載の水素製造方法。   The hydrogen production method according to claim 2, wherein the hydrogen production ethanol reforming catalyst is 0.1 to 10 g with respect to the source gas of 100 cc / min.
JP2007166656A 2007-06-25 2007-06-25 Hydrogen production ethanol reforming catalyst and hydrogen production method Active JP5242086B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007166656A JP5242086B2 (en) 2007-06-25 2007-06-25 Hydrogen production ethanol reforming catalyst and hydrogen production method
PCT/JP2008/059145 WO2009001632A1 (en) 2007-06-25 2008-05-19 Ethanol reforming catalyst for use in the production of hydrogen, and method for production of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166656A JP5242086B2 (en) 2007-06-25 2007-06-25 Hydrogen production ethanol reforming catalyst and hydrogen production method

Publications (2)

Publication Number Publication Date
JP2009000667A JP2009000667A (en) 2009-01-08
JP5242086B2 true JP5242086B2 (en) 2013-07-24

Family

ID=40185455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166656A Active JP5242086B2 (en) 2007-06-25 2007-06-25 Hydrogen production ethanol reforming catalyst and hydrogen production method

Country Status (2)

Country Link
JP (1) JP5242086B2 (en)
WO (1) WO2009001632A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795339B1 (en) * 1999-06-24 2001-09-21 Peugeot Citroen Automobiles Sa CATALYST AND METHOD FOR REFORMING ETHANOL AND FUEL CELL SYSTEM USING THE SAME
JP2004237239A (en) * 2003-02-07 2004-08-26 Nissan Motor Co Ltd Catalyst for reforming alcohol
JP2005041749A (en) * 2003-07-25 2005-02-17 Shikoku Electric Power Co Inc Enhancing method of co shift reaction, and manufacturing method of hydrogen gas or gas reduced in co content using it
JP3873964B2 (en) * 2003-10-28 2007-01-31 財団法人地球環境産業技術研究機構 Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
JP3885139B2 (en) * 2003-10-28 2007-02-21 財団法人地球環境産業技術研究機構 Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
JP2005185890A (en) * 2003-12-24 2005-07-14 Nissan Motor Co Ltd Catalyst and process for producing hydrogen
JP4569408B2 (en) * 2005-07-25 2010-10-27 堺化学工業株式会社 Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same
JP2007083197A (en) * 2005-09-26 2007-04-05 Mitsubishi Gas Chem Co Inc Method for producing copper-zinc-aluminum based catalyst
JP4969090B2 (en) * 2005-11-29 2012-07-04 Jx日鉱日石エネルギー株式会社 Desulfurization method for hydrocarbon fuel

Also Published As

Publication number Publication date
JP2009000667A (en) 2009-01-08
WO2009001632A1 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP5592250B2 (en) Catalytic hydrogenation of carbon dioxide to synthesis gas.
Bepari et al. Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts-A review
Contreras et al. Catalysts for H2 production using the ethanol steam reforming (a review)
JP4420127B2 (en) Carbon dioxide reforming catalyst and method for producing the same
JP5411133B2 (en) Catalytic hydrogenation of carbon dioxide to synthesis gas.
JP5141765B2 (en) Carbon dioxide reforming method
JP5823873B2 (en) Process for increasing the carbon monoxide content in a synthesis gas mixture
Seshan et al. Carbon dioxide reforming of methane in the presence of nickel and platinum catalysts supported on ZrO2
Kawi et al. CO2 as an oxidant for high-temperature reactions
US20050238574A1 (en) High performance water gas shift catalyst and a method of preparing the same
Song et al. Controlling selectivity and stability in the hydrocarbon wet-reforming reaction using well-defined Ni+ Ga intermetallic compound catalysts
JP2008239360A (en) Permselective membrane type reactor
US20240269658A1 (en) Method for producing two-dimensional nickel silicate molecular sieve catalyst for dry reforming of methane and two-dimensional nickel silicate molecular sieve catalyst for dry reforming of methane produced by same method
JP4995461B2 (en) Carbon dioxide reforming method of hydrocarbons by selectively permeable membrane reactor
WO2005037962A1 (en) Method for producing liquefied petroleum gas containing propane or butane as main component
JP5242086B2 (en) Hydrogen production ethanol reforming catalyst and hydrogen production method
JP4465478B2 (en) Catalyst for hydrogen production
JP2010524824A (en) Hydrogen production method
TWI501920B (en) Production method and apparatus for hydrogen
JP2010069434A (en) Autothermal reforming catalyst
KR20150129566A (en) Ni-based catalysts for combined steam and carbon dioxide reforming with natural gas
JP2014200705A (en) Catalyst and method for producing syngas
KR20190135801A (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same
JP2009119307A (en) Catalyst regeneration method
JP2009102209A (en) Method for producing hydrogen and ethanol reforming catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5242086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150