Nothing Special   »   [go: up one dir, main page]

JP5128387B2 - Embedded magnet type motor - Google Patents

Embedded magnet type motor Download PDF

Info

Publication number
JP5128387B2
JP5128387B2 JP2008170266A JP2008170266A JP5128387B2 JP 5128387 B2 JP5128387 B2 JP 5128387B2 JP 2008170266 A JP2008170266 A JP 2008170266A JP 2008170266 A JP2008170266 A JP 2008170266A JP 5128387 B2 JP5128387 B2 JP 5128387B2
Authority
JP
Japan
Prior art keywords
magnet
radial
hole
accommodation
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008170266A
Other languages
Japanese (ja)
Other versions
JP2009153365A (en
Inventor
博高 伊藤
孝博 中山
義之 ▲高▼部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2008170266A priority Critical patent/JP5128387B2/en
Priority to US12/277,572 priority patent/US7800272B2/en
Priority to DE200810044127 priority patent/DE102008044127A1/en
Priority to CN200810178386XA priority patent/CN101447705B/en
Priority to CN201210187181.4A priority patent/CN102738931B/en
Priority to CN201210187108.7A priority patent/CN102738930B/en
Priority to CN201210187106.8A priority patent/CN102738929B/en
Publication of JP2009153365A publication Critical patent/JP2009153365A/en
Priority to US12/861,311 priority patent/US7868503B1/en
Priority to US12/962,292 priority patent/US8080915B2/en
Priority to US13/296,720 priority patent/US8232703B2/en
Application granted granted Critical
Publication of JP5128387B2 publication Critical patent/JP5128387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、埋込磁石型モータに関するものである。   The present invention relates to an interior magnet type motor.

従来、埋込磁石型モータは、ロータコアに軸方向に貫通する収容孔が周方向に複数形成されその各収容孔にそれぞれ磁石が配設されたロータを備える。
そして、このような埋込磁石型モータとしては、例えば、特許文献1に開示されたものがある。この埋込磁石型モータにおけるロータコアの収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、磁極数がP極に対して、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなる。又、磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設される。そして、この埋込磁石型モータでは、径方向収容孔内に配設される磁石と、その周方向の一方に隣り合う磁石収容部内に配設される磁石とで1つの磁極が構成されるとともに、径方向収容孔内に配設される磁石と、その周方向の他方に隣り合う磁石収容部内に配設される磁石とで異なる1つの磁極が構成されるようになっている。
特開2007−195391号公報
2. Description of the Related Art Conventionally, an embedded magnet type motor includes a rotor in which a plurality of housing holes penetrating in the axial direction are formed in the rotor core in the circumferential direction, and a magnet is disposed in each housing hole.
An example of such an embedded magnet type motor is disclosed in Patent Document 1. The housing hole of the rotor core in this embedded magnet type motor has a radial housing hole extending substantially in the radial direction and a substantially V-shaped housing hole protruding outward in the radial direction. Thus, P / 2 pieces are formed, and they are alternately formed in the circumferential direction. The magnets are arranged in the radial accommodation holes and in the magnet accommodation portions corresponding to the straight lines forming the V-shape of the V-shaped accommodation holes. In this embedded magnet type motor, one magnet is constituted by a magnet disposed in the radial accommodation hole and a magnet disposed in the magnet accommodation portion adjacent to one of the circumferential directions. A different magnetic pole is constituted by the magnet disposed in the radial accommodation hole and the magnet disposed in the magnet accommodation portion adjacent to the other in the circumferential direction.
JP 2007-195391 A

しかしながら、上記のような埋込磁石型モータのロータコアでは、径方向内側において磁石収容部と径方向収容孔との間に形成され、磁石収容部内に配置される磁石の径方向内側への移動を規制する軸方向に一様の内側ブリッジ部が磁気抵抗の小さい磁路となってしまうため、該部分での漏れ磁束が多いという問題がある。尚、このことは、埋込磁石型モータにおける有効磁束を減少させ高トルク化を阻害してしまう原因となる。   However, in the rotor core of the embedded magnet type motor as described above, the magnet formed on the radially inner side between the magnet housing portion and the radial housing hole and moves inward in the radial direction of the magnet disposed in the magnet housing portion. Since the inner bridge portion that is uniform in the axial direction to be regulated becomes a magnetic path with a small magnetic resistance, there is a problem that there is a large amount of leakage magnetic flux in the portion. This causes the effective magnetic flux in the embedded magnet type motor to be reduced and hinders the increase in torque.

本発明は、上記問題点を解決するためになされたものであって、その目的は、漏れ磁束を低減することができる埋込磁石型モータを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide an embedded magnet type motor that can reduce leakage magnetic flux.

請求項1に記載の発明では、コアシートが軸方向に積層されてなり軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備えた埋込磁石型モータであって、前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成されるものであって、前記コアシートにおける前記径方向収容孔と対応したP/2個の積層前径方向収容孔は、径方向内側で周方向に隣り合う前記磁石収容部と対応した積層前磁石収容部と連通した連通孔と、前記積層前磁石収容部と連通せず該積層前磁石収容部との間に内側ブリッジ部が形成されることになる独立孔とを有するものであり、前記ロータコアは、各前記径方向収容孔の軸方向の一部に前記独立孔が配置され、前記磁石収容部内に配置される各前記磁石が前記内側ブリッジ部にて径方向内側への移動が規制されるように前記コアシートが積層されてなる。   In the first aspect of the invention, the core sheet is laminated in the axial direction and has a rotor core in which a plurality of receiving holes penetrating in the axial direction are formed in the circumferential direction, and the accommodation is performed so that the number of magnetic poles becomes P poles. An embedded magnet type motor having a rotor in which a magnet is disposed in a hole, wherein the accommodation hole has a radial accommodation hole extending in a substantially radial direction, and a substantially V-shape projecting radially outward. Each of the V-shaped receiving holes is formed in P / 2 pieces and alternately formed in the circumferential direction, and the magnet is disposed in the radial receiving hole and the V-shaped receiving hole is formed. In each of the magnet housing portions corresponding to each straight line forming the V-shape of the hole, the magnet disposed in the radial housing hole, and in the magnet housing portion adjacent to one of the circumferential directions thereof One magnetic pole is constituted by the magnet disposed, and the diameter A different magnetic pole is constituted by the magnet disposed in the direction accommodating hole and the magnet disposed in the magnet accommodating portion adjacent to the other in the circumferential direction, and the core sheet P / 2 pre-lamination radial accommodation holes corresponding to the radial accommodation holes in the communication hole communicated with the pre-lamination magnet accommodation portions corresponding to the magnet accommodation portions adjacent to each other in the circumferential direction on the radially inner side, The rotor core has an independent hole in which an inner bridge portion is formed between the pre-lamination magnet housing portion and the pre-lamination magnet housing portion. The core sheet is laminated so that the independent holes are arranged in a part of the axial direction, and the magnets arranged in the magnet housing part are restricted from moving radially inward by the inner bridge part. Become.

同構成によれば、径方向収容孔の軸方向の一部に独立孔が配置され、磁石収容部内に配置される各磁石は内側ブリッジ部にて径方向内側への移動が規制される。そして、径方向収容孔の連通孔が配置される部分では(内側ブリッジ部が形成されず)磁石収容部内に配置される磁石の径方向内側への移動が規制されないものの径方向内側において径方向収容孔内の磁石と磁石収容部内の磁石との間に空隙が形成されるため、該部分での磁気抵抗が大きくなり、漏れ磁束を低減することができる。尚、コアシートに例えば打ち抜き加工等で連通孔と独立孔とを形成することは(例えば、磁石の径方向内側への移動を規制するための小さい突出部を形成する場合に比べて)容易であるため、その製造が容易となり、また、例えばその分磁石を長くすることができる。又、内側ブリッジ部は、径方向内側及び外側に配置される大きな部分(コアシートの一部)に径方向に沿って繋がっているため、(例えば、磁石の径方向内側への移動を規制するための小さい突出部を形成した場合に比べて)磁石の移動を規制する方向に薄くても強度を強くすることができる。   According to this configuration, the independent hole is arranged in a part of the radial accommodation hole in the axial direction, and each magnet arranged in the magnet accommodation portion is restricted from moving inward in the radial direction by the inner bridge portion. In the portion where the communication hole of the radial accommodation hole is arranged (the inner bridge portion is not formed), the movement of the magnet arranged in the magnet accommodation portion is not restricted in the radial inner direction, but the radial accommodation is performed on the radial inner side. Since a gap is formed between the magnet in the hole and the magnet in the magnet housing portion, the magnetic resistance at the portion increases, and the leakage magnetic flux can be reduced. In addition, it is easy to form the communication hole and the independent hole in the core sheet by, for example, punching processing (for example, as compared with the case of forming a small protrusion for restricting the movement of the magnet inward in the radial direction). Therefore, the manufacture becomes easy, and for example, the magnet can be lengthened correspondingly. Moreover, since the inner bridge part is connected along a radial direction to a large portion (a part of the core sheet) disposed on the inner side and the outer side in the radial direction (for example, restricting movement of the magnet inward in the radial direction). Therefore, the strength can be increased even if it is thin in the direction in which the movement of the magnet is restricted (compared to the case where a small protrusion is formed).

請求項2に記載の発明では、請求項1に記載の埋込磁石型モータにおいて、前記独立孔は、前記コアシートに1個のみ形成された。
同構成によれば、磁気抵抗を小さくしてしまう(内側ブリッジ部が形成されることになる)独立孔をコアシートに1個としたため、全体的に磁気抵抗が最も大きくなり、漏れ磁束を最も低減することができる。
According to a second aspect of the present invention, in the embedded magnet type motor according to the first aspect, only one independent hole is formed in the core sheet.
According to this configuration, since the core sheet has one independent hole that reduces the magnetic resistance (the inner bridge portion will be formed), the overall magnetic resistance is the largest, and the leakage flux is the highest. Can be reduced.

請求項3に記載の発明では、コアシートが軸方向に積層されてなり軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備えた埋込磁石型モータであって、前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成されるものであって、少なくとも1枚の前記コアシートにおける前記径方向収容孔と対応したP/2個の積層前径方向収容孔は、径方向内側で周方向に隣り合う2つの前記磁石収容部と対応した2つの積層前磁石収容部の内の1つと連通するとともに1つと連通せず該積層前磁石収容部との間に1つの内側ブリッジ部が形成されることになる片側連通孔を有するものであり、前記ロータコアは、各前記径方向収容孔の軸方向の少なくとも一部に前記片側連通孔が配置されるように前記コアシートが積層されてなる。   According to a third aspect of the present invention, there is provided a rotor core in which core sheets are laminated in the axial direction and a plurality of receiving holes penetrating in the axial direction are formed in the circumferential direction, and the accommodation is performed so that the number of magnetic poles becomes P poles. An embedded magnet type motor having a rotor in which a magnet is disposed in a hole, wherein the accommodation hole has a radial accommodation hole extending in a substantially radial direction, and a substantially V-shape projecting radially outward. Each of the V-shaped receiving holes is formed in P / 2 pieces and alternately formed in the circumferential direction, and the magnet is disposed in the radial receiving hole and the V-shaped receiving hole is formed. In each of the magnet housing portions corresponding to each straight line forming the V-shape of the hole, the magnet disposed in the radial housing hole, and in the magnet housing portion adjacent to one of the circumferential directions thereof One magnetic pole is constituted by the magnet disposed, and the diameter The magnet disposed in the direction accommodating hole and the magnet disposed in the magnet accommodating portion adjacent to the other in the circumferential direction constitute one magnetic pole, and at least one magnetic pole is formed. P / 2 pre-lamination radial accommodation holes corresponding to the radial accommodation holes in the core sheet of the core sheet are two pre-lamination magnet accommodations corresponding to the two magnet accommodation portions adjacent in the circumferential direction on the radial inner side. One side communication hole that communicates with one of the parts and does not communicate with one but forms one inner bridge part between the magnet housing parts before lamination, and the rotor core includes The core sheet is laminated so that the one-side communication hole is disposed in at least a part of the radial accommodation hole in the axial direction.

同構成によれば、径方向収容孔の軸方向の少なくとも一部に片側連通孔が配置される。よって、径方向収容孔の片側連通孔が配置される部分(軸方向の少なくとも一部)では周方向に隣り合う2つの磁石収容部の内の1つに配置される磁石の径方向内側への移動が規制されないものの径方向内側において径方向収容孔内の磁石と磁石収容部内の磁石との間に空隙が形成されるため、該部分での磁気抵抗が大きくなり、漏れ磁束を低減することができる。尚、コアシートに例えば打ち抜き加工等で片側連通孔を形成することは(例えば、磁石の径方向内側への移動を規制するための小さい突出部を形成する場合に比べて)容易であるため、その製造が容易となり、また、例えばその分磁石を長くすることができる。又、内側ブリッジ部は、径方向内側及び外側に配置される大きな部分(コアシートの一部)に径方向に沿って繋がっているため、(例えば、磁石の径方向内側への移動を規制するための小さい突出部を形成した場合に比べて)磁石の移動を規制する方向に薄くても強度を強くすることができる。   According to the same configuration, the one-side communication hole is disposed in at least a part of the radial direction accommodation hole in the axial direction. Therefore, in the portion (at least part of the axial direction) where the one-side communication hole of the radial accommodation hole is arranged, the inner side of the magnet arranged in one of the two magnet accommodation portions adjacent in the circumferential direction Although the movement is not restricted, a gap is formed between the magnet in the radial accommodation hole and the magnet in the magnet accommodation portion on the radially inner side, so that the magnetic resistance in the portion is increased, and the leakage magnetic flux can be reduced. it can. In addition, since it is easy to form a one-side communication hole in the core sheet, for example, by punching or the like (for example, compared to the case of forming a small protrusion for restricting the movement of the magnet inward in the radial direction), The manufacture becomes easy, and for example, the magnet can be lengthened accordingly. Moreover, since the inner bridge part is connected along a radial direction to a large portion (a part of the core sheet) arranged on the inner side and the outer side in the radial direction (for example, restricting the movement of the magnet inward in the radial direction). Therefore, the strength can be increased even if it is thin in the direction in which the movement of the magnet is restricted (compared to the case where a small protrusion is formed).

請求項4に記載の発明では、請求項3に記載の埋込磁石型モータにおいて、前記積層前径方向収容孔の全てが前記片側連通孔であって、前記片側連通孔は、周方向の一方の前記積層前磁石収容部と連通する一方片側連通孔と、周方向の他方の前記積層前磁石収容部と連通する他方片側連通孔とからなり、前記ロータコアは、各前記径方向収容孔に前記一方片側連通孔と前記他方片側連通孔とが配置されるように前記コアシートが積層されてなる。   According to a fourth aspect of the present invention, in the interior magnet type motor according to the third aspect, all of the pre-lamination radial direction accommodation holes are the one-side communication holes, and the one-side communication hole is a circumferential one side. The one-side communication hole communicating with the pre-stacking magnet housing portion and the other one-side communication hole communicating with the other pre-stacking magnet housing portion in the circumferential direction, and the rotor core is formed in each radial housing hole. The core sheet is laminated such that one side communication hole and the other side communication hole are arranged.

同構成によれば、各径方向収容孔に一方片側連通孔と他方片側連通孔とが配置されるため、径方向収容孔の径方向内側で周方向に隣り合う2つの磁石収容部内に配置される各磁石はそれぞれ内側ブリッジ部にて径方向内側への移動が規制される。そして、積層前径方向収容孔の全てが片側連通孔であるため、例えば、積層前径方向収容孔のいくつかを磁気抵抗を小さくしてしまう(周方向の両方に内側ブリッジ部が形成されることになる)独立孔とした場合に比べて、磁気抵抗が大きくなり、漏れ磁束を低減することができる。   According to this configuration, the one-side communication hole and the other-side communication hole are arranged in each radial accommodation hole, so that the radial accommodation holes are arranged in two magnet accommodation portions adjacent in the circumferential direction on the radial inner side. Each magnet is restricted from moving radially inward at the inner bridge portion. Since all of the pre-lamination radial direction accommodation holes are one-side communication holes, for example, some of the pre-lamination radial direction accommodation holes reduce the magnetic resistance (inner bridge portions are formed in both circumferential directions). As compared with the case of using independent holes, the magnetic resistance is increased, and the leakage magnetic flux can be reduced.

請求項5に記載の発明では、コアシートが軸方向に積層されてなり軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備えた埋込磁石型モータであって、前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成されるものであって、少なくとも1枚の前記コアシートにおける前記径方向収容孔と対応したP/2個の積層前径方向収容孔は、径方向内側で周方向に隣り合う前記磁石収容部と対応した積層前磁石収容部と連通するとともに、径方向内側端部に、前記径方向収容孔内に配置される磁石の径方向内側への移動を規制すべく、且つ前記径方向収容孔内に配置される磁石と当接しない位置で前記磁石収容部内に配置される前記磁石の径方向内側への移動を規制すべく径方向外側に突出した規制突出部が形成された突出連通孔を有するものであり、前記ロータコアは、各前記径方向収容孔の軸方向の少なくとも一部に前記突出連通孔が配置されるように前記コアシートが積層されてなる。   The invention according to claim 5 has a rotor core in which core sheets are laminated in the axial direction and a plurality of receiving holes penetrating in the axial direction are formed in the circumferential direction, and the accommodation is performed so that the number of magnetic poles becomes P poles. An embedded magnet type motor having a rotor in which a magnet is disposed in a hole, wherein the accommodation hole has a radial accommodation hole extending in a substantially radial direction, and a substantially V-shape projecting radially outward. Each of the V-shaped receiving holes is formed in P / 2 pieces and alternately formed in the circumferential direction, and the magnet is disposed in the radial receiving hole and the V-shaped receiving hole is formed. In each of the magnet housing portions corresponding to each straight line forming the V-shape of the hole, the magnet disposed in the radial housing hole, and in the magnet housing portion adjacent to one of the circumferential directions thereof One magnetic pole is constituted by the magnet disposed, and the diameter The magnet disposed in the direction accommodating hole and the magnet disposed in the magnet accommodating portion adjacent to the other in the circumferential direction constitute one magnetic pole, and at least one magnetic pole is formed. P / 2 pre-stacking radial accommodation holes corresponding to the radial accommodation holes in the core sheet of the core sheet communicate with the pre-lamination magnet housing parts corresponding to the magnet housing parts adjacent in the circumferential direction on the radial inner side. In addition, at a position not to contact the magnet disposed in the radial accommodation hole at the radially inner end, in order to restrict the movement of the magnet disposed in the radial accommodation hole inward in the radial direction. The rotor core has a projecting communication hole formed with a restricting protrusion protruding outward in the radial direction so as to restrict the movement of the magnet disposed in the magnet inward in the radial direction. At least in the axial direction of the direction receiving hole Wherein said core sheet to protrude through hole is arranged are stacked in part.

同構成によれば、径方向収容孔の軸方向の少なくとも一部に規制突出部が形成された突出連通孔が配置される。よって、径方向収容孔の突出連通孔が配置される部分(軸方向の少なくとも一部)では、各磁石の移動が規制されながらも内側ブリッジ部が形成されないため、該部分での磁気抵抗が大きくなり、漏れ磁束を低減することができる。尚、コアシートに例えば打ち抜き加工等で突出連通孔を形成することは(例えば、磁石の径方向内側への移動を規制するための小さい突出部を形成する場合に比べて)容易であるため、その製造が容易となる。   According to this configuration, the protruding communication hole in which the restricting protruding portion is formed is disposed at least in a part of the radial direction receiving hole in the axial direction. Therefore, since the inner bridge portion is not formed in the portion (at least a portion in the axial direction) where the protruding communication hole of the radial accommodation hole is disposed, the movement of each magnet is restricted, but the magnetic resistance in the portion is large. Thus, the leakage magnetic flux can be reduced. In addition, since it is easy to form a projecting communication hole in the core sheet, for example, by punching or the like (for example, compared to a case where a small projecting portion for restricting movement of the magnet inward in the radial direction) is formed, Its manufacture is facilitated.

請求項6に記載の発明では、請求項5に記載の埋込磁石型モータにおいて、前記突出連通孔は、前記コアシートに1個のみ形成され、他の前記積層前径方向収容孔は、径方向内側で周方向に隣り合う前記積層前磁石収容部と連通するとともに前記規制突出部の部分が空隙とされた連通孔である。   According to a sixth aspect of the present invention, in the embedded magnet type motor according to the fifth aspect, only one of the protruding communication holes is formed in the core sheet, and the other pre-stacking radial accommodation holes have a diameter of It is a communication hole that communicates with the pre-lamination magnet housing portion that is adjacent in the circumferential direction on the inner side in the direction and in which the portion of the restriction projecting portion is a gap.

同構成によれば、1個の突出連通孔以外の積層前径方向収容孔は、規制突出部の部分が空隙とされた連通孔とされ、径方向収容孔の連通孔が配置される部分では各磁石の径方向内側への移動が規制されないものの空隙にて該部分での磁気抵抗が大きくなるため、(突出連通孔を2個以上とした場合や連通孔を独立孔とした場合等に比べて)漏れ磁束を更に低減することができる。   According to the same configuration, the pre-stacking radial accommodation hole other than one projecting communication hole is a communication hole in which a portion of the restriction projecting portion is a gap, and a portion in which the communication hole of the radial housing hole is disposed. Although the movement of each magnet inward in the radial direction is not restricted, the magnetic resistance at that portion increases in the gap. (Compared with the case where two or more protruding communication holes are used or the communication holes are independent holes, etc. E) Leakage magnetic flux can be further reduced.

本発明によれば、漏れ磁束を低減することができる埋込磁石型モータを提供することができる。   According to the present invention, it is possible to provide an embedded magnet type motor that can reduce leakage magnetic flux.

以下、本発明を具体化した一実施の形態を図1〜3に従って説明する。図1に示すように、埋込磁石型モータは、ステータ1とロータ2とを備える。
ステータ1は、全体的に略円筒状に形成され、外形を形成する円筒部3の内周面から周方向等角度間隔で軸中心に向かって延びるように形成された複数のティース4を有したステータコア5と、各ティース4にインシュレータ(図示略)を介して集中巻にて巻回された巻線6(図1中、一部のみ2点鎖線で図示)とを備える。尚、本実施の形態では、ティース4は、12個形成されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the embedded magnet type motor includes a stator 1 and a rotor 2.
The stator 1 is formed in a substantially cylindrical shape as a whole, and has a plurality of teeth 4 formed so as to extend from the inner peripheral surface of the cylindrical portion 3 forming the outer shape toward the axial center at equal circumferential intervals. The stator core 5 is provided with a winding 6 (only part of which is shown by a two-dot chain line in FIG. 1) wound around each tooth 4 by concentrated winding via an insulator (not shown). In the present embodiment, twelve teeth 4 are formed.

ロータ2は、回転軸7と、回転軸7に対して固定されるロータコア8と、ロータコア8に形成された収容孔(径方向収容孔8a及びV字収容孔8b)内に配設される磁石9,10とを備える。尚、ロータ2における磁極数はP極であって本実施の形態では8極に設定されている。   The rotor 2 includes a rotating shaft 7, a rotor core 8 fixed to the rotating shaft 7, and magnets disposed in accommodation holes (radial accommodation holes 8 a and V-shaped accommodation holes 8 b) formed in the rotor core 8. 9 and 10. Note that the number of magnetic poles in the rotor 2 is P poles and is set to 8 poles in the present embodiment.

ロータコア8は、コアシート11(図2参照)が軸方向に積層される(図3参照)ことで略円筒状に形成され、その中心孔に回転軸7が嵌着され、ステータ1の内側に回転可能に支持される。又、ロータコア8において磁石9,10を内部に収容すべく軸方向に貫通する収容孔は、径方向に延びる径方向収容孔8aと、径方向外側に凸となる略V字形状のV字収容孔8bとが、それぞれP/2個であって本実施の形態では(8/2=)4個ずつ形成されてなるとともにそれらが周方向に交互であって等角度間隔に形成されてなる。   The rotor core 8 is formed in a substantially cylindrical shape by laminating core sheets 11 (see FIG. 2) in the axial direction (see FIG. 3), and the rotation shaft 7 is fitted in the center hole thereof, and the rotor core 8 is placed inside the stator 1. It is rotatably supported. In addition, the housing hole that penetrates in the axial direction to accommodate the magnets 9 and 10 in the rotor core 8 includes a radial housing hole 8a that extends in the radial direction and a substantially V-shaped V-shaped housing that protrudes radially outward. The number of the holes 8b is P / 2, and in the present embodiment, four (8/2 =) are formed, and they are alternately formed in the circumferential direction at equal angular intervals.

径方向収容孔8aの径方向外側端部には、軸方向から見た(径方向の直交方向の)幅が他の部分(径方向収容孔8a内に配設される前記磁石9の幅)より大きく設定された大幅部8cが軸方向全体に(貫通するように)形成されている。又、径方向収容孔8aの径方向外側において大幅部8cの径方向内側には、磁石9の径方向外側への移動を規制すべく軸方向から見た(径方向の直交方向の)幅が他の部分より小さくなるように径方向の直交方向に突出した外側突出部8d(図3参照)が軸方向に一様に形成されている。この外側突出部8dは、周方向両側から一対、同じ量(互いに当接しない量)だけ突出して形成されている。   At the radially outer end of the radial accommodation hole 8a, the width seen in the axial direction (in the direction perpendicular to the radial direction) is another part (the width of the magnet 9 disposed in the radial accommodation hole 8a). The larger portion 8c set larger is formed in the entire axial direction (so as to penetrate). Further, on the radially inner side of the large portion 8c on the radially outer side of the radial housing hole 8a, a width viewed in the axial direction (in a direction orthogonal to the radial direction) is set to restrict the movement of the magnet 9 to the radially outer side. An outer protrusion 8d (see FIG. 3) that protrudes in the radial direction so as to be smaller than the other portions is uniformly formed in the axial direction. The outer protrusions 8d are formed as a pair protruding from both sides in the circumferential direction by the same amount (an amount that does not contact each other).

V字収容孔8bは、そのV字を形成する2つの直線に対応した一対の磁石収容部8eを備える。本実施の形態の一対の磁石収容部8eは、径方向外側ほど周方向の間隔が近くなるが径方向外側端部でも互いに連通しないようにそれぞれ独立した(軸方向に貫通する)孔として形成されている。又、V字収容孔8bの径方向外側端部、即ち各磁石収容部8eの径方向外側端部には、前記磁石10が配置されないV字側空隙8fが形成されている。本実施の形態のV字側空隙8fは、軸方向から見た幅が他の部分(磁石10を収容する部分)と略同じとなるように形成されている。又、磁石収容部8eの径方向外側においてV字側空隙8fの径方向内側には、磁石10の径方向外側(V字側空隙8f)への移動を規制すべく軸方向から見た幅が他の部分より小さくなるように突出した突出部8gが形成されている。この突出部8gは、一対の磁石収容部8eの対向する側からそれぞれ離間する側へ同じ量だけ突出して形成されている。   The V-shaped accommodation hole 8b includes a pair of magnet housing portions 8e corresponding to two straight lines forming the V-shape. The pair of magnet housing portions 8e of the present embodiment are formed as independent holes (through in the axial direction) so that the distance in the circumferential direction is closer toward the outer side in the radial direction but the outer end portions in the radial direction are not communicated with each other. ing. A V-shaped air gap 8f in which the magnet 10 is not disposed is formed at the radially outer end of the V-shaped receiving hole 8b, that is, at the radially outer end of each magnet receiving portion 8e. The V-shaped side gap 8f of the present embodiment is formed so that the width viewed from the axial direction is substantially the same as other portions (portions that accommodate the magnet 10). In addition, the width seen from the axial direction to restrict the movement of the magnet 10 to the radially outer side (V-shaped side gap 8f) is located on the radially inner side of the V-shaped side gap 8f on the radially outer side of the magnet housing portion 8e. A protruding portion 8g protruding so as to be smaller than the other portions is formed. The protruding portions 8g are formed so as to protrude by the same amount from the opposing sides of the pair of magnet housing portions 8e to the separated sides.

又、本実施の形態における磁石収容部8eの径方向内側端部は、軸方向から見て、径方向収容孔8aの側部、詳しくは径方向収容孔8aの径方向内側において径方向の直交方向を向いた辺(内壁面)と対向するように形成されている。そして、磁石収容部8eの径方向内側と径方向収容孔8aとの間に形成される内側ブリッジ部8hは、軸方向の一部に(コアシート11の3枚置きに)形成されている(図3参照)。又、本実施の形態における内側ブリッジ部8hの軸方向から見た幅は径方向に沿って一定となるように形成されている。尚、これは、磁石収容部8eの径方向内側端部に軸方向から見て略三角形状の(磁石10が配置されない)延設部8iが延設されることで実現されている。又、上記形状のロータコア8には、径方向収容孔8aの径方向外側(大幅部8c)とロータコア8の外周面との間に外側ブリッジ部8jが形成され、磁石収容部8eの径方向外側(V字側空隙8f)とロータコア8の外周面との間に外側ブリッジ部8kが形成されることになる。又、上記形状のロータコア8には、一対の磁石収容部8e間における径方向外側に径方向に延びる(前記外側ブリッジ部8kと繋がる)収容部間ブリッジ部8lが形成されることになる。   In addition, the radially inner end of the magnet housing portion 8e in the present embodiment is orthogonal to the radial direction on the side portion of the radial housing hole 8a, more specifically on the radially inner side of the radial housing hole 8a, as viewed from the axial direction. It is formed to face the side (inner wall surface) that faces the direction. And the inner side bridge | bridging part 8h formed between the radial direction inner side of the magnet accommodating part 8e and the radial direction accommodation hole 8a is formed in a part of axial direction (every 3 sheets of the core sheet | seat 11). (See FIG. 3). Further, the width of the inner bridge portion 8h in the present embodiment as viewed from the axial direction is formed to be constant along the radial direction. In addition, this is implement | achieved by extending substantially triangular-shaped extension part 8i (the magnet 10 is not arrange | positioned) seeing from an axial direction at the radial direction inner side edge part of the magnet accommodating part 8e. The rotor core 8 having the above-described shape has an outer bridge portion 8j formed between the radially outer side (large portion 8c) of the radial accommodating hole 8a and the outer peripheral surface of the rotor core 8, and the radially outer side of the magnet accommodating portion 8e. The outer bridge portion 8k is formed between the (V-shaped air gap 8f) and the outer peripheral surface of the rotor core 8. In addition, the rotor core 8 having the above-described shape is formed with an inter-accommodating portion bridge portion 8l extending radially outward (connected to the outer bridge portion 8k) between the pair of magnet accommodating portions 8e.

ここで、図2に示すように、上記したロータコア8を構成するコアシート11における前記径方向収容孔8aと対応したP/2個の積層前径方向収容孔は、径方向内側で周方向に隣り合う前記磁石収容部8eと対応した積層前磁石収容部11aと連通した連通孔11bと、積層前磁石収容部11aと連通せず該積層前磁石収容部11aとの間に前記内側ブリッジ部8hが形成されることになる独立孔11cとからなる。本実施の形態では、独立孔11cは、コアシート11に1個のみ形成されている。即ち、本実施の形態では、連通孔11bは、コアシート11に3個形成されている。   Here, as shown in FIG. 2, the P / 2 pre-stacking radial accommodation holes corresponding to the radial accommodation holes 8a in the core sheet 11 constituting the rotor core 8 described above are arranged radially in the circumferential direction. The inner bridge portion 8h between the communication hole 11b communicating with the pre-lamination magnet housing portion 11a corresponding to the adjacent magnet housing portion 8e and the pre-lamination magnet housing portion 11a without communicating with the pre-lamination magnet housing portion 11a. Are formed with independent holes 11c. In the present embodiment, only one independent hole 11 c is formed in the core sheet 11. In other words, in the present embodiment, three communication holes 11 b are formed in the core sheet 11.

そして、本実施の形態のロータコア8は、前記コアシート11が軸中心に1枚ずつ360°/(P/2)であって、本実施の形態では90°ずつ回転されながら多数枚積層されてなる。   In the rotor core 8 of the present embodiment, the core sheet 11 is 360 ° / (P / 2) one by one around the shaft center, and in this embodiment, a large number of the core sheets 11 are laminated while being rotated by 90 °. Become.

そして、前記径方向収容孔8a内と前記磁石収容部8e内には、それぞれ略直方体形状の磁石9,10が配設される。
上記のように構成されるロータ2では、径方向収容孔8a内に配設される磁石9と、その周方向の一方(図1中、時計回り方向)に隣り合う磁石収容部8e内に配設される磁石10とで1つの磁極(例えばS極)が構成されるとともに、径方向収容孔8a内に配設される磁石9と、その周方向の他方(図1中、反時計回り方向)に隣り合う磁石収容部8e内に配設される磁石10とで異なる1つの磁極(例えばN極)が構成されている。
Then, substantially rectangular parallelepiped magnets 9 and 10 are disposed in the radial accommodation hole 8a and the magnet accommodation portion 8e, respectively.
In the rotor 2 configured as described above, the magnet 9 is disposed in the radial accommodation hole 8a and the magnet accommodation portion 8e adjacent to one of the circumferential directions (clockwise direction in FIG. 1). The magnet 10 provided constitutes one magnetic pole (for example, S pole), and the magnet 9 disposed in the radial accommodation hole 8a and the other circumferential direction (in FIG. 1, counterclockwise direction). ) Adjacent to the magnet 10 disposed in the magnet housing portion 8e, one magnetic pole (for example, N pole) is configured.

次に、上記実施の形態の特徴的な作用効果を以下に記載する。
(1)径方向収容孔8aの軸方向の一部に独立孔11cが配置され、磁石収容部8e内に配置される各磁石10は内側ブリッジ部8hにて径方向内側への移動が規制される。そして、径方向収容孔8aの連通孔11bが配置される部分では(内側ブリッジ部8hが形成されず)磁石収容部8e内に配置される磁石10の径方向内側への移動が規制されないものの径方向内側において径方向収容孔8a内の磁石9と磁石収容部8e内の磁石10との間に空隙が形成されるため、該部分での磁気抵抗が大きくなり、漏れ磁束を低減することができる。尚、コアシート11に例えば打ち抜き加工等で連通孔11bと独立孔11cとを形成することは(例えば、磁石10の径方向内側への移動を規制するための小さい突出部を形成する場合に比べて)容易であるため、その製造が容易となる。又、内側ブリッジ部8hは、径方向内側及び外側に配置される大きな部分(コアシート11の一部)に径方向に沿って繋がっているため、(例えば、磁石10の径方向内側への移動を規制するための小さい突出部を形成した場合に比べて)磁石10の移動を規制する方向に薄くても強度が強く、ひいては薄くできる分、磁石10を長くすることができる。
Next, characteristic effects of the above embodiment will be described below.
(1) An independent hole 11c is arranged in a part of the radial accommodation hole 8a in the axial direction, and movement of the magnets 10 arranged in the magnet accommodation portion 8e inward in the radial direction is restricted by the inner bridge portion 8h. The In the portion where the communication hole 11b of the radial accommodation hole 8a is arranged (the inner bridge portion 8h is not formed), the diameter of the magnet 10 arranged in the magnet accommodation portion 8e is not restricted from moving inward in the radial direction. Since a gap is formed between the magnet 9 in the radial accommodation hole 8a and the magnet 10 in the magnet accommodation portion 8e on the inner side in the direction, the magnetic resistance in the portion increases, and the leakage magnetic flux can be reduced. . It is to be noted that the communication hole 11b and the independent hole 11c are formed in the core sheet 11 by punching or the like (for example, as compared with the case where a small protrusion for restricting the movement of the magnet 10 in the radial direction is formed). The manufacturing is easy. Further, since the inner bridge portion 8h is connected along a radial direction to a large portion (a part of the core sheet 11) arranged on the inner side and the outer side in the radial direction (for example, movement of the magnet 10 to the inner side in the radial direction). The strength of the magnet 10 is strong even if it is thin in the direction in which the movement of the magnet 10 is restricted (as compared to the case where a small protrusion is formed to restrict the movement of the magnet 10).

(2)磁気抵抗を小さくしてしまう(内側ブリッジ部8hが形成されることになる)独立孔11cをコアシート11に1個としたため、(2個以上とした場合に比べて)全体的に磁気抵抗が最も大きくなり、漏れ磁束を最も低減することができる。   (2) The magnetic resistance is reduced (the inner bridge portion 8h is formed). Since the number of the independent holes 11c is one in the core sheet 11, the whole is (compared to the case where the number is two or more). The magnetic resistance becomes the largest and the leakage flux can be reduced most.

(3)ロータコア8は、コアシート11が軸中心に1枚ずつ360°/(P/2)であって、本実施の形態では90°ずつ回転されながら多数積層されてなる。このようにすると、コアシート11を360°/(P/2)ずつ回転させながら積層するという動作が一定なので容易に製造することができ、例えば、自動化が容易となる。又、コアシート11を多数枚積層すると、独立孔11c及び内側ブリッジ部8hが軸方向に定期的(本実施の形態ではコアシート11の3枚置き)に存在し、磁石10の径方向内側への移動が軸方向に定期的に規制されるため、磁石10をバランス良く支持することができる。   (3) The rotor core 8 is formed by laminating a large number of core sheets 11 while being rotated 360 ° / (P / 2) one by one around the axis center in the present embodiment. If it does in this way, since the operation | movement of laminating | stacking while rotating the core sheet 11 360 degree / (P / 2) is constant, it can manufacture easily, for example, automation becomes easy. Further, when a large number of core sheets 11 are laminated, the independent holes 11c and the inner bridge portions 8h are regularly present in the axial direction (in the present embodiment, every three core sheets 11) and radially inward of the magnet 10. Is regularly regulated in the axial direction, the magnet 10 can be supported in a well-balanced manner.

(4)内側ブリッジ部8hは、軸方向から見た幅が径方向に沿って一定とされ、該幅を均等に細くすることができるため、漏れ磁束を更に低減することができる。
(5)V字収容孔8bのV字を形成する各直線に対応した一対の磁石収容部8eがそれぞれ独立して形成されることで、一対の磁石収容部8e間における径方向外側に径方向に延びる収容部間ブリッジ部8lが形成されることになる。これにより、磁石収容部8eとロータコア8の外周面との間に形成される外側ブリッジ部8kが収容部間ブリッジ部8lと繋がるため、(磁石収容部8e同士を連通する頂部を有するもの(即ち収容部間ブリッジ部8lが形成されないもの)に比べて)ロータコア8の強度が高まり、その変形が防止される。又、特に、コアシート11単体においては、積層前磁石収容部11a同士が連通していると(連通する頂部を有すると)、その径方向内側と径方向外側の部分が、独立孔11cが形成される部分の内側ブリッジ部8hのみで接続されるため、その剛性が低く取り扱いが困難となる虞があるが、これに比べてコアシート11の強度が高まり、その変形が防止され、取り扱いが容易となる。
(4) Since the inner bridge portion 8h has a constant width along the radial direction as viewed from the axial direction, and can be made evenly narrow, the leakage magnetic flux can be further reduced.
(5) A pair of magnet housing portions 8e corresponding to each straight line forming the V-shape of the V-shaped housing hole 8b are independently formed, so that the radial direction is radially outward between the pair of magnet housing portions 8e. An inter-accommodating portion bridge portion 81 extending in the direction is formed. As a result, the outer bridge portion 8k formed between the magnet accommodating portion 8e and the outer peripheral surface of the rotor core 8 is connected to the inter-accommodating portion bridging portion 8l, and thus (having a top portion for communicating the magnet accommodating portions 8e ( The strength of the rotor core 8 is increased and its deformation is prevented compared to the case where the inter-housing bridge portion 8l is not formed). In particular, in the core sheet 11 alone, when the pre-lamination magnet accommodating portions 11a communicate with each other (having a communicating top portion), the radially inner portion and the radially outer portion are formed with independent holes 11c. Since it is connected only by the inner bridge portion 8h of the portion to be formed, its rigidity is low and it may be difficult to handle, but compared with this, the strength of the core sheet 11 is increased, its deformation is prevented, and handling is easy It becomes.

上記実施の形態は、以下のように変更して実施してもよい。
・上記実施の形態では、(内側ブリッジ部8hが形成されることになる)独立孔11cは、コアシート11に1個のみ形成されるとしたが、これに限定されず、コアシート11に独立孔11cを2個以上形成してもよい。尚、この場合、コアシート11に形成される連通孔11bは、(P/2)個から独立孔11cの数を引き算した数となる。又、この場合、独立孔11c(即ち内側ブリッジ部8h)をロータコアにおいて軸方向に定期的に存在するように配置することが望ましい。
The above embodiment may be modified as follows.
In the above embodiment, only one independent hole 11c (where the inner bridge portion 8h is to be formed) is formed in the core sheet 11. However, the present invention is not limited to this. Two or more holes 11c may be formed. In this case, the number of communication holes 11b formed in the core sheet 11 is the number obtained by subtracting the number of independent holes 11c from (P / 2). In this case, it is desirable to arrange the independent holes 11c (that is, the inner bridge portion 8h) so as to be periodically present in the axial direction in the rotor core.

例えば、独立孔11cと連通孔11bをそれぞれ周方向に2個連続して形成した場合、独立孔11c(内側ブリッジ部8h)がロータコアにおいて軸方向に定期的に存在するように、コアシートを180°ずつ回転させながら多数枚積層してもよいし、コアシートを1枚ずつ表裏に反転させながら多数枚積層してもよい。又、勿論、上記実施の形態を含めて、独立孔11c(内側ブリッジ部8h)をロータコアにおいて軸方向に不定期的に存在するように配置してもよい。   For example, when two independent holes 11c and two communication holes 11b are continuously formed in the circumferential direction, the core sheet is 180 ° so that the independent holes 11c (inner bridge portions 8h) periodically exist in the axial direction in the rotor core. A large number of sheets may be stacked while being rotated by one degree, or a plurality of core sheets may be stacked while being reversed one by one. Of course, the independent holes 11c (inner bridge portion 8h) may be arranged in the rotor core so as to exist irregularly in the axial direction including the above-described embodiment.

・上記実施の形態では、コアシート11における積層前径方向収容孔は、径方向内側で周方向に隣り合う磁石収容部8eと対応した積層前磁石収容部11aと連通した連通孔11bと、積層前磁石収容部11aと連通せず該積層前磁石収容部11aとの間に内側ブリッジ部8hが形成されることになる独立孔11cとからなるとしたが、内側ブリッジ部8hがロータコア8の軸方向の一部に形成されれば、他の構成に変更してもよい。   In the above-described embodiment, the pre-lamination radial accommodation hole in the core sheet 11 includes the communication hole 11b communicated with the pre-lamination magnet accommodation portion 11a corresponding to the magnet accommodation portion 8e adjacent in the circumferential direction on the radially inner side, and the lamination The inner bridge portion 8h is formed in the axial direction of the rotor core 8 although it does not communicate with the front magnet housing portion 11a and is formed with the independent hole 11c in which the inner bridge portion 8h is formed between the front magnet housing portion 11a. If it forms in a part of, you may change to another structure.

例えば、少なくとも1枚のコアシートにおける径方向収容孔と対応したP/2個の積層前径方向収容孔が、径方向内側で周方向に隣り合う2つの磁石収容部と対応した2つの積層前磁石収容部の内の1つと連通するとともに1つと連通せず該積層前磁石収容部との間に1つの内側ブリッジ部が形成されることになる片側連通孔を有するようにする。そして、ロータコアは、各径方向収容孔の軸方向の少なくとも一部に前記片側連通孔が配置されるように前記コアシートが積層されてなるようにする。   For example, P / 2 pre-lamination radial accommodation holes corresponding to radial accommodation holes in at least one core sheet have two pre-laminations corresponding to two magnet accommodation parts adjacent in the circumferential direction on the radial inner side. A one-side communication hole is formed which communicates with one of the magnet housing portions and does not communicate with one but forms one inner bridge portion between the magnet housing portions before lamination. The rotor core is formed by laminating the core sheets so that the one-side communication hole is disposed in at least a part of each radial accommodation hole in the axial direction.

具体的には、例えば、図4〜図6に示すロータ2(ロータコア8)に変更してもよい。ロータコア8(図4及び図6参照)を構成する図5に示すコアシート11における前記径方向収容孔8aと対応したP/2個の積層前径方向収容孔は、径方向内側で周方向に隣り合う2つの前記磁石収容部8eと対応した2つの積層前磁石収容部11aの内の1つ(図5中、反時計回り側のもの)と連通するとともに1つ(図5中、時計回り側のもの)と連通せず該積層前磁石収容部11aとの間に1つの内側ブリッジ部8hが形成されることになる片側連通孔11dを有する。尚、この例(図5参照)では、片側連通孔11dは180°間隔で2個形成され、他の(残り2個の)積層前径方向収容孔は前記独立孔11cとされている。   Specifically, for example, the rotor 2 (rotor core 8) shown in FIGS. 4 to 6 may be changed. The P / 2 pre-stacking radial accommodation holes corresponding to the radial accommodation holes 8a in the core sheet 11 shown in FIG. 5 constituting the rotor core 8 (see FIGS. 4 and 6) are arranged radially inward in the circumferential direction. It communicates with one (two counterclockwise in FIG. 5) and one (clockwise in FIG. 5) of the two pre-lamination magnet housings 11a corresponding to the two adjacent magnet housings 8e. One side communication hole 11d in which one inner bridge portion 8h is formed between the pre-lamination magnet housing portion 11a without being communicated with the non-stacked magnet housing portion 11a. In this example (see FIG. 5), two one-side communication holes 11d are formed at intervals of 180 °, and the other (remaining two) pre-stacking radial accommodation holes are the independent holes 11c.

そして、この例のロータコア8(図4及び図6参照)は、前記コアシート11(図5参照)が軸中心に1枚ずつ90°ずつ回転されながら多数枚積層されてなる。
このようにすると、径方向収容孔8aの軸方向の少なくとも一部に片側連通孔11dが配置される。よって、径方向収容孔8aの片側連通孔11dが配置される部分(軸方向の少なくとも一部)では周方向に隣り合う2つの磁石収容部8eの内の1つに配置される磁石10の径方向内側への移動が規制されないものの径方向内側において径方向収容孔8a内の磁石9と磁石収容部8e内の磁石10との間に空隙が形成されるため、該部分での磁気抵抗が大きくなり、漏れ磁束を低減することができる。尚、コアシート11に例えば打ち抜き加工等で片側連通孔11dを形成することは(例えば、磁石10の径方向内側への移動を規制するための小さい突出部を形成する場合に比べて)容易であるため、その製造が容易となる。又、内側ブリッジ部8hは、径方向内側及び外側に配置される大きな部分(コアシート11の一部)に径方向に沿って繋がっているため、(例えば、磁石10の径方向内側への移動を規制するための小さい突出部を形成した場合に比べて)磁石10の移動を規制する方向に薄くても強度を強く、ひいては薄くできる分、磁石10を長くすることができる。
The rotor core 8 (see FIGS. 4 and 6) of this example is formed by laminating a large number of the core sheets 11 (see FIG. 5) while being rotated by 90 ° one by one around the axis center.
In this way, the one-side communication hole 11d is arranged in at least a part of the axial direction of the radial accommodation hole 8a. Therefore, in the portion (at least a part of the axial direction) where the one-side communication hole 11d of the radial accommodation hole 8a is arranged, the diameter of the magnet 10 arranged in one of the two magnet accommodation portions 8e adjacent in the circumferential direction. Although movement inward in the direction is not restricted, a gap is formed between the magnet 9 in the radial accommodation hole 8a and the magnet 10 in the magnet accommodation portion 8e on the radial inner side, so that the magnetic resistance at that portion is large. Thus, the leakage magnetic flux can be reduced. In addition, it is easy to form the one-side communication hole 11d in the core sheet 11 by punching or the like (for example, compared to a case where a small protrusion for restricting the movement of the magnet 10 in the radial direction is formed). Therefore, the manufacture is facilitated. Further, since the inner bridge portion 8h is connected along a radial direction to a large portion (a part of the core sheet 11) arranged on the inner side and the outer side in the radial direction (for example, movement of the magnet 10 to the inner side in the radial direction). The strength of the magnet 10 can be increased even if it is thin in the direction in which the movement of the magnet 10 is restricted (as compared to the case where a small protrusion is formed to restrict the movement of the magnet 10).

尚、この例(図4〜図6参照)のロータコア8は、コアシート11(図5参照)が軸中心に1枚ずつ回転されながら積層されてなるとしたが、これに限定されず、例えば、1枚ずつ(90°ずつ)回転させながら、且つ1枚置きに表裏を反転させながら積層したロータコアとしてもよい。このようにすると、径方向収容孔8aの周方向の両方に配置される2つの内側ブリッジ部8hが均等の断面積を有する構成となる。   The rotor core 8 of this example (see FIGS. 4 to 6) is formed by laminating the core sheet 11 (see FIG. 5) while rotating one by one around the axis, but the present invention is not limited to this. It is good also as a rotor core laminated | stacked, rotating one by one (every 90 degrees) and turning every other. If it does in this way, it will become the composition where the two inner side bridge parts 8h arrange | positioned in both the circumferential directions of the radial direction accommodation hole 8a have equal cross-sectional area.

又、例えば、図7〜図9に示すロータ2(ロータコア8)に変更してもよい。即ち、上記別例(図4〜図6参照)では、積層前径方向収容孔(全部で4個)の2個が片側連通孔11dであるとしたが、全て(4個)を片側連通孔とするとともに、それら片側連通孔を、周方向の一方(図8中、反時計回り側)の積層前磁石収容部11aと連通する一方片側連通孔11eと、周方向の他方(図8中、時計回り側)の積層前磁石収容部11aと連通する他方片側連通孔11fとする。   Further, for example, the rotor 2 (rotor core 8) shown in FIGS. That is, in the above other examples (see FIGS. 4 to 6), two of the pre-lamination radial direction accommodation holes (four in total) are the one-side communication holes 11d, but all (four) are the one-side communication holes. In addition, the one side communication holes are connected to one circumferential side one (counterclockwise side in FIG. 8), the one side communication hole 11e communicating with the pre-stacking magnet housing portion 11a, and the other circumferential direction (in FIG. 8, The other side communication hole 11f communicates with the pre-lamination magnet housing portion 11a on the clockwise side).

そして、この例のロータコア8(図7及び図9参照)は、前記コアシート11(図8参照)が軸中心に1枚ずつ90°ずつ回転されながら多数枚積層されてなる。
このようにすると、各径方向収容孔8aに一方片側連通孔11eと他方片側連通孔11fとが配置されるため、径方向収容孔8aの径方向内側で周方向に隣り合う2つの磁石収容部8e内に配置される各磁石10はそれぞれ内側ブリッジ部8hにて径方向内側への移動が規制される。そして、積層前径方向収容孔の全てが片側連通孔(一方片側連通孔11eと他方片側連通孔11f)であるため、例えば、積層前径方向収容孔のいくつかを磁気抵抗を小さくしてしまう(周方向の両方に内側ブリッジ部が形成されることになる)独立孔11cとした場合に比べて、磁気抵抗が大きくなり、漏れ磁束を低減することができる。
In this example, the rotor core 8 (see FIGS. 7 and 9) is formed by laminating a large number of the core sheets 11 (see FIG. 8) while being rotated by 90 ° one by one about the axis.
In this case, since one one-side communication hole 11e and the other one-side communication hole 11f are disposed in each radial accommodation hole 8a, two magnet accommodation portions adjacent to each other in the circumferential direction on the radial inner side of the radial accommodation hole 8a. Each magnet 10 arranged in 8e is restricted from moving radially inward by the inner bridge portion 8h. Since all of the pre-stacking radial accommodation holes are one-side communication holes (one one-side communication hole 11e and the other one-side communication hole 11f), for example, some of the pre-stacking radial accommodation holes reduce the magnetic resistance. Compared with the case of the independent holes 11c (both inner circumferential bridge portions are formed in the circumferential direction), the magnetic resistance is increased, and the leakage magnetic flux can be reduced.

・上記実施の形態及び別例では、1枚のコアシート11における積層前径方向収容孔(連通孔11b、独立孔11c、片側連通孔11d、一方片側連通孔11e及び他方片側連通孔11f)の径方向長さを一定としたが、磁石9の径方向内側への移動を規制すべく径方向内側に短い短孔と、該短孔より径方向内側に長い長孔とからなるようにしてもよい。   In the above embodiment and other examples, the pre-lamination radial accommodation holes (the communication holes 11b, the independent holes 11c, the one-side communication holes 11d, the one-side communication holes 11e, and the other-side communication holes 11f) in one core sheet 11 Although the length in the radial direction is constant, a short hole that is short on the inner side in the radial direction and a long hole that is longer on the inner side in the radial direction than the short hole in order to restrict the movement of the magnet 9 in the radial direction. Good.

例えば、図10〜図12に示すロータ2(ロータコア8)に変更してもよい。
このロータコア8(図10及び図12参照)を構成する図11に示すコアシート11は、上記実施の形態のコアシート11における独立孔11c(図2参照)が、長孔としての連通孔11bより径方向内側に短い短孔としての短独立孔11gとされている。
For example, you may change to the rotor 2 (rotor core 8) shown in FIGS.
In the core sheet 11 shown in FIG. 11 constituting the rotor core 8 (see FIGS. 10 and 12), the independent hole 11c (see FIG. 2) in the core sheet 11 of the above embodiment is more than the communication hole 11b as a long hole. A short independent hole 11g is formed as a short short hole radially inward.

そして、この例のロータコア8(図10及び図12参照)は、前記コアシート11(図11参照)が軸中心に1枚ずつ90°ずつ回転されながら多数枚積層されてなる。
このようにすると、径方向収容孔の軸方向の一部に短孔(短独立孔11g)が配置されるため、該短孔にて磁石9の径方向内側への移動が規制される。そして、径方向収容孔8aの長孔(連通孔11b)が配置される部分では磁石9の径方向内側への移動が規制されないものの長孔の径方向内側端部が磁石9と(空隙を介して)離間するため、該部分での磁気抵抗が大きくなり(磁路が遠くなり)、漏れ磁束を低減することができる。
In this example, the rotor core 8 (see FIGS. 10 and 12) is formed by laminating a large number of the core sheets 11 (see FIG. 11) while being rotated by 90 ° one by one about the axis.
If it does in this way, since a short hole (short independent hole 11g) is arranged in a part of the direction of an axis of a diameter direction accommodation hole, movement to the diameter direction inside of magnet 9 is controlled by the short hole. In the portion where the long hole (communication hole 11b) of the radial accommodation hole 8a is disposed, the movement of the magnet 9 inward in the radial direction is not restricted, but the radially inner end of the long hole is connected to the magnet 9 (via a gap). Therefore, the magnetic resistance in the portion increases (the magnetic path becomes far), and the leakage magnetic flux can be reduced.

又、例えば、図13〜図15に示すロータ2(ロータコア8)に変更してもよい。
このロータコア8(図13及び図15参照)を構成する図14に示すコアシート11は、上記別例(図4〜図6参照)のコアシート11における独立孔11c(図5参照)の1つが、径方向内側に短い短孔としての短独立孔11gとされている。
Further, for example, the rotor 2 (rotor core 8) shown in FIGS. 13 to 15 may be changed.
The core sheet 11 shown in FIG. 14 constituting the rotor core 8 (see FIGS. 13 and 15) has one of the independent holes 11c (see FIG. 5) in the core sheet 11 of the other examples (see FIGS. 4 to 6). The short independent hole 11g is a short short hole radially inward.

そして、この例のロータコア8(図13及び図15参照)は、前記コアシート11(図14参照)が軸中心に1枚ずつ90°ずつ回転されながら多数枚積層されてなる。
このようにすると、上記別例(図4〜図6参照)の効果に加えて、短孔(短独立孔11g)による効果(上記別例(図10〜図12)の効果)を得ることができる。
The rotor core 8 (see FIG. 13 and FIG. 15) of this example is formed by laminating a large number of the core sheets 11 (see FIG. 14) while being rotated 90.degree.
If it does in this way, in addition to the effect of the above-mentioned another example (refer to Drawing 4-Drawing 6), the effect (effect of the above-mentioned another example (Drawing 10-Drawing 12)) by the short hole (short independent hole 11g) can be acquired. it can.

尚、勿論、この例(図13〜図15参照)のロータコア8においても、コアシート11を、1枚置きに表裏を反転させながら積層して、径方向収容孔8aの周方向の両方に配置される2つの内側ブリッジ部8hを均等の断面積を有する構成としてもよい。   Of course, also in the rotor core 8 of this example (see FIGS. 13 to 15), the core sheets 11 are laminated with the front and back being reversed every other sheet, and arranged in both the circumferential directions of the radial accommodation holes 8a. The two inner bridge portions 8h may have a uniform cross-sectional area.

又、例えば、図16〜図18に示すロータ2(ロータコア8)に変更してもよい。
このロータコア8(図16及び図18参照)を構成する図17に示すコアシート11は、上記別例(図7〜図9参照)のコアシート11における他方片側連通孔11f(図8参照)の1つが、径方向内側に短い短孔としての短他方片側連通孔11hとされている。
Further, for example, the rotor 2 (rotor core 8) shown in FIGS. 16 to 18 may be changed.
The core sheet 11 shown in FIG. 17 that constitutes the rotor core 8 (see FIGS. 16 and 18) is formed of the other one-side communication hole 11f (see FIG. 8) in the core sheet 11 of the other example (see FIGS. 7 to 9). One is a short other side communication hole 11h as a short short hole radially inward.

そして、この例のロータコア8(図16及び図18参照)は、前記コアシート11(図17参照)が軸中心に1枚ずつ90°ずつ回転されながら多数枚積層されてなる。
このようにすると、上記別例(図7〜図9参照)の効果に加えて、短孔(短他方片側連通孔11h)による効果(上記別例(図10〜図12)の効果)を得ることができる。
The rotor core 8 (see FIGS. 16 and 18) of this example is formed by laminating a large number of the core sheets 11 (see FIG. 17) while being rotated by 90 ° one by one about the axis.
If it does in this way, in addition to the effect of the above-mentioned another example (refer to Drawing 7-Drawing 9), the effect (effect of the above-mentioned another example (Drawing 10-Drawing 12)) by the short hole (short other side communication hole 11h) will be acquired. be able to.

・上記実施の形態では、コアシート11における積層前径方向収容孔は、連通孔11bと独立孔11cとからなるとしたが、径方向内側で周方向に隣り合う積層前磁石収容部11aと連通するとともに、径方向内側端部に、径方向収容孔8a内の磁石9の径方向内側への移動を規制すべく、且つ径方向収容孔8a内の磁石9と当接しない位置で磁石収容部8e内の磁石10の径方向内側への移動を規制すべく径方向外側に突出した規制突出部が形成された突出連通孔を有するように変更してもよい。   In the above embodiment, the pre-lamination radial accommodation hole in the core sheet 11 is composed of the communication hole 11b and the independent hole 11c, but communicates with the pre-lamination magnet accommodation portion 11a adjacent in the circumferential direction on the radial inner side. At the same time, in the radially inner end, the magnet housing portion 8e is placed at a position that restricts the movement of the magnet 9 inside the radial housing hole 8a inward in the radial direction and does not contact the magnet 9 inside the radial housing hole 8a. You may change so that it may have a protrusion communicating hole in which the control protrusion part which protruded to the radial direction outer side was formed in order to control the movement to the radial direction inner side of the magnet 10 inside.

又、例えば、図19〜図21に示すロータ2(ロータコア8)に変更してもよい。
このロータコア8(図19及び図21参照)を構成する図20に示すコアシート11は、上記実施の形態のコアシート11における独立孔11c(図2参照)が、規制突出部11iが形成された突出連通孔11jとされている。詳しくは、突出連通孔11jは、径方向内側で周方向に隣り合う積層前磁石収容部11aと連通しているが、前記連通孔11bの空隙であった部分の径方向内側端部に、径方向収容孔8a内の磁石9の径方向内側への移動を規制すべく、且つ径方向収容孔8a内の磁石9と当接しない位置で磁石収容部8e内の磁石10の径方向内側への移動を規制すべく径方向外側に突出した規制突出部11iが形成されている。この例における規制突出部11iは、略台形状に形成されることで、軸方向から見たその各辺に、各磁石9,10の端面が軸方向から見て点ではなく線で当接することになる。
Further, for example, the rotor 2 (rotor core 8) shown in FIGS. 19 to 21 may be changed.
In the core sheet 11 shown in FIG. 20 constituting the rotor core 8 (see FIGS. 19 and 21), the independent hole 11c (see FIG. 2) in the core sheet 11 of the above-described embodiment is formed with the regulation protrusion 11i. It is set as the protruding communication hole 11j. Specifically, the projecting communication hole 11j communicates with the pre-stacking magnet housing portion 11a adjacent in the circumferential direction on the radially inner side, but at the radially inner end portion of the portion that was the void of the communication hole 11b. In order to restrict the movement of the magnet 9 in the direction accommodation hole 8a radially inward, the magnet 10 in the magnet accommodation portion 8e moves inward in the radial direction at a position where it does not contact the magnet 9 in the diameter accommodation hole 8a. In order to restrict the movement, a restricting protruding portion 11i protruding outward in the radial direction is formed. The restriction protrusion 11i in this example is formed in a substantially trapezoidal shape, so that the end surfaces of the magnets 9 and 10 are in contact with the sides of the magnets 9 and 10 when viewed from the axial direction, not by points but by lines. become.

そして、この例のロータコア8(図19及び図21参照)は、前記コアシート11(図20参照)が軸中心に1枚ずつ90°ずつ回転されながら多数枚積層されてなる。
このようにすると、径方向収容孔8aの軸方向の一部に規制突出部11iが形成された突出連通孔11jが配置される。よって、径方向収容孔8aの突出連通孔11jが配置される部分(軸方向の一部)では、各磁石9,10の移動が規制されながらも前記内側ブリッジ部8hが形成されない(ロータコア8が径方向に繋がっていない)ため、該部分での磁気抵抗が大きくなり、漏れ磁束を低減することができる。尚、コアシート11に例えば打ち抜き加工等で突出連通孔11jを形成することは(例えば、磁石9,10の径方向内側への移動を規制するための小さい突出部を形成する場合に比べて)容易であるため、その製造が容易となる。
The rotor core 8 (see FIGS. 19 and 21) of this example is formed by laminating a large number of the core sheets 11 (see FIG. 20) while being rotated by 90 ° one by one around the axis center.
If it does in this way, the protrusion communicating hole 11j in which the control protrusion part 11i was formed in a part of axial direction of the radial direction accommodation hole 8a will be arrange | positioned. Therefore, in the portion (a part in the axial direction) where the protruding communication hole 11j of the radial accommodation hole 8a is disposed, the inner bridge portion 8h is not formed while the movement of the magnets 9 and 10 is restricted (the rotor core 8 is formed). Therefore, the magnetic resistance at the portion is increased, and the leakage magnetic flux can be reduced. In addition, forming the protruding communication hole 11j in the core sheet 11 by, for example, punching or the like (for example, as compared with the case of forming a small protruding portion for restricting the movement of the magnets 9 and 10 inward in the radial direction). Since it is easy, the manufacture becomes easy.

又、この例(図19〜図21参照)では、1個の突出連通孔11j以外の積層前径方向収容孔が、規制突出部11iの部分が空隙とされた連通孔11bとされ、径方向収容孔8aの連通孔11bが配置される部分では各磁石9,10の径方向内側への移動が規制されないものの空隙にて該部分での磁気抵抗が大きくなるため、例えば、突出連通孔11jを2個以上とした場合や連通孔11bを独立孔11cとした場合等に比べて漏れ磁束を更に低減することができる。   Further, in this example (see FIGS. 19 to 21), the pre-stacking radial accommodation holes other than the one projecting communication hole 11j are communication holes 11b in which the restriction projecting part 11i is a gap, and the radial direction In the portion where the communication hole 11b of the accommodation hole 8a is disposed, although the movement of the magnets 9 and 10 inward in the radial direction is not restricted, the magnetic resistance in the portion increases in the gap. Leakage magnetic flux can be further reduced as compared with the case of using two or more or the communication hole 11b as an independent hole 11c.

・上記実施の形態では、V字収容孔8bを構成する一対の磁石収容部8eは、径方向外側端部が互いに連通しないようにそれぞれ独立した(軸方向に貫通する)孔として形成されるとしたが、これに限定されず、磁石収容部8eの径方向外側同士を連通する頂部を有するように(1つの繋がった孔として)形成してもよい。尚、この場合、前記収容部間ブリッジ部8lがなくなることになる。   -In said embodiment, when a pair of magnet accommodating part 8e which comprises the V-shaped accommodation hole 8b is each formed as an independent hole (perpendicular to an axial direction) so that a radial direction outer side edge part may not mutually communicate. However, it is not limited to this, You may form so that it may have the top part which connects the radial direction outer sides of the magnet accommodating part 8e (as one connected hole). In this case, the inter-accommodating portion bridge portion 8l is eliminated.

・上記実施の形態では、磁石収容部8eの径方向内側と径方向収容孔8aとの間に形成される内側ブリッジ部8hの軸方向から見た幅が径方向に沿って一定とされるとしたが、これに限定されず、内側ブリッジ部8hの軸方向から見た幅が径方向に沿って変化するように変更してもよい。例えば、上記実施の形態の延設部8iを形成せず、内側ブリッジ部8hを磁石10の(径方向内側の)長手方向端部に当接するような軸方向から見て略三角形状のものとしてもよい。   In the above embodiment, when the width of the inner bridge portion 8h formed between the radially inner side of the magnet housing portion 8e and the radial housing hole 8a as viewed from the axial direction is constant along the radial direction. However, it is not limited to this, You may change so that the width | variety seen from the axial direction of the inner side bridge part 8h may change along a radial direction. For example, the extended portion 8i of the above embodiment is not formed, and the inner bridge portion 8h is substantially triangular when viewed from the axial direction such that the inner bridge portion 8h contacts the longitudinal end portion (in the radial direction) of the magnet 10. Also good.

・上記実施の形態では、ロータコア8は、コアシート11が軸中心に1枚ずつ回転されながら積層されてなるとしたが、これに限定されず、他の方法(構造)で略同様のロータコアを構成してもよい。例えば、コアシート11を、複数枚毎に回転させながら積層してもよい。このようにすると、コアシート11を回転させる回数が減るため、その製造が容易となる。   In the above embodiment, the rotor core 8 is laminated while the core sheets 11 are rotated one by one around the axis center. However, the present invention is not limited to this, and a substantially similar rotor core is configured by another method (structure). May be. For example, the core sheets 11 may be stacked while being rotated every plural sheets. If it does in this way, since the frequency | count of rotating the core sheet 11 reduces, the manufacture becomes easy.

・上記実施の形態では、1種類のコアシート11にてロータコア8を構成したが、これに限定されず、複数種類の(例えば、独立孔11cの数が異なる)コアシートにてロータコアを構成してもよい。   In the above embodiment, the rotor core 8 is configured by one type of core sheet 11, but the present invention is not limited to this, and the rotor core is configured by a plurality of types of core sheets (for example, different numbers of independent holes 11c). May be.

・上記実施の形態では、磁石収容部8eは、軸方向から見て直線状であってその幅が一定とされ、磁石収容部8e内に配設される磁石10は、略直方体形状とされるとしたが、これに限定されず、磁石収容部及び磁石の軸方向から見た形状や幅等を変更してもよい。即ち、V字収容孔の略V字形状とは、V字を形成する各直線(一対の直線)がそれぞれ湾曲しているものや、直線の幅が一定ではないもの等を含む形状であって、V字収容孔のV字を形成する各直線に対応した各磁石収容部は、前記直線に対して湾曲しているものや、幅が一定とされていないものを含む。   -In above-mentioned embodiment, the magnet accommodating part 8e is linear shape seeing from an axial direction, the width | variety is made constant, and the magnet 10 arrange | positioned in the magnet accommodating part 8e is made into a substantially rectangular parallelepiped shape. However, the present invention is not limited to this, and the shape, width, and the like of the magnet housing portion and the magnet viewed from the axial direction may be changed. That is, the substantially V-shape of the V-shaped accommodation hole is a shape including those in which each straight line (a pair of straight lines) forming the V-shape is curved, or the width of the straight line is not constant. The magnet housing portions corresponding to the straight lines forming the V-shape of the V-shaped housing holes include those that are curved with respect to the straight lines and those that are not constant in width.

・上記実施の形態の磁石9,10及びロータコア8を軸方向に分割し、それらを周方向にずらして配設してもよい。このようにすると、ステータ1とロータ2間での急激な磁束の流れ(変化)を更に低減することができコギングトルク及びトルクリップルを更に低減することができる。   The magnets 9 and 10 and the rotor core 8 according to the above embodiment may be divided in the axial direction and arranged so as to be shifted in the circumferential direction. In this way, the rapid magnetic flux flow (change) between the stator 1 and the rotor 2 can be further reduced, and the cogging torque and torque ripple can be further reduced.

・上記実施の形態のティース4の数や磁極数(磁石9,10)の数等は、他の数に変更してもよい。
上記各実施の形態から把握できる技術的思想について、以下にその効果とともに記載する。
The number of teeth 4 and the number of magnetic poles (magnets 9 and 10) in the above embodiment may be changed to other numbers.
The technical idea that can be grasped from the above embodiments will be described below together with the effects thereof.

(イ)請求項2に記載の埋込磁石型モータにおいて、前記ロータコアは、前記コアシートが360°/(P/2)ずつ回転されながら積層されてなることを特徴とする埋込磁石型モータ。   (A) The embedded magnet type motor according to claim 2, wherein the rotor core is formed by laminating the core sheet while being rotated by 360 ° / (P / 2). .

同構成によれば、コアシートを360°/(P/2)ずつ回転させながら積層するという動作が一定なので容易に製造することができ、例えば、自動化が容易となる。又、コアシートを多数枚積層すると、独立孔及び内側ブリッジ部が軸方向に定期的に存在し、磁石の径方向内側への移動が軸方向に定期的に規制されるため、磁石をバランス良く支持することができる。   According to this configuration, since the operation of laminating the core sheet while rotating it by 360 ° / (P / 2) is constant, it can be easily manufactured, and for example, automation is facilitated. In addition, when a large number of core sheets are laminated, independent holes and inner bridge portions are regularly present in the axial direction, and the movement of the magnet inward in the radial direction is regularly regulated in the axial direction, so that the magnets are balanced. Can be supported.

(ロ)請求項1〜4、及び上記(イ)のいずれか1つに記載の埋込磁石型モータにおいて、前記内側ブリッジ部は、軸方向から見た幅が径方向に沿って一定とされたことを特徴とする埋込磁石型モータ。   (B) In the interior magnet type motor according to any one of claims 1 to 4 and (A), the width of the inner bridge portion viewed from the axial direction is constant along the radial direction. An embedded magnet type motor characterized by that.

同構成によれば、内側ブリッジ部は、軸方向から見た幅が径方向に沿って一定とされ、該幅を均等に細くすることができるため、漏れ磁束を更に低減することができる。
(ハ)請求項1〜6、及び上記(イ)、(ロ)のいずれか1つに記載の埋込磁石型モータにおいて、前記V字収容孔のV字を形成する各直線に対応した一対の前記磁石収容部がそれぞれ独立して形成されることで、一対の前記磁石収容部間における径方向外側に径方向に延びる収容部間ブリッジ部が形成されたことを特徴とする埋込磁石型モータ。
According to this configuration, the width of the inner bridge portion viewed from the axial direction is constant along the radial direction, and the width can be uniformly reduced, so that the leakage magnetic flux can be further reduced.
(C) In the embedded magnet type motor according to any one of claims 1 to 6, and (a) and (b) above, a pair corresponding to each straight line forming the V-shape of the V-shaped accommodation hole The embedded magnet type is characterized in that each of the magnet housing portions is formed independently, so that a bridge portion between the housing portions extending in the radial direction is formed radially outward between the pair of magnet housing portions. motor.

同構成によれば、磁石収容部とロータコアの外周面との間に形成される外側ブリッジ部が収容部間ブリッジ部と繋がるため、(磁石収容部同士を連通する頂部を有するもの(即ち収容部間ブリッジ部が形成されないもの)に比べて)ロータコアの強度が高まり、その変形が防止される。   According to this configuration, since the outer bridge portion formed between the magnet accommodating portion and the outer peripheral surface of the rotor core is connected to the inter-accommodating portion bridge portion (that has a top portion that connects the magnet accommodating portions to each other (that is, the accommodating portion). The strength of the rotor core is increased and its deformation is prevented compared to the case where no intermediate bridge portion is formed.

特に、コアシート単体においては、前記積層前磁石収容部同士が連通していると(連通する頂部を有すると)、その径方向内側と径方向外側の部分が、独立孔が形成される部分の内側ブリッジ部のみで接続されるため、その剛性が低く取り扱いが困難となる虞があるが、これに比べてコアシートの強度が高まり、その変形が防止され、取り扱いが容易となる。   In particular, in the core sheet alone, when the pre-lamination magnet accommodating portions communicate with each other (having a communicating top portion), the radially inner portion and the radially outer portion thereof are portions where independent holes are formed. Since it is connected only by the inner bridge portion, its rigidity is low and it may be difficult to handle, but the strength of the core sheet is increased compared to this, its deformation is prevented, and handling is easy.

本実施の形態における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an embedded magnet type motor in this Embodiment. 本実施の形態におけるコアシートの平面図。The top view of the core sheet in this Embodiment. 本実施の形態におけるロータコアの要部斜視図。The principal part perspective view of the rotor core in this Embodiment. 別例における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an embedded magnet type motor in another example. 別例におけるコアシートの平面図。The top view of the core sheet in another example. 別例におけるロータコアの斜視図。The perspective view of the rotor core in another example. 別例における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an embedded magnet type motor in another example. 別例におけるコアシートの平面図。The top view of the core sheet in another example. 別例におけるロータコアの斜視図。The perspective view of the rotor core in another example. 別例における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an embedded magnet type motor in another example. 別例におけるコアシートの平面図。The top view of the core sheet in another example. 別例におけるロータコアの斜視図。The perspective view of the rotor core in another example. 別例における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an embedded magnet type motor in another example. 別例におけるコアシートの平面図。The top view of the core sheet in another example. 別例におけるロータコアの斜視図。The perspective view of the rotor core in another example. 別例における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an embedded magnet type motor in another example. 別例におけるコアシートの平面図。The top view of the core sheet in another example. 別例におけるロータコアの斜視図。The perspective view of the rotor core in another example. 別例における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an embedded magnet type motor in another example. 別例におけるコアシートの平面図。The top view of the core sheet in another example. 別例におけるロータコアの斜視図。The perspective view of the rotor core in another example.

符号の説明Explanation of symbols

2…ロータ、8…ロータコア、8a…径方向収容孔、8b…V字収容孔、8e…磁石収容部、8h…内側ブリッジ部、9,10……磁石、11…コアシート、11a…積層前磁石収容部、11b…連通孔(積層前径方向収容孔)、11c…独立孔(積層前径方向収容孔)、11d…片側連通孔(積層前径方向収容孔)、11e…一方片側連通孔(積層前径方向収容孔及び片側連通孔)、11f…他方片側連通孔(積層前径方向収容孔及び片側連通孔)、11g…短独立孔(積層前径方向収容孔及び独立孔)、11h…短他方片側連通孔(積層前径方向収容孔、片側連通孔及び他方片側連通孔)、11i…規制突出部、11j…突出連通孔。   DESCRIPTION OF SYMBOLS 2 ... Rotor, 8 ... Rotor core, 8a ... Radial accommodation hole, 8b ... V-shaped accommodation hole, 8e ... Magnet accommodation part, 8h ... Inner bridge part, 9, 10 ... Magnet, 11 ... Core sheet, 11a ... Before lamination | stacking Magnet housing portion, 11b ... communication hole (pre-lamination radial direction accommodation hole), 11c ... independent hole (pre-lamination radial direction accommodation hole), 11d ... one-side communication hole (pre-lamination radial direction accommodation hole), 11e ... one-side communication hole (Pre-lamination radial direction accommodation hole and one-side communication hole), 11f... One other side communication hole (pre-lamination radial direction accommodation hole and one-side communication hole), 11g... Short independent hole (Pre-lamination radial direction accommodation hole and independent hole), 11h ... short other one side communication hole (stacking radial direction accommodation hole, one side communication hole and other one side communication hole), 11i ... regulating protrusion, 11j ... protruding communication hole.

Claims (6)

コアシートが軸方向に積層されてなり軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備えた埋込磁石型モータであって、
前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、
前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、
前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成されるものであって、
前記コアシートにおける前記径方向収容孔と対応したP/2個の積層前径方向収容孔は、径方向内側で周方向に隣り合う前記磁石収容部と対応した積層前磁石収容部と連通した連通孔と、前記積層前磁石収容部と連通せず該積層前磁石収容部との間に内側ブリッジ部が形成されることになる独立孔とを有するものであり、
前記ロータコアは、各前記径方向収容孔の軸方向の一部に前記独立孔が配置され、前記磁石収容部内に配置される各前記磁石が前記内側ブリッジ部にて径方向内側への移動が規制されるように前記コアシートが積層されてなることを特徴とする埋込磁石型モータ。
A core sheet is laminated in the axial direction and has a rotor core in which a plurality of housing holes penetrating in the axial direction are formed in the circumferential direction, and magnets are disposed in the housing holes so that the number of magnetic poles is P poles. An embedded magnet type motor having a rotor,
The housing hole is formed by forming P / 2 radial housing holes extending in a substantially radial direction and substantially V-shaped housing holes protruding outward in the radial direction. Formed alternately,
The magnets are disposed in the radial accommodating holes and are disposed in the respective magnet accommodating portions corresponding to the respective straight lines forming the V shape of the V-shaped accommodating holes,
The magnet arranged in the radial accommodation hole and the magnet arranged in the magnet accommodation part adjacent to one of the circumferential directions constitute one magnetic pole, and the radial accommodation hole A different magnetic pole is configured by the magnet disposed in the magnet and the magnet disposed in the magnet housing portion adjacent to the other in the circumferential direction,
The P / 2 pre-lamination radial accommodation holes corresponding to the radial accommodation holes in the core sheet communicate with the pre-lamination magnet accommodation portions corresponding to the magnet accommodation portions adjacent to each other in the circumferential direction on the radially inner side. A hole and an independent hole in which an inner bridge portion is formed between the pre-lamination magnet housing portion and the pre-lamination magnet housing portion without communicating with the pre-lamination magnet housing portion,
In the rotor core, the independent holes are arranged in a part of the radial accommodation holes in the axial direction, and movement of the magnets arranged in the magnet accommodation portion inward in the radial direction is restricted by the inner bridge portion. As described above, the core sheet is laminated, and an embedded magnet type motor.
請求項1に記載の埋込磁石型モータにおいて、
前記独立孔は、前記コアシートに1個のみ形成されたことを特徴とする埋込磁石型モータ。
The interior magnet type motor according to claim 1,
Only one independent hole is formed in the core sheet.
コアシートが軸方向に積層されてなり軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備えた埋込磁石型モータであって、
前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、
前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、
前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成されるものであって、
少なくとも1枚の前記コアシートにおける前記径方向収容孔と対応したP/2個の積層前径方向収容孔は、径方向内側で周方向に隣り合う2つの前記磁石収容部と対応した2つの積層前磁石収容部の内の1つと連通するとともに1つと連通せず該積層前磁石収容部との間に1つの内側ブリッジ部が形成されることになる片側連通孔を有するものであり、
前記ロータコアは、各前記径方向収容孔の軸方向の少なくとも一部に前記片側連通孔が配置されるように前記コアシートが積層されてなることを特徴とする埋込磁石型モータ。
A core sheet is laminated in the axial direction and has a rotor core in which a plurality of housing holes penetrating in the axial direction are formed in the circumferential direction, and magnets are disposed in the housing holes so that the number of magnetic poles is P poles. An embedded magnet type motor having a rotor,
The housing hole is formed by forming P / 2 radial housing holes extending in a substantially radial direction and substantially V-shaped housing holes protruding outward in the radial direction. Formed alternately,
The magnets are disposed in the radial accommodating holes and are disposed in the respective magnet accommodating portions corresponding to the respective straight lines forming the V shape of the V-shaped accommodating holes,
The magnet arranged in the radial accommodation hole and the magnet arranged in the magnet accommodation part adjacent to one of the circumferential directions constitute one magnetic pole, and the radial accommodation hole A different magnetic pole is configured by the magnet disposed in the magnet and the magnet disposed in the magnet housing portion adjacent to the other in the circumferential direction,
The P / 2 pre-lamination radial accommodation holes corresponding to the radial accommodation holes in at least one core sheet are two laminations corresponding to the two magnet accommodation portions that are radially inward and adjacent to each other in the circumferential direction. It has a one-side communication hole that communicates with one of the front magnet housing portions and does not communicate with one but forms one inner bridge portion with the pre-lamination magnet housing portion,
The rotor core is an embedded magnet type motor in which the core sheet is laminated so that the one-side communication hole is disposed in at least a part of the radial accommodation hole in the axial direction.
請求項3に記載の埋込磁石型モータにおいて、
前記積層前径方向収容孔の全てが前記片側連通孔であって、
前記片側連通孔は、周方向の一方の前記積層前磁石収容部と連通する一方片側連通孔と、周方向の他方の前記積層前磁石収容部と連通する他方片側連通孔とからなり、
前記ロータコアは、各前記径方向収容孔に前記一方片側連通孔と前記他方片側連通孔とが配置されるように前記コアシートが積層されてなることを特徴とする埋込磁石型モータ。
The interior magnet type motor according to claim 3,
All of the stacking radial direction accommodation holes are the one-side communication holes,
The one-side communication hole includes a one-side communication hole that communicates with one of the pre-stacking magnet housing portions in the circumferential direction, and a one-side communication hole that communicates with the other pre-stacking magnet housing portion in the circumferential direction.
The embedded magnet type motor, wherein the rotor core is formed by laminating the core sheet so that the one-side communication hole and the other-side communication hole are disposed in each radial accommodation hole.
コアシートが軸方向に積層されてなり軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備えた埋込磁石型モータであって、
前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、
前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、
前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成されるものであって、
少なくとも1枚の前記コアシートにおける前記径方向収容孔と対応したP/2個の積層前径方向収容孔は、径方向内側で周方向に隣り合う前記磁石収容部と対応した積層前磁石収容部と連通するとともに、径方向内側端部に、前記径方向収容孔内に配置される磁石の径方向内側への移動を規制すべく、且つ前記径方向収容孔内に配置される磁石と当接しない位置で前記磁石収容部内に配置される前記磁石の径方向内側への移動を規制すべく径方向外側に突出した規制突出部が形成された突出連通孔を有するものであり、
前記ロータコアは、各前記径方向収容孔の軸方向の少なくとも一部に前記突出連通孔が配置されるように前記コアシートが積層されてなることを特徴とする埋込磁石型モータ。
A core sheet is laminated in the axial direction and has a rotor core in which a plurality of housing holes penetrating in the axial direction are formed in the circumferential direction, and magnets are disposed in the housing holes so that the number of magnetic poles is P poles. An embedded magnet type motor having a rotor,
The housing hole is formed by forming P / 2 radial housing holes extending in a substantially radial direction and substantially V-shaped housing holes protruding outward in the radial direction. Formed alternately,
The magnets are disposed in the radial accommodating holes and are disposed in the respective magnet accommodating portions corresponding to the respective straight lines forming the V shape of the V-shaped accommodating holes,
The magnet arranged in the radial accommodation hole and the magnet arranged in the magnet accommodation part adjacent to one of the circumferential directions constitute one magnetic pole, and the radial accommodation hole A different magnetic pole is configured by the magnet disposed in the magnet and the magnet disposed in the magnet housing portion adjacent to the other in the circumferential direction,
The P / 2 pre-lamination radial accommodation holes corresponding to the radial accommodation holes in the at least one core sheet are pre-lamination magnet accommodation portions corresponding to the magnet accommodation portions adjacent in the circumferential direction on the radial inner side. And in contact with the magnet disposed in the radial accommodation hole at the radially inner end to restrict the movement of the magnet disposed in the radial accommodation hole inward in the radial direction. In order to restrict the radially inward movement of the magnet disposed in the magnet housing portion at a position where it does not have a protruding communication hole formed with a protruding protrusion protruding radially outward,
The rotor core is an embedded magnet type motor in which the core sheet is laminated so that the projecting communication hole is disposed in at least a part of the radial accommodation hole in the axial direction.
請求項5に記載の埋込磁石型モータにおいて、
前記突出連通孔は、前記コアシートに1個のみ形成され、
他の前記積層前径方向収容孔は、径方向内側で周方向に隣り合う前記積層前磁石収容部と連通するとともに前記規制突出部の部分が空隙とされた連通孔であることを特徴とする埋込磁石型モータ。
The interior magnet type motor according to claim 5,
Only one protruding communication hole is formed in the core sheet,
The other pre-stacking radial accommodation hole is a communication hole that communicates with the pre-lamination magnet housing portion that is adjacent in the circumferential direction on the radially inner side, and has a portion of the restriction projecting portion as a gap. Embedded magnet type motor.
JP2008170266A 2007-11-28 2008-06-30 Embedded magnet type motor Expired - Fee Related JP5128387B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2008170266A JP5128387B2 (en) 2007-11-28 2008-06-30 Embedded magnet type motor
US12/277,572 US7800272B2 (en) 2007-11-28 2008-11-25 Embedded magnet motor and manufacturing method of the same
DE200810044127 DE102008044127A1 (en) 2007-11-28 2008-11-27 Embedded magnet type motor has protrusion which is formed in accommodation hole of core sheet and is protruded from anticlockwise rotating side along radial direction of magnet
CN201210187181.4A CN102738931B (en) 2007-11-28 2008-11-28 Magnet-embedding type motor
CN201210187108.7A CN102738930B (en) 2007-11-28 2008-11-28 embedded magnet type motor
CN201210187106.8A CN102738929B (en) 2007-11-28 2008-11-28 Magnet-embedding type motor
CN200810178386XA CN101447705B (en) 2007-11-28 2008-11-28 Magnet-embedding type motor and manufacture method thereof
US12/861,311 US7868503B1 (en) 2007-11-28 2010-08-23 Embedded magnet motor and manufacturing method of the same
US12/962,292 US8080915B2 (en) 2007-11-28 2010-12-07 Embedded magnet motor and manufacturing method of the same
US13/296,720 US8232703B2 (en) 2007-11-28 2011-11-15 Embedded magnet motor and manufacturing method of the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007307369 2007-11-28
JP2007307369 2007-11-28
JP2008170266A JP5128387B2 (en) 2007-11-28 2008-06-30 Embedded magnet type motor

Publications (2)

Publication Number Publication Date
JP2009153365A JP2009153365A (en) 2009-07-09
JP5128387B2 true JP5128387B2 (en) 2013-01-23

Family

ID=40921794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170266A Expired - Fee Related JP5128387B2 (en) 2007-11-28 2008-06-30 Embedded magnet type motor

Country Status (1)

Country Link
JP (1) JP5128387B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8564168B2 (en) * 2010-05-24 2013-10-22 Remy Technologies, L.L.C. Rotor lamination assembly
US11437877B2 (en) 2017-05-01 2022-09-06 Mitsubishi Electric Corporation Rotor, motor, compressor, and air conditioner
JP6992299B2 (en) * 2017-07-19 2022-01-13 株式会社アイシン Rotor
CN109067037B (en) * 2018-08-17 2020-06-26 江苏大学 High-torque-density hybrid permanent magnet motor rotor structure
JP6824333B2 (en) * 2019-06-03 2021-02-03 三菱電機株式会社 Electric motors, rotors, compressors and refrigeration and air conditioners
WO2022114075A1 (en) * 2020-11-26 2022-06-02 株式会社デンソー Rotor and rotating electric machine

Also Published As

Publication number Publication date
JP2009153365A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5117833B2 (en) Embedded magnet type motor
JP4372798B2 (en) Embedded magnet type motor
JP5806073B2 (en) Brushless motor
JP5301868B2 (en) Embedded magnet type motor
US7528519B2 (en) Permanent magnet rotary motor
JP5128387B2 (en) Embedded magnet type motor
US20150042194A1 (en) Single-phase brushless motor
JP5950163B2 (en) Rotating electric machine
US20110254402A1 (en) Brushless dc motor
US20130342065A1 (en) Brushless motor and method for manufacturing brushless motor
JP2008193809A (en) Embedded magnet type motor
JP2007104819A (en) Rotating electric machine
JP2014003758A (en) Embedded magnet type rotor having continuous skew structure
CN114221462A (en) Motor rotor
CN107465284B (en) Rotor, motor with rotor and electric tool
JP5006009B2 (en) Embedded magnet type motor
JP5373370B2 (en) Embedded magnet type motor
JP2019092298A (en) Stator, block of the stator, and rotary electric machine
JP5005830B1 (en) Rotor core, rotor and rotating electric machine
JP4718414B2 (en) Embedded magnet type motor
JP5301860B2 (en) Embedded magnet type motor
JP2007330027A (en) Buried-magnet motor
JP4777822B2 (en) Embedded magnet type motor
JP4758215B2 (en) Embedded magnet type motor
JP7484777B2 (en) Rotating Electric Machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees