Nothing Special   »   [go: up one dir, main page]

JP5127736B2 - Accident location detection system and accident section identification method - Google Patents

Accident location detection system and accident section identification method Download PDF

Info

Publication number
JP5127736B2
JP5127736B2 JP2009023059A JP2009023059A JP5127736B2 JP 5127736 B2 JP5127736 B2 JP 5127736B2 JP 2009023059 A JP2009023059 A JP 2009023059A JP 2009023059 A JP2009023059 A JP 2009023059A JP 5127736 B2 JP5127736 B2 JP 5127736B2
Authority
JP
Japan
Prior art keywords
coil
accident
magnetic field
tower
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009023059A
Other languages
Japanese (ja)
Other versions
JP2010183678A (en
Inventor
和文 橋本
文雄 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009023059A priority Critical patent/JP5127736B2/en
Publication of JP2010183678A publication Critical patent/JP2010183678A/en
Application granted granted Critical
Publication of JP5127736B2 publication Critical patent/JP5127736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、電力線に発生した事故の箇所を検出する事故箇所検出システム及びその事故箇所検出システムを用いた事故区間特定方法に関する。   The present invention relates to an accident location detection system that detects the location of an accident that has occurred on a power line, and an accident section identification method that uses the accident location detection system.

送電線の故障点を標定する方法には様々な方式があるが、故障であることを示す信号と、不要なノイズとを切り分けるために、電力線の近傍や架空地線に各種センサを取り付ける必要があった。その背景を以下に説明する。   There are various methods for locating the failure point of a transmission line, but it is necessary to attach various sensors near the power line or an overhead ground line in order to separate the signal indicating failure and unnecessary noise. there were. The background will be described below.

図6は、電力線を故障サージ電流が流れた場合の鉄塔への影響を示す図である。図6(a)は、鉄塔の上面図を示す。電力線EWと、架空地線GWとは高さが異なるが、各鉄塔間において略平行に架設される。電力線EWの一箇所に地絡事故が発生すると、その事故箇所(故障点)に向かって故障サージ電流が流れ込む。そして、その故障サージ電流が起因する電磁誘導により、架空地線GWに誘導サージ電流が流れる。この誘導サージ電流の方向は、故障サージ電流の方向とは逆になる。   FIG. 6 is a diagram illustrating the influence on the steel tower when a fault surge current flows through the power line. Fig.6 (a) shows the top view of a steel tower. The power line EW and the overhead ground line GW have different heights, but are installed substantially parallel between the steel towers. When a ground fault occurs at one location of the power line EW, a fault surge current flows toward the fault location (failure point). And the induction surge current flows into the overhead ground wire GW by the electromagnetic induction resulting from the failure surge current. The direction of this induced surge current is opposite to the direction of the fault surge current.

鉄塔の径間長の違い等により、図6(a)中鉄塔の左側と、右側とで電力線EW及び架空地線GWの電磁結合に差があると、架空地線GWの左側と、右側とで流れる誘導サージ電流の大きさに差分が生じ、その差分の電流が鉄塔を流れることになる。   If there is a difference in electromagnetic coupling between the power line EW and the overhead ground wire GW between the left side and the right side of the steel tower in FIG. 6 (a) due to the difference in the span length of the steel tower, the left side and the right side of the overhead ground wire GW A difference occurs in the magnitude of the induced surge current flowing through the tower, and the difference current flows through the steel tower.

図6(b)は、鉄塔一部の側面図(図6(a)のA矢視図)を示す。電力線EWを流れる故障サージ電流の作り出す磁束が、鉄塔部材のループ形状になった部分と鎖交し、塔脚に誘導サージ電流が流れる。この詳細については、特許文献1を参照のこと。   FIG.6 (b) shows the side view (A arrow directional view of Fig.6 (a)) of some steel towers. The magnetic flux created by the fault surge current flowing through the power line EW is linked to the loop-shaped portion of the tower member, and an induced surge current flows through the tower legs. See Patent Document 1 for details.

図6(c)は、鉄塔全体の側面図(図6(a)のB矢視図)を示す。地絡事故の発生箇所(区間)を標定するためには、電力線EWを流れる故障サージ電流の作り出す磁界の方向を検知する必要がある。ところが、地面の近くでは、故障サージ電流による磁界強度が弱く、塔脚を流れる誘導サージ電流の影響を無視できないので、故障サージ電流による磁界の方向を検知するのは難しい。   FIG.6 (c) shows the side view (B arrow view of Fig.6 (a)) of the whole steel tower. In order to determine the location (section) where the ground fault occurs, it is necessary to detect the direction of the magnetic field generated by the fault surge current flowing through the power line EW. However, near the ground, the magnetic field intensity due to the fault surge current is weak, and the influence of the induced surge current flowing through the tower base cannot be ignored, so it is difficult to detect the direction of the magnetic field due to the fault surge current.

以上により、従来の検出器は、地面の近くではなく、電力線の近くに置かれることになる。   As described above, the conventional detector is placed not near the ground but near the power line.

特開2008−39549号公報JP 2008-39549 A 特許第3226554号公報Japanese Patent No. 3226554

上記の従来の構成によれば、検出器のある高所の作業や、充電中の電力線に近付くような危険な作業を行う必要があるので、検出器の取付工事やメンテナンスの費用がかさむという問題がある。そこで、故障を示す信号と、不要ノイズとの切り分けを鉄塔の下部でも行える方法が求められている。   According to the above-described conventional configuration, it is necessary to perform work at a high place where the detector is located or dangerous work such as approaching the power line being charged, which increases the cost of detector installation and maintenance. There is. Therefore, there is a demand for a method capable of separating a signal indicating a failure from unnecessary noise even at the bottom of the steel tower.

なお、特許文献2に、送電線路によって形成される磁界を検出する複数のセンサを鉄塔の下部近傍に設置して事故発生区間を標定する方法が開示されているが、鉄塔の塔脚を流れるノイズ電流については考慮されていない。   Patent Document 2 discloses a method for locating an accident occurrence section by installing a plurality of sensors for detecting a magnetic field formed by a power transmission line in the vicinity of a lower part of a steel tower. Current is not considered.

本発明は、上記課題を鑑みてなされたものであり、その主たる目的は、地面の近くにおいて、電力線の故障を示す信号と、不要ノイズとを切り分けることにある。   The present invention has been made in view of the above problems, and its main purpose is to separate a signal indicating a power line failure and unnecessary noise near the ground.

上記課題を解決するために、本発明は、鉄塔に架設される電力線に発生した事故の箇所を検出する事故箇所検出システムであって、前記鉄塔のうち、地面の近くにおいて、前記電力線を流れる故障サージ電流の方向及び前記鉄塔の塔脚を流れる誘導サージ電流の方向の両方向に対して垂直に設置され、前記故障サージ電流及び前記誘導サージ電流による磁界である第1のサージ磁界を検出する第1のコイルと、前記鉄塔のうち、地面の近くにおいて、前記故障サージ電流の方向に平行に、かつ、前記誘導サージ電流の方向に垂直に設置され、前記誘導サージ電流による磁界である第2のサージ磁界を検出する第2のコイルと、前記第1のコイルの検出した前記第1のサージ磁界と、前記第2のコイルの検出した前記第2のサージ磁界との差分に基づいて、前記故障サージ電流の方向を判定する電流方向判定部と、を備えることを特徴とする。   In order to solve the above-mentioned problem, the present invention is an accident location detection system for detecting the location of an accident that has occurred in a power line installed on a steel tower, wherein the fault flows through the power line near the ground in the steel tower. A first surge magnetic field is installed perpendicular to both the direction of the surge current and the direction of the induced surge current flowing through the tower pedestal, and detects a first surge magnetic field that is a magnetic field due to the fault surge current and the induced surge current. And a second surge that is a magnetic field generated by the induced surge current and is installed near the ground, parallel to the direction of the fault surge current and perpendicular to the direction of the induced surge current. Difference between the second coil for detecting a magnetic field, the first surge magnetic field detected by the first coil, and the second surge magnetic field detected by the second coil Based on, characterized in that it comprises a current direction determination section determines the direction of the fault surge currents.

この構成によれば、第1のコイルは、電力線を流れる故障サージ電流の方向及び塔脚を流れる誘導サージ電流の方向に垂直に設置されるので、故障サージ電流による磁界及び誘導サージ電流による磁界をともに検出する。一方、第2のコイルは、故障サージ電流の方向に平行に、かつ、誘導サージ電流の方向に垂直に設置されるので、故障サージ電流による磁界は検出せず、塔脚の誘導サージ電流による磁界を検出する。そこで、第1のコイルの検出したサージ磁界と、第2のコイルの検出したサージ磁界との差分をとることにより、電力線における故障サージ電流による磁界の方向が分かり、ひいては、当該故障サージ電流の方向を判定することができる。これによれば、地面の近くにおいて、電力線の故障を示す信号(故障サージ電流)と、不要ノイズ(誘導サージ電流)とを切り分けることができる。   According to this configuration, since the first coil is installed perpendicular to the direction of the fault surge current flowing through the power line and the direction of the induced surge current flowing through the tower base, the magnetic field due to the fault surge current and the magnetic field due to the induced surge current are generated. Both are detected. On the other hand, since the second coil is installed in parallel to the direction of the fault surge current and perpendicular to the direction of the induced surge current, the magnetic field caused by the fault surge current is not detected, and the magnetic field caused by the tower base induced surge current is detected. Is detected. Therefore, by taking the difference between the surge magnetic field detected by the first coil and the surge magnetic field detected by the second coil, the direction of the magnetic field due to the fault surge current in the power line can be known, and consequently the direction of the fault surge current. Can be determined. According to this, it is possible to separate a signal indicating a power line failure (failure surge current) and unnecessary noise (inductive surge current) near the ground.

また、本発明は、事故箇所検出システムであって、前記電流方向判定部が、前記第1のコイルが前記第1のサージ磁界の変化に伴って出力する電圧と、前記第2のコイルが前記第2のサージ磁界の変化に伴って出力する電圧との差分をとり、その差分の正負に従って前記故障サージ電流の方向を判定することを特徴とする。   Moreover, this invention is an accident location detection system, Comprising: The said electric current direction determination part outputs the voltage which the said 1st coil outputs with a change of the said 1st surge magnetic field, and the said 2nd coil is the said It is characterized in that a difference from a voltage output in accordance with a change in the second surge magnetic field is taken, and the direction of the fault surge current is determined according to the sign of the difference.

また、本発明は、事故箇所検出システムであって、前記鉄塔のうち、地面の近くにおいて、前記故障サージ電流の方向に平行に、かつ、前記鉄塔の塔脚を流れる商用周波電流の方向に垂直に設置され、前記商用周波電流による磁界である商用周波磁界を検出し、第1の電圧を出力する第3のコイルと、前記第3のコイルの出力した前記第1の電圧をA/D変換し、第2の電圧として出力するA/D変換器と、前記A/D変換器の出力した第2の電圧の実効値が所定値以上である状態が、所定時間以上継続した場合に、当該第3のコイルの設置された鉄塔において事故が発生したと判定する自鉄塔事故判定部と、をさらに備えることを特徴とする。   The present invention is also an accident location detection system, wherein the tower is near the ground, parallel to the direction of the fault surge current and perpendicular to the direction of the commercial frequency current flowing through the tower legs. A third coil that detects a commercial frequency magnetic field that is a magnetic field generated by the commercial frequency current and outputs a first voltage; and A / D converts the first voltage output from the third coil. When the state where the effective value of the A / D converter that outputs the second voltage and the second voltage output from the A / D converter is equal to or greater than a predetermined value continues for a predetermined time or longer, And a self-tower accident determination unit that determines that an accident has occurred in the steel tower in which the third coil is installed.

この構成によれば、地面の近くにおいて、第3のコイルが電力線を流れる故障サージ電流の方向に平行に、かつ、塔脚を流れる商用周波電流の方向に垂直に設置されるので、商用周波電流による磁界を検出することができる。これによれば、第3のコイルの設置された鉄塔において事故が発生したことを知ることができる。   According to this configuration, the third coil is installed near the ground in parallel to the direction of the fault surge current flowing through the power line and perpendicular to the direction of the commercial frequency current flowing through the tower base. The magnetic field by can be detected. According to this, it can be known that an accident has occurred in the steel tower in which the third coil is installed.

また、本発明は、事故箇所検出システムであって、前記第1のコイルと、前記第2のコイルとが、前記塔脚の軸を中心とする同心円上に設置され、かつ、同じ電磁誘導特性を有することを特徴とする。   Further, the present invention is an accident location detection system, wherein the first coil and the second coil are installed on a concentric circle centered on the axis of the tower base, and have the same electromagnetic induction characteristics It is characterized by having.

この構成によれば、2つのコイルが、塔脚の軸から同じ距離に位置し、同じ電磁誘導特性を有するので、設置方向を除いた条件が同じになり、塔脚を流れる誘導サージ電流による磁界を等しく検出する。これによれば、電力線を流れる故障サージ電流を精確に特定することができ、その方向を精度よく判定することができる。   According to this configuration, since the two coils are located at the same distance from the tower base axis and have the same electromagnetic induction characteristics, the conditions except for the installation direction are the same, and the magnetic field due to the induced surge current flowing through the tower base is the same. Are detected equally. According to this, it is possible to accurately specify the fault surge current flowing through the power line, and to accurately determine the direction thereof.

また、本発明は、前記事故箇所検出システムを用いて、前記電力線における事故区間を特定する事故区間特定方法であって、連なる複数の前記鉄塔ごとに、当該鉄塔のうち、地面の近くに前記第1のコイル及び前記第2のコイルを設置するステップと、前記電力線に事故が発生した場合に、前記鉄塔ごとの前記電流方向判定部が判定した前記故障サージ電流の方向を取得するステップと、隣接する2つの鉄塔に係る前記電流方向判定部が判定した前記故障サージ電流の方向が反転したときに、当該2つの鉄塔の間を事故区間として特定するステップと、を実行することを特徴とする。   Further, the present invention provides an accident section identification method for identifying an accident section in the power line using the accident location detection system, wherein each of a plurality of the towers connected to each other is near the ground. A step of installing the first coil and the second coil, a step of acquiring the direction of the fault surge current determined by the current direction determination unit for each tower when an accident occurs in the power line, When the direction of the fault surge current determined by the current direction determination unit relating to the two towers is reversed, the step of identifying the section between the two towers as an accident section is performed.

この方法によれば、鉄塔のうち、地面の近くに設置されたコイルを用いて事故区間を特定するので、危険な高所作業がなくなるとともに、事故箇所検出システムの取付工事費やメンテナンス費用の低減が可能になる。   According to this method, because the accident section is identified using a coil installed near the ground in the steel tower, dangerous high-altitude work is eliminated, and installation work costs and maintenance costs for the accident location detection system are reduced. Is possible.

その他、本願が開示する課題及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   In addition, the problems disclosed by the present application and the solutions thereof will be clarified by the description of the mode for carrying out the invention and the drawings.

本発明によれば、地面の近くにおいて、電力線の故障を示す信号と、不要ノイズとを切り分けることができる。これによれば、電力線の故障を示す信号を検出するためのコイルを地面近くに設置可能であり、危険な高所作業がなくなるので、事故箇所検出システムの取付工事費やメンテナンス費用の低減が可能になる。   According to the present invention, a signal indicating a power line failure and unnecessary noise can be separated near the ground. According to this, it is possible to install a coil for detecting a signal indicating a power line failure near the ground, and there is no dangerous work in high places, so it is possible to reduce the installation cost and maintenance cost of the accident location detection system become.

事故区間を標定する方法の原理を説明する図である。It is a figure explaining the principle of the method of locating an accident area. 自鉄塔以外の地絡事故を検出する方法の原理を説明する図であり、(a)は鉄塔の正面図を示し、(b)及び(c)は鉄塔の上面図を示し、(c)は特に電力線に水平角がある場合のコイルの取付方法を示す。It is a figure explaining the principle of the method of detecting a ground fault other than the own tower, (a) shows a front view of the tower, (b) and (c) show a top view of the tower, (c) In particular, the method of attaching the coil when the power line has a horizontal angle is shown. 自鉄塔の地絡事故を検出する方法の原理を説明する図であり、(a)は鉄塔の正面図を示し、(b)は鉄塔の上面図を示す。It is a figure explaining the principle of the method of detecting the ground fault accident of the own steel tower, (a) shows the front view of a steel tower, (b) shows the top view of a steel tower. 検出システム1の構成を示す図である。1 is a diagram illustrating a configuration of a detection system 1. FIG. 検出システム1の処理を示すフローチャートである。3 is a flowchart showing processing of the detection system 1. 電力線を故障サージ電流が流れた場合の鉄塔への影響を示す図であり、(a)は鉄塔の上面図を示し、(b)は鉄塔一部の側面図を示し、(c)は鉄塔全体の側面図を示す。It is a figure which shows the influence on a steel tower when a fault surge current flows through a power line, (a) shows the top view of a steel tower, (b) shows the side view of a part of steel tower, (c) is the whole steel tower The side view of is shown.

以下、図面を参照しながら、本発明を実施するための形態を説明する。本発明の実施の形態に係る検出システム(事故箇所検出システム)は、自鉄塔以外の事故については、地面近くに、電力線を流れる故障サージ電流の方向及び塔脚を流れる誘導サージ電流の方向の両方向に対して垂直な軸方向を持つ第1のコイルと、故障サージ電流の方向に平行で、かつ、誘導サージ電流の方向に垂直な軸方向を持つ第2のコイル(第2のコイルは塔脚電流のみを検出する変流器でもよい)とを設置し、第1のコイルの検出したサージ磁界と、第2のコイルの検出したサージ磁界との差分に基づいて、誘導サージ電流が作る磁界をキャンセルし、故障サージ電流が作る磁界の方向(さらには、当該故障サージ電流の方向)を検出するものである。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The detection system (accident location detection system) according to the embodiment of the present invention is configured so that, for accidents other than the own tower, both directions of the fault surge current flowing through the power line and the induced surge current flowing through the tower base are near the ground. And a second coil having an axial direction parallel to the direction of the fault surge current and perpendicular to the direction of the induced surge current (the second coil is a column base) A current transformer that detects only the current) is installed, and the magnetic field created by the induced surge current is determined based on the difference between the surge magnetic field detected by the first coil and the surge magnetic field detected by the second coil. The direction of the magnetic field generated by the failure surge current is canceled (and the direction of the failure surge current is detected).

一方、自鉄塔の地絡事故の判定については、地面近くに、故障サージ電流の方向に平行で、かつ、塔脚を流れる商用周波磁界の方向に垂直な軸方向を持ち、商用周波磁界を検出する第3のコイルをさらに設置し、第3のコイルが検出した事故鉄塔脚の商用周波電流による磁界を用いる。   On the other hand, for the determination of the ground fault of the own tower, the commercial frequency magnetic field is detected near the ground, with the axis direction parallel to the direction of the fault surge current and perpendicular to the direction of the commercial frequency magnetic field flowing through the tower base. A third coil to be installed is further installed, and the magnetic field generated by the commercial frequency current of the accident tower base detected by the third coil is used.

これによれば、連なる複数の各鉄塔に検出システムを配置することで、2台の検出システムが事故点をはさんで配置されている場合に、当該2台の検出システムが検出する磁界の方向が反転するため、事故区間を標定することができる。また、地絡事故の特定に際して、高い信頼性が得られる。   According to this, by arranging a detection system on each of a plurality of consecutive steel towers, when two detection systems are arranged across an accident point, the direction of the magnetic field detected by the two detection systems Since the situation is reversed, the accident section can be located. In addition, high reliability can be obtained when identifying a ground fault.

図1は、事故区間を標定する方法の原理を説明する図である。図1に示すように、複数の鉄塔の下部(地面の近く)に磁界の方向(さらには、電流の方向)を検出する検出システム1が設置され、複数の検出システム1により検出された磁界の方向(さらには、電流の方向)のうち、その方向が反転する区間を事故区間として標定する。   FIG. 1 is a diagram for explaining the principle of a method for locating an accident section. As shown in FIG. 1, a detection system 1 for detecting the direction of a magnetic field (further, the direction of current) is installed at the lower part (near the ground) of a plurality of towers, and the magnetic fields detected by the plurality of detection systems 1 are detected. Of the directions (and the current direction), the section where the direction is reversed is determined as the accident section.

詳細には、図の中央に示す電力線EW上の事故点で地絡事故が発生すると、その事故点に向かって、故障サージ電流が流れ込む。これにより、図中事故点より左側の鉄塔に設置された検出システム1a、1b及び1cは、故障サージ電流が右方向に流れることを検出する。一方、図中事故点より右側の鉄塔に設置された検出システム1d、1e及び1fは、故障サージ電流が左方向に流れることを検出する。そこで、検出システム1a〜1fの検出した電流の方向を順番に見ていくと、検出システム1cと、1dとの間で電流の方向が反転することが分かる。これにより、検出システム1cと、1dとの間の区間で地絡事故が発生したことが標定できる。なお、事故区間の標定は、各検出システム1と通信可能なコンピュータシステムを用いてもよいし、人が各検出システム1の出力情報(電流の方向)を把握し、判断してもよい。   Specifically, when a ground fault occurs at an accident point on the power line EW shown in the center of the figure, a fault surge current flows toward the accident point. As a result, the detection systems 1a, 1b, and 1c installed on the steel tower on the left side of the accident point in the figure detect that the fault surge current flows in the right direction. On the other hand, the detection systems 1d, 1e, and 1f installed on the steel tower on the right side of the accident point in the figure detect that a fault surge current flows in the left direction. Therefore, when the current directions detected by the detection systems 1a to 1f are viewed in order, it is understood that the current direction is reversed between the detection systems 1c and 1d. Thereby, it can be determined that a ground fault has occurred in the section between the detection systems 1c and 1d. For the orientation of the accident section, a computer system that can communicate with each detection system 1 may be used, or a person may grasp and judge the output information (current direction) of each detection system 1.

図2は自鉄塔以外の地絡事故を検出する方法の原理を説明する図であり、図2(a)は鉄塔の正面図を示し、図2(b)は鉄塔の上面図を示す。図2(c)は、鉄塔の上面図を示し、特に電力線に水平角がある場合のコイルの取付方法を示す。   FIG. 2 is a diagram for explaining the principle of a method of detecting a ground fault other than the own tower, FIG. 2 (a) shows a front view of the steel tower, and FIG. 2 (b) shows a top view of the steel tower. FIG.2 (c) shows the top view of a steel tower, and shows the attachment method of a coil especially when a power line has a horizontal angle.

電力線EWにおいて地絡事故が発生した場合、当該電力線EWのうち、事故点を挟んで隣接する2つの鉄塔付近を伝搬する故障サージ電流の方向が異なるので、連なる複数の各鉄塔において故障サージ電流が作る磁界の方向を検出することにより、磁界の方向が反転する鉄塔区間を事故区間(故障区間)として特定することができる。ただし、架空地線GWを流れる誘導サージ電流の差分や、鉄塔部材のループに誘起される誘導サージ電流が鉄塔脚に流れ、その鉄塔脚の周辺に磁界を作る。すなわち、鉄塔脚の周辺には、故障サージ電流による磁界と、誘導サージ電流による磁界とが作られているので、故障サージ電流分だけを検出する必要がある。なお、架空地線GWを流れる誘導サージ電流も磁界を作るが、鉄塔下部からは架空地線GWが電力線EWより遠方にあるので、影響は小さい。   When a ground fault occurs in the power line EW, the direction of the fault surge current propagating in the vicinity of two adjacent towers across the fault point in the power line EW is different. By detecting the direction of the magnetic field to be created, the tower section where the direction of the magnetic field is reversed can be specified as the accident section (failure section). However, the difference of the induced surge current flowing through the overhead ground wire GW and the induced surge current induced in the loop of the steel tower member flow to the steel tower leg, and create a magnetic field around the steel tower leg. That is, since a magnetic field due to a fault surge current and a magnetic field due to an induced surge current are created around the tower pedestal, it is necessary to detect only the fault surge current. The induced surge current flowing through the overhead ground wire GW also creates a magnetic field, but the influence is small because the overhead ground wire GW is farther from the power line EW from the lower part of the tower.

そこで、図2に示すように、検出システム1のコイルC1及びC2は、鉄塔の下部、すなわち、地面近くに設置される。この場合、コイルC1と、コイルC2とは、同じ高さ(塔脚の軸を中心とする同心円上であるが、塔脚を流れる電流による磁界の変化を等しく検出する範囲内の位置ずれは許容される。)に設置され、電磁誘導に係る特性(例えば、コイルの巻き数)も同じであり、サージ電流による磁界であるサージ磁界を検出するものとする。   Therefore, as shown in FIG. 2, the coils C1 and C2 of the detection system 1 are installed in the lower part of the steel tower, that is, near the ground. In this case, the coil C1 and the coil C2 are at the same height (concentric circles centered on the axis of the tower pedestal, but are not allowed to be misaligned within a range in which changes in the magnetic field due to the current flowing through the tower pedestal are equally detected. The characteristics (for example, the number of turns of the coil) related to electromagnetic induction are the same, and a surge magnetic field that is a magnetic field due to a surge current is detected.

コイルC1は、その軸方向が電力線EWを流れる故障サージ電流の方向及び塔脚を流れる誘導サージ電流の方向に垂直になるように設置される。これにより、コイルC1は、電力線EWを伝搬する故障サージ電流が作る磁束に鎖交し、かつ、塔脚に流れる誘導サージ電流が作る磁束にも鎖交するので、故障サージ電流による磁界及び誘導サージ電流による磁界をともに検出する。一方、コイルC2は、その軸方向が故障サージ電流の方向に平行に、かつ、誘導サージ電流の方向に垂直になるように設置される。これにより、コイルC2は、当該故障サージ電流が作る磁束に鎖交せず、かつ、当該誘導サージ電流が作る磁束に鎖交するので、誘導サージ電流による磁界だけを検出する。そして、検出システム1は、コイルC1の検出した磁界と、コイルC2の検出した磁界との差分をとることにより、塔脚を流れる誘導サージ電流の影響を除去し、電力線EWを流れる故障サージ電流による磁界の方向(ひいては、故障サージ電流の方向)を判定する。
なお、コイルC3は図示されているが、原理的には使用しない。
The coil C1 is installed such that its axial direction is perpendicular to the direction of the fault surge current flowing through the power line EW and the direction of the induced surge current flowing through the tower base. As a result, the coil C1 is linked to the magnetic flux generated by the fault surge current propagating through the power line EW and also linked to the magnetic flux generated by the induced surge current flowing in the tower base. Both magnetic fields due to current are detected. On the other hand, the coil C2 is installed such that its axial direction is parallel to the direction of the fault surge current and perpendicular to the direction of the induced surge current. As a result, the coil C2 is not linked to the magnetic flux generated by the fault surge current, and is linked to the magnetic flux generated by the induced surge current, so that only the magnetic field due to the induced surge current is detected. Then, the detection system 1 takes the difference between the magnetic field detected by the coil C1 and the magnetic field detected by the coil C2, thereby removing the influence of the induced surge current flowing through the tower base, and by the failure surge current flowing through the power line EW. The direction of the magnetic field (and hence the direction of the fault surge current) is determined.
Although the coil C3 is illustrated, it is not used in principle.

図3は、自鉄塔の地絡事故を検出する方法の原理を説明する図であり、図3(a)は鉄塔の正面図を示し、図3(b)は鉄塔の上面図を示す。   FIG. 3 is a diagram for explaining the principle of a method for detecting a ground fault in the own tower, in which FIG. 3 (a) shows a front view of the tower and FIG. 3 (b) shows a top view of the tower.

電力線EWを流れる故障サージ電流は事故点に向かって流れ込んで来るため、その事故点の直下における磁界分布が複雑な様相となり、当該故障サージ電流が作る磁界をうまく検出できないと考えられる。このため、故障サージ電流による磁界の方向の判定を事故点の特定に使用することができない。従って、コイルC1は図示されているが、原理的には使用しない。そして、鉄塔において地絡事故が発生した場合、事故点に流れ込んで来た故障電流は、サージ成分及び商用周波成分ともに、架空地線GW側と、対地側とに分流する。   Since the fault surge current flowing through the power line EW flows toward the accident point, the magnetic field distribution immediately below the fault point becomes a complex aspect, and it is considered that the magnetic field generated by the fault surge current cannot be detected well. For this reason, the determination of the direction of the magnetic field due to the fault surge current cannot be used to identify the accident point. Therefore, although the coil C1 is illustrated, it is not used in principle. When a ground fault occurs in the steel tower, the fault current that has flowed into the point of the accident is shunted to the overhead ground wire GW side and the ground side, together with the surge component and the commercial frequency component.

そこで、図3に示すように、検出システム1は、検出する周波数帯域の異なるコイルC2及びC3を備える。コイルC2及びC3は、その軸方向が電力線EWを流れる故障サージ電流の方向に平行に、かつ、塔脚を流れる電流の方向に垂直になるように設置される。そして、コイルC2は、塔脚を流れる故障電流のうち、サージ電流が作るサージ磁界だけを捕捉する。一方、コイルC3は、塔脚を流れる故障電流のうち、商用周波電流が作る商用周波磁界だけを捕捉する。検出システム1において、コイルC2の出力と、コイルC3の出力とのANDをとり、自鉄塔の事故と判定する。詳細には、待機電力を抑えるために、コイルC2の出力が所定値以上であることをトリガとして、コイルC3の出力電圧をA/D(Analog/Digital)変換し、デジタル化された出力の実効値及び継続時間の妥当性を判定する。   Therefore, as shown in FIG. 3, the detection system 1 includes coils C2 and C3 having different frequency bands to be detected. The coils C2 and C3 are installed so that the axial direction thereof is parallel to the direction of the fault surge current flowing through the power line EW and perpendicular to the direction of the current flowing through the tower base. And coil C2 captures only the surge magnetic field which a surge current makes among fault currents which flow through a tower. On the other hand, the coil C3 captures only the commercial frequency magnetic field generated by the commercial frequency current among the fault currents flowing through the tower legs. In the detection system 1, an AND of the output of the coil C2 and the output of the coil C3 is taken and it is determined that the accident of the own tower. Specifically, in order to suppress standby power, the output voltage of the coil C3 is A / D (Analog / Digital) converted by using the output of the coil C2 to be a predetermined value or more as a trigger, and the digitized output is effective. Determine the validity of the value and duration.

図4は、検出システム1の構成を示す図である。検出システム1は、コイルC1、C2、C3、閾値記憶部11、電圧判定部12、A/D変換部13、実効値継続時間計測部14、自鉄塔事故判定部15、電流方向判定部16及び判定結果出力部17を備える。   FIG. 4 is a diagram illustrating a configuration of the detection system 1. The detection system 1 includes coils C1, C2, C3, a threshold storage unit 11, a voltage determination unit 12, an A / D conversion unit 13, an effective value duration measurement unit 14, an own tower accident determination unit 15, a current direction determination unit 16, and A determination result output unit 17 is provided.

コイルC1は、電力線EWの故障サージ電流による磁界成分(1kHz以上)及び塔脚の電流によるサージ磁界成分(1kHz以上)を検出する。コイルC2は、塔脚の電流によるサージ磁界成分(1kHz以上)だけを検出する。コイルC3は、塔脚の電流による商用磁界成分(50Hz又は60Hz)を検出する。   The coil C1 detects a magnetic field component (1 kHz or more) due to a fault surge current of the power line EW and a surge magnetic field component (1 kHz or more) due to a tower leg current. The coil C2 detects only a surge magnetic field component (1 kHz or more) due to the tower base current. The coil C3 detects a commercial magnetic field component (50 Hz or 60 Hz) due to the tower base current.

閾値記憶部11は、検出システム1内で用いられる閾値(コイルC1及びC2の出力した磁界成分の閾値や、コイルC3の出力した磁界成分の閾値)を記憶する部分であり、例えば、フラッシュメモリやハードディスク装置等の不揮発性記憶装置によって実現される。電圧判定部12は、コイルC1及びC2が出力し、HPF(High Pass Filter)を通過した磁界成分の電圧が閾値より大きいか否かを判定する。コイルC2の磁界成分の電圧だけが閾値より大きければ、A/D変換部13に処理開始を指示する。コイルC1及びC2の磁界成分の電圧がともに閾値より大きければ、電流方向判定部16に処理開始を指示する。なお、コイルC1及びC2が電圧判定部12に出力する磁界成分の電圧レベルを調整して、電流方向判定の精度を上げるようにしてもよい。   The threshold storage unit 11 is a part that stores thresholds used in the detection system 1 (threshold values of magnetic field components output by the coils C1 and C2, and threshold values of magnetic field components output by the coil C3). This is realized by a non-volatile storage device such as a hard disk device. The voltage determination unit 12 determines whether or not the voltage of the magnetic field component output from the coils C1 and C2 and passed through the HPF (High Pass Filter) is greater than a threshold value. If only the voltage of the magnetic field component of the coil C2 is greater than the threshold value, the A / D converter 13 is instructed to start processing. If the voltages of the magnetic field components of the coils C1 and C2 are both greater than the threshold value, the current direction determination unit 16 is instructed to start processing. In addition, the accuracy of the current direction determination may be improved by adjusting the voltage level of the magnetic field component output from the coils C1 and C2 to the voltage determination unit 12.

A/D変換部13は、電圧判定部12からのトリガを受けて、コイルC3が出力し、LPF(Low Pass Filter)を通過した電圧をA/D変換する部分であり、アナログ電気信号をデジタル電気信号に変換する電子回路によって実現される。実効値継続時間計測部14は、A/D変換部13が出力したデジタル波形から電圧の実効値及び継続時間を計測する部分であり、デジタル波形を処理する電子回路によって実現される。自鉄塔事故判定部15は、実効値継続時間計測部14が計測した電圧の実効値及び継続時間と、閾値記憶部11に記憶された閾値とを比較し、自鉄塔(検出システム1の設置された鉄塔)の事故か否かを判定する。電流方向判定部16は、コイルC1がサージ磁界の変化に伴って出力する電圧と、コイルC2がサージ磁界の変化に伴って出力する電圧との差分をとり、その差分の正負に従って電力線EWの故障サージ電流の方向を判定する。判定結果出力部17は、自鉄塔事故判定部15及び電流方向判定部16の判定結果を出力する部分であり、ディスプレイに表示してもよいし、ネットワークを通じて他の装置に通知してもよい。   The A / D converter 13 receives the trigger from the voltage determination unit 12 and performs A / D conversion on the voltage output from the coil C3 and passed through the LPF (Low Pass Filter). It is realized by an electronic circuit that converts it into an electrical signal. The effective value duration measurement unit 14 is a part that measures the effective value and duration of the voltage from the digital waveform output from the A / D conversion unit 13, and is realized by an electronic circuit that processes the digital waveform. The own tower accident determination unit 15 compares the effective value and duration of the voltage measured by the effective value duration measurement unit 14 with the threshold value stored in the threshold value storage unit 11, and the own tower (the detection system 1 is installed). It is determined whether or not there is an accident. The current direction determination unit 16 takes the difference between the voltage output by the coil C1 with the change of the surge magnetic field and the voltage output by the coil C2 with the change of the surge magnetic field, and the failure of the power line EW according to the positive / negative of the difference Determine the direction of the surge current. The determination result output part 17 is a part which outputs the determination result of the own tower accident determination part 15 and the electric current direction determination part 16, and may display it on a display and may notify another apparatus through a network.

なお、電圧判定部12、自鉄塔事故判定部15及び電流方向判定部16は、CPU(Central Processing Unit)が所定のメモリに格納されたプログラムを実行することによって実現される。また、コイルC1、C2及びC3は、鉄塔の塔脚に設置されるが、他の各部11〜17の設置場所は鉄塔に限定されない。   In addition, the voltage determination part 12, the own tower failure determination part 15, and the current direction determination part 16 are implement | achieved when CPU (Central Processing Unit) runs the program stored in the predetermined memory. Moreover, although the coils C1, C2, and C3 are installed on the tower base of the steel tower, the installation locations of the other parts 11 to 17 are not limited to the steel tower.

図5は、検出システム1の処理を示すフローチャートである。検出システム1において、まず、電圧判定部12が、コイルC2の出力した電圧が閾値より大きいか否かを判定する(S501)。コイルC2の電圧が閾値より小さいか、同じであれば(S501のNO)、S501の判定を繰り返す。コイルC2の電圧が閾値より大きければ(S501のYES)、電圧判定部12が、コイルC1の出力した電圧が閾値より大きいか否かを判定する(S502)。   FIG. 5 is a flowchart showing the processing of the detection system 1. In the detection system 1, first, the voltage determination unit 12 determines whether or not the voltage output from the coil C2 is greater than a threshold value (S501). If the voltage of the coil C2 is less than or equal to the threshold (NO in S501), the determination in S501 is repeated. If the voltage of the coil C2 is greater than the threshold (YES in S501), the voltage determination unit 12 determines whether the voltage output from the coil C1 is greater than the threshold (S502).

コイルC1の磁界が閾値より小さいか、同じであれば(S502のNO)、自鉄塔事故判定部15が自鉄塔の事故か否かを判定する(S503)。例えば、コイルC3が出力し、A/D変換部13が変換し、実効値継続時間計測部14が計測した電圧の実効値が閾値記憶部11に記憶された閾値(所定値)以上であり、かつ、当該計測した電圧の継続時間が当該記憶された閾値である60Hzの3サイクル分(=0.05秒)以上であるか否かを判定する。60Hzの3サイクル分とは、地絡事故が発生してから変電所の遮断器が制御所の指示を受けて切断するまでの時間である。自鉄塔の事故であると判定するには、十分な商用周波電流が十分な時間だけ継続して流れたという事実の認定が必要である。   If the magnetic field of the coil C1 is smaller than or equal to the threshold (NO in S502), the own tower accident determination unit 15 determines whether or not the own tower accident occurred (S503). For example, the effective value of the voltage output by the coil C3, converted by the A / D conversion unit 13, and measured by the effective value duration measurement unit 14 is equal to or greater than the threshold value (predetermined value) stored in the threshold value storage unit 11, In addition, it is determined whether or not the duration time of the measured voltage is equal to or longer than 3 cycles (= 0.05 seconds) of 60 Hz that is the stored threshold value. The 60 Hz three-cycle period is the time from the occurrence of a ground fault to the disconnection of the substation circuit breaker in response to an instruction from the control station. In order to determine that it is an accident in the own tower, it is necessary to certify the fact that sufficient commercial frequency current has continued for a sufficient amount of time.

自鉄塔の事故でなければ(S503のNO)、S501の判定に戻る。自鉄塔の事故であれば(S503のYES)、判定結果出力部17が自鉄塔の事故であることを出力する。   If the accident is not in the own tower (NO in S503), the process returns to the determination in S501. If the accident is in the own tower (YES in S503), the determination result output unit 17 outputs that the accident is in the own tower.

S502において、コイルC1の磁界が閾値より大きければ(S502のYES)、電流方向判定部16が電力線EWの故障サージ電流の方向を判定する(S505)。そして、判定結果出力部17が、他鉄塔事故であること及び故障サージ電流の方向を出力する(S506)。   If the magnetic field of the coil C1 is larger than the threshold value in S502 (YES in S502), the current direction determination unit 16 determines the direction of the fault surge current of the power line EW (S505). And the determination result output part 17 outputs that it is an other tower accident and the direction of a failure surge current (S506).

以上説明した本発明の実施の形態によれば、コイルが地面の近くに設置された検出システム1において、コイルC1の検出したサージ磁界と、コイルC2の検出したサージ磁界との差分をとることにより、電力線EWを流れる故障サージ電流による磁界の方向が分かる。これによれば、地面の近くにおいて、所望の電力線における故障サージ電流と、不要なノイズである誘導サージ電流とを切り分けることができ、当該故障サージ電流の方向を判定することができる。   According to the embodiment of the present invention described above, in the detection system 1 in which the coil is installed near the ground, by taking the difference between the surge magnetic field detected by the coil C1 and the surge magnetic field detected by the coil C2. The direction of the magnetic field due to the fault surge current flowing through the power line EW is known. According to this, a fault surge current in a desired power line and an induced surge current that is unnecessary noise can be separated near the ground, and the direction of the fault surge current can be determined.

また、地面の近くにおいて、コイル3が商用周波磁界を検出することにより、検出システム1の設置された鉄塔において地絡事故が発生したことを知ることができる。   Further, when the coil 3 detects the commercial frequency magnetic field near the ground, it can be known that a ground fault has occurred in the steel tower where the detection system 1 is installed.

以上によれば、地面の近くに設置されたコイルを用いて事故区間を特定するので、危険な高所作業がなくなるとともに、検出システム1の取付工事費やメンテナンス費用の低減が可能になる。   According to the above, since the accident section is specified using the coil installed near the ground, dangerous high place work is eliminated and the installation work cost and the maintenance cost of the detection system 1 can be reduced.

以上、本発明を実施するための形態について説明したが、上記実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。   As mentioned above, although the form for implementing this invention was demonstrated, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention.

1 検出システム(事故検出システム)
12 電圧判定部
13 A/D変換部
14 実効値継続時間計測部
15 自鉄塔事故判定部
16 電流方向判定部
C1 コイル(第1のコイル)
C2 コイル(第2のコイル)
C3 コイル(第3のコイル)
EW 電力線
1 Detection system (accident detection system)
DESCRIPTION OF SYMBOLS 12 Voltage determination part 13 A / D conversion part 14 RMS value continuation time measurement part 15 Self tower failure determination part 16 Current direction determination part C1 coil (1st coil)
C2 coil (second coil)
C3 coil (third coil)
EW power line

Claims (5)

鉄塔に架設される電力線に発生した事故の箇所を検出する事故箇所検出システムであって、
前記鉄塔のうち、地面の近くにおいて、前記電力線を流れる故障サージ電流の方向及び前記鉄塔の塔脚を流れる誘導サージ電流の方向の両方向に対して垂直に設置され、前記故障サージ電流及び前記誘導サージ電流による磁界である第1のサージ磁界を検出する第1のコイルと、
前記鉄塔のうち、地面の近くにおいて、前記故障サージ電流の方向に平行に、かつ、前記誘導サージ電流の方向に垂直に設置され、前記誘導サージ電流による磁界である第2のサージ磁界を検出する第2のコイルと、
前記第1のコイルの検出した前記第1のサージ磁界と、前記第2のコイルの検出した前記第2のサージ磁界との差分に基づいて、前記故障サージ電流の方向を判定する電流方向判定部と、
を備えることを特徴とする事故箇所検出システム。
An accident location detection system that detects the location of an accident that occurred in a power line installed on a steel tower,
Among the towers, the fault surge current and the induced surge are installed near the ground, perpendicular to both the direction of the fault surge current flowing through the power line and the direction of the induced surge current flowing through the tower base of the tower. A first coil that detects a first surge magnetic field that is a magnetic field due to an electric current;
Among the steel towers, a second surge magnetic field is installed near the ground, parallel to the direction of the fault surge current and perpendicular to the direction of the induced surge current, and is a magnetic field caused by the induced surge current. A second coil;
A current direction determination unit that determines the direction of the fault surge current based on a difference between the first surge magnetic field detected by the first coil and the second surge magnetic field detected by the second coil. When,
An accident point detection system comprising:
請求項1に記載の事故箇所検出システムであって、
前記電流方向判定部は、
前記第1のコイルが前記第1のサージ磁界の変化に伴って出力する電圧と、前記第2のコイルが前記第2のサージ磁界の変化に伴って出力する電圧との差分をとり、その差分の正負に従って前記故障サージ電流の方向を判定する
ことを特徴とする事故箇所検出システム。
The accident point detection system according to claim 1,
The current direction determination unit
The difference between the voltage output by the first coil in accordance with the change of the first surge magnetic field and the voltage output by the second coil in accordance with the change of the second surge magnetic field is taken. A fault location detection system, characterized in that the direction of the fault surge current is determined according to the sign of.
請求項1又は請求項2に記載の事故箇所検出システムであって、
前記鉄塔のうち、地面の近くにおいて、前記故障サージ電流の方向に平行に、かつ、前記鉄塔の塔脚を流れる商用周波電流の方向に垂直に設置され、前記商用周波電流による磁界である商用周波磁界を検出し、第1の電圧を出力する第3のコイルと、
前記第3のコイルの出力した前記第1の電圧をA/D変換し、第2の電圧として出力するA/D変換器と、
前記A/D変換器の出力した第2の電圧の実効値が所定値以上である状態が、所定時間以上継続した場合に、当該第3のコイルの設置された鉄塔において事故が発生したと判定する自鉄塔事故判定部と、
をさらに備えることを特徴とする事故箇所検出システム。
The accident location detection system according to claim 1 or claim 2,
Among the towers, near the ground, parallel to the direction of the fault surge current and perpendicular to the direction of the commercial frequency current flowing through the tower legs of the tower, the commercial frequency which is a magnetic field by the commercial frequency current A third coil that detects a magnetic field and outputs a first voltage;
An A / D converter that performs A / D conversion on the first voltage output from the third coil and outputs the second voltage as a second voltage;
When the state in which the effective value of the second voltage output from the A / D converter is equal to or greater than a predetermined value continues for a predetermined time or more, it is determined that an accident has occurred in the tower where the third coil is installed. Own steel tower accident judgment department,
An accident location detection system further comprising:
請求項1ないし請求項3のいずれか一項に記載の事故箇所検出システムであって、
前記第1のコイルと、前記第2のコイルとは、前記塔脚の軸を中心とする同心円上に設置され、かつ、同じ電磁誘導特性を有する
ことを特徴とする事故箇所検出システム。
An accident point detection system according to any one of claims 1 to 3,
The accident location detection system, wherein the first coil and the second coil are installed on concentric circles centered on the axis of the tower base and have the same electromagnetic induction characteristics.
請求項1ないし請求項4のいずれか一項に記載の事故箇所検出システムを用いて、前記電力線における事故区間を特定する事故区間特定方法であって、
連なる複数の前記鉄塔ごとに、当該鉄塔のうち、地面の近くに前記第1のコイル及び前記第2のコイルを設置するステップと、
前記電力線に事故が発生した場合に、前記鉄塔ごとの前記電流方向判定部が判定した前記故障サージ電流の方向を取得するステップと、
隣接する2つの鉄塔に係る前記電流方向判定部が判定した前記故障サージ電流の方向が反転したときに、当該2つの鉄塔の間を事故区間として特定するステップと、
を実行することを特徴とする事故区間特定方法。
An accident section identification method for identifying an accident section in the power line using the accident location detection system according to any one of claims 1 to 4,
For each of the plurality of towers connected, the step of installing the first coil and the second coil near the ground among the towers;
When an accident occurs in the power line, obtaining the direction of the fault surge current determined by the current direction determination unit for each of the towers;
When the direction of the fault surge current determined by the current direction determination unit related to two adjacent towers is reversed, the step of identifying the interval between the two towers as an accident section;
A method for identifying an accident section, characterized in that
JP2009023059A 2009-02-03 2009-02-03 Accident location detection system and accident section identification method Expired - Fee Related JP5127736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023059A JP5127736B2 (en) 2009-02-03 2009-02-03 Accident location detection system and accident section identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023059A JP5127736B2 (en) 2009-02-03 2009-02-03 Accident location detection system and accident section identification method

Publications (2)

Publication Number Publication Date
JP2010183678A JP2010183678A (en) 2010-08-19
JP5127736B2 true JP5127736B2 (en) 2013-01-23

Family

ID=42764756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023059A Expired - Fee Related JP5127736B2 (en) 2009-02-03 2009-02-03 Accident location detection system and accident section identification method

Country Status (1)

Country Link
JP (1) JP5127736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105277854A (en) * 2015-11-18 2016-01-27 国网冀北电力有限公司唐山供电公司 Lightning arrester grounding indicator and lightning arrester grounding indication method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111273078B (en) * 2020-03-01 2022-07-01 武汉知仁测控科技有限公司 Lightning stroke indicator for high-voltage transmission tower

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186774A (en) * 1989-12-15 1991-08-14 Sumitomo Electric Ind Ltd Transmission line accident tower location device
JP2711192B2 (en) * 1991-09-12 1998-02-10 株式会社フジクラ Locating the accident section of the transmission line
JPH06230065A (en) * 1993-01-29 1994-08-19 Sumitomo Electric Ind Ltd Detection of accident section in overhead transmission line
JP2004053361A (en) * 2002-07-18 2004-02-19 Tomita Denki Seisakusho:Kk System for detecting current

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105277854A (en) * 2015-11-18 2016-01-27 国网冀北电力有限公司唐山供电公司 Lightning arrester grounding indicator and lightning arrester grounding indication method
CN105277854B (en) * 2015-11-18 2017-07-04 国网冀北电力有限公司唐山供电公司 A kind of arrester ground indicator

Also Published As

Publication number Publication date
JP2010183678A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
EP2821800B1 (en) Current detection device
JP5714943B2 (en) Waveform recording apparatus and fault location system
KR101169301B1 (en) Current sensor using rogowski coil
CN103558507A (en) Sensor for direct current fault line selection and alternating current interlarding line selection
WO2008057925A3 (en) Methods and apparatus to facilitate ground fault detection with a single coil
CN102624325A (en) Choke with current sensor
CN108474819B (en) Method and device for short-circuit monitoring of three-phase loads
JP5127736B2 (en) Accident location detection system and accident section identification method
WO2019092850A1 (en) Ground fault point locating system and ground fault point locating method
JP6790405B2 (en) Current detection sensor and ground fault point positioning system
JP6461698B2 (en) Electric leakage detection device and electric leakage detection method
JP6092519B2 (en) Ground fault detection device and ground fault detection method
CN117269584B (en) Current detection module
JP5422220B2 (en) Fault detector, fault detection system, and fault detection method
JP2018028501A (en) Open-phase detection system, open-phase detector and open-phase detection method
JP2005257679A (en) Lightning strike and accident position detection device in processed transmission line
JP2006266709A (en) Insulator leakage current measurement apparatus
JPH09236629A (en) Method and device for detecting earth steel tower of power transmission line
CN1054483C (en) Branch trouble signal detector for high-power rectification equipment
JP3232520U (en) Current detection sensor and ground fault identification system
JP4334307B2 (en) Accident point locator for AC feeder circuit
JP2007292548A (en) High current detecting apparatus
JP6263050B2 (en) Ground fault detection device
JP6784541B2 (en) Ground fault detector
JPH06273470A (en) Accident section plotting device of overhead transmission line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5127736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees