JP5126155B2 - Manufacturing method of composite semipermeable membrane - Google Patents
Manufacturing method of composite semipermeable membrane Download PDFInfo
- Publication number
- JP5126155B2 JP5126155B2 JP2009104724A JP2009104724A JP5126155B2 JP 5126155 B2 JP5126155 B2 JP 5126155B2 JP 2009104724 A JP2009104724 A JP 2009104724A JP 2009104724 A JP2009104724 A JP 2009104724A JP 5126155 B2 JP5126155 B2 JP 5126155B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- water
- composite semipermeable
- functional layer
- chlorine dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、液状混合物から溶質成分を選択分離するために使用される高性能な複合半透膜を製造する方法に関する。特に、かん水や海水の脱塩処理に有用な高脱塩性と高透水性に加え、高耐久性をあわせ有する複合半透膜を製造するための方法に関する。 The present invention relates to a method for producing a high performance composite semipermeable membrane used to selectively separate solute components from a liquid mixture. In particular, the present invention relates to a method for producing a composite semipermeable membrane having high durability in addition to high desalination and high water permeability useful for desalination treatment of brine and seawater.
液状混合物の分離処理に関して、溶媒(例えば水)に溶解した物質(例えば塩類)を除くための技術には様々なものがあるが、溶媒の相変化を伴わないことや分離の駆動力となる加圧技術の進歩により、省エネルギー・省資源のためのプロセスとして膜分離法が広く利用されている。膜分離法に使用されている分離膜には、精密ろ過(MF)膜、限外ろ過(UF)膜、逆浸透(RO)膜などがある。さらに近年は、分離性能としては逆浸透(RO)膜と限外ろ過(UF)膜の境界に位置する、ルースRO膜やNF(Nano-Filtration)膜が開発され、例えば海水処理、カン水処理、有害物を含んだ水から飲料水を得る場合や、工業用超純水の製造、廃水処理、有価物の回収などに用いられてきた。 There are various techniques for removing a substance (for example, salts) dissolved in a solvent (for example, water) with respect to the separation treatment of the liquid mixture, but there is no change in the phase of the solvent and an additional driving force for separation. Due to advances in pressure technology, membrane separation methods are widely used as a process for saving energy and resources. Separation membranes used in membrane separation methods include microfiltration (MF) membranes, ultrafiltration (UF) membranes, and reverse osmosis (RO) membranes. In recent years, loose RO membranes and NF (Nano-Filtration) membranes have been developed as separation performance at the boundary between reverse osmosis (RO) membranes and ultrafiltration (UF) membranes. In the case of obtaining drinking water from water containing harmful substances, it has been used for the production of industrial ultrapure water, wastewater treatment, recovery of valuable resources, and the like.
現在市販されている逆浸透膜、ルースRO膜、NF膜の多くは複合半透膜である。中でも、多官能アミンと多官能酸誘導体との重縮合反応によって得られる架橋ポリアミドからなる分離機能層を多孔性支持膜上に被覆して得られる複合半透膜は、透過性や選択分離性の高い逆浸透膜として広く用いられている。 Many of the reverse osmosis membranes, loose RO membranes, and NF membranes currently on the market are composite semipermeable membranes. Among these, a composite semipermeable membrane obtained by coating a porous support membrane with a separation functional layer made of a crosslinked polyamide obtained by a polycondensation reaction of a polyfunctional amine and a polyfunctional acid derivative has a permeability and a selective separation property. Widely used as a high reverse osmosis membrane.
ここで、複合半透膜の脱塩性能、透水性能を向上させるために、ポリアミド分離機能層を各種試薬で処理する方法が提案されている。例えば、アンモニアやアルキルアミン、アルコール類、塩酸、有機酸、または、無機塩による接触処理または浸漬処理が提案されている(特許文献1〜5参照)。これらの方法によって処理することで複合分離膜の性能を向上させることができるが、膜性能向上効果や、処理方法の作業性や安全性等において問題があり、より簡便で安全な処理方法でもって効率よく膜性能を向上させる技術が望まれている。 Here, in order to improve the desalting performance and water permeation performance of the composite semipermeable membrane, a method of treating the polyamide separation functional layer with various reagents has been proposed. For example, contact treatment or immersion treatment with ammonia, alkylamines, alcohols, hydrochloric acid, organic acids, or inorganic salts has been proposed (see Patent Documents 1 to 5). Processing by these methods can improve the performance of the composite separation membrane, but there are problems with the membrane performance improvement effect, workability and safety of the processing method, etc., with a simpler and safer processing method. A technique for improving the membrane performance efficiently is desired.
一方、界面重縮合によって形成された架橋芳香族ポリアミドの超薄層を過硫酸化合物水溶液で処理し、膜の耐酸化剤性を向上させる、複合半透膜の製造方法が提案されている(特許文献6参照)。しかし、この製造方法で膜を改質しても透水性能を十分に向上させることは困難であり、なお透水性能が低いという問題があった。 On the other hand, a method for producing a composite semipermeable membrane has been proposed in which an ultra-thin layer of a crosslinked aromatic polyamide formed by interfacial polycondensation is treated with an aqueous persulfate compound solution to improve the oxidation resistance of the membrane (patent) Reference 6). However, even if the membrane is modified by this manufacturing method, it is difficult to sufficiently improve the water permeability, and there is a problem that the water permeability is low.
さらに、架橋芳香族ポリアミドからなる超薄膜を塩素含有水溶液に接触させる半透性複合膜の製造方法や、逆浸透分離素子を塩素含有水溶液で処理する逆浸透膜分離素子の処理方法が提案されている(特許文献7、8)。これは、遊離塩素を含む水溶液をポリアミドと接触させることによって性能を向上させるものであるが、遊離塩素は水中で不安定であるために反応の制御が難しい問題があった。 Furthermore, a method for producing a semipermeable composite membrane in which an ultra-thin film made of a crosslinked aromatic polyamide is brought into contact with a chlorine-containing aqueous solution and a method for treating a reverse osmosis membrane separation device in which a reverse osmosis separation device is treated with a chlorine-containing aqueous solution have been proposed. (Patent Documents 7 and 8). This improves the performance by bringing an aqueous solution containing free chlorine into contact with the polyamide. However, since free chlorine is unstable in water, there is a problem that it is difficult to control the reaction.
また、半透膜を長期間性能変化なしに保存するために好適な、二酸化塩素を含む水溶液と接触する保存方法が提案されている(特許文献9)。これはカビなどの微生物を繁殖させることなく、二酸化塩素と長時間接触させることによって性能を安定に保つものであるが、微生物の繁殖による性能変化を相殺する効果に止まっていた。 Moreover, the preservation | save method which contacts the aqueous solution containing chlorine dioxide suitable for preserve | saving a semipermeable membrane for a long period of time without a performance change is proposed (patent document 9). This is to keep the performance stable by bringing it into contact with chlorine dioxide for a long time without breeding microorganisms such as fungi, but it has only been effective in offsetting the performance change due to the propagation of microorganisms.
このように、従来の製造方法によって得られる複合半透膜は依然として問題があり、各種水処理においてより安定した運転性や簡易な操作性があり、さらに膜交換頻度の低減などによる低コスト追求や耐久性を備えることが求められている。 Thus, the composite semipermeable membrane obtained by the conventional manufacturing method still has problems, has more stable operability and simple operability in various water treatments, and further pursues low cost by reducing the frequency of membrane replacement. It is required to have durability.
本発明は、高い溶質除去性と高い水透過性を有し、かつ高い耐久性を有する複合半透膜を製造でき、同時に、高い生産性を簡便かつ安全な方法によって実現しうる複合半透膜を製造できる方法を提供することを目的とするものである。 The present invention can produce a composite semipermeable membrane having high solute removal property, high water permeability and high durability, and at the same time, high productivity can be realized by a simple and safe method. It is an object of the present invention to provide a method capable of manufacturing the above.
上記目的を達成するための本発明は、微多孔性支持膜上での重縮合によりポリアミド分離機能層を形成し、二酸化塩素と接触させることによってポリアミド分離機能層を改質し、膜性能の向上を図るものであり、以下のとおり特定される。
(1)複合半透膜の製造方法であって、微多孔性支持膜上に多官能アミンと多官能酸ハロゲン化物との重縮合反応によるポリアミド分離機能層を形成する工程、次いで、複合半透膜中の未反応物量を0.5g/m2以下に低減する工程、その後、前記ポリアミド分離機能層を二酸化塩素と1秒〜24時間の間で接触させる改質処理工程を経ることを特徴とする複合半透膜の製造方法。
(2)前記改質処理工程が、前記ポリアミド分離機能層を二酸化塩素を含む溶液と接触させるものであり、前記二酸化塩素を含む溶液がpH6以上10以下の水溶液である、(1)に記載の複合半透膜の製造方法。
To achieve the above object, the present invention forms a polyamide separation functional layer by polycondensation on a microporous support membrane, modifies the polyamide separation functional layer by contacting with chlorine dioxide, and improves the membrane performance. Is specified as follows.
(1) A method for producing a composite semipermeable membrane, the step of forming a polyamide separation functional layer by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide on a microporous support membrane, and then the composite semipermeable membrane A step of reducing the amount of unreacted substances in the membrane to 0.5 g / m 2 or less, and then a modification treatment step of bringing the polyamide separation functional layer into contact with chlorine dioxide for 1 second to 24 hours. A method for producing a composite semipermeable membrane.
(2) The modification treatment step is to bring the polyamide separation functional layer into contact with a solution containing chlorine dioxide, and the solution containing chlorine dioxide is an aqueous solution having a pH of 6 or more and 10 or less. A method for producing a composite semipermeable membrane.
本発明の製造方法によれば、複合半透膜の改質による膜性能の向上、とりわけ透水性能の向上を、より簡便に安全な方法によって達成することができ、逆浸透膜による河川水からの浄水製造等において好適な性能を有する複合半透膜を製造することができる。 According to the production method of the present invention, the improvement of the membrane performance by the modification of the composite semipermeable membrane, in particular, the improvement of the water permeability can be achieved by a simpler and safer method, from the river water by the reverse osmosis membrane. A composite semipermeable membrane having suitable performance in purified water production or the like can be produced.
本発明における複合半透膜は、実質的に分離性能を有する分離機能層が、実質的に分離性能を有さない微多孔性支持膜上に被覆されてなり、該分離機能層は多官能アミンと多官能酸ハロゲン化物との反応によって得られる架橋ポリアミドからなるものである。ここで多官能アミンとしては、脂肪族多官能アミンと芳香族多官能アミンとがあり、これらに含まれる少なくとも1つのアミン成分を用いる。 The composite semipermeable membrane in the present invention comprises a separation functional layer having substantially separation performance coated on a microporous support membrane having substantially no separation performance, and the separation functional layer is a polyfunctional amine. And a cross-linked polyamide obtained by reaction of a polyfunctional acid halide. Here, as the polyfunctional amine, there are an aliphatic polyfunctional amine and an aromatic polyfunctional amine, and at least one amine component contained in these is used.
脂肪族多官能アミンとは、一分子中に2個以上のアミノ基を有する脂肪族アミンであり、好ましくはピペラジン系アミンおよびその誘導体である。例えば、ピペラジン、2,5−ジメチルピペラジン、2−メチルピペラジン、2,6−ジメチルピペラジン、2,3,5−トリメチルピペラジン、2,5−ジエチルピペラジン、2,3,5−トリエチルピペラジン、2−n−プロピルピペラジン、2,5−ジ−n−ブチルピペラジンなどが例示され、性能発現の安定性から、特に、ピペラジン、2,5−ジメチルピペラジンが好ましい。 The aliphatic polyfunctional amine is an aliphatic amine having two or more amino groups in one molecule, and is preferably a piperazine-based amine and a derivative thereof. For example, piperazine, 2,5-dimethylpiperazine, 2-methylpiperazine, 2,6-dimethylpiperazine, 2,3,5-trimethylpiperazine, 2,5-diethylpiperazine, 2,3,5-triethylpiperazine, 2- Examples thereof include n-propylpiperazine and 2,5-di-n-butylpiperazine, and piperazine and 2,5-dimethylpiperazine are particularly preferable from the viewpoint of stability of performance.
また、芳香族多官能アミンとは、一分子中に2個以上のアミノ基を有する芳香族アミンであり、特に限定されるものではないが、メタフェニレンジアミン、パラフェニレンジアミン、1,3,5−トリアミノベンゼンなどがあり、そのN−アルキル化物としてN,N−ジメチルメタフェニレンジアミン、N,N−ジエチルメタフェニレンジアミン、N,N−ジメチルパラフェニレンジアミン、N,N−ジエチルパラフェニレンジアミンなどが例示され、性能発現の安定性から、特にメタフェニレンジアミン、1,3,5−トリアミノベンゼンが好ましい。 The aromatic polyfunctional amine is an aromatic amine having two or more amino groups in one molecule, and is not particularly limited, but includes metaphenylene diamine, paraphenylene diamine, 1, 3, 5 -Triaminobenzene and the like, and N-alkylated products thereof include N, N-dimethylmetaphenylenediamine, N, N-diethylmetaphenylenediamine, N, N-dimethylparaphenylenediamine, N, N-diethylparaphenylenediamine, etc. In view of the stability of performance, metaphenylenediamine and 1,3,5-triaminobenzene are particularly preferable.
多官能酸ハロゲン化物とは、一分子中に2個以上のハロゲン化カルボニル基を有する酸ハロゲン化物であり、上記アミンとの反応によりポリアミドを与えるものであれば特に限定されない。多官能酸ハロゲン化物としては、例えば、シュウ酸、マロン酸、マレイン酸、フマル酸、グルタル酸、1,3,5−シクロヘキサントリカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3,5−ベンゼントリカルボン酸、1,2,4−ベンゼントリカルボン酸、1,3−ベンゼンジカルボン酸、1,4−ベンゼンジカルボン酸の酸ハロゲン化物を用いることができる。酸ハロゲン化物の中でも、酸塩化物が好ましく、特に経済性、入手の容易さ、取り扱い易さ、反応性の容易さ等の点から、1,3,5−ベンゼントリカルボン酸の酸ハロゲン化物であるトリメシン酸クロライドが好ましい。上記多官能酸ハロゲン化物は単独で用いることもできるが、混合物として用いてもよい。 The polyfunctional acid halide is an acid halide having two or more carbonyl halide groups in one molecule, and is not particularly limited as long as it gives a polyamide by reaction with the amine. Examples of the polyfunctional acid halide include oxalic acid, malonic acid, maleic acid, fumaric acid, glutaric acid, 1,3,5-cyclohexanetricarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid. 1,3,5-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3-benzenedicarboxylic acid, and acid halides of 1,4-benzenedicarboxylic acid can be used. Among acid halides, acid chlorides are preferred, and are acid halides of 1,3,5-benzenetricarboxylic acid, particularly in terms of economy, availability, ease of handling, and ease of reactivity. Trimesic acid chloride is preferred. Although the said polyfunctional acid halide can also be used independently, you may use it as a mixture.
多官能酸ハロゲン化物を溶解する有機溶媒としては、水と非混和性であり、かつ多孔性支持膜を破壊しない有機溶媒を用いることが好ましく、架橋ポリアミドの生成反応を阻害しないものであればいずれであっても良い。その代表例としては、液状の炭化水素、トリクロロトリフルオロエタンなどのハロゲン化炭化水素が挙げられるが、オゾン層を破壊しない物質であることや入手のしやすさ、取り扱いの容易さ、取り扱い上の安全性を考慮すると、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ヘプタデカン、ヘキサデカン、シクロオクタン、エチルシクロヘキサン、1−オクテン、1−デセンなどの単体あるいはこれらの混合物が好ましく用いられる。 As the organic solvent that dissolves the polyfunctional acid halide, it is preferable to use an organic solvent that is immiscible with water and does not destroy the porous support membrane. It may be. Typical examples include halogenated hydrocarbons such as liquid hydrocarbons and trichlorotrifluoroethane, but they are substances that do not destroy the ozone layer, are easily available, are easy to handle, In consideration of safety, simple substances such as octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane, hexadecane, cyclooctane, ethylcyclohexane, 1-octene, 1-decene or a mixture thereof are preferably used.
次に、微多孔性支持膜上での重縮合によりポリアミド分離機能層を形成させて複合半透膜を製造するための好ましい方法について説明する。複合半透膜中の実質的に分離性能を有するポリアミド分離機能層は、例えば、前述の多官能アミンを含有する水溶液と、前述の多官能酸ハロゲン化物を含有する、水とは非混和性の有機溶媒溶液を用い、後述の微多孔性支持膜上で反応させることにより形成される。ここで、多官能アミンを含有する水溶液の濃度は、0.1〜20重量%が好ましく、より好ましくは0.5〜15重量%である。 Next, a preferred method for producing a composite semipermeable membrane by forming a polyamide separation functional layer by polycondensation on a microporous support membrane will be described. The polyamide separation functional layer having substantially separation performance in the composite semipermeable membrane is, for example, an aqueous solution containing the aforementioned polyfunctional amine and an aqueous solution containing the aforementioned polyfunctional acid halide and immiscible with water. It forms by making it react on the below-mentioned microporous support membrane using an organic solvent solution. Here, the concentration of the aqueous solution containing the polyfunctional amine is preferably 0.1 to 20% by weight, more preferably 0.5 to 15% by weight.
多官能アミンを含有する水溶液や多官能酸ハロゲン化物を含有する有機溶媒溶液には、両成分間の反応を阻害しないものであれば、必要に応じて、アシル化触媒や極性溶媒、酸捕捉剤、界面活性剤、酸化防止剤等の化合物が含まれていてもよい。 In the case of an aqueous solution containing a polyfunctional amine or an organic solvent solution containing a polyfunctional acid halide, an acylation catalyst, a polar solvent, an acid scavenger may be used as long as it does not inhibit the reaction between the two components. In addition, compounds such as surfactants and antioxidants may be contained.
本発明において、微多孔性支持膜は、ポリアミド分離機能層を支持するために使用される。微多孔性支持膜の構成は特に限定されないが、好ましい微多孔性支持膜としては、布帛により強化されたポリスルホン支持膜などを例示することができる。微多孔性支持膜の孔径や孔数は特に限定されないが、均一で微細な孔あるいは片面からもう一方の面まで徐々に大きな微細な孔を有していて、その微細孔の大きさは、その片面の表面が100nm以下であるような構造であることが好ましい。 In the present invention, the microporous support membrane is used to support the polyamide separation functional layer. The configuration of the microporous support membrane is not particularly limited, but preferred examples of the microporous support membrane include a polysulfone support membrane reinforced with a fabric. The pore size and the number of pores of the microporous support membrane are not particularly limited, but there are uniform fine pores or gradually larger fine pores from one side to the other, and the size of the fine pores is It is preferable that the surface of one side is 100 nm or less.
本発明に使用する微多孔性支持膜としては、ミリポア社製”ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製”ウルトラフィルターUK10”(商品名)のような各種市販材料から選択することもできるが、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って製造したものを使用することができる。 The microporous support membrane used in the present invention is selected from various commercially available materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha. “Office of Saleen Water Research and Development Progress Report” No. 359 (1968) can be used.
微多孔性支持膜に使用する素材は特に限定されず、例えば、ポリスルホン、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル等のホモポリマーあるいはブレンドポリマー等が使用できるが、化学的、機械的、熱的に安定性の高い、ポリスルホンを使用するのが好ましい。具体的製法を次に例示する。ポリスルホンのジメチルホルムアミド(以降、DMFと略す)溶液を、密に織ったポリエステル織物あるいは不織布の上に略一定の厚さに塗布し、ドデシル硫酸ソーダ0.5重量%とDMF2重量%とを含む水溶液中で湿式凝固させることによって、表面の大部分に直径数10nm以下の微細な孔が形成された微多孔性支持膜を製造することができる。 The material used for the microporous support membrane is not particularly limited. For example, homopolymers or blend polymers such as polysulfone, cellulose acetate, cellulose nitrate, and polyvinyl chloride can be used, but chemically, mechanically, and thermally. It is preferable to use polysulfone having high stability. A specific production method is illustrated below. An aqueous solution containing 0.5% by weight of sodium dodecyl sulfate and 2% by weight of DMF, wherein a solution of polysulfone in dimethylformamide (hereinafter abbreviated as DMF) is applied on a densely woven polyester fabric or nonwoven fabric to a substantially constant thickness. By wet solidification in the inside, it is possible to produce a microporous support membrane in which fine pores having a diameter of several tens of nm or less are formed on most of the surface.
微多孔性支持膜の表面に、多官能アミンを含有する水溶液を被覆させる際には、該水溶液が表面に均一にかつ連続的に被覆されるように、公知の塗布方法により、例えば、該水溶液を微多孔性支持膜表面にコーティングする方法や、微多孔性支持膜を該水溶液に浸漬する方法等で行えばよい。次いで、過剰に塗布された該水溶液を液切り工程により除去する。液切りの方法としては、例えば、膜面を垂直方向に保持して自然流下させる方法等がある。液切り後、膜面を乾燥させ、水溶液の水の全部あるいは一部を除去してもよい。その後、多官能アミンを含有する水溶液で被覆された微多孔性支持膜の上に、前述の多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布し、両成分の反応によりポリアミド分離機能層を形成させる。 When coating the surface of the microporous support membrane with an aqueous solution containing a polyfunctional amine, for example, the aqueous solution can be coated by a known coating method so that the aqueous solution is uniformly and continuously coated on the surface. May be performed by a method of coating the surface of the microporous support membrane, a method of immersing the microporous support membrane in the aqueous solution, or the like. Next, the excessively applied aqueous solution is removed by a liquid draining step. As a method of draining, there is, for example, a method of allowing the film surface to flow naturally while holding the film surface in the vertical direction. After draining, the membrane surface may be dried to remove all or part of the water in the aqueous solution. After that, on the microporous support membrane coated with an aqueous solution containing a polyfunctional amine, the organic solvent solution containing the aforementioned polyfunctional acid halide is applied, and a polyamide separation functional layer is formed by the reaction of both components. Let
塗布する有機溶媒溶液中における多官能酸ハロゲン化物の濃度は特に限定されないが、少なすぎると活性層であるポリアミド分離機能層の形成が不十分となり欠点になる可能性があり、多過ぎるとコスト面から不利になるため、有機溶媒溶液中で0.01〜1.0重量%程度が好ましい。反応後の有機溶媒の除去は、通常の方法、例えば空気吹きつけによる乾燥等で行うことができる。 The concentration of the polyfunctional acid halide in the organic solvent solution to be applied is not particularly limited. However, if the amount is too small, the formation of a polyamide separation functional layer as an active layer may be insufficient, which may be a disadvantage. Therefore, the content is preferably about 0.01 to 1.0% by weight in the organic solvent solution. The removal of the organic solvent after the reaction can be performed by an ordinary method, for example, drying by blowing air.
そして、本発明では、上述の工程により調製されたポリアミド分離機能層を、二酸化塩素と接触させる工程により複合半透膜を得る。 And in this invention, a composite semipermeable membrane is obtained by the process which the polyamide separation functional layer prepared by the above-mentioned process is made to contact with chlorine dioxide.
ポリアミド分離機能層を二酸化塩素と接触させる方法は、ポリアミド分離機能層に二酸化塩素を直接吹き付ける方法やポリアミド分離機能層を二酸化塩素を含む水溶液に接触させる方法などが挙げられ、取り扱いやすさの点でポリアミド分離機能層を二酸化塩素を含む水溶液と接触させるのが好ましい。ポリアミド分離機能層を二酸化塩素を含む溶液と接触させる方法は特に限定されず、複合半透膜全体を二酸化塩素の水溶液中に浸漬しても良いし、水溶液をポリアミド分離機能層の少なくとも一部に塗布しても良く、ポリアミド分離機能層と二酸化塩素が接触するのであればよい。 Examples of the method for bringing the polyamide separation functional layer into contact with chlorine dioxide include a method in which chlorine dioxide is directly sprayed on the polyamide separation functional layer and a method in which the polyamide separation functional layer is brought into contact with an aqueous solution containing chlorine dioxide. The polyamide separation functional layer is preferably brought into contact with an aqueous solution containing chlorine dioxide. The method for bringing the polyamide separation functional layer into contact with the solution containing chlorine dioxide is not particularly limited, and the entire composite semipermeable membrane may be immersed in an aqueous solution of chlorine dioxide, or the aqueous solution may be used as at least a part of the polyamide separation functional layer. It may be applied as long as the polyamide separation functional layer and chlorine dioxide are in contact with each other.
二酸化塩素は、市販品のほか、2種類以上の化合物を混合して二酸化塩素を発生させる公知の方法、例えば、1)亜塩素酸水溶液と塩素ガスとの混合、2)亜塩素酸水溶液と次亜塩素酸水溶液との混合、3)亜塩素酸水溶液と無機酸との混合、4)塩素酸ナトリウムと無機酸との混合なども利用できる。二酸化塩素は遊離塩素と異なり、水と反応して次亜塩素酸を発生せず、アンモニアとの反応でクロラミンを発生しない特徴を持つ。つまり、ポリアミド分子中に存在するアミド、アミンと反応して窒素原子が塩素化されてさらに酸化が進んで膜の劣化を進める懸念のない化合物である。上記の二酸化塩素を発生させる方法で、不純物に遊離塩素を含む場合には、遊離塩素に対して十分量の活性水素が結合した窒素原子を持つ化合物を添加することが好ましい。活性水素が結合した窒素原子を持つ化合物とは、アンモニア、1級アミン、2級アミン、アミド化合物などが挙げられる。また、二酸化塩素は紫外線など光の照射を受けると分解し、遊離塩素を発生する。これを避けるために、ポリアミド分離機能層と二酸化塩素を含む溶液を照度10以下の遮光条件下で接触させることが好ましい。 In addition to commercially available products, chlorine dioxide is a known method for generating chlorine dioxide by mixing two or more types of compounds, such as 1) mixing chlorous acid aqueous solution with chlorine gas, 2) chlorous acid aqueous solution and Mixing with an aqueous solution of chlorous acid, 3) mixing of an aqueous solution of chlorous acid with an inorganic acid, 4) mixing of sodium chlorate with an inorganic acid, etc. can also be used. Unlike free chlorine, chlorine dioxide does not generate hypochlorous acid when reacted with water, and does not generate chloramine when reacted with ammonia. In other words, it is a compound that does not have a concern of reacting with amides and amines present in the polyamide molecule to chlorinate nitrogen atoms to further oxidize and promote deterioration of the film. When free chlorine is contained as an impurity in the method for generating chlorine dioxide, it is preferable to add a compound having a nitrogen atom to which a sufficient amount of active hydrogen is bonded to free chlorine. Examples of the compound having a nitrogen atom to which active hydrogen is bonded include ammonia, primary amine, secondary amine, amide compound and the like. Chlorine dioxide decomposes when irradiated with light such as ultraviolet rays to generate free chlorine. In order to avoid this, it is preferable to contact the polyamide separation functional layer and a solution containing chlorine dioxide under light-shielding conditions with an illuminance of 10 or less.
二酸化塩素を含む溶液は、ポリアミドの加水分解防止と溶液の安定性の観点からpH2以上でポリアミド分離機能層と接触させる。pHが6以上の領域で性能向上の効果を大きく発揮し、その効果はpHが13以下の領域が好ましく、さらにpH10以下の領域が特に好ましい。pH13を超えると、ポリアミドの加水分解のために膜性能が低下する。 The solution containing chlorine dioxide is brought into contact with the polyamide separation functional layer at pH 2 or more from the viewpoint of preventing hydrolysis of the polyamide and the stability of the solution. The effect of improving the performance is greatly exhibited in the region where the pH is 6 or more. The effect is preferably in the region where the pH is 13 or less, and more preferably in the region where the pH is 10 or less. Above pH 13, the membrane performance is degraded due to the hydrolysis of the polyamide.
また、二酸化塩素に接触させる前に膜改質への効果を高めるため、ポリアミド分離機能層を洗浄水で洗浄して余分な未反応物(例えば芳香族系モノマー)や夾雑物を除去することが必要である。鋭意検討の結果、過剰な未反応物や夾雑物が一定量以上存在すると膜改質の効果が得られないことを見出した。これは、未反応物や夾雑物が後続の二酸化塩素との反応で新たな化合物を生じ、膜に残存するためと考えられる。この洗浄処理に用いる洗浄液としては、未反応物の抽出のために、水とアルコールの少なくとも一方を含むものであればよいが、非引火性という観点から水を含む洗浄液、即ち洗浄水を用いる。この洗浄水には、水の他に、アルコール等が含有されていてもよい。 In addition, in order to increase the effect on membrane modification before contacting with chlorine dioxide, the polyamide separation functional layer may be washed with washing water to remove excess unreacted substances (for example, aromatic monomers) and impurities. is necessary. As a result of intensive studies, it has been found that the effect of membrane modification cannot be obtained if an excessive amount of unreacted substances and impurities are present in a certain amount or more. This is presumably because unreacted substances and impurities generate new compounds by the subsequent reaction with chlorine dioxide and remain in the film. The cleaning liquid used in this cleaning process may be any liquid that contains at least one of water and alcohol for extraction of unreacted substances, but from the viewpoint of non-flammability, a cleaning liquid containing water, that is, cleaning water is used. This washing water may contain alcohol or the like in addition to water.
また、洗浄水は、その粘性を下げ膜中の未反応物の抽出効果を高めるために、温度を50℃以上にする。好ましくは60℃以上、さらに好ましくは70℃以上である。膜の種類にもよるが、洗浄液の温度を常温(25℃)で膜中の未反応物を抽出するには、通常約1日かかるので、洗浄時間短縮という観点からも洗浄液の温度を上げることが必要である。 In addition, the temperature of the washing water is set to 50 ° C. or higher in order to lower its viscosity and enhance the effect of extracting unreacted substances in the membrane. Preferably it is 60 degreeC or more, More preferably, it is 70 degreeC or more. Although it depends on the type of membrane, it takes about 1 day to extract unreacted materials in the membrane at room temperature (25 ° C), so the temperature of the washing solution should be increased from the viewpoint of shortening the washing time. is necessary.
この洗浄処理によって、膜中に含まれる未反応物を0.5g/m2以下、好ましくは0.2g/m2以下に低減させる。より好ましくは0.1g/m2以下、さらに好ましくは0.07g/m2 以下、特に好ましくは0.05g/m2以下に低減させる。なお、未反応物量の測定は、例えば複合半透膜を10cm×10cmに切り出してエタノール50gに8時間浸漬し、エタノールに抽出された成分のクロマトグラフィーおよび質量分析で求められる。 By this washing treatment, unreacted substances contained in the film are reduced to 0.5 g / m 2 or less, preferably 0.2 g / m 2 or less. More preferably 0.1 g / m 2 or less, more preferably 0.07 g / m 2, particularly preferably is reduced to less than 0.05 g / m 2. The amount of the unreacted substance can be measured by, for example, cutting the composite semipermeable membrane into 10 cm × 10 cm, immersing it in 50 g of ethanol for 8 hours, and performing chromatography and mass spectrometry of components extracted in ethanol.
上記洗浄処理によって、例えば1%二酸化塩素水溶液による処理時間を低減し、かつ性能向上の効果が大きくなる。反応時間は複合半透膜の生産性の観点から、1秒間以上、24時間以下であることが必要であるが、その範囲内で適宜濃度を調整することができる。 By the above washing treatment, for example, the treatment time with a 1% aqueous solution of chlorine dioxide is reduced, and the effect of improving the performance is increased. The reaction time is required to be 1 second or more and 24 hours or less from the viewpoint of the productivity of the composite semipermeable membrane, but the concentration can be appropriately adjusted within the range.
また、二酸化塩素との接触工程を施す複合半透膜が湿潤状態にないときは、処理前に水と必要な時間接触し十分な湿潤状態とすることが好ましい。ここで湿潤状態とは、被処理膜中に水を含有することであり、含水率(=膜中の水分量/膜の全重量)でもって定量的に表すことができる。有機化合物溶液による処理を施す際の複合半透膜の含水率は、5%以上が好ましく、さらに25%以上が好ましい。 In addition, when the composite semipermeable membrane subjected to the contact step with chlorine dioxide is not in a wet state, it is preferable to contact with water for a necessary time before the treatment so as to be in a sufficiently wet state. Here, the wet state means that water is contained in the film to be treated, and can be quantitatively expressed by the moisture content (= water content in the film / total weight of the film). The water content of the composite semipermeable membrane during the treatment with the organic compound solution is preferably 5% or more, and more preferably 25% or more.
本発明の方法における二酸化塩素との接触で得られた複合半透膜は、25℃、pH=6.5、濃度0.2重量%の塩化ナトリウム水溶液を0.5MPaの操作圧力で透過させたときの塩除去率が90%以上という構造の複合半透膜に対し、特に効果的であり、大幅な透水性能向上効果が得られる。この結果、優れた塩除去率とともに、透過水量が0.8m3/m2・日以上という優れた透水性能の複合半透膜とすることができる。 The composite semipermeable membrane obtained by contact with chlorine dioxide in the method of the present invention was allowed to permeate a sodium chloride aqueous solution having a pH of 6.5 and a concentration of 0.2% by weight at an operating pressure of 0.5 MPa. This is particularly effective for a composite semipermeable membrane having a structure with a salt removal rate of 90% or more, and a significant effect of improving water permeability is obtained. As a result, it is possible to obtain a composite semipermeable membrane having excellent water permeability with an excellent salt removal rate and a permeated water amount of 0.8 m 3 / m 2 · day or more.
本発明で特定した処理を行って得られる複合半透膜は、溶媒と溶質とを分離するための逆浸透膜として用いられる。例えば、操作圧力0.1〜3.0MPaで逆浸透膜として用いることにより、原水中に含まれる無機物や有機物などの有害物質およびその前駆物質の除去を行うことができる。 The composite semipermeable membrane obtained by performing the treatment specified in the present invention is used as a reverse osmosis membrane for separating a solvent and a solute. For example, by using it as a reverse osmosis membrane at an operating pressure of 0.1 to 3.0 MPa, it is possible to remove harmful substances such as inorganic substances and organic substances and precursors thereof contained in raw water.
このように逆浸透膜処理する時には、操作圧力を低くすると使用するポンプの容量が少なくなり電力費が低下する反面、膜が目詰まりしやすくなり透過水量が経時的に少なくなる傾向がある。逆に、操作圧力を高くすると前記の理由で電力費が増加し、透過水量が多くなる傾向がある。また、透過水量が高すぎると膜面のファウリングによる目詰まりを起こす可能性があり、低いとコスト高となる。したがって、濃度0.2重量%の塩化ナトリウム水溶液に相当する浸透圧を有するかん水を運転コストを抑えて安定運転を行うためには、操作圧力を0.1〜3.0MPaの範囲とすることが好ましく、より好ましくは0.1〜2.0MPa、さらに好ましくは0.1〜1.0MPaの範囲内である。また、同様の理由から、透過水量の範囲を、0.5〜5.0m3/m2・dの範囲とすることが好ましく、より好ましくは0.6〜3.0m3/m2・d、さらに好ましくは0.8〜2.0m3/m2・dの範囲内である。 As described above, when the reverse osmosis membrane treatment is performed, if the operation pressure is lowered, the capacity of the pump to be used is reduced and the power cost is reduced. On the other hand, the membrane tends to be clogged and the permeated water amount tends to decrease with time. On the other hand, when the operating pressure is increased, the power cost increases for the reasons described above, and the amount of permeated water tends to increase. Moreover, if the amount of permeated water is too high, clogging due to fouling of the membrane surface may occur, and if it is low, the cost will be high. Therefore, in order to perform stable operation with reduced operation cost for brine having an osmotic pressure corresponding to a 0.2% by weight aqueous sodium chloride solution, the operating pressure may be in the range of 0.1 to 3.0 MPa. Preferably, it is in the range of 0.1 to 2.0 MPa, more preferably 0.1 to 1.0 MPa. For the same reason, the permeated water amount is preferably in the range of 0.5 to 5.0 m 3 / m 2 · d, more preferably 0.6 to 3.0 m 3 / m 2 · d. More preferably, it is in the range of 0.8 to 2.0 m 3 / m 2 · d.
また、効率的に供給水を処理して造水コストを下げるためには、原水供給量に対する透過水量の割合、すなわち回収率は80%以上が好ましく、より好ましくは85%以上、さらには90%以上が良い。ただし99.5%を超えると膜面のファウリングによる目詰まりを起こす可能性が高くなるので、99.5%を超えないことが好ましい。 Further, in order to efficiently treat the supplied water and reduce the water production cost, the ratio of the permeated water amount to the raw water supply amount, that is, the recovery rate is preferably 80% or more, more preferably 85% or more, and further 90%. The above is good. However, if it exceeds 99.5%, there is a high possibility of clogging due to fouling of the film surface, so it is preferable not to exceed 99.5%.
なお、本発明において、複合半透膜の形態は限定されるものではなく、中空糸膜でも平膜でもよい。また、本発明により改質処理して得られる改質半透膜は液体分離に用いる場合、通常の方法でエレメントやモジュールを形成させて用いられるが、その形態もモジュール型、スパイラル型など特に限定されるものではない。 In the present invention, the form of the composite semipermeable membrane is not limited and may be a hollow fiber membrane or a flat membrane. In addition, the modified semipermeable membrane obtained by the modification treatment according to the present invention is used by forming an element or a module by a normal method when used for liquid separation, but its form is particularly limited to a module type, a spiral type, etc. Is not to be done.
以下の実施例において、塩除去率は、供給液中の塩濃度、透過液中の塩濃度を測定し、次式により求めた。
塩除去率(%)={1−(透過液中の塩濃度)/(供給液中の塩濃度)}×100
また、透水量は、単位時間(日)に単位面積(m2)当たりの膜を透過する透過水量(m3/m2・d)で表示した。
In the following examples, the salt removal rate was determined from the following equation by measuring the salt concentration in the feed solution and the salt concentration in the permeate.
Salt removal rate (%) = {1− (salt concentration in permeate) / (salt concentration in feed solution)} × 100
The amount of water permeated was expressed as the amount of permeated water (m 3 / m 2 · d) permeating the membrane per unit area (m 2 ) per unit time (day).
膜中の未反応物量の測定は、膜を10cm×10cmに切り出してエタノール50gに8時間浸漬し、エタノールに抽出された成分のクロマトグラフィーおよび質量分析で求めた。 The amount of unreacted substances in the membrane was measured by cutting the membrane into 10 cm × 10 cm, immersing it in 50 g of ethanol for 8 hours, and performing chromatography and mass spectrometry of the components extracted in ethanol.
<参考例1〜4>
微多孔性支持膜としては、次の手法により製造した布帛補強ポリスルホン支持膜(限外濾過膜)を用いた。すなわち、単糸繊度0.5dtexのポリエステル繊維と1.5dtexのポリエステル繊維との混繊からなり、通気度0.7cm3/cm2・秒、平均孔径7μm以下の、縦30cm、横20cmの大きさの湿式不織布をガラス板上に固定し、その上に、ジメチルホルムアミド(DMF)溶媒でポリスルホン濃度15重量%の溶液(2.5ポアズ:20℃)を、総厚み200μmになるようにキャストし、直ちに水に浸積してポリスルホンの微多孔性支持膜を作製した。
<Reference Examples 1-4>
As the microporous support membrane, a fabric-reinforced polysulfone support membrane (ultrafiltration membrane) produced by the following method was used. That is, it consists of a mixed fiber of polyester fiber having a single yarn fineness of 0.5 dtex and polyester fiber of 1.5 dtex, and has a permeability of 0.7 cm 3 / cm 2 · second, an average pore diameter of 7 μm or less, a length of 30 cm, and a width of 20 cm. A wet non-woven fabric is fixed on a glass plate, and a solution (2.5 poise: 20 ° C.) having a polysulfone concentration of 15% by weight with a dimethylformamide (DMF) solvent is cast to a total thickness of 200 μm. Immediately, it was immersed in water to produce a polysulfone microporous support membrane.
次に、この微多孔性支持膜を、m−フェニレンジアミン2.0重量%およびε−カプロラクタム2.0重量%を含む水溶液中に2分間浸漬した後、その表面に、デカンにトリメシン酸クロライドを0.1重量%になるように溶解した溶液を160cm3/m2の割合になるように塗布し、さらに過剰の溶液を除去し、表面上での重縮合によりポリアミド分離機能層を形成させた。このとき、未反応物量は0.56g/m2であった。そこで、蒸留水を洗浄水として表1に示す洗浄条件で膜の洗浄を施して未反応物量を低減させた(参考例2〜4)。 Next, this microporous support membrane was immersed in an aqueous solution containing 2.0% by weight of m-phenylenediamine and 2.0% by weight of ε-caprolactam for 2 minutes, and then trimesic acid chloride was added to the decane on the surface. The solution dissolved so as to be 0.1% by weight was applied at a rate of 160 cm 3 / m 2 , the excess solution was further removed, and a polyamide separation functional layer was formed by polycondensation on the surface. . At this time, the amount of unreacted substances was 0.56 g / m 2 . Therefore, the membrane was washed under the washing conditions shown in Table 1 using distilled water as washing water to reduce the amount of unreacted substances (Reference Examples 2 to 4).
このようにして得られたポリアミド分離機能層を持つ半透膜は、pH6.5に調整した0.2重量%の塩化ナトリウム水溶液を原水とし、0.5MPa、25℃の条件下で逆浸透テストを行った。その結果、透水量は0.75m3/m2・d、塩化ナトリウムの塩除去率は93.0%であった。 The semipermeable membrane having a polyamide separation functional layer thus obtained was subjected to a reverse osmosis test under conditions of 0.5 MPa and 25 ° C. using a 0.2 wt% sodium chloride aqueous solution adjusted to pH 6.5 as raw water. Went. As a result, the water permeability was 0.75 m 3 / m 2 · d, and the salt removal rate of sodium chloride was 93.0%.
<比較例1、実施例1〜3>
参考例1〜4で得られたポリアミド分離機能層を持つ半透膜を、pH8に調整した0.5重量%二酸化塩素水溶液に室温中2分間接触させた。次いで膜を水溶液から取り除いた後、直ちに水で洗い、室温にて保管した。得られた複合半透膜を、上記参考例と同条件で性能試験したところ、この膜の透水量および塩化ナトリウムの塩除去率は、それぞれ表2に示す通りであった。
<Comparative example 1, Examples 1-3>
The semipermeable membrane having the polyamide separation functional layer obtained in Reference Examples 1 to 4 was brought into contact with a 0.5 wt% chlorine dioxide aqueous solution adjusted to pH 8 at room temperature for 2 minutes. The membrane was then removed from the aqueous solution and immediately washed with water and stored at room temperature. When the performance of the obtained composite semipermeable membrane was tested under the same conditions as in the above Reference Example, the water permeability of this membrane and the salt removal rate of sodium chloride were as shown in Table 2, respectively.
<実施例4>
参考例3で得られたポリアミド分離機能層を持つ半透膜を、pH3に調整した0.5重量%二酸化塩素水溶液に室温中2分間接触させた。次いで膜を水溶液から取り除いた後、直ちに水で洗い、室温にて保管した。得られた複合半透膜を、上記参考例と同条件で性能試験したところ、この膜の透水量は0.94m3/m2・d、塩化ナトリウムの塩除去率は92.4%であった。
<Example 4>
The semipermeable membrane having the polyamide separation functional layer obtained in Reference Example 3 was brought into contact with a 0.5 wt% chlorine dioxide aqueous solution adjusted to pH 3 at room temperature for 2 minutes. The membrane was then removed from the aqueous solution and immediately washed with water and stored at room temperature. When the performance of the obtained composite semipermeable membrane was tested under the same conditions as in the above Reference Example, the water permeability of this membrane was 0.94 m 3 / m 2 · d, and the salt removal rate of sodium chloride was 92.4%. It was.
<実施例5〜7>
参考例3で得られたポリアミド分離機能層を持つ半透膜を、表2に示すpHの二酸化塩素水溶液と接触させた。pHの調整は硫酸又は水酸化ナトリウムを使用し、pH以外の条件は実施例1の条件と同一とした。これらの膜の透水量および塩化ナトリウムの塩除去率は、それぞれ表2に示す通りであった。
<Examples 5-7>
The semipermeable membrane having the polyamide separation functional layer obtained in Reference Example 3 was brought into contact with a chlorine dioxide aqueous solution having a pH shown in Table 2. The pH was adjusted using sulfuric acid or sodium hydroxide, and the conditions other than the pH were the same as those in Example 1. The water permeability and sodium chloride removal rate of these membranes were as shown in Table 2, respectively.
実施例1〜7および比較例1の結果から、本発明の方法に従い、膜中の未反応物量を0.5g/m2以下に低減する工程の後に、二酸化塩素と接触させる工程を経ることにより、膜透水量を大幅に向上させることができることが明らかである。さらに、塩除去率の向上を含めた膜性能の向上はpH6からpH10の領域で顕著である。 From the results of Examples 1 to 7 and Comparative Example 1, according to the method of the present invention, after the step of reducing the amount of unreacted substances in the film to 0.5 g / m 2 or less, the step of contacting with chlorine dioxide is performed. It is clear that the membrane water permeability can be greatly improved. Furthermore, the improvement of the membrane performance including the improvement of the salt removal rate is remarkable in the pH 6 to pH 10 region.
<参考例5>
微多孔性支持膜をm−フェニレンジアミンの3.4重量%水溶液に2分間浸漬した後、デカンにトリメシン酸クロライドを0.15重量%になるように溶解した溶液を用いた以外は参考例1と同様の方法で複合半透膜を得た。膜の洗浄は60℃の蒸留水で2分間行なった。このとき、未反応物量は0.19g/m2であった。このようにして得られたポリアミド分離機能層を持つ半透膜は、pH6.5に調整した3.5重量%の塩化ナトリウムを含む水溶液を原水とし、5.5MPa、25℃の条件下で逆浸透テストを行った。その結果、透水量は0.73m3/m2/日、塩除去率は99.7%であった。
<Reference Example 5>
Reference Example 1 except that a microporous support membrane was immersed in a 3.4 wt% aqueous solution of m-phenylenediamine for 2 minutes and then a solution of trimesic acid chloride in decane so as to be 0.15 wt% was used. A composite semipermeable membrane was obtained in the same manner as above. The membrane was washed with distilled water at 60 ° C. for 2 minutes. At this time, the amount of unreacted substances was 0.19 g / m 2 . The semipermeable membrane having a polyamide separation functional layer obtained in this manner is an aqueous solution containing 3.5% by weight of sodium chloride adjusted to pH 6.5, and the reverse is performed under conditions of 5.5 MPa and 25 ° C. A penetration test was performed. As a result, the water permeability was 0.73 m 3 / m 2 / day, and the salt removal rate was 99.7%.
<実施例8>
参考例5で得られたポリアミド分離機能層を持つ半透膜を、pH9の二酸化塩素水溶液と接触させた。pHの調整は硫酸又は水酸化ナトリウムを使用し、pH以外の条件は実施例1の条件と同一とした。上記参考例5と同条件で性能試験したところ、この膜の透水量は1.02m3/m2・d、塩化ナトリウムの塩除去率は99.7%であった。
<Example 8>
The semipermeable membrane having the polyamide separation functional layer obtained in Reference Example 5 was brought into contact with a pH 9 chlorine dioxide aqueous solution. The pH was adjusted using sulfuric acid or sodium hydroxide, and the conditions other than the pH were the same as those in Example 1. When a performance test was performed under the same conditions as in Reference Example 5, the water permeability of this membrane was 1.02 m 3 / m 2 · d, and the salt removal rate of sodium chloride was 99.7%.
実施例8の結果から、本発明の方法に従い、膜中の未反応物量を0.5g/m2以下に低減する工程の後に、二酸化塩素と接触させる工程を経ることにより、膜透水量を大幅に向上させることができることが明らかである。 From the result of Example 8, according to the method of the present invention, after the step of reducing the amount of unreacted substances in the membrane to 0.5 g / m 2 or less, the step of bringing into contact with chlorine dioxide greatly increases the membrane water permeability. It is clear that this can be improved.
本発明法により得られる複合半透膜は、溶媒と溶質とを分離するための逆浸透膜として用いられる。例えば、原水中に含まれる無機物や有機物などの有害物質やその前駆物質を除去する膜分離法において用いられる。 The composite semipermeable membrane obtained by the method of the present invention is used as a reverse osmosis membrane for separating a solvent and a solute. For example, it is used in a membrane separation method for removing harmful substances such as inorganic substances and organic substances and precursors thereof contained in raw water.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009104724A JP5126155B2 (en) | 2008-04-25 | 2009-04-23 | Manufacturing method of composite semipermeable membrane |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008115086 | 2008-04-25 | ||
JP2008115086 | 2008-04-25 | ||
JP2009104724A JP5126155B2 (en) | 2008-04-25 | 2009-04-23 | Manufacturing method of composite semipermeable membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009279582A JP2009279582A (en) | 2009-12-03 |
JP5126155B2 true JP5126155B2 (en) | 2013-01-23 |
Family
ID=41450610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009104724A Expired - Fee Related JP5126155B2 (en) | 2008-04-25 | 2009-04-23 | Manufacturing method of composite semipermeable membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5126155B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3106595B2 (en) * | 1991-10-01 | 2000-11-06 | 東レ株式会社 | Method for producing composite membrane for reverse osmosis method |
JPH1057999A (en) * | 1996-08-23 | 1998-03-03 | Nippon Sangyo Kikaku:Kk | Purifying method of sewage or sludge |
US5876602A (en) * | 1997-11-04 | 1999-03-02 | The Dow Chemical Company | Treatment of composite polyamide membranes to improve performance |
JP3525759B2 (en) * | 1998-09-24 | 2004-05-10 | 東レ株式会社 | Fluid separation membrane and method for producing the same |
JP2005066464A (en) * | 2003-08-25 | 2005-03-17 | Nitto Denko Corp | Liquid separation membrane and manufacturing method therefor |
JP2008080187A (en) * | 2006-09-26 | 2008-04-10 | Toray Ind Inc | Composite semipermeable membrane and use thereof |
-
2009
- 2009-04-23 JP JP2009104724A patent/JP5126155B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009279582A (en) | 2009-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5262668B2 (en) | Composite nanofiltration membrane | |
JP5131028B2 (en) | Manufacturing method of composite semipermeable membrane | |
JPWO2010050421A1 (en) | Composite semipermeable membrane and method for producing the same | |
JP4525296B2 (en) | Manufacturing method of composite semipermeable membrane | |
JP5267273B2 (en) | Manufacturing method of composite semipermeable membrane | |
JP4618081B2 (en) | Processing method and manufacturing method of composite semipermeable membrane | |
JP2011125856A (en) | Method for manufacturing composite semipermeable membrane and polyamide composite semipermeable membrane | |
JP2006021094A (en) | Compound semi-permeable membrane and its manufacturing method | |
JP5120006B2 (en) | Manufacturing method of composite semipermeable membrane | |
JP7342528B2 (en) | Composite semipermeable membrane and method for manufacturing composite semipermeable membrane | |
JP5130967B2 (en) | Manufacturing method of composite semipermeable membrane | |
JP2009078218A (en) | Method of manufacturing composite semi-permeable membrane | |
JP2012143750A (en) | Method for producing composite semi-permeable membrane | |
KR20120077997A (en) | Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby | |
JP5062136B2 (en) | Manufacturing method of composite semipermeable membrane | |
JP2009262089A (en) | Manufacturing method of composite semi-permeable membrane | |
KR20170047114A (en) | Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane | |
JP5126155B2 (en) | Manufacturing method of composite semipermeable membrane | |
JP2005177741A (en) | Treatment method of semipermeable membrane, modified semipermeable membrane and its production method | |
JP3780734B2 (en) | Composite semipermeable membrane | |
JP2000093771A (en) | Fluid separation membrane and its manufacture | |
JP2009034669A (en) | Method for manufacturing composite semipermeable membrane | |
JP4470472B2 (en) | Composite semipermeable membrane and method for producing water using the same | |
KR20190055664A (en) | A polyamide composite membrane having improved salt and boron rejection and method for preparation thereof | |
JP2005144211A (en) | Composite semi-permeable membrane, its production method and treatment method for fluid separation element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120328 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121002 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121015 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5126155 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151109 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |