Nothing Special   »   [go: up one dir, main page]

JP5111324B2 - Preparation method of carbon nanotube alignment film - Google Patents

Preparation method of carbon nanotube alignment film Download PDF

Info

Publication number
JP5111324B2
JP5111324B2 JP2008262653A JP2008262653A JP5111324B2 JP 5111324 B2 JP5111324 B2 JP 5111324B2 JP 2008262653 A JP2008262653 A JP 2008262653A JP 2008262653 A JP2008262653 A JP 2008262653A JP 5111324 B2 JP5111324 B2 JP 5111324B2
Authority
JP
Japan
Prior art keywords
substrate
cnt
cnts
alignment film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008262653A
Other languages
Japanese (ja)
Other versions
JP2010091844A (en
Inventor
淳 松井
徳治 宮下
広典 折笠
隆 京谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2008262653A priority Critical patent/JP5111324B2/en
Publication of JP2010091844A publication Critical patent/JP2010091844A/en
Application granted granted Critical
Publication of JP5111324B2 publication Critical patent/JP5111324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

この発明は、その表面上にカーボンナノチューブ(以下「CNT」という。)を配向させた基板を製造する方法に関する。   The present invention relates to a method of manufacturing a substrate having carbon nanotubes (hereinafter referred to as “CNT”) oriented on the surface thereof.

1軸方向に配向した構造を有し、かつ配向方向に電気伝導度を有する基板は液晶用の電極基板として用いることができる。一般的に液晶用の電極としてはITO透明電極上にポリイミドを塗布しこれをラビングによって配向させたものが用いられる。この場合ラビングにより生じるチリや静電気の発生が素子の破壊の原因となる場合がある。電極基板そのものが配向性を有しておれば、ラビング処理の必要がないため、素子破壊を防ぐことができる。そのための方法として、数μm幅の電極間隔に交流電場を印加することで電極間隔をつなぐようにCNTを配向させる手法が報告されている(特許文献1)。また、CNTの分散を向上させるためにアルコール水溶液が有効であることが知られている(特許文献2)。   A substrate having a structure oriented in a uniaxial direction and having electrical conductivity in the orientation direction can be used as an electrode substrate for liquid crystal. In general, an electrode for liquid crystal is obtained by applying polyimide on an ITO transparent electrode and aligning it by rubbing. In this case, dust or static electricity generated by rubbing may cause destruction of the element. If the electrode substrate itself has orientation, it is not necessary to perform a rubbing treatment, so that element destruction can be prevented. As a method for that purpose, a method of orienting CNTs so as to connect the electrode spacing by applying an alternating electric field to the electrode spacing having a width of several μm has been reported (Patent Document 1). Further, it is known that an aqueous alcohol solution is effective for improving the dispersion of CNT (Patent Document 2).

特開2004-71654JP2004-71654 特開2005-324999JP2005-324999

しかし、この方法(特許文献1)では電極間を橋渡しするようにCNTの凝集体が形成させるため、基板上には配向したCNTだけでなく配向用に使用する電極が存在するため、電極の透明性、基板の配向性が失われる。また、CNT配向膜を作製するためにはあらかじめ基板上に配向用の電極を作製する必要があり、そのため高価でありかつ大量に生産することが困難である。   However, in this method (Patent Document 1), since aggregates of CNTs are formed so as to bridge the electrodes, not only oriented CNTs but also electrodes used for orientation exist on the substrate. And the orientation of the substrate are lost. In addition, in order to produce a CNT alignment film, it is necessary to produce an alignment electrode on a substrate in advance, which is expensive and difficult to produce in large quantities.

そこで、本発明者らは、鋭意検討を重ねた結果、CNT分散溶液に電極を挿入しそれに交流電圧を印加すると、その電場に沿って分散液中でCNTが整列することを利用して、電極間の距離をcmオーダーにすると共に、交流電圧の周波数を特定の低周波数範囲に設定し、その電極間に基板を浸して引き上げることにより、基板上にCNTのみからなる均一で配向した薄膜を大面積で構築することが出来ることを見出した。
即ち、本発明は、
水と低分子アルコールとの混合溶媒に長さが0.5〜10μmのカーボンナノチューブを溶解させた溶液を用意し、この溶液に2つの電極をその間隔が0.5〜2.0cmとなるように浸漬し、該2電極間に1〜50kHzで1〜5kV/cmの交流電圧を印加し、その後、該溶液に基板を浸漬した後に引き上げて溶媒を乾燥させることから成る、その上に配向したカーボンナノチューブのみが存在するカーボンナノチューブ配向膜の作製法である。
Therefore, as a result of intensive studies, the present inventors have made use of the fact that when an electrode is inserted into a CNT dispersion solution and an AC voltage is applied thereto, the CNTs are aligned in the dispersion along the electric field. The distance between the electrodes is set to the cm order, the frequency of the alternating voltage is set to a specific low frequency range, and the substrate is immersed between the electrodes and pulled up, so that a uniform and oriented thin film consisting only of CNTs is increased on the substrate. We found that it can be constructed in area.
That is, the present invention
Prepare a solution in which carbon nanotubes with a length of 0.5 to 10 μm are dissolved in a mixed solvent of water and a low molecular alcohol, and place the two electrodes in this solution at a distance of 0.5 to 2.0 cm. 1 to 50 kHz AC voltage of 1 to 5 kV / cm is applied between the two electrodes, and then the substrate is immersed in the solution and then lifted to dry the solvent and oriented thereon. This is a method for producing a carbon nanotube alignment film in which only carbon nanotubes exist.

本願発明の方法は、簡便且つ効率的であり、また水やエタノールという一般的な溶媒を用いているため、ガラス基板だけでなくプラスチック基板などへ一方向に配向したカーボンナノチューブを集積化できる。また、転写の操作を繰り返し行うことでカーボンナノチューブの量も増加させることが可能である。
本願発明の方法により形成されるカーボンナノチューブ膜は均一でその厚さがカーボンナノチューブ数本からなるため、透明性が高く、可視光透過率が80%以上である。透明電極としての応用やラビングフリーの液晶配向用電極して用いることが可能である。
The method of the present invention is simple and efficient, and uses a common solvent such as water or ethanol, so that carbon nanotubes oriented in one direction can be integrated not only on a glass substrate but also on a plastic substrate. In addition, the amount of carbon nanotubes can be increased by repeating the transfer operation.
Since the carbon nanotube film formed by the method of the present invention is uniform and has a thickness of several carbon nanotubes, it has high transparency and a visible light transmittance of 80% or more. It can be used as a transparent electrode or a rubbing-free liquid crystal alignment electrode.

本願発明の方法を段階を追って説明する。
(1)まず、水と低分子アルコールとの混合溶媒にCNTを溶解させた溶液を用意する。
溶媒は水と低分子アルコールとの混合溶液である。低分子アルコールは、炭素数が1〜3のアルコールをいい、好ましくはメタノールやエタノールが挙げられる。混合溶液中の低分子アルコールの割合は、5〜20容積%であることが好ましい。
カーボンナノチューブ(CNT)は、炭素のみからなる中空構造で分岐の少ない炭素系繊維をいう。CNTはsingle-walledでもmulti-walledでもよい。このCNTのサイズは、通常平均直径1〜50nm、好ましくは1〜20nm、平均長径0.5〜10μm、好ましくは1〜10μmである。
CNTを溶媒に十分に分散させることが好ましく、そのためCNT表面に水酸基やカルボン酸基等の親水基を付与してもよく、また溶媒にドデシルスルホン酸ナトリウムなどの界面活性剤を混合してミセル化により分散してもよい。
溶媒中のCNTの濃度は1〜10mg/Lである。
CNTを溶媒中に均一に溶解させるために、超音波処理、撹拌処理等の処理を行ってもよい。
The method of the present invention will be described step by step.
(1) First, a solution in which CNTs are dissolved in a mixed solvent of water and a low molecular alcohol is prepared.
The solvent is a mixed solution of water and a low molecular alcohol. The low molecular alcohol refers to an alcohol having 1 to 3 carbon atoms, preferably methanol or ethanol. The proportion of the low molecular alcohol in the mixed solution is preferably 5 to 20% by volume.
A carbon nanotube (CNT) refers to a carbon-based fiber having a hollow structure made of only carbon and having few branches. CNTs may be single-walled or multi-walled. The size of the CNT is usually an average diameter of 1 to 50 nm, preferably 1 to 20 nm, and an average major axis of 0.5 to 10 μm, preferably 1 to 10 μm.
It is preferable to disperse CNTs sufficiently in a solvent. Therefore, hydrophilic groups such as hydroxyl groups and carboxylic acid groups may be added to the CNT surface. May be dispersed.
The concentration of CNT in the solvent is 1 to 10 mg / L.
In order to uniformly dissolve CNTs in a solvent, treatments such as ultrasonic treatment and stirring treatment may be performed.

(2)次に、この溶液に2つの電極を浸漬する。
電極としては、金属、ITO(酸化インジウムスズ)等如何なる電極を用いてもよい。また電圧印加装置は一般的なものでよい。電極の形状は平板状が好ましい。
(3)この2電極間に交流電圧を印加する。この交流電圧の周波数は1kHz〜50kHz、好ましくは10〜20kHzである。交流電圧の周波数が1kHzより小さいと、電極基板上に凝集する。電圧は1kV/cm以上、好ましくは1〜2kV/cmである。電圧が1kV/cmより小さいと、配向性が悪くなる。
このとき溶媒の温度は10〜30℃、好ましくは室温である。交流電圧の印加により溶媒中のCNTは電場の方向に沿って整列する。
(4)その後、該溶液に基板を浸漬した後に引き上げる。この基板の材質に制限はなく、好ましくはガラスである。引き上げ速度は1〜2cm/分程度が好ましい。
(5)溶媒を乾燥させる。乾燥手段に特に制限はない。溶媒が除去された結果、基板上にCNTが配向し、CNTの薄膜が形成される。その厚さは通常1〜30nmである。
本願発明の方法により、このような大面積の基板上にCNTが配向した薄膜を形成させることが初めて可能になった。

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
(2) Next, two electrodes are immersed in this solution.
Any electrode such as metal or ITO (indium tin oxide) may be used as the electrode. The voltage applying device may be a general one. The shape of the electrode is preferably a flat plate shape.
(3) An AC voltage is applied between the two electrodes. The frequency of the AC voltage is 1 kHz to 50 kHz, preferably 10 to 20 kHz. If the frequency of the AC voltage is less than 1 kHz, the agglomeration occurs on the electrode substrate. The voltage is 1 kV / cm or more, preferably 1 to 2 kV / cm. When the voltage is smaller than 1 kV / cm, the orientation is deteriorated.
At this time, the temperature of the solvent is 10 to 30 ° C., preferably room temperature. By applying an alternating voltage, the CNTs in the solvent are aligned along the direction of the electric field.
(4) Thereafter, the substrate is dipped in the solution and then pulled up. There is no restriction | limiting in the material of this board | substrate, Preferably it is glass. The pulling speed is preferably about 1 to 2 cm / min.
(5) Dry the solvent. There is no particular limitation on the drying means. As a result of the removal of the solvent, the CNTs are oriented on the substrate, and a CNT thin film is formed. Its thickness is usually 1-30 nm.
The method of the present invention makes it possible for the first time to form a thin film in which CNTs are oriented on such a large-area substrate.

The following examples illustrate the invention but are not intended to limit the invention.

まず、鋳型法(特開2006-282468)によりカーボンナノチューブ(multi-walled CNT)を合成した。
5cm四方のアルミニウム基板2枚を5cm離して20wt%の濃硫酸水溶液につけ10℃,20V、571secで陽極酸化した。陽極酸化により直径が10〜20nm、長さが10μmの一次元細孔を有する多孔質アルミナ鋳型を得た。このアルミナ鋳型に濃度20vol%のアセチレンガスを600℃にて2時間流入させて炭素を鋳型に堆積させた。続いてこの基板に酸素プラズマ処理を施し表面に堆積した炭素を選択的に取り除き、3mol/Lの水酸化ナトリウム水溶液に基板を浸して、基板を溶解させ、水溶液をろ過し、遠心分離による洗浄を繰り返して、水分散性のCNTを得た。得られたCNTを透過型電子顕微鏡にて観察したところ、直径は10〜20nm、長さは約10μmであった。
First, carbon nanotubes (multi-walled CNT) were synthesized by a template method (Japanese Patent Laid-Open No. 2006-282468).
Two 5 cm square aluminum substrates were separated from each other by 5 cm and placed in a 20 wt% concentrated sulfuric acid aqueous solution and anodized at 10 ° C., 20 V, and 571 sec. A porous alumina template having a one-dimensional pore with a diameter of 10 to 20 nm and a length of 10 μm was obtained by anodization. An acetylene gas having a concentration of 20 vol% was allowed to flow into this alumina mold at 600 ° C. for 2 hours to deposit carbon on the mold. Subsequently, this substrate is subjected to oxygen plasma treatment to selectively remove carbon deposited on the surface, soak the substrate in a 3 mol / L sodium hydroxide aqueous solution, dissolve the substrate, filter the aqueous solution, and wash by centrifugation. Repeatedly, water-dispersible CNTs were obtained. When the obtained CNT was observed with a transmission electron microscope, the diameter was 10 to 20 nm and the length was about 10 μm.

次に、ガラス基板上にこのCNTを整列させた。用いた装置の概略を図1に示す。
CNTの水分散液(5mg/L)に体積分率で10vol%のエタノールを加えた。
続いて2枚のITO電極(幅1.5cm、長さ6cm)とガラス基板(幅1.5cm、長さ3cm)をこの分散液に挿入した。2枚のITO電極の距離は2cmとした。次に、室温で、電極間に20kHz、2kV/cmの交流電場を3分間印加した後、電場を印加しながらガラス基板を10mm/分で引き上げた。
このガラス基板をAFM測定器(SII社製、SPA−400)により観測した。
図2は以上の実験条件でガラス基板に転写したCNTのAFM像を(a)50μmと(b)25μm範囲で測定したAFM像を示す。図2内の矢印は基板の引き上げ方向である。図3は図2の基板の断面高さを示す。Z1とZ2はAFMから求められるCNT膜の断面高さであり、その差分ΔZは膜厚を示す。
また図4は図2において基板引き上げ方向を0°とした時のCNTの配向分布である。この分布図より基板の浸漬方向を0°とすると、約60%のCNTが0°〜30°の方向に配向していることがわかる。
その結果CNTが凝集することなく一方向に配向していることが確認された。また、膜厚は10〜30nmであり、これは用いたCNTの直径(10〜20nm)の1〜3倍であった。このことからこの膜がCNT数本からなる均一な超薄膜であることが示された。
Next, the CNTs were aligned on a glass substrate. An outline of the apparatus used is shown in FIG.
10 vol% ethanol was added to the aqueous dispersion of CNT (5 mg / L) in volume fraction.
Subsequently, two ITO electrodes (width 1.5 cm, length 6 cm) and a glass substrate (width 1.5 cm, length 3 cm) were inserted into this dispersion. The distance between the two ITO electrodes was 2 cm. Next, an AC electric field of 20 kHz and 2 kV / cm was applied between the electrodes at room temperature for 3 minutes, and then the glass substrate was pulled up at 10 mm / min while applying the electric field.
The glass substrate was observed with an AFM measuring instrument (SII, SPA-400).
FIG. 2 shows AFM images obtained by measuring AFM images of CNT transferred to a glass substrate under the above experimental conditions in the range of (a) 50 μm 2 and (b) 25 μm 2 . The arrow in FIG. 2 is the pulling direction of the substrate. FIG. 3 shows the cross-sectional height of the substrate of FIG. Z1 and Z2 are the cross-sectional heights of the CNT film obtained from the AFM, and the difference ΔZ indicates the film thickness.
4 shows the orientation distribution of CNTs when the substrate pulling direction is 0 ° in FIG. From this distribution diagram, it is understood that about 60% of CNTs are oriented in the direction of 0 ° to 30 ° when the substrate immersion direction is 0 °.
As a result, it was confirmed that the CNTs were oriented in one direction without agglomeration. The film thickness was 10 to 30 nm, which was 1 to 3 times the diameter (10 to 20 nm) of the CNT used. This indicates that this film is a uniform ultrathin film composed of several CNTs.

実施例1の操作で配向したCNTが転写されたガラス基板を用いて、実施例1と同様の操作でこの基板上にCNTを吸着させた。図5は以上の実験条件でガラス基板に転写したCNTのAFM像であり、矢印は基板引き上げ方向を示す。図6はこの基板の断面像を示す。Z1とZ2はAFMから求められるCNT膜の断面高さであり、その差分ΔZは膜厚を示す。その結果、1度目の操作で形成させたCNT配向膜と2度目の操作で形成させたCNT配向膜の膜厚の変化がなく密度が増加していることが確認された。このとき膜密度は60%程度であった。
以上のように2度CNTを吸着させてガラス基板上に転写した配向CNT(図6)の伝導度を測定した。配向したCNTが吸着しているガラス基板上に、配向方向と平行方向および配向方向と垂直方向に金電極を蒸着し(電極幅1mm,電極間隔20μm)測定を行った。図7はその模式図を示す。図8はその電流−電圧特性を示す。その結果、配向方向とそれに対して垂直の方向の伝導度の差は5倍であった。
Using the glass substrate onto which the aligned CNTs were transferred in the operation of Example 1, CNTs were adsorbed on the substrate by the same operation as in Example 1. FIG. 5 is an AFM image of CNT transferred to the glass substrate under the above experimental conditions, and the arrows indicate the direction of pulling up the substrate. FIG. 6 shows a cross-sectional image of this substrate. Z1 and Z2 are the cross-sectional heights of the CNT film obtained from the AFM, and the difference ΔZ indicates the film thickness. As a result, it was confirmed that the CNT alignment film formed by the first operation and the CNT alignment film formed by the second operation did not change in film thickness and increased in density. At this time, the film density was about 60%.
As described above, the conductivity of the aligned CNTs (FIG. 6) that had been adsorbed twice and transferred onto the glass substrate was measured. A gold electrode was vapor-deposited in a direction parallel to the alignment direction and in a direction perpendicular to the alignment direction on the glass substrate on which the aligned CNTs were adsorbed (electrode width 1 mm, electrode interval 20 μm), and measurement was performed. FIG. 7 shows a schematic diagram thereof. FIG. 8 shows the current-voltage characteristics. As a result, the difference in conductivity between the alignment direction and the direction perpendicular thereto was 5 times.

本実施例で用いたCNTの吸光度は波長400nmで0.006/1nmであることが分かっているので(Journal of Materials Chemistry "Fabrication of densely packed multi-walled carbon nanotube ultrathin films using a liquid-liquid interface", 2007, vol 17 pp3806-3811)、2度CNTを吸着させた基板の400nmでの透過率は80%程度であることが求められた。400m〜700nmの波長において吸光度は400nmが最も強いため、これより、配向膜が可視光において80%以上の透過性を有することを示している。   Since it is known that the absorbance of CNT used in this example is 0.006 / 1 nm at a wavelength of 400 nm (Journal of Materials Chemistry "Fabrication of densely packed multi-walled carbon nanotube ultrathin films using a liquid-liquid interface" , 2007, vol 17 pp3806-3811), the transmittance at 400 nm of the substrate on which CNTs were adsorbed twice was required to be about 80%. Since the absorbance at 400 nm to 700 nm is the strongest at 400 nm, this indicates that the alignment film has a transmittance of 80% or more in visible light.

本発明は絶縁体基板上に配向したCNTの薄膜を作製するものである。この膜はCNT数本の膜厚であるため透明電極、液晶配向電極としての応用が期待できる。また転写する基板にポリマーを用いることによりフレキシブルな電極として用いることも可能となり、EL素子や太陽電池などの光電変換膜などへの展開も期待できる。   The present invention produces a CNT thin film oriented on an insulator substrate. Since this film has a thickness of several CNTs, application as a transparent electrode and a liquid crystal alignment electrode can be expected. Further, by using a polymer for the substrate to be transferred, it can be used as a flexible electrode, and development to a photoelectric conversion film such as an EL element or a solar cell can be expected.

電場配向膜製作装置の模式図を示す図である。It is a figure which shows the schematic diagram of an electric field alignment film manufacturing apparatus. 基板に転写されたmulti-walled CNTのAFM像を示す図である。矢印は基板引き上げ方向を示す。It is a figure which shows the AFM image of multi-walled CNT transferred to the board | substrate. The arrow indicates the substrate pulling direction. CNTが転写された基板の断面像を示す図である。It is a figure which shows the cross-sectional image of the board | substrate with which CNT was transferred. 図3のAFM像から求めたmulti-walled CNTの配向分布を示す図である。It is a figure which shows the orientation distribution of multi-walled CNT calculated | required from the AFM image of FIG. 基板への転写を二回繰り返して作製したCNT膜のAFM像を示す図である。矢印は基板引き上げ方向を示す。It is a figure which shows the AFM image of the CNT film | membrane produced by repeating transcription | transfer to a board | substrate twice. The arrow indicates the substrate pulling direction. CNTが転写された基板の断面像を示す図である。It is a figure which shows the cross-sectional image of the board | substrate with which CNT was transferred. CNT配向膜の伝導度測定法を示す図である。(a)は配向方向、(b)は配向と垂直な方向の伝導度測定法を示す。It is a figure which shows the conductivity measuring method of a CNT alignment film. (A) is an orientation direction, (b) shows the conductivity measuring method in a direction perpendicular to the orientation. CNT配向膜の伝導度異方性を示す図である。It is a figure which shows the conductivity anisotropy of a CNT alignment film.

Claims (2)

水と低分子アルコールとの混合溶媒に長さが0.5〜10μmのカーボンナノチューブを溶解させた溶液を用意し、この溶液に2つの電極をその間隔が0.5〜2.0cmとなるように浸漬し、該2電極間に1〜50kHzで1〜5kV/cmの交流電圧を印加し、その後、該溶液に基板を浸漬した後に引き上げて溶媒を乾燥させることから成る、その上に配向したカーボンナノチューブのみが存在するカーボンナノチューブ配向膜の作製法。 Prepare a solution in which carbon nanotubes with a length of 0.5 to 10 μm are dissolved in a mixed solvent of water and a low molecular alcohol, and place the two electrodes in this solution at a distance of 0.5 to 2.0 cm. 1 to 50 kHz AC voltage of 1 to 5 kV / cm is applied between the two electrodes, and then the substrate is immersed in the solution and then lifted to dry the solvent and oriented thereon. A method for producing a carbon nanotube alignment film in which only carbon nanotubes exist. 請求項1の各工程を複数回繰り返すことにより、その上に高密度の配向したカーボンナノチューブのみが存在するカーボンナノチューブ配向膜の作製法。 A method for producing a carbon nanotube alignment film in which each step of claim 1 is repeated a plurality of times, whereby only high-density aligned carbon nanotubes are present thereon.
JP2008262653A 2008-10-09 2008-10-09 Preparation method of carbon nanotube alignment film Expired - Fee Related JP5111324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262653A JP5111324B2 (en) 2008-10-09 2008-10-09 Preparation method of carbon nanotube alignment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262653A JP5111324B2 (en) 2008-10-09 2008-10-09 Preparation method of carbon nanotube alignment film

Publications (2)

Publication Number Publication Date
JP2010091844A JP2010091844A (en) 2010-04-22
JP5111324B2 true JP5111324B2 (en) 2013-01-09

Family

ID=42254617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262653A Expired - Fee Related JP5111324B2 (en) 2008-10-09 2008-10-09 Preparation method of carbon nanotube alignment film

Country Status (1)

Country Link
JP (1) JP5111324B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033167A1 (en) 2010-09-08 2012-03-15 国立大学法人九州大学 Process for producing film containing oriented nanotubes or nanoparticles, and the film
CN102053737B (en) * 2010-12-27 2013-01-09 清华大学 Touch pen
CN102053736B (en) * 2010-12-27 2012-11-21 清华大学 Touch screen input finger stall
JP5826047B2 (en) * 2012-01-19 2015-12-02 セイコーインスツル株式会社 Method for producing multilayer structure
JP6008724B2 (en) * 2012-12-07 2016-10-19 日立造船株式会社 Method for manufacturing carbon nano-junction conductive material substrate
KR101619849B1 (en) * 2014-07-03 2016-05-18 전북대학교산학협력단 Preparation method of hybrid alignment layer with improvement of the relaxation time for LCD and the hybrid alignment layer made thereby
KR102008613B1 (en) * 2018-02-27 2019-08-07 한국산업기술대학교산학협력단 Carbon nanotube sheet alignment film and liquid crystal display comprising the same
CN112920531B (en) * 2021-02-18 2022-02-11 西安交通大学 High energy storage density polymer and method for preparing same based on field arrangement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412654C (en) * 2005-10-27 2008-08-20 清华大学 Liquid crystal display device and its manufacturing method
US7630041B2 (en) * 2006-06-23 2009-12-08 Tsinghua University Liquid crystal cell assembly for liquid crystal display

Also Published As

Publication number Publication date
JP2010091844A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5111324B2 (en) Preparation method of carbon nanotube alignment film
Sun et al. Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters
KR100924766B1 (en) Carbon nano-tubeCNT thin film comprising a metal nano-particle, and a manufacturing method thereof
TWI578336B (en) A carbon nanotube - polymer layered composite transparent flexible electrode and preparation method
Worsley et al. Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes
Tang et al. Assembly of 1D nanostructures into sub‐micrometer diameter fibrils with controlled and variable length by dielectrophoresis
Boccaccini et al. Electrophoretic deposition of carbon nanotubes
Wang et al. Fabrication of highly conducting and transparent graphene films
Zhang et al. Highly stable and stretchable graphene–polymer processed silver nanowires hybrid electrodes for flexible displays
JP5473148B2 (en) Transparent conductive film with improved conductivity and method for producing the same
Xiong et al. Ultrastrong freestanding graphene oxide nanomembranes with surface-enhanced Raman scattering functionality by solvent-assisted single-component layer-by-layer assembly
JP2008177165A (en) Transparent electrode of carbon nanotube pattern containing net-like thin film of carbon nanotube, and its manufacturing method
JP5076319B2 (en) Carbon nanotube dispersion
US20140120027A1 (en) Conductive film formation method, conductive film, insulation method, and insulation film
Druzhinina et al. Strategies for post‐synthesis alignment and immobilization of carbon nanotubes
JP2009193964A (en) Methods for preparing cnt film, cnt film with sandwich structure, anode including cnt film and organic light-emitting diode including anode and cnt device
Kim et al. Flexible, highly durable, and thermally stable SWCNT/polyimide transparent electrodes
Wang et al. Fabrication and evaluation of adhesion enhanced flexible carbon nanotube transparent conducting films
Orikasa et al. Template synthesis of water-dispersible carbon nano “test tubes” without any post-treatment
Su et al. Scalable and surfactant-free process for single-walled carbon nanotube based transparent conductive thin films via layer-by-layer assembly
JP2009298625A (en) Method for producing carbon nanotube film and carbon nanotube film
Manivannan et al. Fabrication and effect of post treatment on flexible single-walled carbon nanotube films
Chan Yu King et al. Transparent carbon nanotube-based driving electrodes for liquid crystal dispersion display devices
JP2009292664A (en) Method and apparatus for producing thin film and method for manufacturing electronic device
Mei et al. Gels of carbon nanotubes and a nonionic surfactant prepared by mechanical grinding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees