Nothing Special   »   [go: up one dir, main page]

JP5108355B2 - Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery Download PDF

Info

Publication number
JP5108355B2
JP5108355B2 JP2007091827A JP2007091827A JP5108355B2 JP 5108355 B2 JP5108355 B2 JP 5108355B2 JP 2007091827 A JP2007091827 A JP 2007091827A JP 2007091827 A JP2007091827 A JP 2007091827A JP 5108355 B2 JP5108355 B2 JP 5108355B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
current collector
material body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007091827A
Other languages
Japanese (ja)
Other versions
JP2008251369A (en
Inventor
和也 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007091827A priority Critical patent/JP5108355B2/en
Publication of JP2008251369A publication Critical patent/JP2008251369A/en
Application granted granted Critical
Publication of JP5108355B2 publication Critical patent/JP5108355B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法に関する。   The present invention relates to a negative electrode for a lithium secondary battery, a lithium secondary battery including the negative electrode, and a method for producing a negative electrode for a lithium secondary battery.

リチウムイオン二次電池が用いられるPC(Personal Computer)、携帯電話、PDA(Personal Digital Assistant)等の携帯情報端末や、ビデオレコーダー、メモリーオーディオプレーヤー等のオーディオビジュアル機器の小型化および高性能化が進んでいる。これに伴い、リチウムイオン二次電池の高容量化も望まれている。高容量化のための負極活物質としては、金属リチウムや、リチウムと合金化するケイ素、スズなどが検討されている。   Advances in miniaturization and high performance of portable information terminals such as PCs (Personal Computers), mobile phones, and PDAs (Personal Digital Assistants) that use lithium ion secondary batteries, as well as audio-visual devices such as video recorders and memory audio players. It is out. Accordingly, it is desired to increase the capacity of the lithium ion secondary battery. As a negative electrode active material for increasing the capacity, metallic lithium, silicon alloyed with lithium, tin, and the like have been studied.

しかし、これらの負極活物質はリチウムイオンと反応する際に大きな体積変化を伴うため、充放電を繰り返すことによって、負極活物質が集電体から剥離したり、負極に変形が生じるという問題がある。   However, since these negative electrode active materials are accompanied by a large volume change when reacting with lithium ions, there is a problem that the negative electrode active material is peeled off from the current collector or the negative electrode is deformed by repeated charge and discharge. .

このような問題を解決するための電極構造が特許文献1に開示されている。特許文献1に開示された構造では、リチウムと合金化しない材料からなる集電体上に、リチウムと合金化する活物質からなる複数の柱状体が形成されている。このような柱状体は、例えば、集電体上に活物質の膜を形成し、これをフォトリソグラフィーによりパターニングすることによって形成される。または、メッキ技術を用いて集電体上に選択的に活物質を堆積させることによって形成される。この電極構造によると、柱状体間の空隙を埋めるように柱状体が膨張するので、膨張応力による電極特性の低下を抑えることができる。   An electrode structure for solving such a problem is disclosed in Patent Document 1. In the structure disclosed in Patent Document 1, a plurality of columnar bodies made of an active material alloyed with lithium are formed on a current collector made of a material not alloyed with lithium. Such a columnar body is formed, for example, by forming a film of an active material on a current collector and patterning the film by photolithography. Alternatively, it is formed by selectively depositing an active material on a current collector using a plating technique. According to this electrode structure, since the columnar bodies expand so as to fill the gaps between the columnar bodies, it is possible to suppress a decrease in electrode characteristics due to expansion stress.

特許文献1の負極では、各柱状体は集電体の法線方向に沿って直立している。このような負極を用いてリチウム二次電池を構成すると、正極活物質層の大部分が、活物質からなる柱状体と対向せず、集電体表面のうち活物質で覆われていない部分(「集電体の露出部」とする)と対向してしまうという問題がある。そのため、充電時に正極活物質層から供給されるリチウムは、負極活物質に吸蔵されずに、負極集電体の露出部に析出しやすくなる。その結果、放電時に負極からリチウムを効率良く放出され難くなるので、充放電効率が低下する。   In the negative electrode of Patent Document 1, each columnar body stands upright along the normal direction of the current collector. When a lithium secondary battery is configured using such a negative electrode, most of the positive electrode active material layer does not face the columnar body made of the active material, and the portion of the current collector surface that is not covered with the active material ( There is a problem that it faces the “exposed portion of the current collector”. Therefore, lithium supplied from the positive electrode active material layer at the time of charging is not occluded by the negative electrode active material, but tends to be deposited on the exposed portion of the negative electrode current collector. As a result, it becomes difficult to efficiently release lithium from the negative electrode at the time of discharge, so that the charge / discharge efficiency is lowered.

また、放電時には、負極活物質に対向している正極活物質のみが反応しやすいため、実質的な放電容量が低下する。さらに充放電サイクルの繰り返しにより、このような不均一な反応が進むと、正極中での粒子ごとの放電深度、すなわち粒子ごとの電位分布が拡大される。そのため、高電位状態にある正極活物質と接触した部位での電解液の分解による皮膜形成やガス発生といった副反応の割合が増加して放電容量が低下し、電池の劣化が進行する。特に、大きな電流値でハイレートの充放電を行うと、サイクル特性が著しく低下してしまう。   Moreover, since only the positive electrode active material facing the negative electrode active material is likely to react during discharge, the substantial discharge capacity is reduced. Further, when such a non-uniform reaction proceeds by repeating the charge / discharge cycle, the discharge depth for each particle in the positive electrode, that is, the potential distribution for each particle is expanded. Therefore, the rate of side reactions such as film formation and gas generation due to decomposition of the electrolyte solution at the site in contact with the positive electrode active material in a high potential state increases, the discharge capacity decreases, and the battery progresses further. In particular, when high-rate charging / discharging is performed with a large current value, the cycle characteristics are significantly deteriorated.

これに対して、本出願人による特許文献2は、集電体上に、集電体表面の法線方向に対して傾斜した長軸を有する柱状の活物質粒子を配置することを提案している。この構成によれば、正極活物質層のうち集電体の露出部と対向する部分の割合を小さくできるので、正極活物質と負極活物質とを十分に活用でき、特許文献1よりも高い容量維持率を得ることができる。   On the other hand, Patent Document 2 by the present applicant proposes to dispose columnar active material particles having a long axis inclined with respect to the normal direction of the current collector surface on the current collector. Yes. According to this configuration, since the ratio of the portion of the positive electrode active material layer facing the exposed portion of the current collector can be reduced, the positive electrode active material and the negative electrode active material can be fully utilized, and the capacity higher than that of Patent Document 1 A maintenance rate can be obtained.

このような活物質粒子は、表面に微小な凸部を有する集電体の表面に、酸素を含む雰囲気下で、集電体の法線方向に対して傾斜した方向からケイ素粒子を蒸着させることによって得られる(斜め蒸着)。このとき、集電体表面のうち凸部や凸部上に成長したケイ素酸化物の影となる部分にはケイ素粒子が蒸着されないので(シャドウイング効果)、集電体表面に体積膨張を吸収する隙間を確保しつつ、ケイ素酸化物を成長させることができる。
特開2004−127561号公報 国際公開第2007/015419号パンフレット
Such active material particles are obtained by depositing silicon particles on the surface of a current collector having minute protrusions on the surface from a direction inclined with respect to the normal direction of the current collector in an oxygen-containing atmosphere. (Oblique deposition). At this time, since the silicon particles are not deposited on the convex portion or the shadowed portion of the silicon oxide grown on the convex portion of the current collector surface (shadowing effect), the current collector surface absorbs the volume expansion. Silicon oxide can be grown while ensuring a gap.
JP 2004-127561 A International Publication No. 2007/015419 Pamphlet

特許文献2では、上述したように、集電体表面の凸部を利用して斜め蒸着により活物質粒子を形成している。しかしながら、本願発明者らが検討したところ、集電体表面の凸部の形態と蒸着粒子(ここではケイ素粒子)の飛来方向との関係によって、各活物質粒子における集電体との界面近傍の酸素濃度に大きな分布が生じる可能性があることを見出した。酸素濃度に分布が生じてしまうメカニズムについては、後で図面を参照しながら詳述する。   In Patent Document 2, as described above, the active material particles are formed by oblique vapor deposition using the convex portions on the surface of the current collector. However, when the inventors of the present application examined, the relationship between the shape of the convex portion on the surface of the current collector and the flying direction of the vapor deposition particles (here, silicon particles), the vicinity of the interface with the current collector in each active material particle It has been found that a large distribution of oxygen concentration may occur. The mechanism by which the oxygen concentration is distributed will be described in detail later with reference to the drawings.

ケイ素酸化物は、その酸素比率(ケイ素量に対する酸素量のモル比)が高いほど、リチウム吸蔵・放出に伴う膨張・収縮の割合が低いため、活物質粒子に上記のような酸素比率の分布が生じると、その活物質粒子と集電体との界面近傍では、活物質の膨張および収縮の割合が異なる領域が存在する。その結果、活物質粒子が集電体から剥離しやすくなり、充放電サイクルの低下を引き起こすおそれがある。   The higher the oxygen ratio (the molar ratio of the oxygen amount to the silicon amount) of silicon oxide, the lower the rate of expansion / contraction associated with lithium occlusion / release, so the active material particles have a distribution of oxygen ratio as described above. When this occurs, there are regions in which the ratio of expansion and contraction of the active material differs in the vicinity of the interface between the active material particles and the current collector. As a result, the active material particles easily peel from the current collector, which may cause a decrease in charge / discharge cycle.

本発明は、上記問題を解決するためになされたものであり、その目的は、集電体の上に複数のケイ素酸化物を含む負極活物質体が形成されたリチウム二次電池用負極において、各負極活物質体と集電体との界面近傍における酸素比率を略均一にすることにより、負極活物質体の集電体表面からの剥離を抑制して充放電サイクル特性を向上させることにある。   The present invention has been made in order to solve the above problems, and the object thereof is a negative electrode for a lithium secondary battery in which a negative electrode active material body containing a plurality of silicon oxides is formed on a current collector. By making the oxygen ratio in the vicinity of the interface between each negative electrode active material body and the current collector substantially uniform, the separation of the negative electrode active material body from the current collector surface is suppressed and the charge / discharge cycle characteristics are improved. .

前述した従来の課題を解決するために、本発明のリチウム二次電池用負極は、集電体と、集電体の上に互いに間隔を空けて配置され、ケイ素酸化物を含む複数の負極活物質体とを備える。集電体の表面には、複数の負極活物質体を支持する複数の第1の凸部が配列されており、各第1の凸部は、前記第1の凸部よりも高さの小さい複数の第2の凸部を有している。各負極活物質体のケイ素量に対する酸素量のモル比の平均値は0.1以上1.2以下であり、各負極活物質体と集電体との界面近傍における、ケイ素量に対する酸素量のモル比の最大値と最小値との差が0.4以下である。   In order to solve the above-described conventional problems, a negative electrode for a lithium secondary battery according to the present invention is arranged on a current collector and a current collector so as to be spaced apart from each other, and includes a plurality of negative electrode actives containing silicon oxide. A substance. A plurality of first protrusions that support the plurality of negative electrode active material bodies are arranged on the surface of the current collector, and each first protrusion is smaller in height than the first protrusions. A plurality of second convex portions are provided. The average value of the molar ratio of the oxygen amount to the silicon amount of each negative electrode active material body is 0.1 or more and 1.2 or less, and the oxygen amount relative to the silicon amount in the vicinity of the interface between each negative electrode active material body and the current collector is The difference between the maximum value and the minimum value of the molar ratio is 0.4 or less.

上記構成によると、集電体表面に配列された第1の凸部によって、負極活物質体の配置や隣接する負極活物質体の間隔を制御できるので、負極活物質体の膨張のための空間を確保できる。また、第1の凸部の表面に設けられた第2の凸部により、各負極活物質体と集電体との接触面積を増大させることができるので、負極活物質体と集電体との密着性を向上できる。   According to the above configuration, the arrangement of the negative electrode active material bodies and the interval between the adjacent negative electrode active material bodies can be controlled by the first protrusions arranged on the surface of the current collector. Can be secured. Further, since the contact area between each negative electrode active material body and the current collector can be increased by the second convex part provided on the surface of the first convex part, the negative electrode active material body and the current collector Can improve the adhesion.

また、各負極活物質体のケイ素量に対する酸素量のモル比の平均値は0.1以上1.2以下であり、これによって、高い容量を確保しつつ、リチウム吸蔵による体積膨張を抑えることができる。   Further, the average value of the molar ratio of the oxygen amount to the silicon amount of each negative electrode active material body is 0.1 or more and 1.2 or less, thereby suppressing the volume expansion due to lithium occlusion while ensuring a high capacity. it can.

さらに、各負極活物質体と集電体との界面近傍における、ケイ素量に対する酸素量のモル比の最大値と最小値との差が0.4以下に抑えられているため、各活物質粒子は、集電体との界面近傍で略均一な割合で膨張・収縮する。従って、上記界面近傍における膨張や収縮の割合の差による局所的な応力集中を防止できるので、そのような応力集中に起因する活物質粒子の集電体からの剥離を抑制でき、その結果、リチウム二次電池の充放電サイクル特性を向上できる。   Furthermore, since the difference between the maximum value and the minimum value of the molar ratio of the oxygen amount to the silicon amount in the vicinity of the interface between each negative electrode active material body and the current collector is suppressed to 0.4 or less, each active material particle Expands and contracts at a substantially uniform rate near the interface with the current collector. Therefore, local stress concentration due to the difference in the expansion and contraction ratios in the vicinity of the interface can be prevented, so that the separation of the active material particles from the current collector due to such stress concentration can be suppressed. The charge / discharge cycle characteristics of the secondary battery can be improved.

本発明によれば、リチウム二次電池用負極において、活物質粒子と集電体との界面近傍における活物質粒子の酸素濃度分布に起因する活物質粒子の剥離を抑制できる。従って、充放電サイクル特性に優れたリチウム二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, in the negative electrode for lithium secondary batteries, peeling of the active material particle resulting from the oxygen concentration distribution of the active material particle in the vicinity of the interface of an active material particle and a collector can be suppressed. Therefore, a lithium secondary battery excellent in charge / discharge cycle characteristics can be provided.

以下、図面を参照しながら、本発明によるリチウム二次電池用負極の実施形態を説明する。   Hereinafter, embodiments of a negative electrode for a lithium secondary battery according to the present invention will be described with reference to the drawings.

まず、図1を参照する。図1は、本実施形態のリチウム二次電池用負極(以下、「負極」ともいう)の概略断面図である。   First, refer to FIG. FIG. 1 is a schematic cross-sectional view of a negative electrode for a lithium secondary battery (hereinafter also referred to as “negative electrode”) of the present embodiment.

負極100は、集電体1と、集電体1の表面に互いに間隔を空けて配置された複数の負極活物質体5とを備えている。負極活物質体5は、ケイ素酸化物を含んでおり、そのケイ素量に対する酸素量のモル比(以下、単に「酸素比率」ともいう)の平均値は0.1以上1.2以下である。また、各負極活物質体5と集電体1との界面近傍では、各負極活物質体5における酸素比率の最大値Rmaxと最小値Rminとの差ΔRは0.4以下である
The negative electrode 100 includes a current collector 1 and a plurality of negative electrode active material bodies 5 that are arranged on the surface of the current collector 1 at intervals. The negative electrode active material body 5 contains silicon oxide, and the average value of the molar ratio of the oxygen amount to the silicon amount (hereinafter also simply referred to as “oxygen ratio”) is 0.1 or more and 1.2 or less. Further, in the vicinity of the interface between each negative electrode active material body 5 and current collector 1, the difference ΔR between the maximum value Rmax and the minimum value Rmin of the oxygen ratio in each negative electrode active material body 5 is 0.4 or less.

なお、負極活物質体5は、ケイ素酸化物以外に負極活物質体5に補填あるいは吸蔵されたリチウムや、Fe、Al、Ca、Mn、Tiなどの不純物などを含んでいてもよい。また、複数の負極活物質体5は、互いに間隔を空けて配置されているが、充電時にリチウムを吸蔵して膨張することにより、隣接する負極活物質体5が部分的に接触する場合もある。   In addition, the negative electrode active material body 5 may contain impurities such as lithium, Fe, Al, Ca, Mn, and Ti that are supplemented or occluded in the negative electrode active material body 5 in addition to silicon oxide. Moreover, although the some negative electrode active material body 5 is arrange | positioned at intervals, the adjacent negative electrode active material body 5 may partially contact by occluding and expanding lithium at the time of charge. .

集電体1の表面には、複数の第1の凸部2Aが配列されており、各第1の凸部2Aの表面は、第1の凸部2Aよりも高さの小さい複数の第2の凸部を有している。集電体1のうち第1の凸部2Aが形成されていない領域(「溝」ともいう)4は略平坦である。   A plurality of first convex portions 2A are arranged on the surface of the current collector 1, and the surface of each first convex portion 2A has a plurality of second projections that are smaller in height than the first convex portions 2A. It has a convex part. A region 4 (also referred to as “groove”) 4 of the current collector 1 where the first convex portion 2A is not formed is substantially flat.

第1の凸部2Aは、負極活物質体5の配置を制御し、負極活物質体5の間に適当な空隙を確保できるようなサイズおよびピッチで配列されている。複数の第2の凸部2Bの少なくとも一部は、第1の凸部2Aの表面のうち負極活物質体5が形成される部分に配置されていることが好ましく、これにより、負極活物質体5と集電体1との接触面積を大きくできるので、負極活物質体5と集電体1との密着性を向上させることができる。   The first protrusions 2 </ b> A are arranged with a size and a pitch that control the disposition of the negative electrode active material bodies 5 and can ensure appropriate gaps between the negative electrode active material bodies 5. It is preferable that at least a part of the plurality of second protrusions 2B is disposed on a portion of the surface of the first protrusion 2A where the negative electrode active material body 5 is formed, whereby the negative electrode active material body Since the contact area between the current collector 5 and the current collector 1 can be increased, the adhesion between the negative electrode active material body 5 and the current collector 1 can be improved.

第1の凸部2Aの形状は、特に限定されないが、例えば半球状、角柱状、円柱状である。なお、第1の凸部2Aは、集電体1の表面に垂直な断面において、各第1の凸部2Aの表面のうち負極活物質体5と接触する部分に90°以下の角(かど)を有していないことが好ましい。これにより、後で詳述するように、集電体1と負極活物質体5との界面近傍における酸素比率の分布幅(上記ΔR)を小さく抑えることが可能になる。   The shape of the first convex portion 2A is not particularly limited, but is, for example, hemispherical, prismatic, or cylindrical. Note that the first protrusion 2A has a 90 ° or less corner (corner) at a portion of the surface of each first protrusion 2A that contacts the negative electrode active material body 5 in a cross section perpendicular to the surface of the current collector 1. ) Is preferably not included. As a result, as will be described in detail later, it is possible to reduce the oxygen ratio distribution width (ΔR) in the vicinity of the interface between the current collector 1 and the negative electrode active material body 5.

なお、負極100では、第1の凸部2Aの上面のみに第2の凸部2Bが形成されているが、第2の凸部2Bは、第1の凸部2Aの側面にも形成されていてもよい。また、集電体1の溝4は略平坦であるが、溝4の表面にも凹凸が形成されていてもよい。ただし、負極活物質体5の膨張空間を確実に確保するためには、溝4の表面凹凸の高さは、第2の凸部2Bの高さと同等か、またはそれよりも小さいことが好ましい。   In the negative electrode 100, the second convex portion 2B is formed only on the upper surface of the first convex portion 2A. However, the second convex portion 2B is also formed on the side surface of the first convex portion 2A. May be. Further, the groove 4 of the current collector 1 is substantially flat, but the surface of the groove 4 may be uneven. However, in order to ensure the expansion space of the negative electrode active material body 5, the height of the surface irregularities of the grooves 4 is preferably equal to or smaller than the height of the second convex portions 2 </ b> B.

負極活物質体5は、図1に示すように、集電体1の法線方向Nに対して傾斜した成長方向Gを有することが好ましい。このような構成により、リチウム二次電池において、正極活物質層のうち負極活物質体5と対向する部分の面積を増加させることができるので、充放電効率を高めることができる。このような負極活物質体5は、例えば、酸素ガスが導入されたチャンバー内で、集電体1の表面に、集電体1の法線方向Nに対して傾斜した方向からケイ素を入射することによって形成できる(斜め蒸着)。   As shown in FIG. 1, the negative electrode active material body 5 preferably has a growth direction G inclined with respect to the normal direction N of the current collector 1. With such a configuration, in the lithium secondary battery, the area of the portion of the positive electrode active material layer facing the negative electrode active material body 5 can be increased, so that the charge / discharge efficiency can be increased. In such a negative electrode active material body 5, for example, silicon is incident on the surface of the current collector 1 from a direction inclined with respect to the normal direction N of the current collector 1 in a chamber into which oxygen gas is introduced. Can be formed (oblique deposition).

負極活物質体5の成長方向Gと集電体1の法線方向Nとのなす角度は、10°以上であることが好ましい。良好な密着性を得るためには、負極活物質体5と集電体1との接触面積が大きい方がよく、すなわち、上記角度が0°であればよいが、その場合には、シャドウイング効果が生じないので、隣接する負極活物質体5の間に隙間を形成することができない。しかしながら、上記角度が10°以上であれば、負極活物質体5間に隙間を形成しつつ十分な接触面積を得ることができる。一方、上記角度は90°未満であればよいが、90°に近づくほど負極活物質体5を形成することが困難となるため、80°未満であることが好ましい。なお、負極活物質体5は成長方向Gの異なる複数の部分を有していてもよく、その場合でも、負極活物質体5のうち集電体1との界面近傍に位置する部分の成長方向Gが、集電体1の法線方向Nに対して傾斜していることが好ましく、その傾斜角度の好適な範囲は10°以上90°未満である。   The angle formed by the growth direction G of the negative electrode active material body 5 and the normal direction N of the current collector 1 is preferably 10 ° or more. In order to obtain good adhesion, it is better that the contact area between the negative electrode active material body 5 and the current collector 1 is large, that is, the angle may be 0 °. Since no effect is produced, a gap cannot be formed between the adjacent negative electrode active material bodies 5. However, if the angle is 10 ° or more, a sufficient contact area can be obtained while forming a gap between the negative electrode active material bodies 5. On the other hand, the angle may be less than 90 °, but the closer to 90 °, the more difficult it is to form the negative electrode active material body 5, and therefore it is preferably less than 80 °. The negative electrode active material body 5 may have a plurality of portions having different growth directions G. Even in this case, the growth direction of the portion of the negative electrode active material body 5 located near the interface with the current collector 1 G is preferably inclined with respect to the normal direction N of the current collector 1, and a preferable range of the inclination angle is 10 ° or more and less than 90 °.

第1の突起の頂上からの負極活物質体5の厚さt5は、特に限定しないが、電池のエネルギー密度、生産性、信頼性などの観点から、0.5μm以上50μm以下であることが好ましい。厚さt5が0.5μm以上、より好ましくは5μm以上であれば、より高い電池エネルギーを得ることができる。また、厚さt5が50μm以下、より好ましくは30μm以下であれば、負極活物質体5を形成する際に生じるクラックを低減できるので、負極100の信頼性を高めることができる。   The thickness t5 of the negative electrode active material body 5 from the top of the first protrusion is not particularly limited, but is preferably 0.5 μm or more and 50 μm or less from the viewpoint of battery energy density, productivity, reliability, and the like. . If the thickness t5 is 0.5 μm or more, more preferably 5 μm or more, higher battery energy can be obtained. In addition, if the thickness t5 is 50 μm or less, more preferably 30 μm or less, cracks generated when the negative electrode active material body 5 is formed can be reduced, so that the reliability of the negative electrode 100 can be improved.

負極活物質体5に含まれるケイ素酸化物における酸素比率の平均値は、上述したように0.1以上1.2以下である。一般に、ケイ素を含む負極活物質では、その酸素比率が低いほど、高い充放電容量が得られるが、充電による体積膨脹率が大きくなる。一方、酸素比率が高くなるほど、体積膨脹率は抑えられるが、充放電容量が低下する。本実施形態における負極活物質体5では、上記酸素比率の平均値が0.1以上であり、充放電に伴う膨張および収縮が抑えられているので、負極活物質体5の集電体1からの剥離を抑制できる。また、上記酸素比率の平均値が1.2以下であるため、十分な充放電容量を確保でき、高率充放電特性を維持できる。なお、酸素比率の平均値が0.1以上0.6以下であれば、より確実に、適度な充放電サイクル特性と高率充放電特性とをバランス良く得ることができる。なお、負極活物質体5における酸素濃度プロファイルは、厚さ方向に略均一であることが好ましいが、厚さ方向に変化していてもよく、その場合でも、負極活物質体5における酸素比率のモル比の平均値が上記範囲内であればよい。   The average value of the oxygen ratio in the silicon oxide contained in the negative electrode active material body 5 is 0.1 or more and 1.2 or less as described above. In general, in a negative electrode active material containing silicon, the lower the oxygen ratio, the higher the charge / discharge capacity, but the larger the volume expansion rate due to charging. On the other hand, the higher the oxygen ratio, the smaller the volume expansion rate, but the lower the charge / discharge capacity. In the negative electrode active material body 5 in the present embodiment, the average value of the oxygen ratio is 0.1 or more, and expansion and contraction associated with charge / discharge are suppressed. Can be prevented. Moreover, since the average value of the said oxygen ratio is 1.2 or less, sufficient charge / discharge capacity can be ensured and a high rate charge / discharge characteristic can be maintained. In addition, if the average value of the oxygen ratio is 0.1 or more and 0.6 or less, it is possible to more surely obtain an appropriate charge / discharge cycle characteristic and a high rate charge / discharge characteristic with a good balance. The oxygen concentration profile in the negative electrode active material body 5 is preferably substantially uniform in the thickness direction, but may vary in the thickness direction. The average value of molar ratio should just be in the said range.

また、各負極活物質体5と集電体1との界面近傍では、各負極活物質体5における酸素比率の最大値Rmaxと最小値Rminとの差ΔRは0.4以下である。上記の界面近傍
の酸素比率は、リチウムイオン波長分散型X線マイクロアナライザを用いて測定することができる。
Further, in the vicinity of the interface between each negative electrode active material body 5 and current collector 1, the difference ΔR between the maximum value Rmax and the minimum value Rmin of the oxygen ratio in each negative electrode active material body 5 is 0.4 or less. The oxygen ratio in the vicinity of the interface can be measured using a lithium ion wavelength dispersion X-ray microanalyzer.

以下、図面を参照しながら、負極活物質体5と集電体との界面近傍におけるケイ素量に対する酸素量のモル比の差ΔRの測定方法の一例を説明する。   Hereinafter, an example of a method for measuring the difference ΔR in the molar ratio of the oxygen amount to the silicon amount in the vicinity of the interface between the negative electrode active material body 5 and the current collector will be described with reference to the drawings.

図2(a)は、単一の負極活物質体5を示す模式的な拡大図であり、集電体1に垂直で、かつ、負極活物質体5の成長方向を含む断面を示している。ここでは、図示する断面において、負極活物質体5と集電体1との接触面から負極活物質体5の側に約2μm程度離れた領域7を測定領域とする。この測定領域7を、測定領域7の一端からの距離yに応じて少なくとも3つのサブ領域に分ける。例えば、測定領域7の一端をy=0、反対側の端をy=Yとすると、3つのサブ領域7a(y/Y:0〜1/3)、7b(y/Y:1/3〜2/3)および7c(y/Y:2/3〜1)に分ける。これらのサブ領域7a〜7cから1箇所ずつ測定位置を選択し、リチウムイオン波長分散型X線マイクロアナライザを用いて各測定位置の酸素比率を求める。続いて、図2(b)に示すように、各サブ領域7a〜7cの酸素比率の測定値のうち最大値Rmaxと最小値Rminとの差ΔRを算出する
。なお、複数個の負極活物質体5のそれぞれについて最大値Rmaxと最小値Rminとの差を算出し、それらの平均値をΔRとしてもよい。
FIG. 2A is a schematic enlarged view showing a single negative electrode active material body 5, and shows a cross section perpendicular to the current collector 1 and including the growth direction of the negative electrode active material body 5. . Here, in the cross section shown in the figure, a region 7 that is about 2 μm away from the contact surface between the negative electrode active material body 5 and the current collector 1 toward the negative electrode active material body 5 is taken as a measurement region. The measurement region 7 is divided into at least three sub-regions according to the distance y from one end of the measurement region 7. For example, if one end of the measurement region 7 is y = 0 and the opposite end is y = Y, three sub-regions 7a (y / Y: 0 to 1/3), 7b (y / Y: 1/3) 2/3) and 7c (y / Y: 2/3 to 1). Measurement positions are selected one by one from these sub-regions 7a to 7c, and the oxygen ratio at each measurement position is determined using a lithium ion wavelength dispersion X-ray microanalyzer. Subsequently, as shown in FIG. 2B, the difference ΔR between the maximum value Rmax and the minimum value Rmin among the measured values of the oxygen ratio in each of the sub-regions 7a to 7c is calculated. Note that the difference between the maximum value Rmax and the minimum value Rmin may be calculated for each of the plurality of negative electrode active material bodies 5, and the average value thereof may be ΔR.

なお、上記の測定方法では、集電体1と負極活物質体5との「界面近傍」として、負極活物質体5のうち集電体1の表面との界面から2μmの領域を測定領域としたが、測定領域は、負極活物質体5のうち集電体1の表面との界面から3μm以内の部分から任意に選択することができる。また、負極活物質体5と集電体1との間に他の層が設けられ、負極活物質体5が集電体1の表面に接していない場合でも、負極活物質体5のうち集電体1の側の負極活物質体5の端面から3μm以内の部分から測定領域を選択し、上記と同様の方法でΔRを求めることができる。   In the above measurement method, as the “near the interface” between the current collector 1 and the negative electrode active material body 5, a region of 2 μm from the interface with the surface of the current collector 1 in the negative electrode active material body 5 is defined as the measurement region. However, the measurement region can be arbitrarily selected from a portion within 3 μm from the interface with the surface of the current collector 1 in the negative electrode active material body 5. Even if another layer is provided between the negative electrode active material body 5 and the current collector 1 and the negative electrode active material body 5 is not in contact with the surface of the current collector 1, A measurement region is selected from a portion within 3 μm from the end face of the negative electrode active material body 5 on the side of the electric conductor 1, and ΔR can be obtained by the same method as described above.

既に説明したように、ケイ素酸化物(SiOx、0≦x≦2)は、その酸素含有量によってLiの吸蔵量が異なるために、Liの吸蔵による体積膨張の程度が異なる。例えば、酸素比率がゼロ(Si)の場合、Si原子1個についてLiは4.4個(Li22Si5)の組成まで、リチウムを吸蔵することができるが、その際の体積膨張は4.4倍になる。一方、酸素比率が2(SiO2)になると、リチウムを吸蔵することができないため体積膨張はしない。つまり1倍である。このように、酸素比率(x値)が大きくなるほど、ケイ素酸化物(SiOx)の体積膨張が小さくなる。 As already described, silicon oxide (SiOx, 0 ≦ x ≦ 2) has different amounts of Li storage depending on its oxygen content, and therefore the degree of volume expansion due to storage of Li varies. For example, when the oxygen ratio is zero (Si), lithium can be occluded up to a composition of Li (Li 22 Si 5 ) per Si atom, but the volume expansion at that time is 4. 4 times. On the other hand, when the oxygen ratio is 2 (SiO 2 ), lithium cannot be occluded, so that volume expansion does not occur. That is 1 time. Thus, as the oxygen ratio (x value) increases, the volume expansion of silicon oxide (SiO x ) decreases.

従って、集電体と各負極活物質体との界面におけるSiOxの酸素比率の分布幅が大きく、例えば上記ΔRが0.4よりも大きいと、この界面に体積膨張率が著しく異なる領域
が存在し、充放電に伴うリチウムの吸蔵・放出によって界面の一部に応力集中が生じるおそれがある。そのため、充放電を繰り返すと、負極活物質体5が集電体1から剥離しやすくなり、充放電サイクル特性の低下を引き起こす可能性がある。
Therefore, the distribution range of the oxygen ratio of SiO x at the interface between the current collector and each negative electrode active material body is large. For example, if ΔR is greater than 0.4, there is a region where the volume expansion coefficient is significantly different at this interface. However, stress concentration may occur in a part of the interface due to insertion and extraction of lithium accompanying charging and discharging. Therefore, when charging / discharging is repeated, the negative electrode active material body 5 is easily peeled off from the current collector 1, which may cause deterioration in charge / discharge cycle characteristics.

これに対し、本実施形態では、上記ΔRが0.4以下に抑えられており、集電体1と負
極活物質体5との界面における酸素比率の分布幅が小さいので、界面における活物質の膨張・収縮の割合を略均一にできる。よって、リチウムの吸蔵・放出によって界面に生じる応力分布も略均一になり、局所的な応力集中が生じないため、負極活物質体5の剥離を抑制でき、良好な充放電サイクル特性が得られる。
On the other hand, in the present embodiment, the ΔR is suppressed to 0.4 or less, and the distribution width of the oxygen ratio at the interface between the current collector 1 and the negative electrode active material body 5 is small. The ratio of expansion / contraction can be made substantially uniform. Therefore, the stress distribution generated at the interface due to insertion and extraction of lithium becomes substantially uniform and local stress concentration does not occur. Therefore, peeling of the negative electrode active material body 5 can be suppressed, and good charge / discharge cycle characteristics can be obtained.

本実施形態のように斜め蒸着を利用して負極活物質体5を形成する場合、集電体1と各負極活物質体5との界面における酸素比率の分布幅を抑えるためには、集電体1に対する活物質(例えばSi原子)の蒸着方向と、集電体1の表面に形成された第1の凸部2Aおよび第2の凸部2Bの形状との関係を制御することが重要となる。   When the negative electrode active material body 5 is formed by using oblique deposition as in the present embodiment, in order to suppress the distribution width of the oxygen ratio at the interface between the current collector 1 and each negative electrode active material body 5, It is important to control the relationship between the vapor deposition direction of the active material (for example, Si atoms) with respect to the body 1 and the shapes of the first and second convex portions 2A and 2B formed on the surface of the current collector 1. Become.

例えば、集電体1の表面に垂直な断面において、集電体1の表面のうち負極活物質体5と接触する部分に90°以下の「かど(とがって突出した部分、エッジ部)」が存在していないことが好ましい。蒸着方向から見て、集電体1の表面に90°以下の「かど(以下、「角」とする)」が存在しないことが好ましい。なお、「90°以下の角が存在しない」とは、第1の凸部2Aの角が90°以下であればよく、第1の凸部2Aに形成された微小な凹凸(第2の凸部2B)に90°以下の角があってもよい。ただし、蒸着方向から見て、第1の凸部2Aのみでなく、第2の凸部2Bも90°以下の角を有していなければかど、より効果的に酸素比率の分布幅を低減できる。また、各第1の凸部2Aの角は丸みを帯びており、明確な頂点を有していないことが好ましい。   For example, in a cross section perpendicular to the surface of the current collector 1, a portion of the surface of the current collector 1 that is in contact with the negative electrode active material body 5 has a “corner (a protruding portion, an edge portion)” of 90 ° or less. Preferably it is not present. When viewed from the vapor deposition direction, it is preferable that there is no “corner (hereinafter referred to as“ corner ”)” of 90 ° or less on the surface of the current collector 1. Note that “the angle of 90 ° or less does not exist” means that the angle of the first protrusion 2A is 90 ° or less, and the minute unevenness (second protrusion) formed on the first protrusion 2A. The part 2B) may have an angle of 90 ° or less. However, as viewed from the vapor deposition direction, not only the first convex portion 2A but also the second convex portion 2B does not have an angle of 90 ° or less, so the distribution width of the oxygen ratio can be reduced more effectively. . Moreover, it is preferable that the corner | angular of each 1st convex part 2A is roundish, and does not have a clear vertex.

図3(a)は、第1の凸部2Aの断面形状が90°の角を有する場合、および、図3(b)は第1の凸部2Aの断面形状が90°以下の角を有していない場合の蒸着工程を説明するための模式的な断面図である。   FIG. 3A shows a case where the cross-sectional shape of the first convex portion 2A has an angle of 90 °, and FIG. 3B shows that the cross-sectional shape of the first convex portion 2A has an angle of 90 ° or less. It is typical sectional drawing for demonstrating the vapor deposition process in the case of not doing.

図3(a)に示すように、集電体1の表面に垂直な断面において、各第1の凸部2Aが負極活物質体5との接触面で90°以下の角(図示する例では90°)を有している場合、集電体1の法線方向Nに対して角度θの方向からケイ素原子を入射させる。このとき、ケイ素原子のフラックス(単位面積・単位時間あたりに飛来するケイ素原子の数)をfとすると、第1の凸部2Aの上面に位置する領域αに供給されるケイ素原子のフラックスはfcosθ、第1の凸部2Aの側面に位置する領域βに供給されるケイ素原子のフラックスはfcos(90−θ)で表わされる。蒸着の際の成長レートはフラックスによって決まることから、領域αおよび領域βの上では成長レートが異なり、その結果、ケイ素原子の蒸着時に反応する酸素量も異なるので、酸素比率の異なるケイ素酸化物が堆積する。   As shown in FIG. 3A, in a cross section perpendicular to the surface of the current collector 1, each first protrusion 2 </ b> A has an angle of 90 ° or less on the contact surface with the negative electrode active material body 5 (in the example shown in the figure). 90 °), silicon atoms are incident from the direction of the angle θ with respect to the normal direction N of the current collector 1. At this time, if the flux of silicon atoms (the number of silicon atoms flying per unit area / unit time) is f, the flux of silicon atoms supplied to the region α located on the upper surface of the first convex portion 2A is fcosθ. The flux of silicon atoms supplied to the region β located on the side surface of the first convex portion 2A is represented by fcos (90−θ). Since the growth rate at the time of vapor deposition is determined by the flux, the growth rate is different on the region α and the region β. As a result, the amount of oxygen that reacts during the deposition of silicon atoms is also different. accumulate.

一方、図3(b)に示すように、集電体1の表面に垂直な断面において、第1の凸部2Aの角が丸みを帯びており、かつ、90°よりも大きい角度を有している場合には、集電体1の法線方向Nに対して角度θの方向からケイ素原子を入射させても、そのような角を含む領域に対するケイ素原子のフラックスに分布が生じにくくなる。従って、第1の凸部2Aの表面に略均一な速度でケイ素酸化物を成長させることができるので、酸素比率の略均一な負極活物質体5が得られる。なお、第1の凸部2Aの表面のうち活物質が蒸着される面に90°以下の角が存在していなければ、酸素比率の分布を抑える効果が得られるので、第1の凸部2Aの表面のうち活物質が蒸着しない面に90°以下の角があってもかまわない。例えば、第1の凸部2Aの断面形状が90°以下の頂角を有する三角形であっても、第1の凸部2Aの側面にのみ活物質を入射させるような角度で斜め蒸着を行えば、負極活物質体5の酸素比率の分布を抑えることができる。   On the other hand, as shown in FIG. 3B, in the cross section perpendicular to the surface of the current collector 1, the corners of the first protrusions 2A are rounded and have an angle larger than 90 °. In this case, even if silicon atoms are incident from the direction of the angle θ with respect to the normal direction N of the current collector 1, the distribution of the silicon atom flux with respect to the region including such angles is unlikely to occur. Therefore, since the silicon oxide can be grown on the surface of the first convex portion 2A at a substantially uniform rate, the negative electrode active material body 5 having a substantially uniform oxygen ratio can be obtained. In addition, since the effect which suppresses distribution of an oxygen ratio will be acquired if the angle of 90 degrees or less does not exist in the surface where the active material is vapor-deposited among the surfaces of the 1st convex part 2A, since the effect which suppresses distribution of oxygen ratio is acquired, 1st convex part 2A There may be an angle of 90 ° or less on the surface where no active material is deposited. For example, even if the sectional shape of the first convex portion 2A is a triangle having an apex angle of 90 ° or less, oblique deposition is performed at an angle that allows the active material to enter only the side surface of the first convex portion 2A. The oxygen ratio distribution of the negative electrode active material body 5 can be suppressed.

上述した特許文献2では、集電体として、表面粗さRzが2μm〜10μmの市販の粗面化銅箔を用いている。この銅箔の表面には、多様な形状の凸部がランダムに配置されており、凸部の上に活物質粒子が支持されている。このような場合、一部の活物質粒子は、凸部の形状に依存して、不均一な酸素濃度分布を有すると考えられる。そのため、活物質粒子と集電体との界面における酸素比率の分布幅を、全体として0.4以下に抑えることが困難である。これに対し、本実施形態では、各負極活物質体5を支持するための第1の凸部2Aの形状が制御されており、第1の凸部2Aにおけるケイ素原子の入射面には、ケイ素原子の入射方向に対する角度を著しく変化させるような角が存在しないので、負極活物質体5の界面における酸素比率の分布幅を抑えることができる。   In Patent Document 2 described above, a commercially available roughened copper foil having a surface roughness Rz of 2 μm to 10 μm is used as a current collector. Various convex portions are randomly arranged on the surface of the copper foil, and active material particles are supported on the convex portions. In such a case, it is considered that some of the active material particles have a non-uniform oxygen concentration distribution depending on the shape of the convex portion. Therefore, it is difficult to suppress the distribution width of the oxygen ratio at the interface between the active material particles and the current collector to 0.4 or less as a whole. On the other hand, in the present embodiment, the shape of the first convex portion 2A for supporting each negative electrode active material body 5 is controlled, and the silicon atom incident surface in the first convex portion 2A has no silicon. Since there is no angle that significantly changes the angle with respect to the incident direction of the atoms, the distribution width of the oxygen ratio at the interface of the negative electrode active material body 5 can be suppressed.

本実施形態における第1の凸部2Aは、規則的に配列されていることが好ましく、その配列ピッチPは例えば10μm以上50μm以下である。配列ピッチPが10μm以上であれば、負極活物質体5の厚さを増大させることなく、高い容量を確保でき、ピッチPが50μm以下であれば、隣接する負極活物質体5の間に、負極活物質体5が膨張するための空間をより確実に確保できるからである。また、第1の凸部2Aの高さhAは5μm以上であることが好ましい。高さhAが5μm以上であれば、負極活物質体5を斜め蒸着で形成する際に、シャドウイング効果を利用して、より確実に負極活物質体5の配置を制御することができる。一方、高さhAが大きすぎると集電体1が厚くなってしまうため、10μm以下であることが好ましい。 The first convex portions 2A in the present embodiment are preferably arranged regularly, and the arrangement pitch P is, for example, not less than 10 μm and not more than 50 μm. If the arrangement pitch P is 10 μm or more, a high capacity can be secured without increasing the thickness of the negative electrode active material body 5, and if the pitch P is 50 μm or less, between the adjacent negative electrode active material bodies 5, This is because the space for the negative electrode active material body 5 to expand can be more reliably secured. The height h A of the first convex portion 2A is preferably 5 μm or more. When the height h A is 5 μm or more, the placement of the negative electrode active material body 5 can be more reliably controlled using the shadowing effect when the negative electrode active material body 5 is formed by oblique deposition. On the other hand, if the height h A is too large, the current collector 1 becomes thick, and therefore it is preferably 10 μm or less.

第2の凸部2Bの高さhBは、好ましくは1μm以上5μm以下である。高さhBがこの範囲内であれば、集電体1と負極活物質体5との付着力を十分に確保できるので、負極活物質体5の剥離を防止できる。 The height h B of the second convex portion 2B is preferably 1 μm or more and 5 μm or less. If the height h B is within this range, the adhesive force between the current collector 1 and the negative electrode active material body 5 can be sufficiently secured, so that the negative electrode active material body 5 can be prevented from peeling off.

第2の凸部2Bの高さhBに対する第1の凸部2Aの高さhAの比hA/hBは、1より大きければよいが、好ましくは2以上である。上記比が小さくなりすぎると、すなわち、第2の凸部2Bが高くなりすぎると、第2の凸部2Bによるシャドウイング効果が生じて負極活物質体5と集電体1との接触面積が確保できなくなるおそれがあるからである。一方、上記比hA/hBは25以下であることが好ましい。これにより、第2の凸部2Bによって第1の凸部2Aと負極活物質体5との密着性を十分に高めることができる。なお、上記比hA/hBは、より好ましくは2以上10以下である。 The ratio h A / h B of the height h A of the first protrusion 2A to the height h B of the second protrusion 2B may be larger than 1, but is preferably 2 or more. If the ratio is too small, that is, if the second convex portion 2B is too high, a shadowing effect is generated by the second convex portion 2B, and the contact area between the negative electrode active material body 5 and the current collector 1 is increased. This is because there is a possibility that it cannot be secured. On the other hand, the ratio h A / h B is preferably 25 or less. Thereby, the adhesiveness of 2 A of 1st convex parts and the negative electrode active material body 5 can fully be improved with the 2nd convex part 2B. The ratio h A / h B is more preferably 2 or more and 10 or less.

また、図1に示す断面において、第1の凸部2Aの幅は5μm以上30μm以下であることが好ましい。第1の凸部2Aの幅が5μm未満であれば、負極活物質体5と第1の凸部2Aとの接触面積を確保できないおそれがある。また、30μmよりも大きいと、溝4によって負極活物質体5の膨張応力を効果的に緩和できないおそれがある。   In the cross section shown in FIG. 1, the width of the first convex portion 2A is preferably 5 μm or more and 30 μm or less. If the width of the first convex portion 2A is less than 5 μm, the contact area between the negative electrode active material body 5 and the first convex portion 2A may not be ensured. Moreover, when larger than 30 micrometers, there exists a possibility that the expansion stress of the negative electrode active material body 5 cannot be relieve | moderated effectively by the groove | channel 4.

第2の凸部2Bの幅に対する第1の凸部2Aの幅の比は2以上であることが好ましい。これにより、1つの第1の凸部2Aの表面により多くの第2の凸部2Bが容易に形成できるので、第2の凸部2Bによって第1の凸部2Aと負極活物質体5との密着性を十分に高めることができる。また、上記比は20以下であることが好ましい。上記比が大きすぎると、すなわち、第2の凸部2Bの幅が小さくなりすぎると、負極活物質体5と集電体1との接触面積を十分に確保することが困難となるからである。   The ratio of the width of the first protrusion 2A to the width of the second protrusion 2B is preferably 2 or more. Thereby, since many 2nd convex parts 2B can be easily formed in the surface of one 1st convex part 2A, the 2nd convex part 2B WHEREIN: Between 1st convex part 2A and the negative electrode active material body 5 Adhesion can be sufficiently enhanced. The ratio is preferably 20 or less. This is because if the ratio is too large, that is, if the width of the second protrusion 2B is too small, it is difficult to ensure a sufficient contact area between the negative electrode active material body 5 and the current collector 1. .

次に、図面を参照しながら、負極100の製造方法の概略を説明する。   Next, an outline of a method for manufacturing the negative electrode 100 will be described with reference to the drawings.

まず、表面に複数の第1の凸部を有する集電体を作製する。集電体の構成材料としては、例えば銅、銅合金などを用いることができる。第1の凸部は、例えば直径または1辺が5μm以上30μm以下であり、かつ高さが5μm以上10μm以下の半球状、円柱状または角柱状である。また、各第1の凸部の表面には、複数の第2の凸部が配置されている。第2の凸部の高さは、第1の凸部の高さよりも低く、例えば1μm以上5μm以下である。   First, a current collector having a plurality of first protrusions on the surface is produced. As a constituent material of the current collector, for example, copper, copper alloy, or the like can be used. The first convex portion has, for example, a hemispherical shape, a cylindrical shape, or a prismatic shape having a diameter or one side of 5 μm to 30 μm and a height of 5 μm to 10 μm. A plurality of second convex portions are arranged on the surface of each first convex portion. The height of the second convex portion is lower than the height of the first convex portion, for example, not less than 1 μm and not more than 5 μm.

続いて、斜め蒸着により、上記集電体の表面に複数の負極活物質体を形成する。各負極活物質体は、対応する第1の凸部の上に配置される。   Subsequently, a plurality of negative electrode active material bodies are formed on the surface of the current collector by oblique vapor deposition. Each negative electrode active material body is disposed on the corresponding first convex portion.

図4は、負極活物質体の形成に用いられる蒸着装置の構成を例示する概略図である。この図では、蒸着装置の真空チャンバー内の構成のみを示しており、真空チャンバーの外部の構成は省略している。   FIG. 4 is a schematic view illustrating the configuration of a vapor deposition apparatus used for forming the negative electrode active material body. In this drawing, only the configuration inside the vacuum chamber of the vapor deposition apparatus is shown, and the configuration outside the vacuum chamber is omitted.

図示するように、真空チャンバーの内部には、集電体1を固定するための固定台11と、チャンバー内に酸素ガスを導入する酸素ノズル14と、集電体1の表面にケイ素を供給するための蒸発源が装填された坩堝12とが設置されている。蒸発源として、例えばケイ素を用いることができる。また、図示しないが、蒸発源の材料を蒸発させるための電子ビーム加熱手段を備えている。酸素ノズル14は、酸素ノズル14から出射する酸素ガス5が集電体1の表面近傍に供給されるように位置付けられている。固定台11と坩堝12とは、坩堝12からの蒸着粒子(ここではケイ素原子)16が、集電体1の法線方向Nに対して角度(蒸着角度)θの方向から集電体1の表面に入射するように配置されている。この例では、固定台11は回転軸を有しており、この回転軸のまわりに固定台11を回転させることによって、水平面18に対する固定台11の角度が所定の蒸着角度θに等しくなるように調整される。ここで、「水平面」とは、坩堝12に装填された蒸発源の材料が気化されて固定台11に向う方向に対して垂直な面をいう。   As shown in the drawing, inside the vacuum chamber, a fixing base 11 for fixing the current collector 1, an oxygen nozzle 14 for introducing oxygen gas into the chamber, and silicon are supplied to the surface of the current collector 1. And a crucible 12 loaded with an evaporation source. For example, silicon can be used as the evaporation source. Further, although not shown, an electron beam heating means for evaporating the material of the evaporation source is provided. The oxygen nozzle 14 is positioned so that the oxygen gas 5 emitted from the oxygen nozzle 14 is supplied near the surface of the current collector 1. The fixed base 11 and the crucible 12 are arranged such that vapor deposition particles (silicon atoms in this case) 16 from the crucible 12 form the current collector 1 from the direction of an angle (deposition angle) θ with respect to the normal direction N of the current collector 1. It arrange | positions so that it may inject into the surface. In this example, the fixed base 11 has a rotation axis. By rotating the fixed base 11 around the rotation axis, the angle of the fixed base 11 with respect to the horizontal plane 18 becomes equal to a predetermined deposition angle θ. Adjusted. Here, the “horizontal plane” refers to a plane perpendicular to the direction in which the material of the evaporation source charged in the crucible 12 is vaporized and faces the fixed base 11.

負極活物質体5の形成は、集電体1の表面近傍に酸素ノズル14から酸素ガス15を吹き付けながら、坩堝12に装填したケイ素を電子(EB)銃(図示せず)で電子線を照射して溶解し、集電体1の上に入射させることによって行う(EB蒸着)。集電体1の表面では、ケイ素原子16と酸素ガス15とが反応してケイ素酸化物が成長する。このとき、ケイ素原子16は、集電体1の法線方向に対して傾斜した方向から集電体3の表面に入射するために、集電体3の表面における第1の凸部(図1に示す凸部2A)の上に蒸着しやすく、凸部上でのみケイ素酸化物が柱状に成長する。一方、集電体3の表面のうち柱状に成長していくケイ素酸化物の影となる部分では、Si原子が入射せず、ケイ素酸化物は蒸着しない(シャドウイング効果)。   The negative electrode active material body 5 is formed by irradiating the crucible 12 with an electron beam (EB) with an electron beam (not shown) while blowing oxygen gas 15 from the oxygen nozzle 14 near the surface of the current collector 1. Then, it is melted and incident on the current collector 1 (EB vapor deposition). On the surface of the current collector 1, silicon atoms 16 and oxygen gas 15 react to grow silicon oxide. At this time, since the silicon atoms 16 are incident on the surface of the current collector 3 from a direction inclined with respect to the normal direction of the current collector 1, the first protrusions on the surface of the current collector 3 (FIG. 1). It is easy to vapor-deposit on the convex part 2A), and silicon oxide grows in a column shape only on the convex part. On the other hand, in the shadowed portion of the silicon oxide that grows in a columnar shape on the surface of the current collector 3, Si atoms do not enter and silicon oxide is not deposited (shadowing effect).

このようにして、集電体1の各凸部上に複数の負極活物質体が形成され、負極100が完成する。負極活物質体における酸素比率の平均値は、真空チャンバー内に導入する酸素ガス量(すなわち雰囲気の酸素濃度)を調整することにより制御できる。   In this way, a plurality of negative electrode active material bodies are formed on each convex portion of the current collector 1, and the negative electrode 100 is completed. The average value of the oxygen ratio in the negative electrode active material body can be controlled by adjusting the amount of oxygen gas introduced into the vacuum chamber (that is, the oxygen concentration in the atmosphere).

なお、上記方法において、蒸着角度θを一定にして負極活物質体の形成を行うと、図1に示すように特定の方向に沿って成長した負極活物質体が得られる。また、EB蒸着を行っている間に、固定台11を回転軸に沿って回転させて集電体1の設置方向を変えることにより、蒸着角度θを変化させてもよい。この場合には、成長方向の異なる複数の部分を有する負極活物質体が得られる。   In the above method, when the negative electrode active material body is formed with the vapor deposition angle θ kept constant, a negative electrode active material body grown along a specific direction is obtained as shown in FIG. Further, during the EB vapor deposition, the vapor deposition angle θ may be changed by rotating the fixed base 11 along the rotation axis to change the installation direction of the current collector 1. In this case, a negative electrode active material body having a plurality of portions with different growth directions is obtained.

図5は、本実施形態の負極の他の構成を例示する模式的な断面図であり、各負極活物質体は、成長方向の異なる複数の部分を有している。   FIG. 5 is a schematic cross-sectional view illustrating another configuration of the negative electrode of the present embodiment, and each negative electrode active material body has a plurality of portions having different growth directions.

図示する例では、各負極活物質体5は、成長方向Gによって7つの部分p1〜p7に分けられる。このような負極活物質体5は、蒸着方向を変化させて複数段階の蒸着を行うことによって得られる。各負極活物質体5における複数の部分p1〜p7の成長方向は、全て異なっていてもよい。また、複数の部分p1〜p7の成長方向は、負極活物質体5ごとに同じであってもよいし、異なっていてもよい。   In the illustrated example, each negative electrode active material body 5 is divided into seven portions p1 to p7 according to the growth direction G. Such a negative electrode active material body 5 is obtained by performing a plurality of stages of vapor deposition by changing the vapor deposition direction. The growth directions of the plurality of portions p1 to p7 in each negative electrode active material body 5 may all be different. Moreover, the growth directions of the plurality of portions p1 to p7 may be the same for each negative electrode active material body 5 or may be different.

次に、図面を参照しながら、本実施形態の負極を適用して得られたリチウム二次電池の構成を、円筒型リチウム二次電池(以下、単に「円筒型電池」ともいう)を例に説明する。   Next, referring to the drawings, the configuration of the lithium secondary battery obtained by applying the negative electrode of the present embodiment is taken as an example of a cylindrical lithium secondary battery (hereinafter also simply referred to as “cylindrical battery”). explain.

図6は、本実施例の負極を用いた円筒型電池の概略断面図である。図6において円筒型電池60は、円筒型の電極群64と、これを収容する電池缶68とを有する。電極群64は、帯状の正極板61と帯状の負極板62とを、それらの間に配置された幅広のセパレータ63とともに捲回することによって得られる。電極群64には、リチウムイオンを伝導する電解質(図示せず)が含浸されている。電池缶68の開口は、正極端子65を有する封口板69で塞がれている。正極板61には、アルミニウム製の正極リード61aの一方の端が接続されており、他方の端は封口板69の裏面に接続されている。封口板69の周縁には、ポリプロピレン製の絶縁パッキン66が配置されている。負極板62には、銅製の負極リード(図示せず)の一方の端が接続されており、他方の端は電池缶68に接続されている。電極群64の上下には、それぞれ上部絶縁リング(図示せず)および下部絶縁リング67が配置されている。   FIG. 6 is a schematic cross-sectional view of a cylindrical battery using the negative electrode of this example. In FIG. 6, a cylindrical battery 60 includes a cylindrical electrode group 64 and a battery can 68 that accommodates the electrode group 64. The electrode group 64 is obtained by winding a belt-like positive electrode plate 61 and a belt-like negative electrode plate 62 together with a wide separator 63 disposed therebetween. The electrode group 64 is impregnated with an electrolyte (not shown) that conducts lithium ions. The opening of the battery can 68 is closed by a sealing plate 69 having a positive electrode terminal 65. One end of an aluminum positive electrode lead 61 a is connected to the positive electrode plate 61, and the other end is connected to the back surface of the sealing plate 69. An insulating packing 66 made of polypropylene is disposed on the periphery of the sealing plate 69. One end of a copper negative electrode lead (not shown) is connected to the negative electrode plate 62, and the other end is connected to the battery can 68. An upper insulating ring (not shown) and a lower insulating ring 67 are disposed above and below the electrode group 64, respectively.

なお、本実施形態の負極を備えたリチウム二次電池の構成は、図6に示す構成に限定されない。本実施形態の負極は、円筒型の他に、コイン型、扁平型、角形等の様々な形状のリチウム二次電池に適用可能である。また、リチウム二次電池の封止形態や電池を構成する各要素の材料も特に限定されない。リチウム二次電池以外の非水電解質二次電池にも適用できる。   In addition, the structure of the lithium secondary battery provided with the negative electrode of this embodiment is not limited to the structure shown in FIG. The negative electrode of the present embodiment is applicable to lithium secondary batteries having various shapes such as a coin shape, a flat shape, and a square shape in addition to a cylindrical shape. Further, the sealing form of the lithium secondary battery and the material of each element constituting the battery are not particularly limited. It can also be applied to non-aqueous electrolyte secondary batteries other than lithium secondary batteries.

また、本発明のリチウム二次電池の各構成要素は、本発明の負極を用いる以外は、特に限定されるものではなく、本発明の効果を損なわない範囲でリチウムイオン電池用の材料として一般的に使用される種々のものを選択することが可能である。   Further, each component of the lithium secondary battery of the present invention is not particularly limited except that the negative electrode of the present invention is used, and is generally used as a material for a lithium ion battery within a range not impairing the effects of the present invention. It is possible to select various types used in the above.

(実施例1)
以下、本発明による負極の実施例1を説明する。ここでは、実施例として、成長方向の異なる複数の部分を有する負極活物質体を備えた負極を作製し、酸素比率の測定および特性の評価を行ったので、その方法および結果を説明する。
Example 1
Example 1 of the negative electrode according to the present invention will be described below. Here, as an example, a negative electrode provided with a negative electrode active material body having a plurality of portions having different growth directions was prepared, and the oxygen ratio was measured and the characteristics were evaluated. The method and results will be described.

(i)負極の作製方法
<集電体の作製>
図7(a)〜(c)は、本実施例における集電体の作製方法を説明するための断面工程図である。まず、図7(a)に示すように、表面粗さRzが1.5〜7μmの銅箔(厚さ:27μm)23を用意した。なお、表面粗さRzは日本工業規格(JISB 0601―1994)に定められた十点平均粗さRzを指す。ここでは、プリント配線基板用に市販されている粗面化銅箔(古河サーキットフォイル株式会社製)を用いた。
(I) Production method of negative electrode <Production of current collector>
7A to 7C are cross-sectional process diagrams for explaining a method of manufacturing a current collector in this example. First, as shown in FIG. 7A, a copper foil (thickness: 27 μm) 23 having a surface roughness Rz of 1.5 to 7 μm was prepared. The surface roughness Rz refers to a ten-point average roughness Rz defined in Japanese Industrial Standard (JISB 0601-1994). Here, the roughened copper foil (made by Furukawa Circuit Foil Co., Ltd.) marketed for printed wiring boards was used.

次いで、図7(b)に示すように、第1の凸部を規定する複数の凹部21を有するステンレスローラー20と、これに対向するように配置された他のローラー(図示せず)との間に、銅箔23を線圧1.5t/cmで通過させた。このようにして、図7(c)に示すような集電体1を得た。   Next, as shown in FIG. 7 (b), a stainless roller 20 having a plurality of recesses 21 that define the first protrusions, and another roller (not shown) arranged to face the stainless roller 20 In the meantime, the copper foil 23 was passed at a linear pressure of 1.5 t / cm. In this way, a current collector 1 as shown in FIG.

ステンレスローラー20のパターンの平面図および断面図を図8(a)および(b)に示す。図示するように、ステンレスローラー20は、規則的に配列された複数の凹部21を有し、各凹部21は、ステンレスローラー20の法線方向から見て菱形とした。菱形の対角線の長さa、bは、それぞれ、10μmおよび20μmであった。隣接する凹部21の対角線aに沿った間隔eを20μm、対角線bに沿った間隔dを10μm、菱形の辺に平行な方向における間隔cを10μmとした。従って、菱形における短い方の対角線aに平行な方向25における凹部の配列ピッチPは30μm(P=a+e)となった。また、各凹部21の深さHは10μmであった。   A plan view and a sectional view of the pattern of the stainless roller 20 are shown in FIGS. As shown in the figure, the stainless steel roller 20 has a plurality of concave portions 21 regularly arranged, and each concave portion 21 has a rhombus shape when viewed from the normal direction of the stainless steel roller 20. The diagonal lengths a and b of the rhombus were 10 μm and 20 μm, respectively. The distance e along the diagonal line a of the adjacent recesses 21 was 20 μm, the distance d along the diagonal line b was 10 μm, and the distance c in the direction parallel to the rhombus sides was 10 μm. Therefore, the arrangement pitch P of the recesses in the direction 25 parallel to the shorter diagonal line a in the rhombus was 30 μm (P = a + e). Moreover, the depth H of each recessed part 21 was 10 micrometers.

ローラー間を通過した銅箔23のうち、ステンレスローラー20の凹部21以外の部分でプレスされた領域は、図示するように平坦化された。一方、銅箔23のうち凹部21に対応する領域は、平坦化されずに凹部21に入り込み、第1の凸部2Aが形成された。第1の凸部2Aの高さは、ステンレスローラー20の凹部21の深さHより小さく、約
6μmであった。得られた第1の凸部2Aの角は丸みを帯びた形状となった。また、第1の凸部2Aの表面には、銅箔23の表面凹凸に対応して第2の凸部2Bが形成されており、第2の凸部2Bの高さは約2μmであった。第2の凸部2Bの形状は、銅箔23に含まれていた各凸部よりも丸みを帯びていた。
Of the copper foil 23 that passed between the rollers, the area that was pressed at a portion other than the recess 21 of the stainless roller 20 was flattened as shown in the figure. On the other hand, the region of the copper foil 23 corresponding to the concave portion 21 entered the concave portion 21 without being flattened, and the first convex portion 2A was formed. The height of the first convex portion 2A was smaller than the depth H of the concave portion 21 of the stainless roller 20, and was about 6 μm. The corners of the obtained first convex portion 2A were rounded. In addition, a second protrusion 2B was formed on the surface of the first protrusion 2A corresponding to the surface unevenness of the copper foil 23, and the height of the second protrusion 2B was about 2 μm. . The shape of the 2nd convex part 2B was roundish rather than each convex part contained in the copper foil 23. FIG.

<負極活物質体の形成>
上記(i)の方法で得られた集電体1を、図4に示す真空チャンバー内の固定台11に設置し、酸素ガス5を30sccmで集電体1の表面に供給しながら、ケイ素を蒸発源とするEB蒸着を行った。蒸着にあたり、固定台11を、水平面18と60°の角度をなすように(θ=60°)傾斜させ、この状態で15分間の蒸着を行った(第1段目の蒸着工程)。このとき、ケイ素単体の蒸発源に照射する電子ビームの加速電圧を−9kVとし、エミッションを400mAに設定した。ケイ素の蒸気は、真空チャンバーに導入された酸素ガス5とともに、固定台11に設置された集電体1の表面に供給され、その結果、集電体1の上にケイ素と酸素とを含む化合物(SiOx)が堆積された。
<Formation of negative electrode active material>
The current collector 1 obtained by the above method (i) is placed on the fixed base 11 in the vacuum chamber shown in FIG. 4, while supplying oxygen gas 5 to the surface of the current collector 1 at 30 sccm, silicon is added. EB vapor deposition was performed as an evaporation source. In the vapor deposition, the fixing base 11 was inclined so as to form an angle of 60 ° with the horizontal plane 18 (θ = 60 °), and vapor deposition was performed in this state for 15 minutes (first vapor deposition step). At this time, the acceleration voltage of the electron beam applied to the evaporation source of silicon alone was set to −9 kV, and the emission was set to 400 mA. The silicon vapor is supplied to the surface of the current collector 1 installed on the fixed base 11 together with the oxygen gas 5 introduced into the vacuum chamber, and as a result, a compound containing silicon and oxygen on the current collector 1. (SiO x ) was deposited.

続いて、固定台11を中心軸のまわりに時計回りに回転させ、水平面18に対して、上記第1段目の蒸着工程における固定台11の傾斜方向と反対の方向に60°の角度をなすように(θ=−60°)傾斜させた。この状態で、上記第1段目の蒸着工程と同様の条件で15分間の蒸着を行った(第2段目の蒸着工程)。   Subsequently, the fixing base 11 is rotated clockwise around the central axis, and an angle of 60 ° is formed with respect to the horizontal plane 18 in a direction opposite to the inclination direction of the fixing base 11 in the first stage vapor deposition step. (Θ = −60 °). In this state, the deposition was performed for 15 minutes under the same conditions as the first-stage deposition process (second-stage deposition process).

この後、固定台11の傾斜角度を再び第1段目の蒸着工程と同じ角度(θ=60°)に戻し、同様の蒸着を行った(第3段目の蒸着工程)。このようにして、固定台11の傾斜角度θを60°および−60°との間で交互に切り換えて、第7段目まで蒸着を行い、負極活物質体を得た。   After that, the inclination angle of the fixed base 11 was returned again to the same angle (θ = 60 °) as that in the first stage vapor deposition step, and the same vapor deposition was performed (third vapor deposition step). In this manner, the inclination angle θ of the fixing base 11 was alternately switched between 60 ° and −60 °, and vapor deposition was performed up to the seventh stage to obtain a negative electrode active material body.

(ii)分析
<電子顕微鏡による観察>
上記方法で得られた負極活物質体の断面を電子顕微鏡で観察した。図9(a)および図10(a)は、集電体表面に垂直な断面における負極活物質体の形状を示す電子顕微鏡写真であり、図9(a)は、負極活物質体の蒸着方向を含む断面図であり、図10(a)は、集電体表面において蒸着方向と垂直な方向に沿った断面図である。
(Ii) Analysis <Observation with an electron microscope>
The cross section of the negative electrode active material obtained by the above method was observed with an electron microscope. 9 (a) and 10 (a) are electron micrographs showing the shape of the negative electrode active material body in a cross section perpendicular to the current collector surface, and FIG. 9 (a) is the deposition direction of the negative electrode active material body. FIG. 10A is a cross-sectional view along the direction perpendicular to the vapor deposition direction on the current collector surface.

図9(a)から、負極活物質体5は、その蒸着方向に起因して、ジグザグ状の断面形状を有していることがわかった。また、図10(a)からは、負極活物質体5が、蒸着方向の異なる複数の層が積み重なった構造を有することがわかった。さらに、集電体1の表面における凸部の断面形状は、明確な90°以下の角度を有していないことが確認された。   FIG. 9A shows that the negative electrode active material body 5 has a zigzag cross-sectional shape due to the deposition direction. Moreover, from FIG. 10A, it was found that the negative electrode active material body 5 had a structure in which a plurality of layers having different vapor deposition directions were stacked. Furthermore, it was confirmed that the cross-sectional shape of the convex portion on the surface of the current collector 1 does not have a clear angle of 90 ° or less.

<負極活物質体における酸素比率の平均値の測定>
負極活物質体の酸素比率(ケイ素量に対する酸素量のモル比)の平均値は、負極活物質体5が形成された集電体1の表面から蛍光X線測定を行うことによって測定した。この結果、酸素比率の平均値は0.58であった。
<Measurement of average value of oxygen ratio in negative electrode active material>
The average value of the oxygen ratio of the negative electrode active material body (molar ratio of the oxygen amount to the silicon amount) was measured by performing fluorescent X-ray measurement from the surface of the current collector 1 on which the negative electrode active material body 5 was formed. As a result, the average value of the oxygen ratio was 0.58.

<負極活物質体と集電体との界面近傍における酸素比率分布>
集電体1と負極活物質体5との界面における酸素比率は、図2を参照しながら上述したように、波長分散型X線マイクロアナライザ(日本電子製 JXA−8900)を用いて行った。具体的には、まず、試料を樹脂で固めた後、これを研磨することによって図9(a)に対応する研磨断面を形成した。次いで、得られた研磨断面に対してカーボンコーティングを行った。この後、波長分散型X線マイクロアナライザにより、負極活物質体5の組成分析を行った。加速電圧は5kVとした。本実施例では、図10(a)に対応する負極活物質体の断面に対しても同様の組成分析を行った。
<Oxygen ratio distribution in the vicinity of the interface between the negative electrode active material body and the current collector>
As described above with reference to FIG. 2, the oxygen ratio at the interface between the current collector 1 and the negative electrode active material body 5 was measured using a wavelength dispersive X-ray microanalyzer (JXA-8900 manufactured by JEOL). Specifically, first, a sample was hardened with a resin and then polished to form a polished cross section corresponding to FIG. Next, carbon coating was performed on the obtained polished cross section. Then, the composition analysis of the negative electrode active material body 5 was performed with the wavelength dispersion type | mold X-ray microanalyzer. The acceleration voltage was 5 kV. In this example, the same composition analysis was performed on the cross section of the negative electrode active material body corresponding to FIG.

図9(a)、図10(a)に示す研磨断面における酸素マップおよびケイ素マップを、それぞれ図9(b)、(c)および図10(b)、(c)に示す。これらのマップのX線強度から集電体1と負極活物質体5との界面における酸素比率を算出した。   The oxygen map and the silicon map in the polished cross section shown in FIGS. 9A and 10A are shown in FIGS. 9B and 10C, and FIGS. 10B and 10C, respectively. From the X-ray intensity of these maps, the oxygen ratio at the interface between the current collector 1 and the negative electrode active material body 5 was calculated.

図示するマップは、測定で得られたカラー像を白黒コピーしたものであり、明度によって各元素の濃度分布が表わされている。図9(b)および図10(b)から、負極活物質体5における酸素濃度分布は略均一であることがわかった。また、図9(c)からわかるように、負極活物質体5の中央付近では、図9(a)に示す負極活物質体5の形状に対応して、ケイ素濃度の低い領域が縦に延びているが、負極活物質体5と集電体1との界面近傍におけるケイ素濃度の分布は略均一となっていた。図10(c)に示す断面では、負極活物質体5におけるケイ素濃度は略均一であった。   The map shown is a black and white copy of a color image obtained by measurement, and the concentration distribution of each element is represented by brightness. From FIG. 9B and FIG. 10B, it was found that the oxygen concentration distribution in the negative electrode active material body 5 was substantially uniform. Further, as can be seen from FIG. 9C, in the vicinity of the center of the negative electrode active material body 5, a region having a low silicon concentration extends vertically corresponding to the shape of the negative electrode active material body 5 shown in FIG. However, the distribution of the silicon concentration in the vicinity of the interface between the negative electrode active material body 5 and the current collector 1 was substantially uniform. In the cross section shown in FIG. 10C, the silicon concentration in the negative electrode active material body 5 was substantially uniform.

図9(a)に示すm1、m2、m3および図10(a)に示すm4、m5、m6の6点を測定位置とし、それぞれの酸素比率を定量したところ、表1に示すような値が得られた。表1からわかるように、酸素比率の最大値Rmaxと最小値Rminとの差ΔRは0.
38であった。
When the six oxygen oxygen ratios m1, m2, and m3 shown in FIG. 9 (a) and m4, m5, and m6 shown in FIG. 10 (a) were measured positions, and the respective oxygen ratios were quantified, the values shown in Table 1 were obtained. Obtained. As can be seen from Table 1, the difference ΔR between the maximum value Rmax and the minimum value Rmin of the oxygen ratio is 0.
38.

(iii)電池の作製および評価
<電池の作製>
本実施例では、図6を参照しながら前述した構成の円筒型の電池を、以下のようにして作製した。
(Iii) Production and evaluation of battery <Production of battery>
In this example, a cylindrical battery having the above-described configuration with reference to FIG. 6 was produced as follows.

まず、上記(i)の方法で集電体1の上に負極活物質体5を形成することによって、円筒型電池用の負極板62を作製した。また、ニッケル酸リチウムを主体とする活物質をAl箔上に塗工することによって正極板61を得た。次いで、負極板62と正極板61とをポリエチレン製セパレータ63を介して対向させて捲回することにより、電極群64を構成した。この電極群64を電池缶68に挿入し、電解液を注入した後、封口板69を設置した。このようにして、18650サイズの円筒型の電池を得た。   First, a negative electrode plate 62 for a cylindrical battery was produced by forming the negative electrode active material body 5 on the current collector 1 by the method (i). Moreover, the positive electrode plate 61 was obtained by coating the active material which has lithium nickelate as a main body on Al foil. Next, the negative electrode plate 62 and the positive electrode plate 61 were wound so as to face each other with a polyethylene separator 63 therebetween, whereby an electrode group 64 was configured. After this electrode group 64 was inserted into the battery can 68 and the electrolyte was injected, a sealing plate 69 was installed. In this way, a 18650 size cylindrical battery was obtained.

<評価方法および結果>
上記(iii)の方法で作製した電池に対して、1C相当の電流で繰り返し充放電試験を行った。図11は、充放電試験の結果得られた充放電サイクル特性を示す図であり、縦軸は容量維持率(%)、横軸はサイクル数(回)を表している。図11に示す結果から、本実施例の電池は、優れた充放電サイクル特性を有することを確認した。
<Evaluation method and results>
The battery produced by the method (iii) was repeatedly subjected to a charge / discharge test at a current equivalent to 1C. FIG. 11 is a diagram showing the charge / discharge cycle characteristics obtained as a result of the charge / discharge test. The vertical axis represents the capacity retention rate (%), and the horizontal axis represents the number of cycles (times). From the results shown in FIG. 11, it was confirmed that the battery of this example had excellent charge / discharge cycle characteristics.

また、充放電試験を行った後、電池を分解して負極板62を観察したところ、負極活物質が集電体1から剥離したり脱落している様子は認められなかった。   Further, after the charge / discharge test was performed, the battery was disassembled and the negative electrode plate 62 was observed. As a result, it was not observed that the negative electrode active material was peeled off or removed from the current collector 1.

(比較例1)
以下、本発明による負極の比較例1を説明する。比較例1では、実施例1とは異なる方法で集電体を作製する点で、実施例1と異なっている。
(Comparative Example 1)
Hereinafter, Comparative Example 1 of the negative electrode according to the present invention will be described. Comparative Example 1 differs from Example 1 in that the current collector is produced by a method different from Example 1.

(i)負極の作製方法
まず、圧延銅箔(厚さ:27μm)の上にネガ型フォトレジストを塗布し、複数の菱形のパターンを有するネガ型マスクを用いて、ネガ型フォトレジストの露光・現像を行った。これによって、フォトレジストに複数の開口部が形成された。続いて、これらの開口部に電解法により銅粒子を析出させた後、フォトレジストを除去した。このようにして、銅箔の上に、菱形の上面を有する柱状の凸部を形成し、集電体を得た。
(I) Method for producing negative electrode First, a negative photoresist is applied onto a rolled copper foil (thickness: 27 μm), and the negative photoresist is exposed using a negative mask having a plurality of rhombus patterns. Development was performed. This formed a plurality of openings in the photoresist. Subsequently, after the copper particles were deposited by electrolytic method in these openings, the photoresist was removed. Thus, the columnar convex part which has a rhombus upper surface was formed on copper foil, and the electrical power collector was obtained.

得られた集電体では、集電体表面の各凸部の高さは10μm、凸部の上面の表面粗さRzは0.9μmであった。また、凸部の上面における菱形の対角線の長さは28μmおよび12μm、隣接する凹部の短い方の対角線に沿った間隔を18μm、長い方の対角線に沿った間隔を20μm、菱形の辺に平行な間隔を15μmであった。さらに、集電体表面に垂直な断面において、各凸部の上面と側面とのなす角度は略90°であった。   In the obtained current collector, the height of each convex portion on the surface of the current collector was 10 μm, and the surface roughness Rz of the upper surface of the convex portion was 0.9 μm. In addition, the lengths of the rhombus diagonals on the upper surface of the convex part are 28 μm and 12 μm, the distance along the shorter diagonal line of the adjacent concave part is 18 μm, the distance along the longer diagonal line is 20 μm, and is parallel to the side of the rhombus The interval was 15 μm. Further, in the cross section perpendicular to the current collector surface, the angle formed between the upper surface and the side surface of each convex portion was approximately 90 °.

上記のようにして得られた集電体の表面に、実施例1と同様の方法で、ケイ素の入射方向を7段階で変化させながら斜め蒸着を行い、負極活物質体を形成した。   Diagonal vapor deposition was performed on the surface of the current collector obtained as described above in the same manner as in Example 1 while changing the incident direction of silicon in seven steps to form a negative electrode active material body.

(ii)分析
得られた負極活物質体の酸素比率の平均値を、実施例1と同様の方法で測定したところ、0.62であった。また、実施例1と同様の方法で、負極活物質体と集電体との界面近傍に位置する6点の酸素比率を測定し、その最大値および最小値の差ΔRを算出したとこ
ろ、0.82であった。
(Ii) Analysis When the average value of the oxygen ratio of the obtained negative electrode active material body was measured by the same method as in Example 1, it was 0.62. Further, the oxygen ratio at six points located in the vicinity of the interface between the negative electrode active material body and the current collector was measured in the same manner as in Example 1, and the difference ΔR between the maximum value and the minimum value was calculated. .82.

(iii)電池の作製および評価
比較例1の負極板を用いて、図6に示す構成を有する円筒型電池を作製し、その充放電サイクル試験を行った。電池の作製方法および試験方法は実施例1で説明した方法と同様とした。
(Iii) Production and Evaluation of Battery Using the negative electrode plate of Comparative Example 1, a cylindrical battery having the configuration shown in FIG. 6 was produced, and a charge / discharge cycle test was performed. The battery fabrication method and test method were the same as those described in Example 1.

図12は、充放電サイクル試験の結果得られた充放電サイクル特性を示す図である。図12に示す結果から、比較例1の電池では、初期から放電容量が著しく低下し、150サイクル後には最大容量の50%程度になることがわかった。   FIG. 12 is a diagram showing charge / discharge cycle characteristics obtained as a result of the charge / discharge cycle test. From the results shown in FIG. 12, it was found that in the battery of Comparative Example 1, the discharge capacity was remarkably reduced from the initial stage and reached about 50% of the maximum capacity after 150 cycles.

充放電試験を行った後、電池を分解して負極板を観察したところ、負極活物質の一部が集電体から剥離していることを確認した。よって、比較例1では、充放電の繰り返すと、負極活物質体の界面における酸素比率分布に起因して負極活物質が集電体表面から剥離し、その結果、放電容量を低下させると考えられた。   After conducting the charge / discharge test, the battery was disassembled and the negative electrode plate was observed. As a result, it was confirmed that a part of the negative electrode active material was peeled from the current collector. Thus, in Comparative Example 1, it is considered that when charging / discharging is repeated, the negative electrode active material peels from the current collector surface due to the oxygen ratio distribution at the interface of the negative electrode active material body, and as a result, the discharge capacity is reduced. It was.

(実施例2)
以下、本発明による負極の実施例2を説明する。ここでは、実施例1と同様の方法で作製された集電体を用いて、斜め蒸着により一方向に成長させた負極活物質体を備えた負極を作製し、酸素比率の測定および特性の評価を行ったので、その方法および結果を説明する。
(Example 2)
Hereinafter, Example 2 of the negative electrode according to the present invention will be described. Here, a negative electrode provided with a negative electrode active material body grown in one direction by oblique vapor deposition was produced using a current collector produced in the same manner as in Example 1, and measurement of oxygen ratio and evaluation of characteristics were performed. The method and result will be described.

(i)負極の作製方法
実施例1と同様の方法で作製した集電体1を、図4に示す真空チャンバー内の固定台11に設置し、酸素ガス5を30sccmで集電体1の表面に供給しながら、ケイ素を蒸発源とするEB蒸着を行った。蒸着にあたり、固定台11を、水平面18と60°の角度をなすように(θ=60°)傾斜させ、この状態で50分間の蒸着を行った。このとき、ケイ素単体の蒸発源に照射する電子ビームの加速電圧を−9kVとし、エミッションを400mAに設定した。ケイ素の蒸気は、真空チャンバーに導入された酸素ガス5とともに、固定台11に設置された集電体1の表面に供給され、その結果、集電体1の上にケイ素と酸素とを含む化合物が成長した。このようにして、集電体1の表面に負極活物質体5を形成した。
(I) Method for Producing Negative Electrode The current collector 1 produced by the same method as in Example 1 was placed on the fixed base 11 in the vacuum chamber shown in FIG. 4, and the surface of the current collector 1 was charged with oxygen gas 5 at 30 sccm. EB deposition using silicon as an evaporation source was performed. In the vapor deposition, the fixing base 11 was inclined so as to form an angle of 60 ° with the horizontal plane 18 (θ = 60 °), and vapor deposition was performed in this state for 50 minutes. At this time, the acceleration voltage of the electron beam applied to the evaporation source of silicon alone was set to −9 kV, and the emission was set to 400 mA. The silicon vapor is supplied to the surface of the current collector 1 installed on the fixed base 11 together with the oxygen gas 5 introduced into the vacuum chamber, and as a result, a compound containing silicon and oxygen on the current collector 1. Has grown. Thus, the negative electrode active material body 5 was formed on the surface of the current collector 1.

(ii)分析
<電子顕微鏡による観察>
図13(a)は、実施例2における単一の負極活物質体の電子顕微鏡写真であり、集電体表面に垂直で、かつ、蒸着方向を含む断面を示す。この図から、各負極活物質体5は、特定の方向に傾斜した断面形状を有していることを確認した。また、集電体1の表面における凸部の断面形状は、明確な90°以下の角度を有していないことがわかった。
(Ii) Analysis <Observation with an electron microscope>
FIG. 13A is an electron micrograph of a single negative electrode active material body in Example 2, showing a cross section perpendicular to the current collector surface and including the vapor deposition direction. From this figure, it was confirmed that each negative electrode active material body 5 had a cross-sectional shape inclined in a specific direction. Moreover, it turned out that the cross-sectional shape of the convex part in the surface of the electrical power collector 1 does not have a clear angle of 90 degrees or less.

<負極活物質体における酸素比率の平均値の測定>
負極活物質体の酸素比率(ケイ素量に対する酸素量のモル比)の平均値を、実施例1と同様に蛍光X線測定で求めたところ、0.56であった。
<Measurement of average value of oxygen ratio in negative electrode active material>
When the average value of the oxygen ratio (molar ratio of the oxygen amount to the silicon amount) of the negative electrode active material body was determined by fluorescent X-ray measurement in the same manner as in Example 1, it was 0.56.

<負極活物質体と集電体との界面近傍における酸素比率分布>
集電体1と負極活物質体5との界面近傍における酸素比率を、波長分散型X線マイクロアナライザを用いて測定した。測定は、実施例1と同様の方法で行った。ただし、実施例1では、互いに直交する2方向の断面に対して組成分析を行ったが、本実施例では、図13(a)に示す断面に対する組成分析のみを行った。
<Oxygen ratio distribution in the vicinity of the interface between the negative electrode active material body and the current collector>
The oxygen ratio in the vicinity of the interface between the current collector 1 and the negative electrode active material body 5 was measured using a wavelength dispersive X-ray microanalyzer. The measurement was performed in the same manner as in Example 1. However, in Example 1, composition analysis was performed on cross sections in two directions orthogonal to each other. However, in this example, only composition analysis was performed on the cross section illustrated in FIG.

図13(a)に示す断面の酸素マップおよびケイ素マップを図13(b)および(c)に示す。図示するマップは、測定で得られたカラー像を白黒コピーしたものであり、明度によって各元素の濃度分布が表わされている。図13(b)および(c)から、負極活物質体5における右側の側面近傍に、酸素濃度が若干低く、かつ、ケイ素濃度が若干高い領域が存在するものの、全体として大幅な濃度分布が生じていないことがわかった。   The oxygen map and silicon map of the cross section shown in FIG. 13 (a) are shown in FIG. 13 (b) and (c). The map shown is a black and white copy of a color image obtained by measurement, and the concentration distribution of each element is represented by brightness. From FIGS. 13B and 13C, although there is a region where the oxygen concentration is slightly low and the silicon concentration is slightly high in the vicinity of the right side surface of the negative electrode active material body 5, a large concentration distribution occurs as a whole. I found out.

また、図13(a)に示すように、集電体1と負極活物質体5との界面におけるm7、m8、m9の3点を測定位置とし、X線強度からそれぞれの酸素比率を定量したところ、表2に示すような値が得られた。   Further, as shown in FIG. 13 (a), the oxygen ratios were quantified from the X-ray intensity by using three points m7, m8, and m9 at the interface between the current collector 1 and the negative electrode active material body 5 as measurement positions. However, values as shown in Table 2 were obtained.

実施例2では、表2からわかるように、酸素比率の最大値Rmaxは0.42、最小値Rminは0.29であり、その差ΔRは0.13であった。   In Example 2, as can be seen from Table 2, the maximum value Rmax of the oxygen ratio was 0.42, the minimum value Rmin was 0.29, and the difference ΔR was 0.13.

(iii)電池の作製および評価
実施例2の負極板を用いて、図6に示す構成を有する円筒型電池を作製し、その充放電サイクル試験を行った。電池の作製方法および試験方法は実施例1で説明した方法と同様とした。
(Iii) Production and Evaluation of Battery Using the negative electrode plate of Example 2, a cylindrical battery having the configuration shown in FIG. 6 was produced, and a charge / discharge cycle test was performed. The battery fabrication method and test method were the same as those described in Example 1.

図14は、充放電サイクル試験の結果得られた充放電サイクル特性を示す図である。図14に示す結果から、実施例2の電池は、優れた充放電サイクル特性を有することを確認した。また、充放電試験を行った後、電池を分解して負極板を観察したところ、負極活物質が集電体1から剥離したり脱落している様子は認められなかった。   FIG. 14 is a diagram showing charge / discharge cycle characteristics obtained as a result of the charge / discharge cycle test. From the results shown in FIG. 14, it was confirmed that the battery of Example 2 had excellent charge / discharge cycle characteristics. Further, after the charge / discharge test was performed, the battery was disassembled and the negative electrode plate was observed. As a result, it was not observed that the negative electrode active material was peeled off or removed from the current collector 1.

(比較例2)
以下、本発明による負極の比較例2を説明する。比較例2では、比較例1と同様の方法で作製された集電体を用いる点で、実施例2の負極と異なっている。
(Comparative Example 2)
Hereinafter, Comparative Example 2 of the negative electrode according to the present invention will be described. Comparative Example 2 differs from the negative electrode of Example 2 in that a current collector produced by the same method as Comparative Example 1 is used.

(i)負極の作製
比較例1と同様の方法で作製した集電体の表面に、特定の方向に傾斜した負極活物質体を形成した。負極活物質体は、実施例2と同様の方法および条件で斜め蒸着を行うことにより形成した。蒸着工程では、ケイ素の入射方向(集電体表面の法線方向に対して60°傾斜した方向)に対して、集電体表面に配列された各凸部の上面および側面で構成される90°の角が向き合うため、各凸部の上面および側面の両方にケイ素酸化物が堆積し、負極活物質体が形成された。
(I) Production of Negative Electrode A negative electrode active material body inclined in a specific direction was formed on the surface of a current collector produced by the same method as in Comparative Example 1. The negative electrode active material body was formed by performing oblique deposition under the same method and conditions as in Example 2. In the vapor deposition step, the upper surface and the side surface of each of the convex portions arranged on the current collector surface with respect to the incident direction of silicon (direction inclined by 60 ° with respect to the normal direction of the current collector surface) are 90. Since the corners at 0 ° face each other, silicon oxide was deposited on both the upper surface and the side surface of each convex portion, and a negative electrode active material body was formed.

(ii)分析
<電子顕微鏡による観察>
図15(a)は、比較例2における単一の負極活物質体の電子顕微鏡写真であり、集電体表面に垂直で、かつ、蒸着方向を含む断面を示す。この図から、各負極活物質体5は、特定の方向に傾斜した断面形状を有していることを確認した。また、集電体1の表面における凸部の断面形状は、略90°の角を有する矩形であることがわかった。
(Ii) Analysis <Observation with an electron microscope>
FIG. 15A is an electron micrograph of a single negative electrode active material body in Comparative Example 2, and shows a cross section perpendicular to the current collector surface and including the vapor deposition direction. From this figure, it was confirmed that each negative electrode active material body 5 had a cross-sectional shape inclined in a specific direction. Moreover, it turned out that the cross-sectional shape of the convex part in the surface of the electrical power collector 1 is a rectangle which has an angle of about 90 degrees.

<負極活物質体における酸素比率の平均値の測定>
負極活物質体の酸素比率(ケイ素量に対する酸素量のモル比)の平均値を、実施例1と同様に蛍光X線測定で求めたところ、0.61であった。
<Measurement of average value of oxygen ratio in negative electrode active material>
When the average value of the oxygen ratio (molar ratio of the oxygen amount to the silicon amount) of the negative electrode active material body was determined by fluorescent X-ray measurement in the same manner as in Example 1, it was 0.61.

<負極活物質体と集電体との界面近傍における酸素比率分布>
集電体1と負極活物質体5との界面における酸素比率を、波長分散型X線マイクロアナライザを用いて測定した。測定は、実施例2と同様の方法で行った。
<Oxygen ratio distribution in the vicinity of the interface between the negative electrode active material body and the current collector>
The oxygen ratio at the interface between the current collector 1 and the negative electrode active material body 5 was measured using a wavelength dispersive X-ray microanalyzer. The measurement was performed in the same manner as in Example 2.

図15(a)に示す断面の酸素マップおよびケイ素マップを、それぞれ、図15(b)および(c)に示す。図示するマップは、測定で得られたカラー像を白黒コピーしたものであり、明度によって各元素の濃度分布が表わされている。図15(b)および(c)からわかるように、負極活物質体5における左側の側面近傍、すなわち、集電体1の凸部の側面上に成長した領域では、他の領域に比べて酸素濃度が大幅に低くなり、かつ、ケイ素濃度が大幅に高くなっていた。   The oxygen map and silicon map of the cross section shown in FIG. 15A are shown in FIGS. 15B and 15C, respectively. The map shown is a black and white copy of a color image obtained by measurement, and the concentration distribution of each element is represented by brightness. As can be seen from FIGS. 15B and 15C, in the vicinity of the left side surface of the negative electrode active material body 5, that is, in the region grown on the side surface of the convex portion of the current collector 1, oxygen is larger than other regions. The concentration was significantly reduced and the silicon concentration was significantly increased.

図15(a)に示すように、集電体1と負極活物質体5との界面におけるm10、m11、m12の3点を測定位置とし、X線強度からそれぞれの酸素比率を定量したところ、表3に示すような値が得られた。   As shown in FIG. 15 (a), when three points m10, m11, and m12 at the interface between the current collector 1 and the negative electrode active material body 5 were measured, and the respective oxygen ratios were quantified from the X-ray intensity, Values as shown in Table 3 were obtained.

比較例2では、表3からわかるように、酸素比率の最大値Rmaxは1.12、最小値Rminは0.19であり、その差ΔRは0.93であった。   In Comparative Example 2, as can be seen from Table 3, the maximum value Rmax of the oxygen ratio was 1.12, the minimum value Rmin was 0.19, and the difference ΔR was 0.93.

(iii)電池の作製および評価
比較例2の負極板を用いて、図6に示す構成を有する円筒型電池を作製し、その充放電サイクル試験を行った。電池の作製方法および試験方法は実施例1で説明した方法と同様とした。
(Iii) Production and Evaluation of Battery Using the negative electrode plate of Comparative Example 2, a cylindrical battery having the configuration shown in FIG. 6 was produced, and a charge / discharge cycle test was performed. The battery fabrication method and test method were the same as those described in Example 1.

図16は、充放電サイクル試験の結果得られた充放電サイクル特性を示す図である。図16に示す結果から、比較例2の電池では、初期から放電容量が著しく低下し、100サイクル後には最大容量の80%程度になることがわかった。   FIG. 16 is a diagram showing charge / discharge cycle characteristics obtained as a result of the charge / discharge cycle test. From the results shown in FIG. 16, it was found that the discharge capacity of the battery of Comparative Example 2 was significantly reduced from the beginning, and reached about 80% of the maximum capacity after 100 cycles.

次に、充放電サイクル試験を行った後の電池を分解して、負極板を電子顕微鏡で観察し、充放電サイクル試験の初期の負極板と比較した。   Next, the battery after the charge / discharge cycle test was disassembled, the negative electrode plate was observed with an electron microscope, and compared with the initial negative electrode plate of the charge / discharge cycle test.

図17(a)および(b)は、それぞれ、充放電サイクル試験初期の負極板および充放電サイクル試験後の負極板の電子顕微鏡写真である。これらの図からわかるように、図17(b)では、特に集電体1に形成された凸部の上面において、負極活物質が集電体から剥がれかけている部位が認められた。よって、比較例2では、充放電の繰り返しによって負極活物質が集電体表面から剥離し、その結果、放電容量が低下すると考えられる。   FIGS. 17A and 17B are electron micrographs of the negative electrode plate at the initial stage of the charge / discharge cycle test and the negative electrode plate after the charge / discharge cycle test, respectively. As can be seen from these drawings, in FIG. 17B, a part where the negative electrode active material was peeled off from the current collector was observed particularly on the upper surface of the convex portion formed on the current collector 1. Therefore, in Comparative Example 2, it is considered that the negative electrode active material peels from the current collector surface due to repeated charge and discharge, and as a result, the discharge capacity decreases.

なお、本発明の集電体の作製方法や構造は、上述した実施例1および2に限定されない。本発明の集電体は、負極活物質体を支持し、その配置を制御し得る第1の凸部と、第1の凸部の表面に設けられた第2の凸部とを有し、これらの凸部は、負極活物質体を形成するための蒸着方向との関係により、各負極活物質体と集電体との界面における酸素濃度分布を低減できるような形状を有していればよい。同様に、本発明の負極活物質体の構成や形成方法、形成条件なども、上述した実施例1および2に限定されない。例えば、集電体の法線方向に対するケイ素原子の入射方向(角度θ)は適宜選択される。また、実施例1および2では、集電体を真空チャンバー内の固定台に設置した状態で負極活物質層の形成を行ったが、代わりに、真空チャンバー内で、シート状の集電体をローラーを用いて走行させ、走行している集電体に対して負極活物質体を形成することもできる。   In addition, the manufacturing method and structure of the current collector of the present invention are not limited to the first and second embodiments described above. The current collector of the present invention has a first convex portion that supports the negative electrode active material body and can control the arrangement thereof, and a second convex portion provided on the surface of the first convex portion, If these protrusions have a shape that can reduce the oxygen concentration distribution at the interface between each negative electrode active material body and the current collector due to the relationship with the vapor deposition direction for forming the negative electrode active material body, Good. Similarly, the configuration, formation method, formation conditions, and the like of the negative electrode active material body of the present invention are not limited to those in Examples 1 and 2 described above. For example, the incident direction (angle θ) of silicon atoms with respect to the normal direction of the current collector is appropriately selected. In Examples 1 and 2, the negative electrode active material layer was formed in a state where the current collector was placed on a fixed base in the vacuum chamber. Instead, in the vacuum chamber, a sheet-like current collector was formed. The negative electrode active material body can also be formed on the traveling current collector by running using a roller.

本発明のリチウム二次電池用負極は、コイン型、円筒型、扁平型、角型などの様々なリチウム二次電池に適用できる。これらのリチウム二次電池は、高い充放電容量を確保しつつ、従来よりも優れた充放電サイクル特性を有するので、PC、携帯電話、PDA等の携帯情報端末や、ビデオレコーダー、メモリーオーディオプレーヤー等のオーディオビジュアル機器などに広く使用され得る。   The negative electrode for a lithium secondary battery of the present invention can be applied to various lithium secondary batteries such as a coin type, a cylindrical type, a flat type, and a square type. These lithium secondary batteries have a charge / discharge cycle characteristic that is superior to conventional ones while ensuring a high charge / discharge capacity. Therefore, portable information terminals such as PCs, mobile phones, PDAs, video recorders, memory audio players, etc. It can be widely used for audio-visual equipment.

本発明による実施形態の負極を示す模式的な断面図である。It is typical sectional drawing which shows the negative electrode of embodiment by this invention. (a)は、負極活物質体と集電体との界面近傍における酸素比率を測定する方法を説明するための模式的な断面図であり、(b)は、(a)の測定結果から酸素比率の最大値と最小値との差を求める方法を説明するための図である。(A) is typical sectional drawing for demonstrating the method to measure the oxygen ratio in the interface vicinity of a negative electrode active material body and a collector, (b) is oxygen from the measurement result of (a). It is a figure for demonstrating the method of calculating | requiring the difference of the maximum value and minimum value of a ratio. (a)および(b)は、それぞれ、第1の凸部の断面形状が90°以下の角を有する場合およびそのような角を有していない場合の蒸着工程を説明するための模式的な断面図である。(A) And (b) is typical for demonstrating the vapor deposition process when the cross-sectional shape of a 1st convex part has an angle | corner of 90 degrees or less, and a case where it does not have such an angle, respectively. It is sectional drawing. 本発明による実施形態の負極の製造装置の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the manufacturing apparatus of the negative electrode of embodiment by this invention. 本発明による実施形態の負極の他の構成を示す模式的な断面図である。It is typical sectional drawing which shows the other structure of the negative electrode of embodiment by this invention. 本発明の負極を用いた円筒型電池を例示する概略図である。It is the schematic which illustrates the cylindrical battery using the negative electrode of this invention. (a)〜(c)は、実施例1における集電体の作製方法を説明するための工程断面図である。(A)-(c) is process sectional drawing for demonstrating the preparation method of the electrical power collector in Example 1. FIG. (a)および(b)は、それぞれ、実施例1における集電体の作製に使用するローラーのパターンを例示する平面図および断面図である。(A) And (b) is the top view and sectional drawing which illustrate the pattern of the roller used for preparation of the electrical power collector in Example 1, respectively. 実施例1における負極活物質体の分析結果を示す図であり、(a)は、負極活物質体の断面を示す電子顕微鏡写真であり、(b)および(c)は、それぞれ、酸素マップおよびケイ素マップである。It is a figure which shows the analysis result of the negative electrode active material body in Example 1, (a) is an electron micrograph which shows the cross section of a negative electrode active material body, (b) and (c) are respectively an oxygen map and It is a silicon map. 実施例1における負極活物質体の分析結果を示す図であり、(a)は、負極活物質体の断面を示す電子顕微鏡写真であり、(b)および(c)は、それぞれ、酸素マップおよびケイ素マップである。It is a figure which shows the analysis result of the negative electrode active material body in Example 1, (a) is an electron micrograph which shows the cross section of a negative electrode active material body, (b) and (c) are respectively an oxygen map and It is a silicon map. 実施例1の円筒型電池の充放電サイクル特性を示す図である。FIG. 3 is a diagram showing charge / discharge cycle characteristics of the cylindrical battery of Example 1. 比較例1の円筒型電池の充放電サイクル特性を示す図である。It is a figure which shows the charging / discharging cycle characteristic of the cylindrical battery of the comparative example 1. 実施例2における負極活物質体の分析結果を示す図であり、(a)は、負極活物質体の断面を示す電子顕微鏡写真であり、(b)および(c)は、それぞれ、酸素マップおよびケイ素マップである。It is a figure which shows the analysis result of the negative electrode active material body in Example 2, (a) is an electron micrograph which shows the cross section of a negative electrode active material body, (b) and (c) are respectively an oxygen map and It is a silicon map. 実施例2の円筒型電池の充放電サイクル特性を示す図である。It is a figure which shows the charging / discharging cycle characteristic of the cylindrical battery of Example 2. 比較例2における負極活物質体の分析結果を示す図であり、(a)は、負極活物質体の断面を示す電子顕微鏡写真であり、(b)および(c)は、それぞれ、酸素マップおよびケイ素マップである。It is a figure which shows the analysis result of the negative electrode active material body in the comparative example 2, (a) is an electron micrograph which shows the cross section of a negative electrode active material body, (b) and (c) are respectively an oxygen map and It is a silicon map. 比較例2の円筒型電池の充放電サイクル特性を示す図である。It is a figure which shows the charging / discharging cycle characteristic of the cylindrical battery of the comparative example 2. 比較例2の円筒型電池における負極板の電子顕微鏡写真であり、(a)および(b)は、それぞれ、充放電サイクル試験初期および充放電サイクル試験後の負極板を示す図である。It is an electron micrograph of the negative electrode plate in the cylindrical battery of Comparative Example 2, and (a) and (b) are views showing the negative electrode plate at the initial stage of the charge / discharge cycle test and after the charge / discharge cycle test, respectively.

符号の説明Explanation of symbols

1 集電体
2A 第1の凸部
2B 第2の凸部
5 負極活物質体
100 負極
7 測定領域
11 固定台
12 坩堝
14 酸素ノズル
15 酸素ガス
16 ケイ素原子
18 水平面
20 ローラー
21 凹部
23 銅箔
60 電池
61 正極
61a 正極リード
62 負極
63 セパレータ
64 電極群
65 正極端子
66 絶縁パッキン
67 下部絶縁リング
68 電池缶
69 封口板
DESCRIPTION OF SYMBOLS 1 Current collector 2A 1st convex part 2B 2nd convex part 5 Negative electrode active material body 100 Negative electrode 7 Measurement area 11 Fixing base 12 Crucible 14 Oxygen nozzle 15 Oxygen gas 16 Silicon atom 18 Horizontal surface 20 Roller 21 Recessed part 23 Copper foil 60 Battery 61 Positive electrode 61a Positive electrode lead 62 Negative electrode 63 Separator 64 Electrode group 65 Positive electrode terminal 66 Insulating packing 67 Lower insulating ring 68 Battery can 69 Sealing plate

Claims (8)

集電体と、
前記集電体の上に互いに間隔を空けて配置され、ケイ素酸化物を含む複数の負極活物質体と
を備え、
前記集電体の表面には、前記複数の負極活物質体を支持する複数の第1の凸部が配列されており、
前記各第1の凸部は、前記第1の凸部よりも高さの小さい複数の第2の凸部を有し、
各負極活物質体のケイ素量に対する酸素量のモル比の平均値は0.1以上1.2以下であり、
前記各負極活物質体と前記集電体との界面近傍における、ケイ素量に対する酸素量のモル比の最大値と最小値との差が0.4以下であり、
前記各負極活物質体の成長方向は、前記集電体の法線方向に対して傾斜しており、
前記各負極活物質体と前記集電体との界面近傍において、前記各負極活物質体の成長方向と、前記集電体の法線方向とのなす角度は10°以上80°以下であるリチウム二次電池用負極。
A current collector,
A plurality of negative electrode active material bodies that are disposed on the current collector and spaced apart from each other and that contain silicon oxide;
A plurality of first protrusions supporting the plurality of negative electrode active material bodies are arranged on the surface of the current collector,
Each of the first protrusions has a plurality of second protrusions having a height lower than that of the first protrusion.
The average value of the molar ratio of the oxygen amount to the silicon amount of each negative electrode active material body is 0.1 or more and 1.2 or less,
Wherein Ri difference 0.4 der following in the vicinity of the interface between the current collector and the negative electrode active material body, the maximum value and the minimum value of the amount of oxygen to silicon-amount,
The growth direction of each negative electrode active material body is inclined with respect to the normal direction of the current collector,
In the vicinity of the interface between each negative electrode active material body and the current collector, the angle formed by the growth direction of each negative electrode active material body and the normal direction of the current collector is 10 ° or more and 80 ° or less. Negative electrode for secondary battery.
前記各第1の凸部と前記負極活物質体との接触面は、前記集電体の表面に垂直な断面において、90°以下の角を有していない請求項1に記載のリチウム二次電池用負極。   2. The lithium secondary according to claim 1, wherein a contact surface between each of the first protrusions and the negative electrode active material body does not have an angle of 90 ° or less in a cross section perpendicular to the surface of the current collector. Battery negative electrode. 前記複数の第1の凸部は、10μm以上のピッチで配列されている請求項1に記載のリチウム二次電池用負極。   2. The negative electrode for a lithium secondary battery according to claim 1, wherein the plurality of first protrusions are arranged at a pitch of 10 μm or more. 前記複数の第1の凸部の高さは5μm以上10μm以下である請求項1に記載のリチウム二次電池用負極。   2. The negative electrode for a lithium secondary battery according to claim 1, wherein a height of the plurality of first protrusions is not less than 5 μm and not more than 10 μm. 前記複数の第2の凸部の高さは1μm以上5μm以下である請求項4に記載のリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to claim 4, wherein a height of the plurality of second convex portions is 1 μm or more and 5 μm or less. 前記各負極活物質体は、成長方向の異なる複数の部分を有している請求項1に記載のリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to claim 1, wherein each of the negative electrode active material bodies has a plurality of portions having different growth directions. リチウムイオンを吸蔵・放出可能な正極と、
請求項1からのいずれかに記載のリチウム二次電池用負極と、
前記正極と前記リチウム二次電池用負極との間に配置されたセパレータと、
リチウムイオン伝導性を有する電解質と
を含むリチウム二次電池。
A positive electrode capable of inserting and extracting lithium ions;
A negative electrode for a lithium secondary battery according to any one of claims 1 to 6 ,
A separator disposed between the positive electrode and the negative electrode for a lithium secondary battery;
A lithium secondary battery comprising an electrolyte having lithium ion conductivity.
表面に第1の凸部が配列された集電体を用意する工程であって、各第1の凸部は、前記第1の凸部よりも高さの小さい複数の第2の凸部を有している工程と、
前記集電体の表面における前記各第1の凸部の上に、斜め蒸着により、ケイ素酸化物を含む負極活物質体を形成する工程と
を含み、
各負極活物質体のケイ素量に対する酸素量のモル比の平均値は0.1以上1.2以下であり、
前記各負極活物質体と前記集電体との界面近傍における、ケイ素量に対する酸素量のモル比の最大値と最小値との差が0.4以下であり、
前記各負極活物質体の成長方向は、前記集電体の法線方向に対して傾斜しており、
前記各負極活物質体と前記集電体との界面近傍において、前記各負極活物質体の成長方向と、前記集電体の法線方向とのなす角度は10°以上80°以下であるリチウム二次電池用負極の製造方法。
A step of preparing a current collector in which first protrusions are arranged on the surface, wherein each first protrusion includes a plurality of second protrusions having a height lower than that of the first protrusion; And having the process
Forming a negative electrode active material body containing silicon oxide by oblique vapor deposition on each of the first protrusions on the surface of the current collector,
The average value of the molar ratio of the oxygen amount to the silicon amount of each negative electrode active material body is 0.1 or more and 1.2 or less,
Wherein Ri difference 0.4 der following in the vicinity of the interface between the current collector and the negative electrode active material body, the maximum value and the minimum value of the amount of oxygen to silicon-amount,
The growth direction of each negative electrode active material body is inclined with respect to the normal direction of the current collector,
In the vicinity of the interface between each negative electrode active material body and the current collector, the angle formed by the growth direction of each negative electrode active material body and the normal direction of the current collector is 10 ° or more and 80 ° or less. A method for producing a negative electrode for a secondary battery.
JP2007091827A 2007-03-30 2007-03-30 Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery Expired - Fee Related JP5108355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091827A JP5108355B2 (en) 2007-03-30 2007-03-30 Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091827A JP5108355B2 (en) 2007-03-30 2007-03-30 Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2008251369A JP2008251369A (en) 2008-10-16
JP5108355B2 true JP5108355B2 (en) 2012-12-26

Family

ID=39976069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091827A Expired - Fee Related JP5108355B2 (en) 2007-03-30 2007-03-30 Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5108355B2 (en)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659696B2 (en) 2009-12-24 2015-01-28 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, electric tool, electric vehicle and power storage system
JP5935246B2 (en) 2011-06-24 2016-06-15 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2013008586A (en) 2011-06-24 2013-01-10 Sony Corp Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP6003015B2 (en) 2011-06-24 2016-10-05 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP5982811B2 (en) 2011-12-20 2016-08-31 ソニー株式会社 Secondary battery active material, secondary battery and electronic equipment
US10096820B2 (en) 2012-08-06 2018-10-09 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method preparing the same and rechargeable lithium battery including the same
KR20200124329A (en) 2013-08-21 2020-11-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, negative electrode active substance manufacturing method, and lithium ion secondary battery manufacturing method
US9929399B2 (en) 2013-10-29 2018-03-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, method for producing a negative electrode active material, and lithium ion secondary battery
JP6474548B2 (en) 2014-01-16 2019-02-27 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material and method for producing negative electrode active material particles
JP6397262B2 (en) 2014-02-07 2018-09-26 信越化学工業株式会社 Nonaqueous electrolyte secondary battery
JP6359836B2 (en) 2014-02-07 2018-07-18 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP6082355B2 (en) 2014-02-07 2017-02-15 信越化学工業株式会社 Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6181590B2 (en) 2014-04-02 2017-08-16 信越化学工業株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6196183B2 (en) 2014-04-22 2017-09-13 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing the same, negative electrode active material layer for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery
JP6268049B2 (en) 2014-06-23 2018-01-24 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material, non-aqueous electrolyte secondary battery, and method for producing negative electrode active material particles
KR102367610B1 (en) 2014-07-15 2022-02-28 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
JP6312211B2 (en) 2014-10-08 2018-04-18 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode active material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery negative electrode material
JP2016152077A (en) 2015-02-16 2016-08-22 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery
US10446837B2 (en) 2015-02-26 2019-10-15 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for a non-aqueous electrolyte secondary battery
JP6448525B2 (en) 2015-02-26 2019-01-09 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode active material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery negative electrode material
JP6386414B2 (en) 2015-04-22 2018-09-05 信越化学工業株式会社 Anode active material for nonaqueous electrolyte secondary battery, method for producing the same, nonaqueous electrolyte secondary battery using the anode active material, and method for producing anode material for nonaqueous electrolyte secondary battery
JP6548959B2 (en) 2015-06-02 2019-07-24 信越化学工業株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode active material particles
JP6407804B2 (en) 2015-06-17 2018-10-17 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
CN107851783A (en) 2015-07-07 2018-03-27 信越化学工业株式会社 The manufacture method and rechargeable nonaqueous electrolytic battery of anode for nonaqueous electrolyte secondary battery active material and negative pole
WO2017043039A1 (en) 2015-09-10 2017-03-16 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP6389159B2 (en) 2015-10-08 2018-09-12 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for producing nonaqueous electrolyte secondary battery negative electrode material, and method for producing nonaqueous electrolyte secondary battery
JP6445956B2 (en) 2015-11-17 2018-12-26 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP6422847B2 (en) 2015-11-17 2018-11-14 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6460960B2 (en) 2015-11-18 2019-01-30 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6535581B2 (en) 2015-11-18 2019-06-26 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP6453203B2 (en) 2015-11-20 2019-01-16 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, and method for producing lithium ion secondary battery
JP6433442B2 (en) 2016-01-04 2018-12-05 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode active material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery negative electrode active material
JP6507106B2 (en) 2016-01-07 2019-04-24 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method of producing negative electrode active material, and method of producing lithium ion secondary battery
JP7078346B2 (en) 2016-02-15 2022-05-31 信越化学工業株式会社 Method for manufacturing negative electrode active material and lithium ion secondary battery
JP6867821B2 (en) 2016-02-23 2021-05-12 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material material, negative electrode for non-aqueous electrolyte secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode active material manufacturing method, negative electrode manufacturing method, and lithium ion secondary Battery manufacturing method
JP6596405B2 (en) 2016-02-24 2019-10-23 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
KR102380071B1 (en) 2016-04-13 2022-03-30 신에쓰 가가꾸 고교 가부시끼가이샤 Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery and manufacturing method of negative electrode for nonaqueous electrolyte secondary battery
JP6719262B2 (en) 2016-04-18 2020-07-08 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
TWI773667B (en) 2016-05-30 2022-08-11 日商信越化學工業股份有限公司 Negative active material, mixed negative active material, and method for producing negative active material (1)
US11139469B2 (en) 2016-05-30 2021-10-05 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
TWI714753B (en) 2016-05-30 2021-01-01 日商信越化學工業股份有限公司 Anode active material, mixed anode active material material, and manufacturing method of anode active material (3)
CN109075332B (en) 2016-06-13 2021-07-27 信越化学工业株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6564740B2 (en) 2016-07-04 2019-08-21 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, method of using lithium ion secondary battery, method of manufacturing negative electrode active material, and method of manufacturing lithium ion secondary battery
JP6861565B2 (en) 2016-09-16 2021-04-21 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
WO2018051710A1 (en) 2016-09-16 2018-03-22 信越化学工業株式会社 Negative electrode active substance, mixed negative electrode active substance material and method for producing negative electrode active substance
JP6797739B2 (en) 2016-09-30 2020-12-09 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
WO2018061536A1 (en) 2016-09-30 2018-04-05 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material substance, and method for producing negative electrode active material
JP6704327B2 (en) 2016-10-21 2020-06-03 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6634398B2 (en) 2017-03-13 2020-01-22 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6765997B2 (en) 2017-03-13 2020-10-07 信越化学工業株式会社 Negative electrode material, manufacturing method of the negative electrode material, and mixed negative electrode material
JP2018206560A (en) 2017-06-01 2018-12-27 信越化学工業株式会社 Negative electrode active substance, mixed negative electrode active substance material, and method for manufacturing particles of negative electrode active substance
JP6802111B2 (en) 2017-06-02 2020-12-16 信越化学工業株式会社 Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery
JP6964386B2 (en) 2017-08-03 2021-11-10 信越化学工業株式会社 Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery
JP7113226B2 (en) * 2018-03-09 2022-08-05 パナソニックIpマネジメント株式会社 lithium secondary battery
EP3576186B1 (en) * 2018-05-31 2023-05-31 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
EP3576196A1 (en) * 2018-05-31 2019-12-04 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
JP7084849B2 (en) 2018-11-07 2022-06-15 信越化学工業株式会社 Method for manufacturing negative electrode active material, mixed negative electrode active material, aqueous negative electrode slurry composition, and negative electrode active material
JP7156921B2 (en) 2018-11-28 2022-10-19 信越化学工業株式会社 Negative electrode active material and manufacturing method thereof
JP7186099B2 (en) 2019-01-15 2022-12-08 信越化学工業株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2021048049A (en) 2019-09-18 2021-03-25 信越化学工業株式会社 Negative electrode active material, negative electrode, and manufacturing method of them
JP7186156B2 (en) 2019-10-03 2022-12-08 信越化学工業株式会社 Negative electrode active material, negative electrode, and method for producing negative electrode active material
JP7325458B2 (en) 2021-01-25 2023-08-14 信越化学工業株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP7490590B2 (en) 2021-02-04 2024-05-27 信越化学工業株式会社 Anode and method for producing the same
JP7412372B2 (en) 2021-02-15 2024-01-12 信越化学工業株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP7457671B2 (en) 2021-05-13 2024-03-28 信越化学工業株式会社 Negative electrode active material and its manufacturing method
JP2022187684A (en) 2021-06-08 2022-12-20 信越化学工業株式会社 Anode active material, anode and lithium ion secondary battery
JP2022187707A (en) 2021-06-08 2022-12-20 信越化学工業株式会社 Anode active material, anode and lithium ion secondary battery
JP7558904B2 (en) 2021-07-27 2024-10-01 信越化学工業株式会社 Anode and method for producing same
JP7561099B2 (en) 2021-07-27 2024-10-03 信越化学工業株式会社 Negative electrode active material and method for producing same
JP2023025791A (en) 2021-08-11 2023-02-24 信越化学工業株式会社 negative electrode
JP2023026832A (en) 2021-08-16 2023-03-01 信越化学工業株式会社 Negative electrode and negative electrode manufacturing method
JP2023101910A (en) 2022-01-11 2023-07-24 信越化学工業株式会社 Negative electrode active material and negative electrode
CN118715632A (en) 2022-02-21 2024-09-27 信越化学工业株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP2023151923A (en) 2022-04-01 2023-10-16 信越化学工業株式会社 Negative electrode active material and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313319A (en) * 2001-04-09 2002-10-25 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
JP2006228468A (en) * 2005-02-15 2006-08-31 Sii Micro Parts Ltd Electrolyte secondary battery
US8080334B2 (en) * 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery

Also Published As

Publication number Publication date
JP2008251369A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP5108355B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery
JP4351732B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME
JP4038233B2 (en) Non-aqueous electrolyte secondary battery electrode, method for producing the same, and non-aqueous electrolyte secondary battery equipped with non-aqueous electrolyte secondary battery electrode
JP4460642B2 (en) LITHIUM SECONDARY BATTERY NEGATIVE ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP4642835B2 (en) Current collector for electrode
JP4027966B2 (en) LITHIUM SECONDARY BATTERY ANODE, PROCESS FOR PRODUCING THE SAME, AND LITHIUM SECONDARY BATTERY HAVING A LITHIUM SECONDARY BATTERY ANODE
US7794878B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JP4469020B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
JP5342440B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery
JP4581029B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery
JP2009117267A (en) Electrode for electrochemical element
JP4598150B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
KR101054621B1 (en) Anode for lithium secondary battery and lithium secondary battery containing same
JP2008098157A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP4422207B2 (en) Method for producing electrode for lithium secondary battery
JP2010182620A (en) Lithium-ion secondary battery
JP2008124003A (en) Negative electrode for lithium secondary battery, and lithium secondary battery including it
JP4899793B2 (en) Vacuum deposition equipment
JP2008181835A (en) Negative electrode for lithium secondary battery
JP2008146840A (en) Negative electrode for lithium secondary battery
JP2009164011A (en) Method of manufacturing electrode for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees