Nothing Special   »   [go: up one dir, main page]

JP5105187B2 - Valve timing control device - Google Patents

Valve timing control device Download PDF

Info

Publication number
JP5105187B2
JP5105187B2 JP2008197800A JP2008197800A JP5105187B2 JP 5105187 B2 JP5105187 B2 JP 5105187B2 JP 2008197800 A JP2008197800 A JP 2008197800A JP 2008197800 A JP2008197800 A JP 2008197800A JP 5105187 B2 JP5105187 B2 JP 5105187B2
Authority
JP
Japan
Prior art keywords
rotating member
fluid
side rotating
control device
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008197800A
Other languages
Japanese (ja)
Other versions
JP2010031821A (en
Inventor
重光 鈴木
秀彰 高橋
直人 稲摩
昌樹 小林
丈雄 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2008197800A priority Critical patent/JP5105187B2/en
Publication of JP2010031821A publication Critical patent/JP2010031821A/en
Application granted granted Critical
Publication of JP5105187B2 publication Critical patent/JP5105187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Description

本発明は、内燃機関のクランクシャフトと同期して回転する駆動側回転部材に対する従動側回転部材の相対回転位相を制御する弁開閉時期制御装置に関する。   The present invention relates to a valve opening / closing timing control device that controls a relative rotation phase of a driven side rotating member with respect to a driving side rotating member that rotates in synchronization with a crankshaft of an internal combustion engine.

従来、進角室又は遅角室に対して流体の供給を可能にする弁を、カムシャフトとは反対の側から内部ロータに対して同軸心上に配置した弁開閉時期制御装置があった(引用文献1参照)。この技術によると、弁を取り付けるに十分なスペースが内燃機関にない場合にも、弁を内燃機関の外側に固定配置するとされていた。   Conventionally, there has been a valve timing control device in which a valve that enables fluid supply to an advance chamber or retard chamber is arranged coaxially with respect to an internal rotor from the side opposite to the camshaft ( Reference document 1). According to this technique, the valve is fixedly arranged outside the internal combustion engine even when there is not enough space in the internal combustion engine to mount the valve.

また、進角方向と遅角方向とに位相を変更する位相変更機構に供給される流体圧力を調整するための調整弁と、内燃機関に取り付けられ電磁力により移動して調整弁を押動する押動部材を有する電磁駆動機構とを備え、押動部材と調整弁との間に調整弁の軸方向移動量を調整可能な調整部材を介装した弁開閉時期制御装置があった(特許文献2参照)。この技術によると、電磁駆動機構を内燃機関から取り外さずとも、電磁駆動機構の取り付けボルトを少量緩めれば調整部材はフロントカバーに対して相対移動可能となる。このように、調整弁の軸方向移動量を調整するための調整部材の変更が容易である。したがって、当該弁開閉時期制御装置の内燃機関への組付性が向上するとされていた。   Also, an adjustment valve for adjusting the fluid pressure supplied to the phase change mechanism that changes the phase between the advance angle direction and the retard angle direction, and the adjustment valve that is attached to the internal combustion engine and moves by electromagnetic force pushes the adjustment valve. There is a valve opening / closing timing control device that includes an electromagnetic drive mechanism having a pusher member, and an adjustment member that can adjust the amount of axial movement of the adjustment valve between the pusher member and the adjustment valve (Patent Document) 2). According to this technique, even if the electromagnetic drive mechanism is not removed from the internal combustion engine, the adjustment member can be moved relative to the front cover by loosening a small amount of the mounting bolt of the electromagnetic drive mechanism. In this way, it is easy to change the adjustment member for adjusting the amount of axial movement of the adjustment valve. Therefore, it was supposed that the assembling property of the valve opening / closing timing control device to the internal combustion engine was improved.

特開2004−340142号JP 2004-340142 A 特許第4013364号Japanese Patent No. 4013364

しかし、特許文献1の技術は、弁に対して、カムシャフトを介しカムシャフトの回転軸方向から流体を供給する構成であるため、カムシャフト側の内部ロータと弁との間には流体の供給圧力がかかり、内部ロータと弁との隙間に流体圧脈動に比例した回転軸方向の斥力が発生する虞があった。また、各流路から漏洩した流体が前記隙間に滞留し、前記斥力が発生する虞もあった。このため、振動が起こったり、弁が誤作動し弁開閉時期制御装置による正確な制御ができなくなる虞があった。さらに、前記構成であるため、流体は、静止体である流体の貯留部から、回転体であるカムシャフト、静止体である弁体、回転体である内ロータと外ロータとから形成される進角室又は遅角室へと供給される。このように、流体は、三度も静止体と回転体との間を渡って供給されるため、流体の漏洩量が多くなる虞もあった。   However, since the technology of Patent Document 1 is configured to supply fluid to the valve from the direction of the rotation axis of the camshaft via the camshaft, fluid supply is provided between the internal rotor on the camshaft side and the valve. There is a risk that repulsive force in the direction of the rotation axis proportional to the fluid pressure pulsation may be generated in the gap between the internal rotor and the valve. Further, the fluid leaking from each flow path may stay in the gap and the repulsive force may be generated. For this reason, there is a possibility that vibration may occur or the valve malfunctions and accurate control by the valve opening / closing timing control device cannot be performed. Furthermore, because of the above-described configuration, the fluid advances from the fluid storage portion which is a stationary body, the camshaft which is a rotating body, the valve body which is a stationary body, and the inner rotor and the outer rotor which are rotating bodies. Supplied to the corner chamber or retard chamber. Thus, since the fluid is supplied three times between the stationary body and the rotating body, there is a possibility that the amount of fluid leakage increases.

また、特許文献2の技術においては、静止固定された非回転体である押動部材が、回転体である調整弁を押動する構成であるため、両者を接合することができない。このため、組立誤差等によっては、調整弁と押動部材との相対的な位置関係が変わり、両者が接合しない場合がある。この場合には、調整部材によって調整弁の軸方向移動量を調整し、両者を接合させることができるが、内燃機関の組立部品点数は相当多いため、個々の組立誤差が累積し調整弁と押動部材との位置関係が変わり、調整部材による調整を頻繁に行わなければならない虞があった。   Moreover, in the technique of patent document 2, since the pushing member which is a stationary non-rotating body pushes the adjustment valve which is a rotating body, both cannot be joined. For this reason, depending on an assembly error or the like, the relative positional relationship between the adjustment valve and the pushing member may change, and the two may not be joined. In this case, the adjustment member can adjust the axial movement amount of the adjustment valve and join them together. However, since the number of assembly parts of the internal combustion engine is considerably large, individual assembly errors accumulate and the adjustment valve and the push valve are pushed together. The positional relationship with the moving member is changed, and there is a possibility that adjustment by the adjusting member must be frequently performed.

本発明は上記実情に鑑み、組付性が良く、誤作動を起こしにくい弁開閉時期制御装置を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide a valve opening / closing timing control device that is easy to assemble and hardly causes malfunction.

本発明に係る吸気制御装置の第1特徴構成は、内燃機関のクランクシャフトに対して同期回転する駆動側回転部材と、前記駆動側回転部材に対して同軸上に配置され、前記内燃機関の弁開閉用のカムシャフトに同期回転する従動側回転部材と、前記駆動側回転部材及び前記従動側回転部材の何れか一方に形成された流体圧室と、前記流体圧室を進角室と遅角室とに仕切るよう前記駆動側回転部材及び前記従動側回転部材の何れか他方に設けられた仕切部と、前記駆動側回転部材又は前記従動側回転部材に対して前記カムシャフトとは反対の側に相対回転可能に挿入されると共に静止固定され、前記進角室又は前記遅角室に対する前記相対回転する部分を介した流体の供給又は排出の制御を行う流体制御弁機構と、該流体制御弁機構と前記駆動側回転部材又は前記従動側回転部材との隙間を常時外気に開放する排出流路とを備えた点にある。   A first characteristic configuration of an intake air control device according to the present invention is a drive-side rotation member that rotates synchronously with a crankshaft of an internal combustion engine, and is arranged coaxially with respect to the drive-side rotation member. A driven-side rotating member that rotates synchronously with the opening and closing camshaft; a fluid pressure chamber formed in one of the drive-side rotating member and the driven-side rotating member; and the fluid pressure chamber as an advance chamber and a retard angle A partition provided on the other of the driving side rotating member and the driven side rotating member so as to partition the chamber, and a side opposite to the camshaft with respect to the driving side rotating member or the driven side rotating member A fluid control valve mechanism that is inserted in a relatively rotatable manner and is stationary and fixed, and controls supply or discharge of fluid via the relative rotating portion with respect to the advance chamber or the retard chamber, and the fluid control valve Mechanism and drive In that a rotary member or discharge channel to always open to the outside air gap between the driven side rotational member is.

本構成によると、流体制御弁機構と駆動側回転部材又は従動側回転部材との隙間を常時外気に開放する排出流路を備えているため、流体制御弁機構と駆動側回転部材又は従動側回転部材との隙間には流体が溜まらない。このため、流体制御弁機構と駆動側回転部材又は従動側回転部材との間に、駆動側回転部材又は従動側回転部材の回転軸方向の不測の斥力が発生することがない。したがって、流体制御弁機構を駆動側回転部材又は従動側回転部材に対して相対回転可能に挿入すると共に、駆動側回転部材又は従動側回転部材とは別の静止部材に固定する構成であっても、振動が起こりにくく、誤作動が少ない弁開閉時期制御機構を得ることができる。   According to this configuration, the fluid control valve mechanism and the driving side rotating member or the driven side rotating member are provided with the discharge channel that always opens the clearance between the fluid control valve mechanism and the driving side rotating member or the driven side rotating member to the outside air. Fluid does not collect in the gap with the member. For this reason, an unexpected repulsive force in the rotation axis direction of the driving side rotating member or the driven side rotating member does not occur between the fluid control valve mechanism and the driving side rotating member or the driven side rotating member. Therefore, the fluid control valve mechanism is inserted so as to be relatively rotatable with respect to the driving side rotating member or the driven side rotating member, and fixed to a stationary member different from the driving side rotating member or the driven side rotating member. Thus, it is possible to obtain a valve opening / closing timing control mechanism that is less prone to vibration and that has few malfunctions.

また、流体制御弁機構を駆動側回転部材又は従動側回転部材に対して相対回転可能に挿入すると共に、駆動側回転部材又は従動側回転部材とは別の静止部材に固定する構成であっても、流体規制弁機構を相対回転可能に挿入する構成であるため、流体制御弁機構の位置の微調整が簡単である。したがって、組立性の良い弁開閉時期制御装置を得ることができる。   Further, the fluid control valve mechanism may be inserted so as to be relatively rotatable with respect to the driving side rotating member or the driven side rotating member, and fixed to a stationary member different from the driving side rotating member or the driven side rotating member. Since the fluid regulating valve mechanism is inserted so as to be relatively rotatable, fine adjustment of the position of the fluid control valve mechanism is simple. Therefore, it is possible to obtain a valve opening / closing timing control device with good assemblability.

さらに、流体制御弁機構は、相対回転する部分を介して、進角室又は遅角室に対する流体の供給又は排出の制御を行うため、流体の供給又は排出時にカムシャフトの回転軸心方向の斥力が発生しにくい。   Further, since the fluid control valve mechanism controls the supply or discharge of the fluid to or from the advance chamber or the retard chamber through the relative rotating portion, the repulsive force in the direction of the rotation axis of the camshaft is supplied when the fluid is supplied or discharged. Is unlikely to occur.

本発明に係る吸気制御装置の第2特徴構成は、前記流体制御弁機構に前記排出流路を備えた点にある。   A second characteristic configuration of the intake control device according to the present invention is that the fluid control valve mechanism includes the discharge passage.

本構成によると、排出流路を流体制御弁機構に備えるため、流体制御弁機構に機能を集約させることができ、組立時に複雑な取り付け作業が不要となる。このため、組立性の良い弁開閉時期制御装置とすることができる。また、仮に、駆動側回転部材及び従動側回転部材を含めたカムシャフトの側の構造が複雑であって、排出流路を駆動側回転部材及び従動側回転部材等に備えられない場合にも、前記隙間に流入した流体を確実に外部に排出することができる。   According to this configuration, since the discharge flow path is provided in the fluid control valve mechanism, the functions can be concentrated in the fluid control valve mechanism, and a complicated mounting operation is not required during assembly. For this reason, it can be set as the valve opening / closing timing control apparatus with sufficient assembly property. Further, even if the structure of the camshaft side including the driving side rotating member and the driven side rotating member is complicated and the discharge flow path cannot be provided in the driving side rotating member and the driven side rotating member, The fluid that has flowed into the gap can be reliably discharged to the outside.

本発明に係る吸気制御装置の第3特徴構成は、前記駆動側回転部材又は前記従動側回転部材に前記排出流路を備えた点にある。   A third characteristic configuration of the intake air control device according to the present invention is that the drive-side rotation member or the driven-side rotation member is provided with the discharge flow path.

本構成によると、排出流路を駆動側回転部材又は従動側回転部材に備えるため、他の部品を介すことなく、前記隙間を直接外気に開放することができる。したがって、駆動側回転部材又は従動側回転部材に簡単な加工を施すのみで、前記隙間に流入した流体を確実に外部に排出することができる。   According to this configuration, since the discharge flow path is provided in the driving side rotating member or the driven side rotating member, the gap can be directly opened to the outside air without using other components. Therefore, the fluid that has flowed into the gap can be reliably discharged to the outside only by performing simple processing on the driving side rotating member or the driven side rotating member.

本発明に係る吸気制御装置の第4特徴構成は、前記流体制御弁機構の前記駆動側回転部材又は前記従動側回転部材に対して前記カムシャフトとは反対の側に前記流体の供給部を備えた点にある。   According to a fourth characteristic configuration of the intake control device of the present invention, the fluid supply portion is provided on a side opposite to the camshaft with respect to the driving side rotating member or the driven side rotating member of the fluid control valve mechanism. It is in the point.

本構成によると、静止体である流体制御弁機構に流体の供給部が備えられているため、カムシャフト等の回転体を介さずに流体を前記進角室又は前記遅角室に供給することでき、流体の供給を簡単かつ確実に行うことができる。カムシャフトを介さないため、前記隙間に流体が漏洩しにくい構成とすることができる。   According to this configuration, since the fluid control valve mechanism that is a stationary body is provided with the fluid supply unit, the fluid is supplied to the advance chamber or the retard chamber without using a rotating body such as a camshaft. The fluid can be supplied easily and reliably. Since the camshaft is not interposed, it is possible to adopt a configuration in which fluid does not easily leak into the gap.

本発明に係る吸気制御装置の第5特徴構成は、前記駆動側回転部材に対する前記従動側回転部材の相対回転位相の変位を規制する規制状態とその規制を解除する解除状態とを作り出す位相変位規制機構を備えると共に、前記流体制御弁機構に前記位相変位規制機構に対する前記流体の供給又は排出を行う規制流路を備えた点にある。   A fifth characteristic configuration of the intake control device according to the present invention is a phase displacement restriction that creates a restriction state that restricts a displacement of a relative rotation phase of the driven rotation member with respect to the driving side rotation member and a release state that releases the restriction. In addition to providing a mechanism, the fluid control valve mechanism includes a restriction flow path for supplying or discharging the fluid to or from the phase displacement restriction mechanism.

本構成によると、流体制御弁機構に機能を集約させることができ、組立時に複雑な取り付け作業が不要となる。このため、組立性の良い弁開閉時期制御装置とすることができる。また、位相変位規制機構専用の規制流路があるため、確実に規制状態と解除状態の切り替えを行うことができる。   According to this configuration, the functions can be integrated into the fluid control valve mechanism, and a complicated mounting operation is not required during assembly. For this reason, it can be set as the valve opening / closing timing control apparatus with sufficient assembly property. In addition, since there is a restriction flow path dedicated to the phase displacement restriction mechanism, the restriction state and the release state can be switched reliably.

本発明に係る弁開閉時期制御装置を自動車のエンジンに適応した実施形態について図面に基づいて説明する。   An embodiment in which a valve timing control device according to the present invention is applied to an automobile engine will be described with reference to the drawings.

(全体構成)
この弁開閉時期制御装置1は、図1に示すごとく、エンジンのクランクシャフト(図示しない)に対して同期回転する「駆動側回転部材」としての外部ロータ3及びフロントプレート4と、外部ロータ3に対して同軸心上に配置され、エンジンの弁開閉用のカムシャフト8に同期回転する「従動側回転部材」としての内部ロータ5とを備えて構成してある。
(overall structure)
As shown in FIG. 1, the valve opening / closing timing control device 1 includes an external rotor 3 and a front plate 4 as “drive side rotating members” that rotate synchronously with an engine crankshaft (not shown), and an external rotor 3. On the other hand, it is provided with an internal rotor 5 as a “driven rotation member” that is arranged coaxially and rotates synchronously with a camshaft 8 for opening and closing the valve of the engine.

内部ロータ5は、エンジンの吸気弁又は排気弁の開閉を制御するカム(図示しない)の回転軸を構成するカムシャフト8の先端部に一体的に組付けられている。内部ロータ5の内径側には凹部14が設けてあり、その底面にはカムシャフト8の側に貫通した固定用穴12が開けてある。この固定用穴12にボルト13を通し、内部ロータ5をカムシャフト8に固定する。このカムシャフト8は、エンジンのシリンダヘッド(図示しない)に回転自在に組み付けられている。   The internal rotor 5 is integrally assembled at the tip of a camshaft 8 that constitutes a rotating shaft of a cam (not shown) that controls opening and closing of an intake valve or an exhaust valve of the engine. A concave portion 14 is provided on the inner diameter side of the inner rotor 5, and a fixing hole 12 penetrating the camshaft 8 side is formed on the bottom surface thereof. Bolts 13 are passed through the fixing holes 12 to fix the internal rotor 5 to the camshaft 8. The camshaft 8 is rotatably assembled to a cylinder head (not shown) of the engine.

外部ロータ3は、フロントプレート4と一体となって、内部ロータ5に対して所定の範囲内で相対回転可能に外装されている。外部ロータ3の外周にはスプロケット部11が形成されている。このスプロケット部11とクランクシャフトに取り付けられたギア(図示しない)との間には、タイミングチェーンやタイミングベルト等の動力伝達部材(図示しない)を架設している。   The outer rotor 3 is integrated with the front plate 4 and is externally mounted so as to be rotatable relative to the inner rotor 5 within a predetermined range. A sprocket portion 11 is formed on the outer periphery of the external rotor 3. A power transmission member (not shown) such as a timing chain or a timing belt is installed between the sprocket portion 11 and a gear (not shown) attached to the crankshaft.

クランクシャフトが回転駆動すると、動力伝達部材を介してスプロケット部11に回転動力が伝達され、外部ロータ3が回転駆動する。そして、外部ロータ3の回転駆動に伴って内部ロータ5が回転駆動してカムシャフト8が回転する。そして、カムシャフト8に設けられたカムがエンジンの吸気弁又は排気弁を押し下げて開弁させる。   When the crankshaft is rotationally driven, rotational power is transmitted to the sprocket portion 11 via the power transmission member, and the external rotor 3 is rotationally driven. As the external rotor 3 is driven to rotate, the inner rotor 5 is driven to rotate and the camshaft 8 is rotated. The cam provided on the camshaft 8 pushes down the intake valve or exhaust valve of the engine to open it.

図5に示すごとく、外部ロータ3には、径内方向に突出する複数個の凸部が回転方向に沿って互いに離間して形成され、隣接する凸部と内部ロータ5とにより流体圧室6が形成されている。本実施形態においては、流体圧室6を四個備えている。   As shown in FIG. 5, the outer rotor 3 is formed with a plurality of protrusions protruding in the radial direction so as to be separated from each other along the rotation direction. The fluid pressure chamber 6 is formed by the adjacent protrusions and the inner rotor 5. Is formed. In the present embodiment, four fluid pressure chambers 6 are provided.

内部ロータ5の外周部において各流体圧室6に対面する箇所には溝が形成され、この溝に、「仕切部」としてのベーン7が挿入されている。流体圧室6は、このベーン7によって相対回転方向(図5、6における矢印S1、S2方向)に進角室6aと遅角室6bとに仕切られる。   Grooves are formed at locations facing the fluid pressure chambers 6 on the outer peripheral portion of the internal rotor 5, and vanes 7 as “partition portions” are inserted into the grooves. The fluid pressure chamber 6 is partitioned by the vane 7 into an advance chamber 6a and a retard chamber 6b in the relative rotation direction (the directions of arrows S1 and S2 in FIGS. 5 and 6).

内部ロータ5には、進角室連通孔17と遅角室連通孔18とが形成してある。進角室連通孔17は、流体制御弁機構2を挿入するための円柱形状の凹部14と進角室6aとを連通する。遅角室連通孔18は、凹部14と遅角室6bとを連通する。   The internal rotor 5 has an advance chamber communication hole 17 and a retard chamber communication hole 18 formed therein. The advance chamber communication hole 17 communicates the cylindrical recess 14 for inserting the fluid control valve mechanism 2 with the advance chamber 6a. The retard chamber communication hole 18 communicates the recess 14 and the retard chamber 6b.

油圧回路(図示しない)からの「流体」としての作動油を、進角室6a又は遅角室6bに対して供給又は排出することにより、内部ロータ5と外部ロータ3との相対回転位相(以下、「相対回転位相」という)を、進角方向S1又は遅角方向S2へ変位させる。進角方向S1とは、図5、6において矢印S1で示されるベーン7が相対変位する方向を示し、遅角方向S2とは、矢印S2で示されるベーン7が相対変位する方向を示す。   By supplying or discharging hydraulic oil as “fluid” from a hydraulic circuit (not shown) to the advance chamber 6a or the retard chamber 6b, the relative rotational phase between the internal rotor 5 and the external rotor 3 (hereinafter referred to as “rotational phase”). , Referred to as “relative rotational phase”) in the advance angle direction S1 or the retard angle direction S2. The advance angle direction S1 indicates the direction in which the vane 7 indicated by the arrow S1 in FIGS. 5 and 6 is relatively displaced, and the retard angle direction S2 indicates the direction in which the vane 7 indicated by the arrow S2 is relatively displaced.

進角室6aに作動油を供給した場合は、相対回転位相は進角方向S1に変位し、遅角室6bに作動油を供給した場合は、相対回転位相は遅角方向S2に変位する。なお、相対回転位相が変位可能な範囲は、流体圧室6の内部でベーン7が変位可能な範囲であり、図5、6に示すごとく、遅角室6bの容積が最大となる最遅角位相と、進角室6aの容積が最大となる最進角位相(図示しない)との間の範囲に相当する。   When hydraulic oil is supplied to the advance chamber 6a, the relative rotational phase is displaced in the advance direction S1, and when hydraulic oil is supplied to the retard chamber 6b, the relative rotation phase is displaced in the retard direction S2. The range in which the relative rotational phase can be displaced is the range in which the vane 7 can be displaced inside the fluid pressure chamber 6, and the most retarded angle at which the volume of the retarded chamber 6b is maximum as shown in FIGS. This corresponds to a range between the phase and the most advanced phase (not shown) in which the volume of the advance chamber 6a is maximum.

(流体制御弁機構)
流体制御弁機構2によって、進角室6a又は遅角室6bに対する作動油の供給又は排出を制御する。流体制御弁機構2は、上述した内部ロータ5の凹部14に相対回転可能に挿入すると共に、エンジンのフロントカバー等に固定してある。即ち、流体制御弁機構2は静止したままであって、内部ロータ5の回転には追従しない。本構成によると、流体制御弁機構2の位置の微調整が簡単となり、組立性が向上する。
(Fluid control valve mechanism)
The fluid control valve mechanism 2 controls the supply or discharge of hydraulic fluid to the advance chamber 6a or the retard chamber 6b. The fluid control valve mechanism 2 is inserted into the recess 14 of the internal rotor 5 described above so as to be relatively rotatable, and is fixed to a front cover of the engine or the like. That is, the fluid control valve mechanism 2 remains stationary and does not follow the rotation of the internal rotor 5. According to this configuration, fine adjustment of the position of the fluid control valve mechanism 2 is simplified, and assemblability is improved.

流体制御弁機構2は、図1に示すごとく、ソレノイド21、ハウジング23、中間ハウジング24、及びスプールバルブ25を備えている。スプールバルブ25は有底の円筒形状で、中間バルブはスプールバルブ25の形状に合わせた中空部を有する有底の円筒形状である。また、ハウジング23は中間ハウジング24の形状に合わせた中空部を有する中空形状をなしている。ハウジング23の中空部は両端部に亘って貫通しており、その中空部に中間ハウジング24が挿入してある。中間ハウジング24は、ハウジング23に対して焼嵌めされており、その外周面はハウジング23の内周面34に密着し、ハウジング23と常時一体となっている。中間ハウジング24の中空部には、スプールバルブ25が、カムシャフト8の回転軸心方向(以下、「回転軸心方向」という)に移動可能に挿入されている。   As shown in FIG. 1, the fluid control valve mechanism 2 includes a solenoid 21, a housing 23, an intermediate housing 24, and a spool valve 25. The spool valve 25 has a bottomed cylindrical shape, and the intermediate valve has a bottomed cylindrical shape having a hollow portion that matches the shape of the spool valve 25. Further, the housing 23 has a hollow shape having a hollow portion that matches the shape of the intermediate housing 24. The hollow portion of the housing 23 passes through both end portions, and an intermediate housing 24 is inserted into the hollow portion. The intermediate housing 24 is shrink-fitted to the housing 23, and the outer peripheral surface thereof is in close contact with the inner peripheral surface 34 of the housing 23 and is always integral with the housing 23. A spool valve 25 is inserted into the hollow portion of the intermediate housing 24 so as to be movable in the direction of the rotational axis of the camshaft 8 (hereinafter referred to as “rotational axis direction”).

スプールバルブ25のカムシャフト8の側には係合溝51が形成され、中間ハウジング24の底面とその係合溝51とに亘ってスプリング26が設置されている。このため、スプールバルブ25は常時中間ハウジング24に対してカムシャフト8とは反対側に付勢されている。中間ハウジング24のカムシャフト8とは反対側の端部にはソレノイド21が設置されており、回転軸心方向にスプールバルブ25を往復運動させることができる。ソレノイド21の先端部のロッド22がスプールバルブ25の底部52に当接されており、ソレノイド21に通電すると、図1(図2)から図3(図4)の変化のごとく、ロッド22がソレノイド21から延出し底部52を押圧して、スプールバルブ25はカムシャフト8の側に移動する。通電を停止すると、ロッド22はソレノイド21の側に引退するが、上述したスプリング26の付勢力により、スプールバルブ25はロッド22の動きに追従してソレノイド21の側に移動する。   An engagement groove 51 is formed on the camshaft 8 side of the spool valve 25, and a spring 26 is installed across the bottom surface of the intermediate housing 24 and the engagement groove 51. For this reason, the spool valve 25 is always biased to the opposite side of the camshaft 8 with respect to the intermediate housing 24. A solenoid 21 is installed at the end of the intermediate housing 24 opposite to the camshaft 8 so that the spool valve 25 can reciprocate in the direction of the rotational axis. The rod 22 at the tip of the solenoid 21 is in contact with the bottom 52 of the spool valve 25. When the solenoid 21 is energized, the rod 22 is moved to the solenoid as shown in FIG. 1 (FIG. 2) to FIG. 3 (FIG. 4). The spool valve 25 moves to the camshaft 8 side by pressing the bottom 52 extending from 21. When the energization is stopped, the rod 22 retracts toward the solenoid 21, but the spool valve 25 moves toward the solenoid 21 following the movement of the rod 22 by the biasing force of the spring 26 described above.

ハウジング23は、図1、2、7に示すごとく、内部ロータ5に挿入される側が円柱形状をなし、反対の側が四角柱形状をなしている。円柱形状の部分の外周面には、外周一周に亘る環状の溝が三本平行に形成され、夫々の溝には作動油漏れ防止用のシールリング27が設置されている。隣接する前記溝の夫々の間には、同様に環状の溝である進角用外周溝31と遅角用外周溝32とが形成されている。シールリング27によって、進角用外周溝31、遅角用外周溝32からの作動油の漏れを防ぐことができる。また、四角柱形状の部分には、油圧回路から作動油が直接供給される供給部33が備えられている。さらに、ハウジング23の内部ロータ5に挿入される部分と挿入されない部分との境界付近には、ハウジング23の中空部から外部に貫通する貫通孔35cが形成されている。   As shown in FIGS. 1, 2, and 7, the housing 23 has a cylindrical shape on the side inserted into the inner rotor 5, and has a quadrangular prism shape on the opposite side. On the outer peripheral surface of the cylindrical portion, three annular grooves extending around the outer periphery are formed in parallel, and a seal ring 27 for preventing hydraulic oil leakage is provided in each groove. Between each of the adjacent grooves, an advance outer peripheral groove 31 and a retard outer peripheral groove 32 which are similarly annular grooves are formed. The seal ring 27 can prevent hydraulic fluid from leaking from the advance angle outer peripheral groove 31 and the retard angle outer peripheral groove 32. Further, the quadrangular prism-shaped portion is provided with a supply portion 33 to which hydraulic oil is directly supplied from a hydraulic circuit. Further, a through-hole 35 c that penetrates from the hollow portion of the housing 23 to the outside is formed near the boundary between the portion inserted into the inner rotor 5 of the housing 23 and the portion not inserted.

進角用外周溝31は、図1、3、5に示すごとく、進角室連通孔17と常時連通している。また、遅角用外周溝32は、図2、4、6に示すごとく、遅角室連通孔18と常時連通している。   The advance angle outer peripheral groove 31 is always in communication with the advance angle chamber communication hole 17 as shown in FIGS. Further, as shown in FIGS. 2, 4, and 6, the retard angle outer peripheral groove 32 is always in communication with the retard chamber communication hole 18.

中間ハウジング24の外周面には、図1、2、7に示すごとく、回転軸心方向に平行に、供給用縦溝41並びに進角用縦溝42、遅角用縦溝43、及び排出用縦溝44が夫々形成されている。供給用縦溝41と進角用縦溝42とは同一直線上に形成してある。各縦溝は、中間ハウジング24の円周方向に90度毎に分散して形成してある。   As shown in FIGS. 1, 2, and 7, on the outer peripheral surface of the intermediate housing 24, the supply vertical groove 41, the advance vertical groove 42, the retard vertical groove 43, and a discharge Vertical grooves 44 are formed respectively. The supply vertical groove 41 and the advance angle vertical groove 42 are formed on the same straight line. Each longitudinal groove is formed to be dispersed every 90 degrees in the circumferential direction of the intermediate housing 24.

ただし、各縦溝の円周方向の離間角度は90度に制限するものではなく、各縦溝が交わることがなければ良い。しかし、分散させることによって、各縦溝から漏れた作動油が他の縦溝に侵入する危険性を低くすることができる。   However, the circumferential separation angle of the vertical grooves is not limited to 90 degrees, and it is preferable that the vertical grooves do not intersect each other. However, by dispersing, it is possible to reduce the risk of hydraulic oil leaking from each vertical groove entering another vertical groove.

中間ハウジング24の内周面48には、内周一周に亘る環状の内周溝45a及び内周溝45bが形成してある。供給用縦溝41の一方の端部には内周面48に貫通する連通孔46aが形成され、また、供給用縦溝41の他方の端部はハウジング23の供給部33まで延在し、供給部33と常時連通している。進角用縦溝42の一方の端部には内周溝45bに貫通する連通孔46bが形成され、また、進角用縦溝42の他方の端部はハウジング23の進角用外周溝31にまで延在し、貫通孔35aを介して進角用外周溝31と常時連通している。遅角用縦溝43の一方の端部には内周溝45aに貫通する連通孔46cが形成され、また、遅角用縦溝43の他方の端部はハウジング23の遅角用外周溝32にまで延在し、貫通孔35bを介して遅角用外周溝32と常時連通している。排出用縦溝44の一方の端部には内周面48に貫通する46dが形成され、また、排出用縦溝44の他方の端部は、貫通孔35cまで延在し、貫通孔35cを介して常時外部と連通している。   On the inner peripheral surface 48 of the intermediate housing 24, an annular inner peripheral groove 45a and an inner peripheral groove 45b are formed over the inner periphery. A communication hole 46 a penetrating the inner peripheral surface 48 is formed at one end portion of the supply vertical groove 41, and the other end portion of the supply vertical groove 41 extends to the supply portion 33 of the housing 23, It always communicates with the supply unit 33. A communication hole 46 b penetrating the inner circumferential groove 45 b is formed at one end of the advance vertical groove 42, and the other end of the advance vertical groove 42 is the advance outer peripheral groove 31 of the housing 23. And is always in communication with the advancement outer peripheral groove 31 through the through hole 35a. A communication hole 46 c that penetrates the inner circumferential groove 45 a is formed at one end of the retarding vertical groove 43, and the other end of the retarding vertical groove 43 is the retarding outer circumferential groove 32 of the housing 23. And is always in communication with the retarding outer peripheral groove 32 through the through hole 35b. 46d penetrating the inner peripheral surface 48 is formed at one end of the discharge vertical groove 44, and the other end of the discharge vertical groove 44 extends to the through hole 35c. Always communicates with the outside.

スプールバルブ25の外周面には、図1、2、7に示すごとく、外周一周に亘る環状の排出用外周溝53a、53b、供給用外周溝54が形成してある。排出用外周溝53a、53bには、内部の中空部に貫通する貫通孔55a、55bが夫々設けられている。   As shown in FIGS. 1, 2, and 7, annular discharge outer peripheral grooves 53 a and 53 b and a supply outer peripheral groove 54 are formed on the outer peripheral surface of the spool valve 25. The discharge outer peripheral grooves 53a and 53b are respectively provided with through holes 55a and 55b penetrating through the hollow portions inside.

排出用外周溝53a、53b及び供給用外周溝54の回転軸心方向の位置は、ソレノイド21の非通電時に、図1、2に示すごとく、供給用外周溝54が連通孔46a及び内周溝45aのみと連通すると共に、排出用外周溝53bが内周溝45bのみと連通するよう決定してある。且つ、ソレノイド21の通電時に、供給用外周溝54が連通孔46a及び内周溝45bのみと連通すると共に、排出用外周溝53aが内周溝45aのみと連通するよう決定してある。ただし、排出用外周溝53aは、常時連通孔46dと連通し、排出用外周溝53bは、非通電時には内周面48に囲われて中間ハウジング24の側の流路とは連通しない。   As shown in FIGS. 1 and 2, the positions of the discharge outer peripheral grooves 53 a and 53 b and the supply outer peripheral groove 54 in the direction of the rotation axis are as shown in FIGS. It is determined that the discharge outer circumferential groove 53b communicates only with the inner circumferential groove 45b while communicating with only the 45a. In addition, when the solenoid 21 is energized, the supply outer circumferential groove 54 communicates with only the communication hole 46a and the inner circumferential groove 45b, and the discharge outer circumferential groove 53a communicates with only the inner circumferential groove 45a. However, the discharge outer peripheral groove 53a is always in communication with the communication hole 46d, and the discharge outer peripheral groove 53b is surrounded by the inner peripheral surface 48 when not energized and does not communicate with the flow path on the intermediate housing 24 side.

中間ハウジング24のカムシャフト8の側の端部には、中間ハウジング24の内部の中空部と、流体制御弁装置の先端部28及び内部ロータ5の底部15の隙間29とを連通する排出孔47が形成されている。このため、隙間29は、排出孔47、スプールバルブ25の内部、連通孔55a、排出用外周溝53a、連通孔46d、排出用縦溝44、貫通孔35cを介して、常時大気に開放されている。この流路が、「排出流路」である。   At the end of the intermediate housing 24 on the camshaft 8 side, a discharge hole 47 that communicates the hollow portion inside the intermediate housing 24 with the clearance 29 between the tip portion 28 of the fluid control valve device and the bottom portion 15 of the internal rotor 5. Is formed. Therefore, the clearance 29 is always open to the atmosphere via the discharge hole 47, the inside of the spool valve 25, the communication hole 55a, the discharge outer peripheral groove 53a, the communication hole 46d, the discharge vertical groove 44, and the through hole 35c. Yes. This flow path is a “discharge flow path”.

(弁開閉時期制御装置の動作)
弁開閉時期制御装置1の動作を図面に基づいて説明する。
(Operation of valve timing control device)
The operation of the valve timing control apparatus 1 will be described with reference to the drawings.

進角室6aに作動油を供給して、相対回転位相を進角方向S1へ変位させる場合には、ソレノイド21に通電する。このとき、スプールバルブ25は、ソレノイド21のロッド22に押されて、図3、4のごとく、カムシャフト8の側に移動した状態となる。この通電状態において、油圧回路からハウジング23の供給部33に作動油を供給すると、作動油は、実線の矢印で示すごとく、供給部33から供給用縦溝41、連通孔46a、供給用外周溝54、内周溝45b、連通孔46b、進角用縦溝42、貫通孔35a、各進角室6a用連通孔17を介して、各進角室6aへと圧送される。このとき、ベーン7が進角方向S1に相対移動して、各遅角室6bの作動油は排出される。その作動油は、破線の矢印で示すごとく、各遅角室6bから各遅角室連通孔18、遅角用外周溝32、貫通孔35b、遅角用縦溝43、連通孔46c、内周溝45a、排出用外周溝53a、連通孔46d、排出用縦溝44、貫通孔35cを介して、外部へと排出される。   When the hydraulic oil is supplied to the advance chamber 6a and the relative rotation phase is displaced in the advance direction S1, the solenoid 21 is energized. At this time, the spool valve 25 is pushed by the rod 22 of the solenoid 21 and moved to the camshaft 8 side as shown in FIGS. In this energized state, when hydraulic oil is supplied from the hydraulic circuit to the supply portion 33 of the housing 23, the hydraulic oil is supplied from the supply portion 33 to the supply vertical groove 41, the communication hole 46a, and the supply outer peripheral groove as indicated by the solid line arrows. 54, the inner peripheral groove 45b, the communication hole 46b, the advance angle vertical groove 42, the through hole 35a, and the advance hole 6a and the communication hole 17 for each advance chamber 6a are pressure-fed to each advance chamber 6a. At this time, the vane 7 relatively moves in the advance direction S1, and the hydraulic oil in each retard chamber 6b is discharged. As indicated by the broken line arrows, the hydraulic oil flows from the retard chambers 6b to the retard chamber communication holes 18, the retard outer peripheral grooves 32, the through holes 35b, the retard vertical grooves 43, the communication holes 46c, and the inner circumference. It is discharged to the outside through the groove 45a, the discharge outer peripheral groove 53a, the communication hole 46d, the discharge vertical groove 44, and the through hole 35c.

内部ロータ5の内周面15とハウジング23との間には、シールリング27が設置されているが、流体制御弁機構2と内部ロータ5とは相対回転するため、多少の作動油が隙間29に漏れる可能性がある。しかし、上述したように、排出流路が備えられているため、仮に、作動油が隙間29に漏れても、作動油は排出流路を介して外部に排出される。したがって、作動油が隙間29に溜まることがない。   A seal ring 27 is installed between the inner peripheral surface 15 of the inner rotor 5 and the housing 23, but since the fluid control valve mechanism 2 and the inner rotor 5 rotate relative to each other, some hydraulic oil is left in the gap 29. There is a possibility of leakage. However, as described above, since the discharge flow path is provided, even if the hydraulic oil leaks into the gap 29, the hydraulic oil is discharged to the outside through the discharge flow path. Therefore, the hydraulic oil does not collect in the gap 29.

このため、流体制御弁機構2と内部ロータ5との間に、回転軸心方向の不測の斥力が働くことがない。したがって、流体制御弁機構2を内部ロータ5に対して相対回転可能に挿入すると共に、内部ロータ5とは別の静止部材に固定する構成であっても、振動が起こりにくく、また、誤作動が少ない弁開閉時期制御機構1を得ることができる。   For this reason, an unexpected repulsive force in the direction of the rotational axis does not act between the fluid control valve mechanism 2 and the internal rotor 5. Accordingly, even when the fluid control valve mechanism 2 is inserted so as to be relatively rotatable with respect to the internal rotor 5 and is fixed to a stationary member different from the internal rotor 5, vibrations are unlikely to occur, and malfunctions may occur. A small valve opening / closing timing control mechanism 1 can be obtained.

一方、遅角室6bに作動油を供給して、相対回転位相を遅角方向S2へ変位させる場合には、ソレノイド21への通電を停止する。このとき、スプールバルブ25は、ソレノイド21のロッド22と共に、図1、2のごとく、ソレノイド21の側に移動する。この非通電状態において、油圧回路からハウジング23の供給部33に作動油を供給すると、作動油は、実線の矢印で示すごとく、供給部33から供給用縦溝41、連通孔46a、供給用外周溝54、内周溝45a、連通孔46c、遅角用縦溝43、貫通孔35b、各遅角室連通孔18を介して、各遅角室6bへと供給される。このとき、ベーン7が遅角方向S2に相対移動して、各進角室6aの作動油は排出される。その作動油は、破線の矢印で示すごとく、各進角室6aから各進角室6a用連通孔17、進角用外周溝31、貫通孔35a、進角用縦溝42、連通孔46b、内周溝45b、排出用外周溝53b、連通孔55b、中間ハウジング24の内部、連通孔55a、排出用外周溝53a、連通孔46d、排出用縦溝44、貫通孔35cを介して、外部へと排出される。   On the other hand, when hydraulic oil is supplied to the retard chamber 6b and the relative rotational phase is displaced in the retard direction S2, the energization of the solenoid 21 is stopped. At this time, the spool valve 25 moves together with the rod 22 of the solenoid 21 toward the solenoid 21 as shown in FIGS. When hydraulic fluid is supplied from the hydraulic circuit to the supply portion 33 of the housing 23 in this non-energized state, the hydraulic fluid is supplied from the supply portion 33 to the supply vertical groove 41, the communication hole 46a, and the supply outer periphery as indicated by the solid line arrows. The gas is supplied to each retarded angle chamber 6b through the groove 54, the inner circumferential groove 45a, the communicating hole 46c, the retarded vertical groove 43, the through hole 35b, and each retarded angle chamber communicating hole 18. At this time, the vane 7 relatively moves in the retarding direction S2, and the hydraulic oil in each advance chamber 6a is discharged. As indicated by the broken line arrows, the hydraulic oil is communicated from each advance chamber 6a to each advance chamber 6a communication hole 17, advance angle outer peripheral groove 31, through hole 35a, advance angle vertical groove 42, communication hole 46b, Via the inner peripheral groove 45b, the discharge outer peripheral groove 53b, the communication hole 55b, the inside of the intermediate housing 24, the communication hole 55a, the discharge outer peripheral groove 53a, the communication hole 46d, the discharge vertical groove 44, and the through hole 35c. And discharged.

同様に、排出流路が備えられているため、仮に、作動油が隙間29に漏れても、作動油は排出流路を介して、外部に排出される。したがって、作動油が隙間29に溜まることがない。   Similarly, since the discharge flow path is provided, even if the hydraulic oil leaks into the gap 29, the hydraulic oil is discharged to the outside through the discharge flow path. Therefore, the hydraulic oil does not collect in the gap 29.

本構成によると、排出流路を流体制御弁機構2に備えるため、流体制御弁機構2に機能を集約させることができ、組立時に複雑な取り付け作業が不要となる。このため、組立性の良い弁開閉時期制御装置1とすることができる。   According to this configuration, since the fluid control valve mechanism 2 is provided with the discharge flow path, the functions can be integrated into the fluid control valve mechanism 2, and a complicated mounting operation is not required during assembly. For this reason, it can be set as the valve opening / closing timing control apparatus 1 with good assembly property.

本構成によると、流体制御弁機構2は、相対回転する円筒形状の側面部分を介して、進角室6a又は遅角室6bに対する作動油の供給を行うため、作動油の供給時にカムシャフト8の回転軸心方向の斥力が発生しにくい。   According to this configuration, the fluid control valve mechanism 2 supplies the hydraulic oil to the advance chamber 6a or the retard chamber 6b through the relatively rotating cylindrical side surface portion. The repulsive force in the direction of the rotation axis is less likely to occur.

さらに、静止体である流体制御弁機構2に作動油の供給部33が備えられているため、カムシャフト8等の回転体を介さずに、流体を進角室6a又は遅角室6bに供給することができ、作動油の供給を簡単かつ確実に行うことができる。カムシャフト8を介さない構成であるため、隙間29に作動油が漏洩しにくい。   Further, since the fluid control valve mechanism 2 which is a stationary body is provided with the hydraulic oil supply unit 33, the fluid is supplied to the advance chamber 6a or the retard chamber 6b without using a rotating body such as the camshaft 8 or the like. The hydraulic oil can be supplied easily and reliably. Since the configuration is such that the camshaft 8 is not interposed, the hydraulic oil is unlikely to leak into the gap 29.

内部ロータ5、外部ロータ3等のカムシャフト8側の構造が複雑でないときは、隙間29と外気とを連通する排出流路を、内部ロータ5の凹部14の隅等に外気への貫通孔として直接設けても良い。排出流路が回転体である内部ロータ5に設けられると、回転による遠心力により、作動油の排出効率が向上する。   When the structure on the camshaft 8 side such as the internal rotor 5 and the external rotor 3 is not complicated, a discharge passage that communicates the clearance 29 with the outside air is formed as a through-hole to the outside at the corner of the concave portion 14 of the internal rotor 5. It may be provided directly. When the discharge flow path is provided in the internal rotor 5 which is a rotating body, the hydraulic oil discharge efficiency is improved by the centrifugal force caused by the rotation.

溝の加工を容易にするために、流体制御機構2の各部材を円筒形状としたが、上述の各機能を有するならば、この形状に限定するものではない。さらに、溝の加工が可能ならば、ハウジング23と中間ハウジング24とは別の部材にする必要はない。   In order to facilitate the processing of the groove, each member of the fluid control mechanism 2 has a cylindrical shape. However, the shape is not limited to this shape as long as it has the above-described functions. Further, if the groove can be processed, the housing 23 and the intermediate housing 24 do not need to be separate members.

(別実施の形態)
弁開閉時期制御装置が、位相変位規制機構を備えると共に、流体制御弁機構が位相変位規制機構に対する作動油の供給又は排出を行う規制流路を備えた実施形態を、図面に基づいて説明する。上述の実施形態と同様の構成については、説明は省略し、同じ構成の箇所には同じ符号を付すこととする。
(Another embodiment)
An embodiment in which the valve opening / closing timing control device includes a phase displacement restriction mechanism and the fluid control valve mechanism includes a restriction flow path for supplying or discharging hydraulic oil to or from the phase displacement restriction mechanism will be described with reference to the drawings. The description of the same configuration as that of the above-described embodiment is omitted, and the same reference numerals are given to the same configuration.

位相変位規制機構9は、外部ロータ3と内部ロータ5との間に亘って設けられ、相対回転位相の変位を一定の位相に規制する規制状態と、その規制を解除する解除状態とを作り出す。本実施形態では、位相変位規制機構9によって相対回転位相の変位を最遅角位相に規制するよう構成してある。   The phase displacement restricting mechanism 9 is provided between the outer rotor 3 and the inner rotor 5, and creates a restricting state in which the displacement of the relative rotational phase is restricted to a constant phase and a releasing state in which the restriction is released. In the present embodiment, the displacement of the relative rotational phase is restricted to the most retarded angle phase by the phase displacement restriction mechanism 9.

位相変位規制機構9は、図9に示すごとく、規制用収納部91、出退部材92、規制用凹部93、及びスプリング94を備えている。規制用収納部91は外部ロータ3に形成され、規制用凹部93は内部ロータ5に形成されている。出退部材92は、規制用凹部93に突入する規制状態と規制用凹部93から規制用収納部91に引退する解除状態とに変位可能である。出退部材92は、規制用収納部91に設置したスプリング94によって、規制用凹部93に対して突入するよう常時付勢されている。図9においては、出退部材92は規制状態にある。   As shown in FIG. 9, the phase displacement restricting mechanism 9 includes a restricting storage portion 91, a retracting member 92, a restricting recess 93, and a spring 94. The restricting storage portion 91 is formed in the outer rotor 3, and the restricting recess 93 is formed in the inner rotor 5. The withdrawing / retracting member 92 is displaceable between a restricting state where the retracting member 92 enters the restricting recess 93 and a released state where the retracting member 92 is retracted from the restricting recess 93 to the restricting storage portion 91. The withdrawing / retracting member 92 is always urged so as to enter the restriction recess 93 by a spring 94 installed in the restriction storage part 91. In FIG. 9, the retractable member 92 is in a restricted state.

ハウジング23の円柱形状の部分の外周面には、図8に示すごとく、外周一周に亘る環状の溝が四本平行に形成され、夫々の溝には作動油漏れ防止用のシールリング27が設置されている。隣接する前記溝の夫々の間には、進角用外周溝31と遅角用外周溝32とに加え、規制用外周溝96が形成されている。シールリング27によって、進角用外周溝31、遅角用外周溝32、規制用外周溝96からの作動油の漏れを防ぐことができる。   As shown in FIG. 8, four annular grooves are formed in parallel on the outer peripheral surface of the cylindrical portion of the housing 23, and a seal ring 27 for preventing hydraulic oil leakage is installed in each groove. Has been. Between the adjacent grooves, in addition to the advance outer peripheral groove 31 and the retard outer peripheral groove 32, a restricting outer peripheral groove 96 is formed. The seal ring 27 can prevent the hydraulic oil from leaking from the advance outer peripheral groove 31, the retard outer peripheral groove 32, and the regulating outer peripheral groove 96.

規制用外周溝96は、規制用凹部93に繋がる規制連通孔95と常時連通している。中間ハウジング24の外周面には、回転軸心方向と平行に規制用縦溝99が形成されている。供給用縦溝41並びに進角用縦溝42、遅角用縦溝43、排出用縦溝44、及び規制用縦溝99は、中間ハウジング24の円周方向に90度毎に分散して形成してある。   The restriction outer circumferential groove 96 is always in communication with a restriction communication hole 95 connected to the restriction recess 93. A regulating vertical groove 99 is formed on the outer peripheral surface of the intermediate housing 24 in parallel with the rotational axis direction. The supply vertical groove 41, the advance vertical groove 42, the retard vertical groove 43, the discharge vertical groove 44, and the regulating vertical groove 99 are formed by being dispersed every 90 degrees in the circumferential direction of the intermediate housing 24. It is.

規制用縦溝99の一方の端部は、貫通孔98を介して規制用外周溝96に常時連通している。他方の端部は、ハウジング23に設けられた規制用供給部97にまで延在し、規制用供給部97と常時連通している。即ち、規制用供給部97と規制用凹部93とは常時連通しており、規制連通孔95、規制用外周溝96、貫通孔98、及び規制用縦溝99によって構成される流路が、「規制流路」である。油圧回路から規制用供給部97に作動油が供給されると、作動油は、図8、9の実線の矢印のごとく、規制用凹部93まで圧送される。作動油の圧力が一定の圧力に達したとき、出退部材92は規制用凹部93から引退し、解除状態となる。この後は、進角室6a又は遅角室6bに対する作動油の供給又は排出により、相対回転位相を制御することができる。   One end of the regulating vertical groove 99 is always in communication with the regulating outer circumferential groove 96 through the through hole 98. The other end extends to the regulation supply unit 97 provided in the housing 23 and is always in communication with the regulation supply unit 97. That is, the regulation supply section 97 and the regulation recess 93 are always in communication, and a flow path constituted by the regulation communication hole 95, the regulation outer peripheral groove 96, the through hole 98, and the regulation vertical groove 99 is “ It is a “regulation channel”. When hydraulic oil is supplied from the hydraulic circuit to the regulation supply unit 97, the hydraulic oil is pumped to the regulation recess 93 as indicated by the solid line arrows in FIGS. When the hydraulic oil pressure reaches a certain pressure, the withdrawing / retracting member 92 is retracted from the restricting recess 93 and is released. Thereafter, the relative rotation phase can be controlled by supplying or discharging hydraulic oil to or from the advance chamber 6a or the retard chamber 6b.

本構成によると、流体制御弁機構2に機能を集約させることができ、組立時に複雑な取り付け作業が不要となる。このため、組立性の良い弁開閉時期制御装置1とすることができる。また、位相変位規制機構9の専用の規制流路があるため、確実に規制状態と解除状態の切り替えを行うことができる。   According to this configuration, the functions can be concentrated in the fluid control valve mechanism 2, and a complicated mounting operation is not required during assembly. For this reason, it can be set as the valve opening / closing timing control apparatus 1 with good assembly property. In addition, since there is a dedicated restriction channel for the phase displacement restriction mechanism 9, it is possible to reliably switch between the restricted state and the released state.

位相変位規制機構は、相対回転位相を一定の範囲の位相に規制する機構であっても良い。また、相対回転位相を一定の位相に規制する位相変位規制機構と、相対回転位相を一定の範囲の位相に規制する位相変位規制機構の両方を備えていても良い。そのときは、ハウジング23に油圧回路からの作動油の供給部及び外周溝を追加し、中間ハウジング24に縦溝を追加すればよい。このように、制御すべき機構が追加されても、流路を簡単に構成することができる。   The phase displacement restricting mechanism may be a mechanism that restricts the relative rotational phase to a phase within a certain range. Further, both a phase displacement restricting mechanism that restricts the relative rotational phase to a constant phase and a phase displacement restricting mechanism that restricts the relative rotational phase to a phase in a certain range may be provided. In that case, the hydraulic oil supply part and the outer peripheral groove from the hydraulic circuit may be added to the housing 23, and the vertical groove may be added to the intermediate housing 24. Thus, even if a mechanism to be controlled is added, the flow path can be configured easily.

前述の実施形態において、弁開閉時期制御装置1が位相変位規制機構9を供えている場合は、例えば、規制用凹部93と進角用外周溝31を連通する規制連通孔を設ければ良い。このときは、進角室6aに対する作動油の供給又は排出を制御すると同時に、位相変位規制機構9を制御することとなる。   In the above-described embodiment, when the valve opening / closing timing control device 1 is provided with the phase displacement regulating mechanism 9, for example, a regulating communication hole that communicates the regulating recess 93 and the advance angle outer peripheral groove 31 may be provided. At this time, the supply or discharge of hydraulic fluid to the advance chamber 6a is controlled, and at the same time, the phase displacement regulating mechanism 9 is controlled.

ソレノイド非通電時の弁開閉時期制御装置の回転軸方向の断面図Sectional view of the rotation axis direction of the valve timing control device when the solenoid is not energized 図1の断面と直交する面の弁開閉時期制御装置の回転軸方向の断面図Sectional drawing of the rotating shaft direction of the valve timing control apparatus of the surface orthogonal to the cross section of FIG. ソレノイド通電時の弁開閉時期制御装置の回転軸方向の断面図Sectional view in the direction of the rotation axis of the valve timing control device when the solenoid is energized 図3の断面と直交する面の弁開閉時期制御装置の回転軸方向の断面図FIG. 3 is a cross-sectional view of the valve opening / closing timing control device in a direction perpendicular to the cross section of FIG. 図1におけるV−V方向の断面図Sectional view in the VV direction in FIG. 図2におけるVI−VI方向の断面図Sectional view in the VI-VI direction in FIG. 流体制御弁機構の分解斜視図、(a)は上方斜視図、(b)は下方斜視図Exploded perspective view of fluid control valve mechanism, (a) is an upper perspective view, (b) is a lower perspective view 別実施の形態におけるソレノイド非通電時の回転軸方向の断面図Sectional drawing of the rotating shaft direction at the time of solenoid non-energization in another embodiment 図8におけるIX−IX方向の断面図IX-IX direction sectional view in FIG.

符号の説明Explanation of symbols

1 弁開閉時期制御装置
2 流体制御弁機構
3 外部ロータ(駆動側回転部材)
4 フロントプレート(駆動側回転部材)
5 内部ロータ(従動側回転部材)
6 流体圧室
6a 進角室
6b 遅角室
7 ベーン(仕切板)
8 カムシャフト
9 位相変位規制機構
29 隙間
33 供給部
44 排出用縦溝(排出流路)
46d 連通孔(排出流路)
47 排出孔(排出流路)
53a 排出用外周溝(排出流路)
55a 連通孔(排出流路)
95 規制連通孔(規制流路)
96 規制用外周溝(規制流路)
98 貫通孔(規制流路)
99 規制用縦溝(規制流路)
1 Valve opening / closing timing control device 2 Fluid control valve mechanism 3 External rotor (drive-side rotating member)
4 Front plate (drive side rotating member)
5 Internal rotor (driven side rotating member)
6 Fluid pressure chamber 6a Lead angle chamber 6b Delay angle chamber 7 Vane (partition plate)
8 Camshaft 9 Phase displacement regulating mechanism 29 Clearance 33 Supply section 44 Discharge vertical groove (discharge flow path)
46d Communication hole (discharge channel)
47 Discharge hole (discharge flow path)
53a Outer peripheral groove (discharge flow path)
55a Communication hole (discharge channel)
95 Regulated communication hole (regulated flow path)
96 Peripheral groove for regulation (regulation channel)
98 Through hole (regulated flow path)
99 Vertical groove for regulation (regulated flow path)

Claims (5)

内燃機関のクランクシャフトに対して同期回転する駆動側回転部材と、
前記駆動側回転部材に対して同軸上に配置され、前記内燃機関の弁開閉用のカムシャフトに同期回転する従動側回転部材と、
前記駆動側回転部材及び前記従動側回転部材の何れか一方に形成された流体圧室と、
前記流体圧室を進角室と遅角室とに仕切るよう前記駆動側回転部材及び前記従動側回転部材の何れか他方に設けられた仕切部と、
前記駆動側回転部材又は前記従動側回転部材に対して前記カムシャフトとは反対の側に相対回転可能に挿入されると共に静止固定され、前記進角室又は前記遅角室に対する前記相対回転する部分を介した流体の供給又は排出の制御を行う流体制御弁機構と、
該流体制御弁機構と前記駆動側回転部材又は前記従動側回転部材との隙間を常時大気に開放する排出流路とを備えた弁開閉時期制御装置。
A drive-side rotating member that rotates synchronously with the crankshaft of the internal combustion engine;
A driven-side rotating member that is coaxially disposed with respect to the driving-side rotating member and rotates synchronously with a camshaft for opening and closing the valve of the internal combustion engine;
A fluid pressure chamber formed in any one of the driving side rotating member and the driven side rotating member;
A partition provided on the other of the driving side rotating member and the driven side rotating member to partition the fluid pressure chamber into an advance chamber and a retard chamber;
A portion that is inserted into the drive-side rotation member or the driven-side rotation member on the side opposite to the camshaft so as to be rotatable relative to the drive-side rotation member or is stationary and fixed, and that rotates relative to the advance chamber or the retard chamber A fluid control valve mechanism for controlling supply or discharge of fluid via
A valve opening / closing timing control device comprising a discharge passage that constantly opens a gap between the fluid control valve mechanism and the driving side rotating member or the driven side rotating member to the atmosphere.
前記流体制御弁機構に前記排出流路を備えた請求項1に記載の弁開閉時期制御装置。   The valve opening / closing timing control device according to claim 1, wherein the fluid control valve mechanism includes the discharge passage. 前記駆動側回転部材又は前記従動側回転部材に前記排出流路を備えた請求項1に記載の弁開閉時期制御装置。   The valve opening / closing timing control device according to claim 1, wherein the discharge passage is provided in the driving side rotating member or the driven side rotating member. 前記流体制御弁機構の前記駆動側回転部材又は前記従動側回転部材に対して前記カムシャフトとは反対の側に前記流体の供給部を備えた請求項1から3の何れか一項に記載の弁開閉時期制御装置。   4. The fluid supply valve mechanism according to claim 1, further comprising a supply portion of the fluid on a side opposite to the camshaft with respect to the driving side rotation member or the driven side rotation member of the fluid control valve mechanism. 5. Valve opening / closing timing control device. 前記駆動側回転部材に対する前記従動側回転部材の相対回転位相の変位を規制する規制状態とその規制を解除する解除状態とを作り出す位相変位規制機構を備えると共に、
前記流体制御弁機構に前記位相変位規制機構に対する前記流体の供給又は排出を行う規制流路を備えた請求項1から4の何れか一項に記載の弁開閉時期制御装置。
A phase displacement regulation mechanism that creates a regulation state that regulates the displacement of the relative rotation phase of the driven side rotation member with respect to the drive side rotation member and a release state that releases the regulation;
The valve opening / closing timing control device according to any one of claims 1 to 4, wherein the fluid control valve mechanism includes a restriction flow path for supplying or discharging the fluid to or from the phase displacement restriction mechanism.
JP2008197800A 2008-07-31 2008-07-31 Valve timing control device Active JP5105187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197800A JP5105187B2 (en) 2008-07-31 2008-07-31 Valve timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197800A JP5105187B2 (en) 2008-07-31 2008-07-31 Valve timing control device

Publications (2)

Publication Number Publication Date
JP2010031821A JP2010031821A (en) 2010-02-12
JP5105187B2 true JP5105187B2 (en) 2012-12-19

Family

ID=41736576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197800A Active JP5105187B2 (en) 2008-07-31 2008-07-31 Valve timing control device

Country Status (1)

Country Link
JP (1) JP5105187B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8534246B2 (en) * 2011-04-08 2013-09-17 Delphi Technologies, Inc. Camshaft phaser with independent phasing and lock pin control
DE102012112059A1 (en) * 2012-12-11 2014-06-26 Hilite Germany Gmbh Schwenkmotorversteller
JP6221694B2 (en) 2013-11-29 2017-11-01 アイシン精機株式会社 Valve timing control device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760637B2 (en) * 1990-06-28 1998-06-04 株式会社ユニシアジェックス Valve timing control device for internal combustion engine
JP4013364B2 (en) * 1998-10-30 2007-11-28 アイシン精機株式会社 Valve timing control device
US6477999B1 (en) * 1999-12-28 2002-11-12 Borgwarner Inc. Vane-type hydraulic variable camshaft timing system with lockout feature
JP4350861B2 (en) * 2000-02-15 2009-10-21 株式会社日立製作所 Valve timing control device for internal combustion engine
JP4507417B2 (en) * 2001-02-14 2010-07-21 日産自動車株式会社 Variable valve operating device for internal combustion engine
DE10322394A1 (en) * 2003-05-12 2004-12-02 Hydraulik-Ring Gmbh Camshaft adjuster for internal combustion engines of motor vehicles
JP2005054616A (en) * 2003-08-08 2005-03-03 Hitachi Unisia Automotive Ltd Valve timing control device of internal combustion engine
JP4202297B2 (en) * 2004-05-20 2008-12-24 株式会社日立製作所 Valve timing control device for internal combustion engine

Also Published As

Publication number Publication date
JP2010031821A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5500350B2 (en) Valve timing control device
JP5585832B2 (en) Valve timing control device
JP5574189B2 (en) Valve timing adjustment device
JP5403341B2 (en) Valve timing control device
JP2009138611A (en) Valve timing adjustment device
JP6410742B2 (en) Valve timing control device
EP3165723B1 (en) Valve opening and closing timing control apparatus
EP2337932A2 (en) Phaser built into a camshaft or concentric camshafts
JP2005002992A (en) Phase shifter
CN113614333B (en) Working oil control valve and valve timing adjustment device
US9938864B2 (en) Valve opening and closing timing control apparatus
WO2016163119A1 (en) Valve timing regulation device
JP4175987B2 (en) Valve timing adjustment device
JP6769253B2 (en) Valve opening / closing timing control device
JP5105187B2 (en) Valve timing control device
JP5136852B2 (en) Valve timing control device
JP4697547B2 (en) Valve timing adjustment device
JP4560736B2 (en) Valve timing adjustment device
JP2015045282A (en) Valve opening/closing timing control device
JP5152312B2 (en) Valve timing adjustment device
JP6623768B2 (en) Valve timing control device
JP6369253B2 (en) Valve timing control device
JP5034869B2 (en) Variable valve timing device
JP6273801B2 (en) Valve timing control device
JP2018135842A (en) Valve opening/closing timing control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R151 Written notification of patent or utility model registration

Ref document number: 5105187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3