Nothing Special   »   [go: up one dir, main page]

JP5195255B2 - Microwave heating device - Google Patents

Microwave heating device Download PDF

Info

Publication number
JP5195255B2
JP5195255B2 JP2008262539A JP2008262539A JP5195255B2 JP 5195255 B2 JP5195255 B2 JP 5195255B2 JP 2008262539 A JP2008262539 A JP 2008262539A JP 2008262539 A JP2008262539 A JP 2008262539A JP 5195255 B2 JP5195255 B2 JP 5195255B2
Authority
JP
Japan
Prior art keywords
output
unit
reflected wave
signal
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008262539A
Other languages
Japanese (ja)
Other versions
JP2010092751A (en
Inventor
誠 三原
等隆 信江
健治 安井
義治 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008262539A priority Critical patent/JP5195255B2/en
Publication of JP2010092751A publication Critical patent/JP2010092751A/en
Application granted granted Critical
Publication of JP5195255B2 publication Critical patent/JP5195255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

本発明は、マイクロ波を照射して加熱対象物である被加熱物加熱処理するマイクロ波加熱装置に関するものである。   The present invention relates to a microwave heating apparatus that heats an object to be heated, which is an object to be heated, by irradiating microwaves.

マイクロ波により対象物を加熱処理するマイクロ波加熱装置の代表的な装置としては電子レンジがある。電子レンジにおいては、マイクロ波発生装置においてマイクロ波が金属性の加熱室の内部に放射され、加熱室内部の被加熱物を放射されたマイクロ波により加熱処理される。   There is a microwave oven as a typical device of a microwave heating device that heats an object by using a microwave. In a microwave oven, microwaves are radiated into a metallic heating chamber in a microwave generator, and an object to be heated in the heating chamber is heated by the radiated microwaves.

従来、このマイクロ波加熱装置としては、半導体発振部とこの半導体発振部の発振出力を複数に分割する分割部と分割された発振出力を各々増幅する分割器と分割された発振出力を各々増幅する合成部とを備えるとともに、この合成器と加熱室とのあいだの反射波を検出する検出手段を設け、この検出手段が検出する反射波の量に応じて発振器の発振状態を変化させるものであった(例えば、特許文献1参照)。
特開昭56−134491号公報
Conventionally, as this microwave heating apparatus, a semiconductor oscillating unit, a dividing unit that divides the oscillation output of the semiconductor oscillating unit into a plurality, a divider that amplifies each divided oscillation output, and a divided oscillation output are each amplified. And a detecting unit for detecting a reflected wave between the combiner and the heating chamber, and changing the oscillation state of the oscillator according to the amount of the reflected wave detected by the detecting unit. (For example, see Patent Document 1).
JP-A-56-134491

しかしながら、前記従来の構成では各々の半導体発振部を合成部で合成しているため一箇所の給電口からの発振出力に関しての反射波を常に監視して、反射波がある程度以上大きくなったならば、発振器の発振を停止するか、または発振周波数を変化させるか、または発振出力を変化させ小さくすることによってアイソレータなどの半導体素子保護手段を用いずとも半導体部を破壊させないものであった。   However, in the conventional configuration, since the semiconductor oscillation units are synthesized by the synthesis unit, the reflected wave related to the oscillation output from one power supply port is always monitored, and the reflected wave becomes larger than a certain level. By stopping the oscillation of the oscillator, changing the oscillation frequency, or changing and reducing the oscillation output, the semiconductor portion is not destroyed without using semiconductor element protection means such as an isolator.

だが発振時に反射波の少ない周波数を選択してそこで電波を放射しなければ反射波の電力で出力部の半導体素子が破壊してしまう。前記従来の構成では発振初期について反射波の少ない周波数をいかにして選択するかは述べられていない。また加熱中についても被加熱物の加熱過程の物性変化等によって反射波の最小となる周波数が少なからず変化することが予測されるが、その時いかにして周波数を監視し最適周波数に変更するかの実現手段は一切記載されていない。   However, if a frequency with few reflected waves is selected at the time of oscillation and radio waves are not radiated there, the power of the reflected waves destroys the semiconductor element in the output section. In the conventional configuration, it is not described how to select a frequency with few reflected waves at the initial oscillation. During heating, the minimum frequency of the reflected wave is expected to change due to changes in the physical properties of the heated object, etc., but how to monitor and change the frequency to the optimum frequency at that time No realization means are described.

本発明は上記課題を解決するもので、複数の半導体発振部をもつ構成においても各々の反射波負担を発振開始時や加熱時にかかわらず常に反射もしくは入反射率を監視し、いずれか一つの出力部の半導体素子に過大な反射波がかかった際には反射が最小になるように周波数を変更し半導体素子を破壊から保護する信頼性の高いマイクロ波加熱装置を提供することを目的とする。   The present invention solves the above-described problem, and even in a configuration having a plurality of semiconductor oscillation units, each reflection wave burden is always monitored for reflection or incident reflectance regardless of when oscillation starts or during heating, and any one output is achieved. An object of the present invention is to provide a highly reliable microwave heating apparatus that protects a semiconductor element from destruction by changing the frequency so that reflection is minimized when an excessive reflected wave is applied to the semiconductor element.

前記従来の課題を解決するために、本発明のマイクロ波加熱装置は、発振基準信号を送出する半導体発振部と、マイクロ波を作成する出力部と、前記出力部に繋がる複数の前記半導体発振部を有するマイクロ波発生部と、被加熱物を収納する加熱室と、前記出力部の後段に位置し入反射波レベルを監視する入反射波モニター部と、前記入反射波モニター部の信号を受け前記出力部の出力をコントロールする制御部と、前記入反射波モニター部の検知信号を検知する検波回路と、前記入反射モニター部と前記検波回路の検波ダイオードとの間に設け前記入反射モニター部の検出信号を所望の低い電圧に減衰させるアッテネータとを備え、加熱開始直後の前記制御部が、反射波の最小となる発振周波数を検出(プリサーチ)している際は前記出力部の電力を低下して前記検波回路の検波信号レベルが検知可能な電位になるよう前記アッテネータの機能を停止させ反射最小周波数を選択し、その後はその反射最小周波数で前記出力部の電力を本加熱出力に上昇させてかつ前記アッテネータを機能させ信号レベルを減衰させ前記検波回路の検波信号レベルが検知可能な電位になるようにして前記制御部が反射波の最小となる発振周波数を検出(本サーチ)する構成としている。プリサーチではマイクロ波出力を低下しているので反射波モニター部を経由して制御部に印加される電圧は制御可能な適切な制御レベルにあるが、プリサーチで選定した周波数で、本加熱に入り出力部から発せられるマイクロ波出力が大きく増加すると制御部内のフィードバック信号は完全に制御部の制御不可能な領域の電圧レベルに超過してしまう。そこで制御部から検波回路に信号を送出しファイードバック機能に制限をかけて制御部の信号レベルを制御可能な信号レベルに変換するものである。 In order to solve the above conventional problems, the microwave heating apparatus of the present invention includes a semiconductor oscillation unit for transmitting an oscillating reference signal, and an output unit for creating a microwave, a plurality of the semiconductor oscillation unit connected to the output portion receiving a microwave generation part having a heating chamber for accommodating an object to be heated, and inputted and reflected wave monitoring unit that monitors the incoming reflected wave level located downstream of the output section, the signal of the inputted and reflected wave monitoring unit The control unit for controlling the output of the output unit, the detection circuit for detecting the detection signal of the incident / reflected wave monitor unit, and the incident / reflective monitor unit provided between the incident / reflective monitor unit and the detection diode of the detection circuit comprising a the detection signal and the attenuator for attenuating the desired low voltage, heating start the controller immediately after the detection (pre-search) the oscillation frequency having a minimum of the reflected wave to the time that is the output The attenuator function is stopped and the minimum reflection frequency is selected so that the detection signal level of the detection circuit becomes a detectable potential, and the power of the output unit is then heated at the minimum reflection frequency. The control unit detects the oscillation frequency that minimizes the reflected wave by increasing the output and functioning the attenuator to attenuate the signal level so that the detection signal level of the detection circuit becomes a detectable potential (this search) ). Since the microwave output is reduced in the pre-search, the voltage applied to the control unit via the reflected wave monitor unit is at an appropriate control level that can be controlled. When the microwave output emitted from the input / output unit greatly increases, the feedback signal in the control unit completely exceeds the voltage level in the uncontrollable region of the control unit. Therefore, a signal is sent from the control unit to the detection circuit, the signal level of the control unit is converted to a controllable signal level by limiting the feedback function.

本発明のマイクロ波加熱装置は、反射状態が全く未知の加熱開始時には出力部から発せられるマイクロ波出力を低く抑制した状態で反射出力が最小となる周波数を検出する。その時は検波回路に印加される電圧も小さいがその入反射レベルに応じて制御回路内で信号処理できるレベルまで信号を減衰させる必要がある。   The microwave heating apparatus of the present invention detects a frequency at which the reflected output is minimized while suppressing the microwave output emitted from the output unit at the start of heating when the reflection state is completely unknown. At that time, although the voltage applied to the detection circuit is small, it is necessary to attenuate the signal to a level at which signal processing can be performed in the control circuit according to the incident / reflection level.

このようにして検出した入反射出力が最小となる周波数で、本加熱を実施するため出力部から発せられるマイクロ波出力を高める(定常加熱出力)と当然検波回路の信号レベルは上昇する。その時制御回路は検波回路に信号を送り信号の制御回路へのフィードバック量を少なくし定常加熱出力でも制御回路内で信号処理可能な出力に低減させる。そうする切替えによって定常加熱出力時においても制御回路内で信号処理できるレベルまで信号をさらに減衰させることが可能になる。   When the microwave output emitted from the output unit is increased to perform the main heating at the frequency at which the incident / reflected output detected in this way is minimum (steady heating output), the signal level of the detection circuit naturally increases. At that time, the control circuit sends a signal to the detection circuit so that the feedback amount of the signal to the control circuit is reduced, and even the steady heating output is reduced to an output that can be processed in the control circuit. By such switching, the signal can be further attenuated to a level at which signal processing can be performed in the control circuit even during steady heating output.

加熱初期はどういう反射状態か不明なため出力部の電力を低く抑えて反射出力が最小となる周波数を検出する。また一方では定常加熱出力に入っても検波回路の減衰量切換えによって制御回路内で処理可能な電圧レベルまで減衰させ定常加熱出力でも制御回路内で信号処理可能な出力にレベルシフトする。   Since it is unclear what kind of reflection state is in the initial stage of heating, the power at the output section is kept low and the frequency at which the reflected output is minimized is detected. On the other hand, even when the steady heating output is entered, the attenuation level of the detection circuit is switched to a voltage level that can be processed in the control circuit, and the steady heating output is shifted to an output that can be processed in the control circuit.

そうすることによって、加熱初期時に応じた低マイクロ波出力での制御部内での最適制御可能電圧にフィードバック電圧を設定することができるため反射最小周波数を検出するという目的を達することができる。また定常加熱出力状態ではフィードバック電圧をさらに低く抑え高出力状態でも常時、反射信号や入射信号を検出することができ、反射波が過大になった際には即座のプリサーチを実施して反射最小周波数を矯正することができる。   By doing so, the feedback voltage can be set to the optimum controllable voltage in the control unit with a low microwave output according to the initial stage of heating, so that the object of detecting the minimum reflection frequency can be achieved. Also, in the steady heating output state, the feedback voltage can be kept lower and the reflected signal and incident signal can be detected at all times even in the high output state. When the reflected wave becomes excessive, an immediate pre-search is performed to minimize the reflection. The frequency can be corrected.

第1の発明は、発振基準信号を送出する半導体発振部と、マイクロ波を作成する出力部と、前記出力部に繋がる複数の前記半導体発振部を有するマイクロ波発生部と、被加熱物を収納する加熱室と、前記出力部の後段に位置し入反射波レベルを監視する入反射波モニ
ター部と、前記入反射波モニター部の信号を受け前記出力部の出力をコントロールする制御部と、前記入反射波モニター部の検知信号を検知する検波回路と、前記入反射モニター部と前記検波回路の検波ダイオードとの間に設け前記入反射モニター部の検出信号を所望の低い電圧に減衰させるアッテネータとを備え、加熱開始直後の前記制御部は出力部の半導体素子が破壊しないレベルまで出力部の電力を低下して反射波の最小となる発振周波数を検出する。その際は検波回路の検波信号レベルが検知可能な電位になるようアッテネータの機能を停止させ反射最小周波数を選択する(プリサーチ)。その後はその反射最小周波数で出力部の信号を本加熱出力に上昇させてかつアッテネータを機能させ信号レベルを減衰させ検波回路の検波信号レベルが検知可能な電位になるようにして前記制御部が反射波の最小となる発振周波数を検出(本サーチ)する構成とした。こうすることによりプリサーチ時も本サーチ時も検波回路の検波信号レベルが検知可能な電位になるようにすることができ常時反射波の最小周波数を選択することが可能となるため常時、反射波のモニターを実施し適宜出力部の半導体素子が破壊しない方向にフェールセーフの制御を実施することができる。
A first aspect of the present invention is housed a semiconductor oscillation unit for transmitting an oscillating reference signal, and an output unit for creating a microwave, a microwave generation part having a plurality of the semiconductor oscillation unit connected to the output unit, an object to be heated a heating chamber for a inputted and reflected wave monitoring unit that monitors the incoming reflected wave level located downstream of the output section, and a control unit for controlling the output of the output unit receives the signal of the inputted and reflected wave monitoring unit, wherein A detection circuit for detecting a detection signal of the incident / reflected wave monitor unit; and an attenuator provided between the incident / reflected monitor unit and the detection diode of the detector circuit for attenuating the detected signal of the incident / reflected monitor unit to a desired low voltage; The control unit immediately after the start of heating reduces the power of the output unit to a level at which the semiconductor element of the output unit is not destroyed, and detects the oscillation frequency at which the reflected wave is minimized. At that time, the attenuator function is stopped and the minimum reflection frequency is selected (presearch) so that the detection signal level of the detection circuit becomes a detectable potential. Thereafter, the control unit reflects the output signal at the minimum reflection frequency so that the output signal is increased to the main heating output and the attenuator functions to attenuate the signal level so that the detection signal level of the detection circuit becomes a detectable potential. The oscillation frequency that minimizes the wave is detected (main search). In this way, the detection signal level of the detection circuit can be set to a detectable potential both during pre-search and during this search, and the minimum frequency of the reflected wave can always be selected. Thus, fail-safe control can be performed in a direction in which the semiconductor element of the output unit is not destroyed as appropriate.

第2の発明は、特に、第1の発明において、反射波モニター部が方向性結合器からなり出力部の信号を受けるポートと、前記出力部の出力を極めて少ない減衰でアンテナに電力送出するポートと、それを減衰させた信号Pfをえるポートと、反射波を検出し減衰させ信号PrをえるポートからなりPr/Pfの信号をもとに最小となる発振周波数を検出する構成としたものでPr/Pfという演算を行うことによって反射率を代表するパラメータを高周波出力のレベルいかんに係わらず反射率を表す指標を正規化することができ絶対的な評価ができ反射波の最小周波数周波数を検出する精度をより均一化し精度アップをすることができる。 According to a second aspect of the invention , in particular, in the first aspect of the invention, the reflected wave monitor unit is composed of a directional coupler and receives a signal of the output unit, and a port for transmitting the output of the output unit to the antenna with very little attenuation And a port for receiving the signal Pf attenuated and a port for detecting and attenuating the reflected wave to obtain the signal Pr, and detecting the minimum oscillation frequency based on the Pr / Pf signal. By performing the calculation of Pr / Pf, the parameter representing the reflectance can be normalized regardless of the level of the high frequency output, the absolute value can be normalized, and the minimum frequency of the reflected wave can be detected. It is possible to increase the accuracy by making the accuracy to be more uniform.

第3の発明は、特に、第1または第2の発明において、本加熱中は常にアッテネータを機能させ本加熱中の反射波の挙動を監視し過大な反射を検出した際には即座に出力部を停止する構成としたもので、プリサーチを再度行って反射波の最小周波数を検出する時間的余裕がないとき即座にセイフティーオフを実施することができるため出力部の半導体素子の破壊を未然に防ぐことができる。 The third aspect of the invention is particularly effective in the first or second aspect of the invention when the attenuator is always functioned during the main heating to monitor the behavior of the reflected wave during the main heating and an excessive reflection is detected. If there is no time to detect the minimum frequency of the reflected wave by performing pre-search again, it is possible to immediately perform the safety-off, so that the semiconductor elements in the output section can be destroyed. Can be prevented.

第4の発明は、特に、第1または第2の発明において、本加熱中は常にアッテネータを機能させ本加熱中の反射波の挙動を監視することによって最小周波数の挙動を監視しもし反射率(Pr/Pf)が過大になるようであれば、加熱開始時のシーケンスに戻り出力部の電力を低下させ前記検波回路の検波信号レベルが検知可能な電位になるよう前記アッテネータの機能を停止させ反射率最小周波数を再設定するもので加熱途中の被加熱物の転倒、加熱による温度上昇による誘電率の変化、また電子レンジでは往々に使用される食品ラップの膨張等、給電部から加熱室を見たインピーダンスが変化して反射波の最小周波数が変化しても再度設定周波数を変更することができるため最悪出力部の半導体素子を破壊させてしまうというような最悪の事態は回避できる。 In the fourth invention, in particular, in the first or second invention, the behavior of the minimum frequency is monitored by monitoring the behavior of the reflected wave during the main heating by always functioning the attenuator during the main heating. If Pr / Pf) becomes excessive, the process returns to the sequence at the start of heating, the power of the output section is reduced, and the function of the attenuator is stopped so that the detection signal level of the detection circuit becomes a detectable potential. The minimum frequency is set again. The heating chamber is viewed from the power supply section, such as the tipping of the object being heated during the heating, the change of the dielectric constant due to the temperature rise due to the heating, and the expansion of the food wrap often used in the microwave oven. Even if the impedance changes and the minimum frequency of the reflected wave changes, the set frequency can be changed again. State can be avoided.

第5の発明は、特に、第1〜4のいずれか1つの発明において、機器全体を制御しているマイクロコンピューター上の本発明の装置のマイクロコンピューターの機能を移植し冗長度を大幅に削減し経済的効果を発揮するとともに、2部品を1部品化するという観点から部品点数の削減にも繋がりシステム全体を簡素化することができる。 In the fifth invention, in particular, in any one of the first to fourth inventions, the microcomputer function of the device of the present invention on the microcomputer that controls the entire device is transplanted to greatly reduce the redundancy. In addition to exhibiting economic effects, the number of parts can be reduced from the viewpoint of making two parts into one part, and the entire system can be simplified.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施形態におけるマイクロ波加熱装置の構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a microwave heating apparatus according to the first embodiment of the present invention.

図1において、マイクロ波発生部3a〜3dは、半導体素子を用いて構成した出力部2a〜2dと、出力部2a〜2dからの出力を受けて入射電力を給電部7a〜7dに供給するとともに、加熱室5内から反射してくる反射電力を検知する方向性結合器からなる入反射波モニター部6a〜6dから構成されている。マイクロ波を発生する基本微弱信号は、半導体発振部1a、1bによって作成されるが、半導体発振部1a、1bをできるだけ少ない構成で実現するため、半導体発振部1a、1bを電力分配部8a、8dで各々2つ、合わせて4つに分配させてマイクロ波発生部3a〜3dに入力させている。   In FIG. 1, microwave generation units 3a to 3d receive output from output units 2a to 2d configured using semiconductor elements and output units 2a to 2d and supply incident power to power supply units 7a to 7d. The incident wave reflection monitor units 6a to 6d are formed of directional couplers that detect the reflected power reflected from the heating chamber 5. Basic weak signals for generating microwaves are generated by the semiconductor oscillation units 1a and 1b. In order to realize the semiconductor oscillation units 1a and 1b with as few configurations as possible, the semiconductor oscillation units 1a and 1b are connected to the power distribution units 8a and 8d. In this case, each of them is divided into two, a total of four, and input to the microwave generators 3a to 3d.

また、本発明のマイクロ波処理装置は、被加熱物9を収納する略直方体構造からなる加熱室5を有し、この加熱室5は、金属材料からなる左壁面、右壁面、底壁面、上壁面、奥壁面および被加熱物9を収納するために開閉する開閉扉(図示していない)と、被加熱物9を載置する載置台から構成し、供給されるマイクロ波を内部に閉じ込めるように構成している。そして、マイクロ波発生部3a〜3dの出力が伝送され、そのマイクロ波を加熱室5内に放射供給する給電部7a〜7dが、加熱室5を構成する壁面に配置されている。   In addition, the microwave processing apparatus of the present invention has a heating chamber 5 having a substantially rectangular parallelepiped structure that accommodates an object 9 to be heated. The heating chamber 5 has a left wall surface, a right wall surface, a bottom wall surface, an upper wall made of a metal material. An open / close door (not shown) that opens and closes to store the wall surface, the back wall surface, and the object to be heated 9 and a mounting table on which the object to be heated 9 is placed so as to confine the supplied microwave inside. It is configured. And the output of the microwave generation parts 3a-3d is transmitted, and the electric power feeding parts 7a-7d which radiate | emit the microwave into the heating chamber 5 are arrange | positioned at the wall surface which comprises the heating chamber 5. FIG.

本実施の形態では、給電部7a〜7dを対向構成の左壁面と右壁面の略中央にそれぞれ給電部7a、7bを配置し、加熱室5の上壁面と底面の略中央にそれぞれ給電部7c、7dを配置した構成を示している。この給電部7a〜7dの配置は、本実施の形態に拘束されるものではなく、いずれかの壁面に複数の給電部を設けてもよいし、対向面ではない例えば右壁面と底壁面のような隣接する組合せで対となる給電部を構成しても構わない。   In the present embodiment, the power feeding units 7a to 7d are arranged at the approximate center of the left wall surface and the right wall surface of the opposing configuration, respectively, and the power feeding unit 7c is arranged at the approximate center of the upper wall surface and the bottom surface of the heating chamber 5, respectively. , 7d are shown. The arrangement of the power feeding portions 7a to 7d is not limited to the present embodiment, and a plurality of power feeding portions may be provided on any wall surface, and are not opposed surfaces such as a right wall surface and a bottom wall surface. You may comprise the electric power feeding part used as a pair by the adjacent combination.

出力部2a〜2d内の電力増幅部は、プリント基板上のカスケードアンプで数十dB以上増幅されるが、低誘電損失材料から構成した誘電体基板の片面に形成した導電体パターンにて回路を構成し、各増幅部の増幅素子である半導体素子を良好に動作させるべく、各半導体素子の入力側と出力側に、それぞれ整合回路を配している。   The power amplifiers in the output units 2a to 2d are amplified by several tens of dB or more by a cascade amplifier on the printed circuit board. The circuit is formed by a conductor pattern formed on one side of a dielectric substrate made of a low dielectric loss material. In order to operate the semiconductor element which is configured and the amplifying element of each amplifying unit satisfactorily, matching circuits are arranged on the input side and the output side of each semiconductor element.

各々の機能ブロックを接続するマイクロ波伝送路は、誘電体基板の片面に設けた導電体パターンによって、特性インピーダンスが略50Ωの伝送回路を形成している。   The microwave transmission path connecting each functional block forms a transmission circuit having a characteristic impedance of about 50Ω by a conductor pattern provided on one surface of the dielectric substrate.

電力分配部8aおよび8bは、例えばウィルキンソン型分配器のような出力間に位相差を生じない同相分配器であってもよいし、ブランチライン型やラットレース型のような出力間に位相差を生じる分配器であっても構わない。この電力分配部8a、8bによって、各々の出力には発振部1a、1bから入力されたマイクロ波電力の略1/2の電力が伝送される。   The power distribution units 8a and 8b may be in-phase distributors that do not produce a phase difference between outputs such as a Wilkinson distributor, or may have a phase difference between outputs such as a branch line type or a rat race type. It may be the resulting distributor. The power distribution units 8a and 8b transmit approximately half of the microwave power input from the oscillation units 1a and 1b to the respective outputs.

制御部4は、できるだけ反射波が少ない周波数を選択する方が、被加熱物9の受ける授熱電力を最大化でき、スピード調理にも貢献できるし、反射波電力による半導体素子の熱損失も軽減でき半導体の耐熱信頼性も向上する。   When the control unit 4 selects a frequency with as few reflected waves as possible, it can maximize the heat transfer power received by the article 9 to be heated, contribute to speed cooking, and reduce the heat loss of the semiconductor element due to the reflected wave power. This also improves the heat resistance reliability of semiconductors.

しかし、調理途上で種々、被加熱物9がマイクロ波加熱の温度の影響を受けることは避けられない。例えば、加熱途中で加熱膨張して被加熱物9が転倒する、転がるということも希に発生する。また、食品の温度上昇につれて、誘電率が徐々に変化することも考えられる。また、ラップをする習慣がマイクロ波加熱装置ではよく見かけるが、これも加熱途中膨らんで、被加熱物9の嵩が膨大化することも見かけられる。   However, it is inevitable that the object to be heated 9 is affected by the temperature of microwave heating during cooking. For example, it rarely occurs that the article 9 to be heated falls due to thermal expansion during heating or falls. It is also conceivable that the dielectric constant gradually changes as the food temperature rises. Moreover, although the habit of wrapping is often seen in the microwave heating apparatus, it can be seen that this also swells in the middle of heating and the volume of the article 9 to be heated increases.

このような時、給電部7a〜7dから見た加熱室5内部のインピーダンスは変化し、図2に示すように、最小反射周波数が刻々と変化することが予測される。a点は初期の周波数特性である。被加熱物9の物性変化が現れると、点線のb点の曲線に推移する。そして、加熱途中で加熱膨張して被加熱物9が転倒したり、転がったり、食品の温度上昇につれ
て誘電率が変化したり、ラップをした被加熱物9が膨大化したりすると、例えば一点鎖線のc点のようなところまで周波数特性が変化することが予測される。その時、反射率はd分だけ上昇することになる。即ち、反射が多い状態で使用していることになる。これは半導体の反射責務を増やすことになり、例えばもっと大きく変化すれば、反射が増大して破壊することも想定される。
In such a case, the impedance inside the heating chamber 5 as seen from the power feeding units 7a to 7d changes, and it is predicted that the minimum reflection frequency changes every moment as shown in FIG. Point a is the initial frequency characteristic. When a change in physical properties of the article 9 to be heated appears, a transition is made to a dotted line b-point curve. And, if the heated object 9 falls and rolls during the heating, rolls, the dielectric constant changes as the temperature of the food rises, or the heated heated object 9 wraps up, for example, It is predicted that the frequency characteristic changes up to a point c. At that time, the reflectance increases by d. That is, it is used in a state where there are many reflections. This increases the reflection duty of the semiconductor. For example, if the change is larger, the reflection is expected to increase and break down.

従って、それを回避する手段として、反射波が最小の周波数になるように常に反射量及び反射率を監視しその変化に追従する必要がある。 Therefore, as a means for avoiding this, it is necessary to always monitor the amount of reflection and the reflectance so that the reflected wave has the minimum frequency and follow the change.

図3はそのシーケンスを示すタイミングチャートである。   FIG. 3 is a timing chart showing the sequence.

図3を用いて説明する。まず、初期(t=0)からスタートする。この時は、どのような反射スペクトラム特性(ISMバンド2400〜2500MHz内)になっているのか全く不明のため、いきなり高出力(定常出力)を出力すると大きな反射波が帰ってきて、出力部2a〜2dの半導体素子を破壊してしまう可能性がある。従って、プリサーチ期間として、低出力でISMバンド2400〜2500MHz内をサーチする。たとえ大きな反射があっても、半導体素子を破壊させないように、数十Wの低出力で発振する。そこで、反射波が最小となる周波数を選択する。選択した周波数で、次は定常の加熱出力に出力を上昇させて発振する(本加熱時間)。   This will be described with reference to FIG. First, it starts from the initial stage (t = 0). At this time, since the reflection spectrum characteristics (in the ISM band 2400-2500 MHz) are completely unknown, when a high output (steady output) is suddenly output, a large reflected wave returns, and the output units 2a--2 There is a possibility of destroying the 2d semiconductor element. Therefore, as a pre-search period, the ISM band 2400 to 2500 MHz is searched at a low output. Even if there is a large reflection, it oscillates with a low output of several tens of W so as not to destroy the semiconductor element. Therefore, the frequency that minimizes the reflected wave is selected. Next, at the selected frequency, the output is increased to a steady heating output and oscillates (main heating time).

当然のことであるが、出力を上昇させると入射波も反射波も上昇する。従って、プリサーチの時のフィードバック量では、制御部4が検出・制御可能な範囲を逸脱した過大な入射波/反射波がフィードバックされ、制御不可能となる可能性がある。何らかの手立てを講じる必要がある。   As a matter of course, when the output is increased, both the incident wave and the reflected wave are increased. Therefore, with the amount of feedback at the time of pre-search, an excessive incident wave / reflected wave that deviates from a range that can be detected and controlled by the control unit 4 is fed back, and there is a possibility that control becomes impossible. It is necessary to take some measures.

もし、本加熱時間中大きな反射波が帰ってくるような状態に陥れば、再度プリサーチをして、反射波が最小となる周波数を再設定する必要がある。それが、同図で表す2度目のプリサーチ期間である。これは実施する必要があるのか否かは反射波が大きくなるかどうかなので、加熱を実施して、反射波が大きくなったことを図では仮定している。仮に、運よく加熱途中で反射の状態が、変化しないことも想定される。その時、この行程は当然スキップすることになる。しかし、加熱途中でマイクロ波給電部7a〜7dから加熱室5を見たインピーダンスが変化して、反射波の最小周波数が変化した時は、当然実施しなければならない行程である。   If a large reflected wave returns during the heating time, it is necessary to pre-search again and reset the frequency at which the reflected wave is minimized. That is the second pre-search period shown in the figure. This is because it is necessary to carry out whether or not the reflected wave becomes large, and it is assumed in the figure that the reflected wave becomes large after heating. Fortunately, it is assumed that the state of reflection does not change during heating. At that time, this process is naturally skipped. However, when the impedance of the heating chamber 5 viewed from the microwave power feeding units 7a to 7d changes during heating and the minimum frequency of the reflected wave changes, this is a process that must be performed.

再度プリサーチを行って、最小周波数を再設定すれば、後の本加熱時間はこの再設定した周波数で動作させることができる。その期間も本サーチとして常に入射波と反射波とを監視することになる。   If pre-searching is performed again and the minimum frequency is reset, the subsequent main heating time can be operated at the reset frequency. During this period, the incident wave and the reflected wave are always monitored as the main search.

反射波が突出的に大きな場合は、再度プリサーチをしている時間的余裕がないため、即座に停止し、加熱を終了することも考慮にいれなくてはならない。当然、今までの経験では想定のつかない異常な反射を見ることも考えられる。この場合はプリサーチを再度行わずに、即加熱の進行を停止することが望ましい。   If the reflected wave is prominently large, there is no time to pre-search again, so it must be taken into consideration that the heating is stopped immediately. Naturally, it is also possible to see unusual reflections that have not been anticipated by previous experience. In this case, it is desirable to stop the progress of heating immediately without performing pre-search again.

本発明では、常時入射波Pfと反射波Prとを監視できるため、必要に応じてプリサーチを実行すればよい。当然のことながら、インピーダンス変化が少ない加熱の場合、再度プリサーチをする必要がないので、最短時間で加熱を終了することができる。   In the present invention, the incident wave Pf and the reflected wave Pr can be monitored at all times, so that the pre-search may be performed as necessary. As a matter of course, in the case of heating with a small impedance change, it is not necessary to pre-search again, so that the heating can be completed in the shortest time.

図4を用いて、ISMバンド2400〜2500MHz内の反射率(Pr/Pf)を示す。A点では4つの給電部7a〜7dの反射波の総和ΣPrと、入射波の総和ΣPfとの比で反射率を計算している。A点では最も反射率が少ないことがわかる。ここでは、被加
熱物に入射する電力が最も大きく、半導体素子に反射する電力が、最も少ないことを表している。プリサーチの結果では、当然、本加熱の周波数A点の2430MHzを選択すべきである。
The reflectance (Pr / Pf) within the ISM band 2400-2500 MHz is shown using FIG. At point A, the reflectance is calculated by the ratio of the sum ΣPr of the reflected waves of the four power supply portions 7a to 7d and the sum ΣPf of the incident waves. It can be seen that the reflectance is the smallest at point A. Here, the power incident on the object to be heated is the largest, and the power reflected on the semiconductor element is the smallest. As a result of the pre-search, naturally, the frequency A point of the main heating of 2430 MHz should be selected.

図5の回路図を用いて、プリサーチ、本サーチの両方で、入射波Pfと反射波Prを検出する原理を示す。入反射モニター部6aからの反射波Prは、抵抗13a、抵抗14a、抵抗19aでドロップされて制御部4に入力されるが、検波ダイオード18a、コンデンサ16aで検波・ピークディテクトされる。また、その電位は、抵抗19aで一定期間保持される。また、抵抗14aに並列に接続され制御部4からの指令でON/OFFするスイッチ15aも、抵抗14aに併設されている。これは、アナログスイッチ等を利用して制御部4の指令に従って、スイッチ15aをクローズしたり、オープンしたりする。ダイオード20aは、制御部4への過電圧印加保護用のクランプダイオードである。入反射モニター部6b〜6dについても、構成は同様であるので記述を割愛する。 The principle of detecting the incident wave Pf and the reflected wave Pr is shown in both the pre-search and the main search, using the circuit diagram of FIG. The reflected wave Pr from the incident / reflection monitor unit 6a is dropped by the resistor 13a, the resistor 14a, and the resistor 19a and inputted to the control unit 4, but is detected and peak detected by the detector diode 18a and the capacitor 16a. The potential is held for a certain period by the resistor 19a. A switch 15a connected in parallel to the resistor 14a and turned on / off by a command from the control unit 4 is also provided in the resistor 14a. This closes or opens the switch 15a in accordance with a command from the control unit 4 using an analog switch or the like. The diode 20 a is a clamp diode for overvoltage application protection to the control unit 4. Since the structures of the incident / reflective monitor units 6b to 6d are the same, the description is omitted.

出力の低いプリサーチ時は、制御部4からスイッチ15aへのクローズ信号が発信され、抵抗13aでドロップされた低い電圧が、制御部4に印加され信号は検出される。この時、クランプダイオード20aはアクティブでなく、制御部4の回路電源電圧Vcc21以下の低電圧が制御部4で処理される。半導体発振部1aを2400MHzから2500MHzまでスイープして、反射波最小周波数を検出する。入反射モニター部6b〜6dからの信号についても、同様に処理される。   At the time of low output presearch, a close signal is transmitted from the control unit 4 to the switch 15a, and a low voltage dropped by the resistor 13a is applied to the control unit 4 to detect the signal. At this time, the clamp diode 20 a is not active, and a low voltage equal to or lower than the circuit power supply voltage Vcc 21 of the control unit 4 is processed by the control unit 4. The semiconductor oscillator 1a is swept from 2400 MHz to 2500 MHz to detect the minimum reflected wave frequency. The signals from the incident / reflection monitor units 6b to 6d are processed in the same manner.

入反射モニター部6a〜6dは入射波についても検出し、入射波Pfと反射波Prのアイソレーションは、20dB〜30dBでほほ完全に混触は防止されている。主電力は、入力ポートから出力ポートまで、ほぼ損失なく透過し、アンテナ給電部7a〜7dに伝わる。   The incident / reflection monitor sections 6a to 6d also detect incident waves, and the isolation between the incident wave Pf and the reflected wave Pr is 20 dB to 30 dB, and the contact is almost completely prevented. The main power is transmitted from the input port to the output port with almost no loss and is transmitted to the antenna power feeding units 7a to 7d.

反射波最小周波数を検出した後は、この周波数で本加熱に移行する。その時反射モニター部6a〜6dが検出する電力も上昇するので、制御部4内で信号処理できる電圧レベルに低下させるため、アッテネートが必要になってくる。そこで、制御部4から信号をスイッチ15aに送信し、スイッチ15aをオープンにして、抵抗13a、抵抗14aで電圧降下させるようにし、ドロップされた低い電圧が制御部4に印加され信号は検出される。この時、クランプダイオード20aはアクティブでなく、制御部4の回路電源電圧Vcc21以下の低電圧が制御部4で処理される。 After detecting the reflected wave minimum frequency, it shifts to the main heating at this frequency. At this time, since the power detected by the reflection monitor units 6a to 6d also increases, attenuation is necessary to reduce the voltage level to allow signal processing in the control unit 4. Therefore, a signal is transmitted from the control unit 4 to the switch 15a, the switch 15a is opened, and the voltage is dropped by the resistors 13a and 14a, and the dropped low voltage is applied to the control unit 4 and the signal is detected. . At this time, the clamp diode 20 a is not active, and a low voltage equal to or lower than the circuit power supply voltage Vcc 21 of the control unit 4 is processed by the control unit 4.

このような構成とすることによって、プリサーチ時も本サーチ時も、制御部4内で信号処理できる電圧レベルとなり、常に入射波Pf、反射波Prを信号処理できる構成となる。   With such a configuration, the voltage level is such that signal processing can be performed in the control unit 4 during pre-search and during the main search, and the configuration is such that the incident wave Pf and the reflected wave Pr can always be processed.

また、システムを簡略化するために、別に存在する機器全体をコントロールするマイクロコンピューターがあるが、その中にこのタスクを入れ込むことによって、1つのマイクロコンピューターによってタスクを並列実施し、システムの大幅な省部品化を実施し経済効果を発揮することもできる。   In order to simplify the system, there is a microcomputer that controls the entire existing equipment, but by inserting this task into it, the task can be performed in parallel by one microcomputer, and the system is greatly improved. It is also possible to reduce the number of parts and achieve an economic effect.

以上のように、本発明にかかるマイクロ波加熱装置は、複数の給電部を有しマイクロ波を放射する給電部からの反射波から半導体の破壊を阻止する装置を提供できるので、電子レンジで代表されるような誘電加熱を利用した加熱装置や生ゴミ処理機、あるいは半導体製造装置であるプラズマ電源のマイクロ波電源などの用途にも適用できる。   As described above, the microwave heating device according to the present invention can provide a device that has a plurality of power supply units and prevents the destruction of a semiconductor from reflected waves from a power supply unit that radiates microwaves. It can also be applied to uses such as a heating device using dielectric heating, a garbage disposal machine, or a microwave power source of a plasma power source which is a semiconductor manufacturing device.

本発明の実施の形態におけるマイクロ波加熱装置のシステム構成図The system block diagram of the microwave heating apparatus in embodiment of this invention 本発明の被加熱物の変化に伴う周波数スペクトラムの変化を示す特性図The characteristic view which shows the change of the frequency spectrum accompanying the change of the to-be-heated material of this invention 本発明の実施の形態における各部の処理シーケンスを示すタイムチャートThe time chart which shows the processing sequence of each part in embodiment of this invention 本発明の実施の形態におけるISMバンド内の反射率を示す特性図The characteristic view which shows the reflectance in the ISM band in embodiment of this invention 本発明の実施の形態における検波回路の回路図Circuit diagram of the detection circuit in the embodiment of the present invention

1 半導体発振部
2 出力部
3 マイクロ波発生部
4 制御部
5 加熱室
6 入反射モニター部
12 検波回路
DESCRIPTION OF SYMBOLS 1 Semiconductor oscillation part 2 Output part 3 Microwave generation part 4 Control part 5 Heating chamber 6 Incident reflection monitor part 12 Detection circuit

Claims (5)

発振基準信号を送出する半導体発振部と、マイクロ波を作成する出力部と、前記出力部に繋がる複数の前記半導体発振部を有するマイクロ波発生部と、被加熱物を収納する加熱室と、前記出力部の後段に位置し入反射波レベルを監視する入反射波モニター部と、前記入反射波モニター部の信号を受け前記出力部の出力をコントロールする制御部と、前記入反射波モニター部の検知信号を検知する検波回路と、前記入反射モニター部と前記検波回路の検波ダイオードとの間に設け前記入反射モニター部の検出信号を所望の低い電圧に減衰させるアッテネータとを備え、加熱開始直後の前記制御部が、反射波の最小となる発振周波数を検出している際は前記出力部の電力を低下させて前記検波回路の検波信号レベルが検知可能な電位になるよう前記アッテネータの機能を停止させ反射最小周波数を選択し、その後はその反射最小周波数で前記出力部の電力を本加熱出力に上昇させてかつ前記アッテネータを機能させ信号レベルを減衰させ前記検波回路の検波信号レベルが検知可能な電位になるようにして前記制御部が反射波の最小となる発振周波数を検出する構成としたマイクロ波加熱装置。 A semiconductor oscillating unit for transmitting an oscillation reference signal; an output unit for creating a microwave; a microwave generating unit having a plurality of the semiconductor oscillating units connected to the output unit; a heating chamber for storing an object to be heated; and inputted and reflected wave monitoring unit that monitors the incoming reflected wave level located downstream of the output section, the control section for controlling the output of the output unit receives the signal inputted and reflected wave monitoring unit, the entering-reflected wave monitoring unit A detection circuit for detecting a detection signal, and an attenuator provided between the incident reflection monitor unit and the detection diode of the detection circuit for attenuating the detection signal of the incident reflection monitor unit to a desired low voltage, immediately after the start of heating When the control unit detects a minimum oscillation frequency of the reflected wave, the power of the output unit is reduced so that the detection signal level of the detection circuit becomes a detectable potential. The function of the attenuator is stopped and the minimum reflection frequency is selected. Thereafter, the power of the output unit is increased to the main heating output at the minimum reflection frequency and the signal level is attenuated by the function of the attenuator. A microwave heating apparatus configured such that the control unit detects an oscillation frequency at which a reflected wave is minimized such that a level becomes a detectable potential. 入反射波モニター部は、方向性結合器からなり、出力部の信号を受けるポートと、前記出力部の出力を極めて少ない減衰で給電部に電力送出するポートと、前記給電部に送出された電力を減衰させた信号Pfを得るポートと、反射波を検出し減衰させ信号Prを得るポートからなり反射率Pr/Pfをもとに最小となる発振周波数を検出する構成とした請求項1に記載のマイクロ波加熱装置。 The incoming / reflected wave monitoring unit is composed of a directional coupler, and receives a signal from the output unit, a port that transmits power from the output unit to the power feeding unit with very little attenuation, and power sent to the power feeding unit 2. The configuration according to claim 1, wherein a minimum oscillation frequency is detected on the basis of the reflectance Pr / Pf, comprising a port for obtaining a signal Pf in which the signal is attenuated and a port for obtaining a signal Pr by detecting and attenuating a reflected wave. Microwave heating device. 本加熱中は常にアッテネータを機能させ本加熱中の入反射波の挙動を監視し、過大な反射を検出した際には即座に出力部を停止する構成とした請求項1または2に記載のマイクロ波加熱装置。 3. The micro of claim 1 or 2, wherein the attenuator is always functioned during the main heating to monitor the behavior of incident / reflected waves during the main heating, and the output section is immediately stopped when excessive reflection is detected. Wave heating device. 本加熱中は常にアッテネータを機能させ本加熱中の入反射波の挙動を監視することによって最小周波数の挙動を監視し、もし反射率Pr/Pfが過大になるようであれば初期に戻り出力部の電力を低下させ前記検波回路の検波信号レベルが検知可能な電位になるよう前記アッテネータの機能を停止させ反射率最小周波数を再設定する請求項1または2に記載のマイクロ波加熱装置。 During the main heating, the attenuator is always functioned to monitor the behavior of the incident / reflected wave during the main heating to monitor the behavior of the minimum frequency. If the reflectance Pr / Pf becomes excessive, the output is returned to the initial stage. The microwave heating device according to claim 1 or 2, wherein the function of the attenuator is stopped and the minimum reflectance frequency is reset so that the detection signal level of the detection circuit becomes a detectable potential by reducing the power of the detection circuit. 制御回路はマイクロコンピューターを用い、このマイクロコンピューターはマイクロ波加熱装置を制御するマイクロコンピューターで併用して処理を実施する構成とした請求項1〜4のいずれか1項に記載のマイクロ波加熱装置。
The microwave heating apparatus according to any one of claims 1 to 4, wherein the control circuit uses a microcomputer, and the microcomputer is configured to perform processing in combination with a microcomputer that controls the microwave heating apparatus.
JP2008262539A 2008-10-09 2008-10-09 Microwave heating device Active JP5195255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262539A JP5195255B2 (en) 2008-10-09 2008-10-09 Microwave heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262539A JP5195255B2 (en) 2008-10-09 2008-10-09 Microwave heating device

Publications (2)

Publication Number Publication Date
JP2010092751A JP2010092751A (en) 2010-04-22
JP5195255B2 true JP5195255B2 (en) 2013-05-08

Family

ID=42255279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262539A Active JP5195255B2 (en) 2008-10-09 2008-10-09 Microwave heating device

Country Status (1)

Country Link
JP (1) JP5195255B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752086B2 (en) 2011-08-31 2021-12-08 Goji Limited Object processing state sensing using rf radiation
JP6826461B2 (en) * 2017-02-28 2021-02-03 日立グローバルライフソリューションズ株式会社 High frequency heating device
CN106949507B (en) * 2017-03-17 2019-02-19 广东美的厨房电器制造有限公司 Control method and micro-wave oven
WO2019149252A1 (en) * 2018-01-31 2019-08-08 广东美的厨房电器制造有限公司 Microwave cooking device, control method, and storage medium
JP6762573B2 (en) * 2018-05-21 2020-09-30 マイクロ波化学株式会社 Molding equipment, molds and molded product manufacturing methods
WO2019225105A1 (en) * 2018-05-21 2019-11-28 マイクロ波化学株式会社 Molding device, mold, and molded product manufacturing method
WO2021020373A1 (en) * 2019-07-31 2021-02-04 パナソニックIpマネジメント株式会社 Microwave treatment device
WO2024009965A1 (en) * 2022-07-05 2024-01-11 株式会社ダイレクト・アール・エフ Heating cooker

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134491A (en) * 1980-03-26 1981-10-21 Hitachi Netsu Kigu Kk High frequency heater
JPH01304687A (en) * 1988-05-31 1989-12-08 Matsushita Electric Ind Co Ltd High frequency heating device
JP2996799B2 (en) * 1992-01-31 2000-01-11 三菱電機株式会社 High frequency heating equipment
US6407540B1 (en) * 1999-04-09 2002-06-18 Agilent Technologies, Inc. Switched attenuator diode microwave power sensor
JP4860395B2 (en) * 2006-07-28 2012-01-25 パナソニック株式会社 Microwave processing apparatus and microwave processing method
JP4967600B2 (en) * 2006-10-24 2012-07-04 パナソニック株式会社 Microwave processing equipment

Also Published As

Publication number Publication date
JP2010092751A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5195255B2 (en) Microwave heating device
JP5167678B2 (en) Microwave processing equipment
JP5142364B2 (en) Microwave processing equipment
JP4935188B2 (en) Microwave equipment
WO2010134307A1 (en) Microwave heating device and microwave heating method
JP5286905B2 (en) Microwave processing equipment
JP5400885B2 (en) Microwave heating device
JP2008310969A (en) Microwave processing equipment
JP5169371B2 (en) Microwave processing equipment
JP6826461B2 (en) High frequency heating device
JP2009252346A5 (en)
JP2009252346A (en) Microwave treatment device
JP2008146967A (en) Microwave processing equipment
JP4839994B2 (en) Microwave equipment
JP5127038B2 (en) High frequency processing equipment
JP2009016149A (en) Microwave heating device
JP5217882B2 (en) Microwave processing equipment
JP2010080185A (en) Microwave heating apparatus
JP2008146966A (en) Microwave generator and microwave heater
JP5092863B2 (en) Microwave processing equipment
JP5286898B2 (en) Microwave processing equipment
JP5467341B2 (en) Microwave processing equipment
JP5195008B2 (en) Microwave heating device
JP2010073383A (en) Microwave heating apparatus
JP2010073382A (en) Microwave processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5195255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3