Nothing Special   »   [go: up one dir, main page]

JP5193855B2 - Water quality improvement device and water quality improvement device - Google Patents

Water quality improvement device and water quality improvement device Download PDF

Info

Publication number
JP5193855B2
JP5193855B2 JP2008513257A JP2008513257A JP5193855B2 JP 5193855 B2 JP5193855 B2 JP 5193855B2 JP 2008513257 A JP2008513257 A JP 2008513257A JP 2008513257 A JP2008513257 A JP 2008513257A JP 5193855 B2 JP5193855 B2 JP 5193855B2
Authority
JP
Japan
Prior art keywords
liquid
water
gas
water quality
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008513257A
Other languages
Japanese (ja)
Other versions
JPWO2007125996A1 (en
Inventor
哲彦 藤里
Original Assignee
哲彦 藤里
池田 好明
藤里 修行
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哲彦 藤里, 池田 好明, 藤里 修行 filed Critical 哲彦 藤里
Priority to JP2008513257A priority Critical patent/JP5193855B2/en
Publication of JPWO2007125996A1 publication Critical patent/JPWO2007125996A1/en
Application granted granted Critical
Publication of JP5193855B2 publication Critical patent/JP5193855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/104Mixing by creating a vortex flow, e.g. by tangential introduction of flow components characterised by the arrangement of the discharge opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、活魚水槽や魚介類養殖場等において、水を液泡の集団(シャボン玉状の気泡集合体)に生成することにより、水を薄膜状にして水と空気とを高効率に接触させて、水中生物にとって生息しやすい酸素ガス及び窒素ガス等の気体溶存割合を改善した水質にすることができ、又、同時に水中にマイクロバブルを発生させることにより、水中内に浮遊している糞や残餌等の有機物を水面上に浮上させて吸引回収し、物理濾過及び生物濾過等の濾過タンクを介して透明に近い水質に改善することのできる水質改善器及び水質改善装置に関する。   In the present invention, in a live fish tank, a seafood farm, etc., water is formed into a liquid foam group (soap bubble-shaped bubble aggregate), thereby making the water into a thin film and bringing water and air into contact with each other with high efficiency. Therefore, it is possible to improve the water quality by improving the dissolved gas ratio such as oxygen gas and nitrogen gas that is liable to live underwater organisms. At the same time, by generating microbubbles in the water, The present invention relates to a water quality improvement device and a water quality improvement device capable of improving organic matter such as residual bait on a water surface by sucking and collecting it, and improving the water quality to near transparency through a filtration tank such as physical filtration and biological filtration.

活魚水槽や魚介類養殖場等の水質を改善する方法としては、以下に列挙するように種々のものがあり、従来それぞれに対応策が取られている。尚、曝気装置とマイクロバブル発生装置を兼ね備えた装置は見当たらないため、曝気装置の特許文献とマイクロバブル発生装置の特許文献と、を別々に参照する
1.被処理水の循環流量を増やし、空気の微細化性能を向上させた曝気装置(例えば、特許文献1参照)。
2.パイプ内の下流側に配置した衝突壁に衝突させてマイクロバブルを発生させるマイクロバブル発生装置(例えば、特許文献2参照)。
There are various methods for improving the water quality of live fish tanks, fish farms and the like as listed below, and countermeasures have been taken for each of them. Since the apparatus Miata et no combines aeration device and the micro-bubble generator, reference and patent documents JP and the microbubble generator aeration device, separately.
1. An aeration apparatus that increases the circulation flow rate of water to be treated and improves the air refining performance (see, for example, Patent Document 1).
2. A microbubble generator that generates microbubbles by colliding with a collision wall disposed on the downstream side in the pipe (see, for example, Patent Document 2).

特開2000−271591号公報Japanese Patent Laid-Open No. 2000-271591 特開2005−334869号公報JP 2005-334869 A

しかしながら、上記の特許文献1に記載の曝気装置技術は、以下のような課題を有していた。殆どの水中生物は水中に溶存している酸素ガスだけを消費し生存しているので、従来型の水中における水と空気との接触面積を増やすことや接触時間を長くすること、又は水や空気に圧力を加えて接触させるなどの方法では、水中に溶存する窒素ガスの量が徐々に多くなるという課題があった。
又、特許文献2に記載のマイクロバブル発生装置技術は、気体の混入した水をパイプ内でプレートに衝突させ、急激な速度変化及び剪断作用により気体塊を粉砕させてマイクロバブルを発生させているので、大きな水圧エネルギーを必要とし不経済であり、生成されたマイクロバブルの気泡径が大きい為に、大半は発生時から直ちに上部に向かって上昇するという問題があり、更に気体の供給量を微調整しないとマイクロバブルを安定して生成することができないという課題があった。
However, the aeration apparatus technology described in Patent Document 1 has the following problems. Most aquatic organisms consume only oxygen gas dissolved in water and survive, so increasing the contact area between water and air in conventional water, increasing the contact time, or water and air In the method such as applying pressure to the contact, there is a problem that the amount of nitrogen gas dissolved in water gradually increases.
In addition, the microbubble generator technology described in Patent Document 2 collides water mixed with gas with a plate in a pipe, and generates a microbubble by pulverizing a gas lump by a rapid speed change and shearing action. Therefore, a large hydraulic energy is required, which is uneconomical, and the bubble diameter of the generated microbubbles is large. Without adjustment, there was a problem that microbubbles could not be generated stably.

本発明は上記の課題を解決するもので、ポンプ等により作られた圧力水を水質改善器の液体導入孔に供給するだけで、上に向けた気液噴出孔から液泡の集団(シャボン玉状の気泡集合体)を生成し、水を液泡表面の薄膜水にすることにより、空気の分圧に応じた濃度勾配による拡散により、水中生物にとって必要な酸素ガスを吸収し、又、不必要に多く溶存している気体(窒素、二酸化炭素、メタン等)を大気に放散させて、水中生物にとって気体の溶存バランスのとれた水質に改善することができる。
又、下に向けた気液噴出孔からは空気の供給量を調節しなくても、水中にマイクロバブルを安定して発生させることができるので、水中内に浮遊している糞・残餌等の有機物を水面上に浮上させて、物理濾過槽及び生物濾過槽等の濾過タンクを介して有機物を回収及び分解できることで、透明度の高い水質に改善することのできる水質改善器及び水質改善装置を提供することを目的とする。
The present invention solves the above-mentioned problem, and by simply supplying pressure water produced by a pump or the like to the liquid introduction hole of the water quality improver, a group of liquid bubbles (soap bubbles) By forming a thin film of water on the surface of the liquid bubble, absorbing oxygen gas necessary for aquatic organisms by diffusion due to a concentration gradient according to the partial pressure of air, and unnecessarily. Many dissolved gases (nitrogen, carbon dioxide, methane, etc.) can be released into the atmosphere to improve the water quality with balanced gas dissolution for aquatic organisms.
In addition, microbubbles can be stably generated in the water without adjusting the air supply amount from the gas-liquid jet holes facing downward, so feces, residual food, etc. floating in the water Water quality improvement device and water quality improvement device that can improve the water quality with high transparency by allowing the organic matter to float on the water surface and recovering and decomposing the organic matter through filtration tanks such as physical filtration tanks and biological filtration tanks The purpose is to provide.

本発明の請求項1に記載の水質改善器は、略回転対称に形成され回転対称軸の軸方向の双方に向かって縮径した中空部を有する器体と、前記器体の周壁部に接線方向に開口されて液体を導入する液体導入孔と、前記中空部の回転対称軸の軸方向に前記中空部の双方の縮径部分を開口して形成される上向きと下向きの2つの気液噴出孔と、一の端部が上向きの前記気液噴出孔と隙間を設けて接続され、他の端部が水面上に配置されて前記器体内に気体を自吸するフレーム付きパイプと、上向きの前記気液噴出孔から噴出される液体を、前記フレーム付きパイプから吸入された気体と混合させて、液泡の集団(シャボン玉状の気泡集合体)生成するために、上向きの前記気液噴出孔を覆うように体の上側部分に接続されるとともに処理水排出口が設けられた液泡生成容器とを有し、下向きの気液噴出孔が水面下に配置された構成となっている。
この構成により、以下のような作用を有する。
(1)水槽内に配置された水質改善器の上向きの気液噴出孔から噴射される圧力水は、液泡生成容器の中で液泡の集団に変化する。又、下向きの気液噴出孔からは水中にマイクロバブルを発生させることができる。
(2)液体導入孔から圧力水を供給するだけで、上向きの気液噴出孔中心部の器体内に形成される負圧の気体軸に、若干の隙間を設けてフレーム付きパイプの中心部分を合わせて接続することにより、フレーム付きパイプの上部から自動的に空気が気体軸に自吸される。
(3)液体導入孔から供給される圧力水の圧力が高くなることに比例して、器体内に形成される気体軸の負圧力が強くなり、低くなることに比例して器体内に形成される気体軸の負圧力が弱くなるので、フレーム付きパイプの上部から自吸される空気量を調整しなくても適量の空気が気体軸に自吸供給される。
The water quality improvement device according to claim 1 of the present invention is a device having a hollow body formed substantially rotationally symmetric and having a diameter reduced toward both axial directions of the rotational symmetry axis, and a tangent to the peripheral wall portion of the device body A liquid introduction hole which is opened in a direction and introduces liquid, and two upward and downward gas-liquid jets formed by opening both reduced diameter portions of the hollow portion in the axial direction of the rotational symmetry axis of the hollow portion the hole, one end portion is connected by providing an upward the liquid jetting holes and gaps, and framed pipes other end is self-priming gas into the instrument body is disposed above the water surface, upwards of the liquid to be ejected gas-liquid jet holes or et al., supra by mixing with framed pipes or al inhaled gas, to produce a population (bubble-like bubble aggregate) of the liquid foam, upward is the connection to the upper portion of the gas-liquid ejection hole so as to cover the device body Rutotomoni treated water discharge Anda liquid foam generating container, which is provided with a downward gas-liquid vents has a configuration which is arranged below the water surface.
This configuration has the following effects.
(1) The pressure water injected from the upward gas-liquid jet holes arranged in the water tank is changed into a group of liquid bubbles in the liquid bubble generation container. Further, microbubbles can be generated in the water from the downward gas-liquid jet holes.
(2) Just by supplying pressure water from the liquid introduction hole, a slight gap is provided in the negative pressure gas shaft formed in the vessel body at the center of the upward gas-liquid ejection hole, so that the center portion of the pipe with the frame is By connecting together, air is automatically sucked into the gas shaft from the upper part of the pipe with the frame.
(3) The pressure of the pressure water supplied from the liquid introduction hole is increased in proportion to the negative pressure of the gas shaft formed in the container, and is formed in the container in proportion to the decrease. Since the negative pressure of the gas shaft becomes weak, an appropriate amount of air is self-primedly supplied to the gas shaft without adjusting the amount of air sucked from the upper part of the pipe with the frame.

本発明の請求項1に記載の水質改善器によれば、以下のような効果を有する。
(a)活魚水槽や魚介類養殖場等に、既存のポンプから作られる圧力水を水質改善器の液体導入孔に接続するだけで、水中に浮遊している糞・残餌等の有機物を浮上させることができるので汎用性及びメンテナンス性に優れている。
(b)処理水を液泡表面の薄膜水にすることにより、空気の気体分圧に応じた濃度勾配による拡散により、水中生物にとって必要な酸素ガスを溶存させることと、不要に溶存している気体(窒素、二酸化炭素、メタン等)を大気に放散させることができるので、水中生物にとって生息しやすい気体溶存バランスがとれた水に簡単に改善することができるので、汎用性及び利便性に優れている。
The water quality improver according to claim 1 of the present invention has the following effects.
(A) By simply connecting the pressure water produced from the existing pump to the liquid introduction hole of the water quality improver in a live fish tank or seafood farm, organic matter such as feces and residual food floating in the water will surface. Therefore, it is excellent in versatility and maintainability.
(B) By making the treated water thin film water on the surface of the liquid bubbles, the oxygen gas necessary for the aquatic organisms is dissolved by the diffusion due to the concentration gradient according to the gas partial pressure of the air, and the gas dissolved unnecessarily. (Nitrogen, carbon dioxide, methane, etc.) can be released to the atmosphere, so it can be easily improved to a well-balanced gas-dissolved water that inhabits aquatic organisms. Yes.

実施の形態1の水質改善器1の概略構成断面図Schematic structure sectional view of water quality improvement device 1 of Embodiment 1 実施の形態1の水質改善器1に圧力水を供給し作動させた時、水質改善器1内の水の挙動及び液泡の生成やマイクロバブル発生状態を表した断面模式図The cross-sectional schematic diagram which represented the behavior of the water in the water quality improvement device 1, the production | generation of a liquid bubble, and a microbubble generation | occurrence | production state when pressure water is supplied and operated to the water quality improvement device 1 of Embodiment 1. 水槽内の表面水を効率よく吸引することのできるうず流吸口11の概略模式図Schematic diagram of the vortex suction port 11 that can efficiently suck the surface water in the water tank 2種類の水槽WTの配置形態において、実施の形態1の水質改善器1を設置し、うず流吸口11を用いて水槽の表面水を吸引するタイプ(a)と、オーバーフローにより表面水を吸引するタイプ(b)の概略模式図In the arrangement form of the two types of water tanks WT, the water quality improvement device 1 of the first embodiment is installed, and the surface water of the water tank is sucked using the vortex suction port 11 (a) and the surface water is sucked by the overflow. Schematic schematic diagram of type (b) 比較的大きな水槽WTにおいて、水中ポンプU.Pを用いて水質改善器1を作動させた場合の模式図Schematic diagram when water quality improver 1 is operated using submersible pump U.P in a relatively large tank WT

符号の説明Explanation of symbols

1 水質改善器
2 器体
2a 液体導入孔
3 気液噴出孔
4 フレーム付きパイプ
4a 固定ビス
5 固定座
6 液泡生成容器
7 処理水排出口
11 うず流吸口
12 吸引管
13 吸引口
14 吸水パイプ
15 うず流案内板
21 フレキシブルホース
22 筒台
B 吸引口13の上部側の幅
E 電線
FL フロート
G ガード
H 上向きの気液噴出孔3と表面水までの距離
KG 吸盤ゴム
OF オーバーフロー排出口
P ポンプ
PW 圧力水
ST 濾過タンク
SW 処理水
U.P 水中ポンプ
VW 負圧液
W1 上向きの気液噴出孔3に向かって流れる旋回流
W2 下向きの気液噴出孔3に向かって流れる旋回流
Wa 足し水
Wb オーバーフロー水
WP うず流
WT 水槽
X 空気
X1 気体軸
X2 マイクロバブル
X3 液泡
X4 放散気体
1 Water quality improvement device 2 Body 2a Liquid introduction hole 3 Gas-liquid ejection hole
4 Pipe with frame 4a Fixing screw 5 Fixing seat 6 Liquid bubble generating container 7 Discharged water outlet 11 Vortex suction port 12 Suction pipe 13 Suction port 14 Water absorption pipe 15 Vortex flow guide plate 21 Flexible hose 22 Tubular base B Upper side of suction port 13 Width E Electric wire FL Float G Guard H Distance between the upward gas-liquid jet hole 3 and surface water KG Suction rubber OF Overflow outlet P Pump PW Pressure water ST Filtration tank SW Treated water U.P Underwater pump VW Negative pressure liquid W1 Swirling flow flowing toward upward gas-liquid ejection hole 3 W2 Swirling flow flowing toward downward gas-liquid ejection hole 3 Wa addition water Wb overflow water WP vortex flow WT water tank X air X1 gas shaft X2 microbubble X3 liquid bubble X4 emission gas

(実施の形態1)
実施の形態1における水質改善器及び水質改善装置について、以下図面を参照しながら説明する。
図1は本発明の実施の形態の水質改善器の概略構成断面図で、1は水質改善器であり、2は略回転対称に形成され回転対称軸の軸方向の上下に向かって縮径した中空部を有する器体、2aは器体2の周壁部に接線方向に開口された液体導入孔、3は前記中空部の回転対称軸の方向に開口して前記中空部の上下縮径部分に、器体2内に流入した液体の旋回流により形成される負圧の気体軸の位置にあわせて穿設された上向きと下向きの気液噴出孔、4は上向きの気液噴出孔3に若干の隙間を設けて固定ビス4aにより接続されたフレーム付きパイプ、5は上向きの気液噴出孔3とフレーム付きパイプ4との隙間を決めるために器体2に取り付けられた固定座、6は上向きの気液噴出孔3から噴出された液体を、液泡の集団(シャボン玉状の気泡集合体)に生成するために、器体2の外周壁に固定された液泡生成容器、7は連続的に多量に生成された液泡の表面の薄膜水が破壊され、気体の溶存バランスのとれた水になって、液泡生成容器6の下部から外へ排出される処理水排出口である。
(Embodiment 1)
The water quality improvement device and the water quality improvement device in Embodiment 1 will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a water quality improver according to an embodiment of the present invention, wherein 1 is a water quality improver, 2 is formed to be substantially rotationally symmetric, and is reduced in diameter in the axial direction of the rotationally symmetric axis. A container body having a hollow part, 2a is a liquid introduction hole opened in a tangential direction to the peripheral wall part of the container body 3, and 3 is opened in the direction of the axis of rotational symmetry of the hollow part and is formed in a vertically reduced diameter portion of the hollow part. The upward and downward gas-liquid jet holes 4 drilled in accordance with the position of the negative pressure gas axis formed by the swirling flow of the liquid flowing into the vessel body 2 are slightly connected to the upward gas-liquid jet hole 3. A pipe with a frame connected by a fixing screw 4a with a clearance of 5mm, 5 is a fixed seat attached to the body 2 in order to determine the clearance between the upward gas-liquid jet hole 3 and the pipe 4 with a frame, 6 is upward The liquid ejected from the gas-liquid ejection hole 3 is made up of a group of liquid bubbles (a bubble bubble-shaped aggregate of bubbles). ), The liquid bubble generating container fixed to the outer peripheral wall of the vessel body 2, the thin film water on the surface of the liquid bubbles generated in large quantities continuously is destroyed, and the dissolved water balance is obtained. This is the treated water discharge port that is discharged from the lower part of the liquid bubble generating container 6 to the outside.

図2(a)は水質改善器1の液体導入孔2aに圧力水を供給して作動させた時に、水質改善器1内の水の挙動及びマイクロバブルX2や液泡X3の生成状態等を表した断面模式図である。
また、今回実験に用いた水質改善器1は塩ビ製とアクリル製のほぼ透明な部材で製作し、各部の寸法は液体導入孔2aの内径は13.0mm、器体2の内径は45.0mm、気液噴出孔3は上下共に孔径5.0mm、フレーム付きパイプ4の内径は2.2mm、液泡生成容器6は器体2に接続した部分から最上部まで88.0mmである。
尚、上向きの気液噴出孔3とフレーム付きパイプ4までの隙間は約5mmであり、又、図中の器体2の部分は、本出願人が提案した日本国特許第3682286号(微細気泡発生器及びそれを備えた微細気泡発生装置)のマイクロバブル発生器(有限会社バブルタンク社製)である。(もちろん、今回製作した寸法以外のスケールアップ又はスケールダウンの製作も可能である。)
フレーム付きパイプ4のフレームは、器体2の外周上部に突設された支持部に固定されている。フレーム付きパイプ4は、液泡生成容器6の内部を挿通されて、液泡生成容器6の上部側に上部端を開放し、周囲の空気を自吸している。
FIG. 2A shows the behavior of water in the water quality improver 1 and the generation state of the microbubbles X2 and the liquid bubbles X3 when pressure water is supplied to the liquid introduction hole 2a of the water quality improver 1 to operate. It is a cross-sectional schematic diagram.
In addition, the water quality improvement device 1 used in this experiment is made of a substantially transparent material made of polyvinyl chloride and acrylic, and the dimensions of each part are 13.0 mm for the inner diameter of the liquid introduction hole 2 a, 45.0 mm for the inner diameter of the body 2, The liquid ejection hole 3 has a hole diameter of 5.0 mm in both upper and lower sides, the inner diameter of the framed pipe 4 is 2.2 mm, and the liquid bubble generating container 6 is 88.0 mm from the portion connected to the vessel body 2 to the uppermost part.
The gap between the upward gas-liquid ejection hole 3 and the pipe 4 with the frame is about 5 mm, and the portion of the vessel 2 in the figure is Japanese Patent No. 3682286 (fine bubbles) proposed by the present applicant. A microbubble generator (manufactured by Bubble Tank Co., Ltd.) of a generator and a fine bubble generator equipped therewith. (Of course, it is possible to produce scale-up or scale-down other than the dimensions produced this time.)
The frame of the pipe 4 with the frame is fixed to a support portion protruding from the upper outer periphery of the vessel body 2. The pipe 4 with the frame is inserted through the liquid bubble generating container 6, opens the upper end to the upper side of the liquid bubble generating container 6, and sucks ambient air by itself.

図2(a)を参照しながら動作を説明する。
器体2の周壁部の接線方向に接続されている液体導入孔2aから、0.02MPa〜0.04MPa位の圧力水PWを器体2内に供給することにより、器体2内に上向きの気液噴出孔3に向かって流れる旋回流W1と、下向きの気液噴出孔3に向かって流れる旋回流W2が発生し、この両旋回流により向心力が働き、器体2内の中心付近に負圧の気体軸X1が形成される。
この気体軸X1の軸の中心位置と、若干の隙間を設けて接続されたフレーム付きパイプ4のパイプ中心部を合わせることで、フレーム付きパイプ4内の上部端に器体2内に発生している気体軸X1の負圧が伝わり、空気Xがフレーム付きパイプ4を介して気体軸X1に吸引される。この作用により、液体導入孔2aから圧力水PWを供給するだけで、空気Xは器体2内の気体軸X1に連続的に自吸されることになる。従って、少なくともフレーム付きパイプ4の上部端は、気相に開放され、あるいは気相を形成する容器などに接続され、その位置は、前述のとおり、液泡生成容器6よりも上方に設けておくことが望ましい。
又、連続的に気体軸X1に吸引された空気Xは、表面水までの距離Hが近いために上向きの気液噴出孔3から多く排出されることになる。この作用により上向きの気液噴出孔3から排出される旋回流W1の水と気体軸X1に吸引された空気Xにより、上向きの気液噴出孔3から旋回流W1が噴射された瞬間に液泡生成容器6内で多量の液泡(シャボン玉状の気泡集合体)X3を生成することができる。
このことにより旋回流W1の水を液泡X3表面の薄膜水に変化させたことになり、空気の気体分圧に応じた濃度勾配による拡散の効率がよくなることで、水中生物にとって必要な酸素ガスの吸収効率が良くなる。又、水中生物にとって不必要に溶存している気体を液泡が破壊した時に放散気体X4として大気中に放散させることができる。
又、液泡生成容器6の下部からは気体の溶存バランスのとれた水が、処理水排出口7から処理水SWとして放流される。
又、下向きの気液噴出孔3からは、器体2内で発生している気体軸X1の負圧力に吸引されて侵入しようとする負圧液VWと、器体2の内部から高速で旋回しながら排出される旋回流W2との間に置かれた、気体軸X1に集まった空気Xは剪断されてマイクロバブルX2となり、旋回流W2と共に水中に放出される。
The operation will be described with reference to FIG.
By supplying pressure water PW of about 0.02 MPa to 0.04 MPa from the liquid introduction hole 2 a connected in the tangential direction of the peripheral wall portion of the container body 2 into the container body 2, upward gas-liquid is introduced into the container body 2. A swirling flow W1 flowing toward the ejection hole 3 and a swirling flow W2 flowing toward the downward gas-liquid ejection hole 3 are generated, and the centripetal force acts by both swirling flows, and a negative pressure is generated near the center in the body 2. A gas axis X1 is formed.
By aligning the center position of the gas axis X1 and the pipe center of the pipe 4 with the frame connected with a slight gap, it is generated in the body 2 at the upper end in the pipe 4 with the frame. The negative pressure of the gas shaft X1 is transmitted, and the air X is sucked into the gas shaft X1 via the pipe 4 with the frame. With this action, the air X is continuously self-primed by the gas axis X1 in the container body 2 simply by supplying the pressure water PW from the liquid introduction hole 2a. Therefore, at least the upper end of the framed pipe 4 is opened to the gas phase or connected to a container or the like that forms the gas phase, and the position is provided above the liquid bubble generating container 6 as described above. Is desirable.
Further, the air X continuously sucked into the gas axis X1 is largely discharged from the upward gas-liquid jet hole 3 because the distance H to the surface water is short. By this action, liquid bubbles are generated at the moment when the swirling flow W1 is ejected from the upward gas-liquid ejection hole 3 by the water X of the swirling flow W1 discharged from the upward gas-liquid ejection hole 3 and the air X sucked by the gas axis X1. A large amount of liquid bubbles (soap bubble-shaped bubble aggregates) X3 can be generated in the container 6.
As a result, the water of the swirl flow W1 is changed to the thin film water on the surface of the liquid bubble X3, and the efficiency of diffusion due to the concentration gradient according to the gas partial pressure of the air is improved. Absorption efficiency is improved. Further, when the liquid bubbles are destroyed, the gas dissolved unnecessarily for the aquatic organisms can be diffused into the atmosphere as the diffused gas X4.
In addition, from the lower part of the liquid bubble generating container 6, water in which a gas dissolved balance is obtained is discharged from the treated water discharge port 7 as treated water SW.
Further, from the downward gas-liquid jet hole 3, the negative pressure liquid VW which is attracted by the negative pressure of the gas axis X 1 generated in the container body 2 and tries to enter, and swirls at high speed from the inside of the container body 2. However, the air X collected on the gas axis X1 placed between the swirling flow W2 discharged is sheared into microbubbles X2, and discharged into the water together with the swirling flow W2.

液体導入孔2aから供給される圧力水PWの圧力が低い時には器体内に形成される気体軸の負圧力が弱く、高い時には器体内に形成される気体軸の負圧力が強くなる。
この作用により、前記の気液噴出孔3の孔径5.0mmの水質改善器1の場合は、上向きの気液噴出孔3から表面水までの距離Hを、例えば圧力が低い時(0.02MPa)は1cm位、圧力が高い時(0.04MPa)は2cm位に配置することにより、フレーム付きパイプ4の上部から自吸される空気の供給量を調整しなくても適量の空気が器体内の気体軸に自吸される。
又、前記作動させた気液噴出孔3の孔径5.0mmの水質改善器1以外に、気液噴出孔3の孔径が6.5mmと8.0mmを製作し、圧力水PWの圧力を変えて気液噴出孔3の上下両孔から排出される総排出水量を測り、液泡生成容器6内の液泡生成挙動や下向きの気液噴出孔3から水中へのマイクロバブル発生状況を観察した。
圧力水PWが0.02MPaの場合は、1分間の総排出水量は気液噴出孔径が5.0mmは6.1リットル、6.5mmは8.7リットル、8.0mmは9.5リットルの水量を排出した。
又、圧力水PWを0.06MPaに変えた場合には、5.0mmは8.6リットル、6.5mmは14.2リットル、8.0mmは14.8リットルの水量を排出することができた。
前記の測定数値から圧力の高い圧力水PWを使用できる場合には、気液噴出孔の上下孔径を大きくしても液泡の生成やマイクロバブルを発生させることができ処理水量を多くできる。
又、圧力の高い圧力水PWを液体導入孔2aに供給できれば、下向きの気液噴出孔3が水中に浸かっているだけで、上向きの気液噴出孔3が空中に露出されていてもフレーム付きパイプ4の上部から空気Xを自吸することができ、液泡生成容器6内に多量の液泡を生成でき、下向きの気液噴出孔3からは水中にマイクロバブルを発生させることができることが解かった。
よって、0.06MPa以上の圧力水PWを使用すれば、下向きの気液噴出孔3が水中に浸かっているだけで作動させることができ、風等の影響で表面水の上下変動が大きい場所での作動に適することが解かった。
When the pressure of the pressure water PW supplied from the liquid introduction hole 2a is low, the negative pressure of the gas shaft formed in the body is weak, and when the pressure is high, the negative pressure of the gas shaft formed in the body is strong.
With this action, in the case of the water quality improver 1 having a diameter of 5.0 mm of the gas-liquid ejection hole 3, the distance H from the upward gas-liquid ejection hole 3 to the surface water is set, for example, when the pressure is low (0.02 MPa). When the pressure is high (0.04MPa) when the pressure is high (0.04MPa), an appropriate amount of air can be supplied to the gas shaft inside the container without adjusting the supply of air that is self-primed from the upper part of the framed pipe 4. Is self-primed.
In addition to the water quality improver 1 having the diameter of 5.0 mm of the gas-liquid jet hole 3 that has been activated, the gas-liquid jet hole 3 has a diameter of 6.5 mm and 8.0 mm, and the pressure of the pressure water PW is changed to produce gas-liquid. The total amount of discharged water discharged from both the upper and lower holes of the ejection hole 3 was measured, and the liquid bubble generation behavior in the liquid bubble generation container 6 and the state of microbubble generation from the downward gas-liquid ejection hole 3 into the water were observed.
When the pressure water PW was 0.02 MPa, the total water discharge amount per minute was 6.1 liters when the gas-liquid jet hole diameter was 5.0 mm, 8.7 liters when 6.5 mm, and 9.5 liters when 8.0 mm, and 9.5 liters when 8.0 mm.
When the pressure water PW was changed to 0.06 MPa, 5.0 mm was discharged at 8.6 liters, 6.5 mm at 14.2 liters, and 8.0 mm at 14.8 liters.
When pressure water PW having a high pressure can be used from the above measured numerical values, generation of liquid bubbles and microbubbles can be generated even if the upper and lower diameters of the gas-liquid ejection holes are increased, and the amount of treated water can be increased.
Further, if the pressurized water PW with high pressure can be supplied to the liquid introduction hole 2a, the downward gas-liquid jet hole 3 is immersed in the water, and even if the upward gas-liquid jet hole 3 is exposed in the air, a frame is attached. It is understood that air X can be self-primed from the upper part of the pipe 4, a large amount of liquid bubbles can be generated in the liquid bubble generating container 6, and microbubbles can be generated in the water from the downward gas-liquid jet holes 3. It was.
Therefore, if pressure water PW of 0.06 MPa or more is used, it can be operated simply by immersing the downward gas-liquid jet hole 3 in the water. It was found that it was suitable for operation.

図2(b)の上の図は、上向きの気液噴出孔3から噴射された旋回流W1が、液泡生成容器6内で液泡X3に変化した時の拡大模式図で、液泡X3の表面の薄膜水に液泡内のOが吸収され、又、液泡X3の表面の薄膜水に不必要に溶存している気体(例えばN)が液泡内に放散されている様子であり、図2(b)の下の図は、更に液泡X3の表面の薄膜水を拡大した図で、気体 の吸収及び の放散を表したものである。 The upper diagram of FIG. 2B is an enlarged schematic diagram when the swirling flow W1 ejected from the upward gas-liquid ejection hole 3 is changed to the liquid bubble X3 in the liquid bubble generation container 6, and the surface of the liquid bubble X3 The O 2 in the liquid bubble is absorbed by the thin film water, and the gas (for example, N 2 ) unnecessarily dissolved in the thin film water on the surface of the liquid bubble X3 is dissipated in the liquid bubble. The lower figure of b) is an enlarged view of the thin film water on the surface of the liquid bubble X3, and shows the absorption of gas O 2 and the emission of N 2 .

図3は表面水を効率よくポンプに吸引することのできるうず流吸口11の概略模式図であり、12は若干上部側の管径が大きい円錐形の吸引管、13は上部側の吸い込み口の幅Bを大きくした逆三角形状の吸引口、14はポンプPの吸引側に接続された吸水パイプ、15は水槽WT表面水を効率よく吸引し、吸引管12内にうず流WPを発生させることのできるうず流案内板で、Bは吸引口13の上部側の幅、Gは魚及び大きな異物等をポンプPに吸引しないためのガードであり、KGは水槽WTにうず流吸口11を固定するための吸盤ゴムである。(吸引管12は円柱形であっても、吸引管12内にうず流WPを発生させることができる。)   FIG. 3 is a schematic diagram of a vortex suction port 11 capable of efficiently sucking surface water into the pump, 12 is a conical suction tube having a slightly larger tube diameter on the upper side, and 13 is a suction port on the upper side. An inverted triangular suction port with an increased width B, 14 is a water absorption pipe connected to the suction side of the pump P, and 15 is a system that efficiently sucks water on the surface of the water tank WT and generates a vortex flow WP in the suction pipe 12. B is a width of the upper side of the suction port 13, G is a guard for preventing fish and large foreign matters from being sucked into the pump P, and KG fixes the vortex flow suction port 11 to the water tank WT. For sucker rubber. (Even if the suction pipe 12 is cylindrical, the vortex flow WP can be generated in the suction pipe 12.)

図4は実施の形態1の水質改善器1を水槽WT内に設置し、マイクロバブルX2により表面水上に浮上した有機物を、うず流吸口11を用いて表面水を吸引するタイプ(a)と、オーバーフローにより表面水を吸引するタイプ(b)の概略模式図である。
(a)は水槽WTの表面水を、うず流吸口11と濾過タンクSTを介してポンプPで吸引し、圧力水PWを作り水質改善器1に供給し、マイクロバブルX2を発生させ水槽WT内の糞や残餌等の有機物に付着させることにより、糞や残餌等の有機物を表面水上に浮上させている。
又、うず流吸口11は表面水上に浮上している糞や残餌等の有機物を、ポンプPに効率よく吸引するために、上部側の吸引口の幅Bを大きくした逆三角形の吸引口13にすることで表面水を効率よく引き寄せ、更に吸引管12内にうず流WPを発生させることにより、浮力が増加した糞や残餌等の有機物でも、うず流吸口11底部の吸水パイプ14の方向へ吸引させることができ、濾過タンクSTを通過させて水槽WT内の有機物を除き水質を改善することのできる水質改善装置の概略模式図である。
(b)は水槽WTの下部に濾過タンクSTを配置し、濾過タンクST内の水をポンプPにより吸引し、圧力水PWを作り上部の水槽WT内に配置された水質改善器1に配管接続して供給することで、水槽WT内にマイクロバブルX2を発生させて、前記(a)と同様に糞や残餌等の有機物に付着させ、浮力増により表面水上に浮上させる。
同時に水槽WT内の水量が増加することになるので、その表面水はオーバーフロー排出口OFから下部の濾過タンクSTに落下して濾過タンクST内を通過することにより、水質を改善することのできる水質改善装置の概略模式図である。
FIG. 4 shows the type (a) in which the water quality improver 1 of Embodiment 1 is installed in the water tank WT, and the organic matter floating on the surface water by the microbubble X2 is sucked into the surface water using the vortex suction port 11; It is a schematic diagram of the type (b) which attracts | sucks surface water by overflow.
(A) The surface water of the water tank WT is sucked by the pump P through the vortex suction port 11 and the filtration tank ST, and the pressure water PW is generated and supplied to the water quality improver 1 to generate the microbubble X2 to generate the inside of the water tank WT. By adhering to organic matter such as feces and residual food, organic materials such as feces and residual food float on the surface water.
In addition, the vortex suction port 11 is an inverted triangular suction port 13 in which the width B of the suction port on the upper side is increased in order to efficiently suck organic matter such as feces and residual food floating on the surface water into the pump P. By drawing the surface water efficiently and generating a vortex flow WP in the suction pipe 12, even in the case of organic matter such as feces and residual food with increased buoyancy, the direction of the water absorption pipe 14 at the bottom of the vortex suction port 11 It is a schematic diagram of a water quality improvement device that can be sucked into the water tank and can pass through the filtration tank ST to remove the organic matter in the water tank WT and improve the water quality.
(B) The filtration tank ST is arranged at the lower part of the water tank WT, the water in the filtration tank ST is sucked by the pump P, and the pressure water PW is made and connected to the water quality improver 1 arranged in the upper water tank WT. Thus, microbubbles X2 are generated in the water tank WT, and are attached to organic matter such as feces and residual food as in (a) above, and are floated on the surface water by increasing buoyancy.
At the same time, the amount of water in the water tank WT increases, so that the surface water falls from the overflow outlet OF to the lower filtration tank ST and passes through the filtration tank ST, so that the water quality can be improved. It is a schematic diagram of an improvement apparatus.

図5は足し水Waが供給されている比較的大きな水槽WTにおいて、水中ポンプU.Pを用いて水質改善器1を作動させた場合の模式図である。(Eは電線)
(a)は水中ポンプU.Pを水槽WTの底に設置し、フレキシブルホース21から水面上の水質改善器1に圧力水PWを供給している。この時、水質改善器1と水面までの距離が最適になるようにフロートFLに固定されているので、水槽WT内の水位が変動する場所でも、水質改善器1と水面までの距離が変わらないので最適に液泡X3の生成及びマイクロバブルX2を発生させることができる。マイクロバブルX2の発生により水槽WTの有機物は浮上し、足し水Waが供給されるので表面水はオーバーフロー水Wbとして排水される。
又、フレキシブルホース21を長くすれば水中ポンプU.Pと水質改善器1を離すこともできるので、水槽WT内の水を効果的に対流させることもできる。
(b)は水槽WT内の水位が変動しない場合に、下部が開口した筒台22を水槽WTの底に設置し、水面上部付近に水中ポンプU.Pを配置して稼動させることにより、筒台22の下部開口部分から自動的に水が水中ポンプU.Pに吸引され、圧力水PWが水質改善器1に供給される方法である。
FIG. 5 is a schematic diagram when the water quality improver 1 is operated using the submersible pump UP in a relatively large water tank WT to which the additional water Wa is supplied. (E is electric wire)
(A) installs the submersible pump UP at the bottom of the water tank WT, and supplies the pressure water PW from the flexible hose 21 to the water quality improver 1 on the water surface. At this time, since the distance between the water quality improvement device 1 and the water surface is fixed to the float FL, the distance between the water quality improvement device 1 and the water surface does not change even in a place where the water level in the water tank WT fluctuates. Therefore, it is possible to optimally generate the liquid bubbles X3 and generate the microbubbles X2. Due to the generation of the microbubbles X2, the organic matter in the water tank WT floats and additional water Wa is supplied, so that the surface water is drained as overflow water Wb.
Moreover, since the submersible pump UP and the water quality improvement device 1 can be separated if the flexible hose 21 is lengthened, the water in the water tank WT can be effectively convected.
(B) When the water level in the water tank WT does not fluctuate, the cylinder base 22 having a lower opening is installed at the bottom of the water tank WT, and the submersible pump UP is arranged near the upper surface of the water surface so as to operate. In this method, water is automatically sucked into the submersible pump UP from the lower opening portion, and the pressure water PW is supplied to the water quality improver 1.

(1)活魚水槽や魚介類養殖場等において、省エネルギーで効率良く水中に浮遊している糞や残餌等の有機物を除去し透明度の高い水質にすることができ、同時に水中生物にとって生息しやすい酸素ガス及び窒素ガス等の気体溶存バランスがとれた水質に改善できる水質改善器及び水質改善装置を提供することができる。 (1) In live fish tanks and seafood farms, etc., it is possible to remove organic matter such as feces and residual foods that are efficiently and efficiently saved in water, and to make the water quality highly transparent, and at the same time, it is easy to inhabit underwater organisms. It is possible to provide a water quality improvement device and a water quality improvement device capable of improving the water quality in which gas dissolved balance such as oxygen gas and nitrogen gas is balanced.

Claims (1)

略回転対称に形成され回転対称軸の軸方向の双方に向かって縮径した中空部を有する器体と
前記器体の周壁部に接線方向に開口されて液体を導入する液体導入孔と
前記中空部の回転対称軸の軸方向に前記中空部の双方の縮径部分を開口して形成される上向きと下向きの2つの気液噴出孔と
一の端部が上向きの前記気液噴出孔と隙間を設けて接続され、他の端部が水面上に配置されて前記器体内に気体を自吸するフレーム付きパイプと
上向きの前記気液噴出孔から噴出される液体を、前記フレーム付きパイプから吸入された気体と混合させて、液泡の集団(シャボン玉状の気泡集合体)生成するために、上向きの前記気液噴出孔を覆うように体の上側部分に接続されるとともに処理水排出口が設けられた液泡生成容器と、を有し、
下向きの前記気液噴出孔が水面下に配置されたことを特徴とする水質改善器。
A device body having a hollow portion which is reduced in diameter is formed substantially rotationally symmetrical towards both axial direction of the rotation symmetry axis,
A liquid introduction hole that opens in a tangential direction to the peripheral wall portion of the vessel body and introduces a liquid;
Two upward and downward gas-liquid jet holes formed by opening both reduced diameter portions of the hollow portion in the axial direction of the rotational symmetry axis of the hollow portion;
One end connected by providing an upward the liquid jetting holes and gaps, and framed pipes other end is self-priming gas into the instrument body is disposed above the water surface,
The liquid to be ejected upwardly of said one liquid ejection holes et al., Supra by mixing with framed pipes or al inhaled gas, to produce a population (bubble-like bubble aggregate) of the liquid foam, has the upward of the gas-liquid liquid bubbles connected Rutotomoni treated water outlet in the upper portion is provided in the way the device body to cover the ejection holes generator container, and
A water quality improver , wherein the downward gas-liquid jet holes are arranged below the water surface .
JP2008513257A 2006-04-26 2007-04-26 Water quality improvement device and water quality improvement device Active JP5193855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008513257A JP5193855B2 (en) 2006-04-26 2007-04-26 Water quality improvement device and water quality improvement device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006147427 2006-04-26
JP2006147427 2006-04-26
PCT/JP2007/059058 WO2007125996A1 (en) 2006-04-26 2007-04-26 Water quality improving unit and water quality improving device
JP2008513257A JP5193855B2 (en) 2006-04-26 2007-04-26 Water quality improvement device and water quality improvement device

Publications (2)

Publication Number Publication Date
JPWO2007125996A1 JPWO2007125996A1 (en) 2009-09-10
JP5193855B2 true JP5193855B2 (en) 2013-05-08

Family

ID=38655521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008513257A Active JP5193855B2 (en) 2006-04-26 2007-04-26 Water quality improvement device and water quality improvement device

Country Status (2)

Country Link
JP (1) JP5193855B2 (en)
WO (1) WO2007125996A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189308A (en) * 2008-02-15 2009-08-27 Marukan:Kk Filter device for ornamental fish tank
JP5899101B2 (en) * 2012-10-24 2016-04-06 新光産業株式会社 Alkaline water neutralizer
WO2016172777A1 (en) 2015-04-29 2016-11-03 Biotecam Assessoria E Desenvolvimento De Tecnologia Ambiental Ltda. Equipment and process for massive dissolution of gases in liquids
JP2017064590A (en) * 2015-09-28 2017-04-06 有限会社イケダ商会 Gas dissolution water generation device
KR101834183B1 (en) * 2016-04-15 2018-03-05 오우라코리아 주식회사 Low energy & vast water flow type micro bubble generator
CN106215730A (en) * 2016-08-05 2016-12-14 南京大学 micron bubble generator
JP2021158965A (en) * 2020-03-31 2021-10-11 株式会社フジキン Fine bubble generation system and fine bubble generation method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097958A1 (en) * 2000-06-23 2001-12-27 Ikeda, Yoshiaki Fine air bubble generator and fine air bubble generating device with the generator
JP2002346547A (en) * 2001-05-25 2002-12-03 Tekku Kogyo Kk Apparatus for generating fine bubble
JP2003181259A (en) * 1997-12-30 2003-07-02 Hirobumi Onari Swirling type fine bubble formation method and apparatus
JP2003181258A (en) * 2001-12-13 2003-07-02 Tashizen Techno Works:Kk Whirling type fine bubble formation apparatus
JP2004130290A (en) * 2002-10-11 2004-04-30 Yamaguchi Technology Licensing Organization Ltd Water treatment apparatus
JP2005028289A (en) * 2003-07-14 2005-02-03 Nittetsu Mining Co Ltd Continuous multi-stage gas-liquid contact device
WO2005121031A1 (en) * 2004-06-08 2005-12-22 Ikeda, Yoshiaki Aeration method, aeration apparatus and aeration system
JP2006000836A (en) * 2004-06-16 2006-01-05 Kesayoshi Hatano Bubble-containing water flow generator and pollutant-removing apparatus provided with it
JP2007185594A (en) * 2006-01-12 2007-07-26 Tashizen Techno Works:Kk Waste liquid treatment apparatus and method
WO2007122731A1 (en) * 2006-04-24 2007-11-01 Nitta Moore Company Microbubble generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117368A (en) * 2001-10-11 2003-04-22 Kyowa Eng Kk Gas-liquid or liquid-liquid mixer, mixing apparatus, method of manufacturing mixed liquid and method of manufacturing fine bubble-containing liquid
JP3763521B2 (en) * 2001-10-26 2006-04-05 株式会社オ−ラテック Micro bubble generator
JP2005034814A (en) * 2003-07-18 2005-02-10 Tashizen Techno Works:Kk Fine bubble generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181259A (en) * 1997-12-30 2003-07-02 Hirobumi Onari Swirling type fine bubble formation method and apparatus
WO2001097958A1 (en) * 2000-06-23 2001-12-27 Ikeda, Yoshiaki Fine air bubble generator and fine air bubble generating device with the generator
JP2002346547A (en) * 2001-05-25 2002-12-03 Tekku Kogyo Kk Apparatus for generating fine bubble
JP2003181258A (en) * 2001-12-13 2003-07-02 Tashizen Techno Works:Kk Whirling type fine bubble formation apparatus
JP2004130290A (en) * 2002-10-11 2004-04-30 Yamaguchi Technology Licensing Organization Ltd Water treatment apparatus
JP2005028289A (en) * 2003-07-14 2005-02-03 Nittetsu Mining Co Ltd Continuous multi-stage gas-liquid contact device
WO2005121031A1 (en) * 2004-06-08 2005-12-22 Ikeda, Yoshiaki Aeration method, aeration apparatus and aeration system
JP2006000836A (en) * 2004-06-16 2006-01-05 Kesayoshi Hatano Bubble-containing water flow generator and pollutant-removing apparatus provided with it
JP2007185594A (en) * 2006-01-12 2007-07-26 Tashizen Techno Works:Kk Waste liquid treatment apparatus and method
WO2007122731A1 (en) * 2006-04-24 2007-11-01 Nitta Moore Company Microbubble generator

Also Published As

Publication number Publication date
JPWO2007125996A1 (en) 2009-09-10
WO2007125996A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP5193855B2 (en) Water quality improvement device and water quality improvement device
KR100843970B1 (en) Micro Bubble Generator
JP4869922B2 (en) Fine bubble generator
JP2011011098A (en) Water purification device
CN1819868A (en) Gas Dissolution Adjustment Method, Its Device, and System
JP2000000447A (en) Swirling type fine bubble generator
JP2008126226A (en) Agitation aerator
US20150008191A1 (en) Low-turbulent aerator and aeration method
WO2005030377A1 (en) Method and apparatus for mixing of two fluids
JP3385047B2 (en) Water purification equipment
JP2003117582A (en) Water purification device
CN116903187B (en) Silver powder cleaning wastewater recycling device
JP4107486B2 (en) Water treatment equipment
JP2008093607A (en) Organic wastewater treatment apparatus and organic wastewater treatment method
JP2005218955A (en) Gas-liquid contact device
JP2007160178A (en) Water area purifying apparatus, aquatic-contamination living organism recovery ship and method for treating aquatic-contamination living organism
JP4133045B2 (en) Gas dissolver and water treatment apparatus equipped with them
JP3418608B2 (en) Gas-liquid mixing device
KR102030971B1 (en) Stirring device with float and foam removal function
JP2006297239A (en) Pressure floatation separation apparatus in waste water treatment, sludge concentration system and pressure floatation separation method
JP2000308897A (en) Water quality purifying device and water stream generation device
JP2002200415A (en) Equipment for dissolving air in water
JP2006000836A (en) Bubble-containing water flow generator and pollutant-removing apparatus provided with it
US20090206497A1 (en) Liquid waste aeration system and method
CN207153493U (en) Micro-bubble generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Ref document number: 5193855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250