JP5181550B2 - Photoelectric conversion element - Google Patents
Photoelectric conversion element Download PDFInfo
- Publication number
- JP5181550B2 JP5181550B2 JP2007176067A JP2007176067A JP5181550B2 JP 5181550 B2 JP5181550 B2 JP 5181550B2 JP 2007176067 A JP2007176067 A JP 2007176067A JP 2007176067 A JP2007176067 A JP 2007176067A JP 5181550 B2 JP5181550 B2 JP 5181550B2
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- semiconductor
- layer
- group
- conversion element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Description
本発明は光電変換素子に関し、特に色素増感型光電変換素子に関するものである。 The present invention relates to a photoelectric conversion element, and more particularly to a dye-sensitized photoelectric conversion element.
色素増感型太陽電池における増感色素としてルテニウム(Ru)錯体が広く使われている(非特許文献1)。しかし、ルテニウム自体が稀少かつ高価な金属元素であるため、安価に製造できる有機色素を用いた色素増感型太陽電池の開発が進行している。 Ruthenium (Ru) complexes are widely used as sensitizing dyes in dye-sensitized solar cells (Non-patent Document 1). However, since ruthenium itself is a rare and expensive metal element, development of a dye-sensitized solar cell using an organic dye that can be manufactured at low cost is in progress.
一方、色素増感型太陽電池の変換効率を上げるためのアプローチとして、増感色素の吸収を長波長化し、より広い波長範囲の光を利用することが検討されている。しかしながら、従来の構成の色素増感太陽電池で長波長の光を利用するためには増感色素のLUMOのエネルギーレベルにあった半導体を選択する必要が生じ、その結果電圧を下げる必要が生じてくる。 On the other hand, as an approach for increasing the conversion efficiency of a dye-sensitized solar cell, it has been studied to increase the absorption of the sensitizing dye and to use light in a wider wavelength range. However, in order to use long-wavelength light in a dye-sensitized solar cell having a conventional configuration, it is necessary to select a semiconductor that matches the LUMO energy level of the sensitizing dye, and as a result, it is necessary to lower the voltage. come.
この問題を解決するための方策として、複数の半導体層を組み合わせたタンデムセルが研究されている(非特許文献2)。 As a measure for solving this problem, a tandem cell combining a plurality of semiconductor layers has been studied (Non-Patent Document 2).
我々はこの技術に着目し、検討を行ったところ、特定の構造のアミン誘導体を含む光電変換層を用いることにより高い変換効率が得られ、且つ従来知られていたルテニウム色素等を用いたタンデムセルより安定で、長期の使用に有利であることを見出した。
本発明の目的は、複数の光電変換層を組み合わせたタンデムセルにおいて、変換効率が高く、安定で、長期間の使用に耐え得る光電変換素子を提供することにある。 An object of the present invention is to provide a photoelectric conversion element that has high conversion efficiency, is stable, and can withstand long-term use in a tandem cell in which a plurality of photoelectric conversion layers are combined.
上記課題は、以下の構成により解決することができた。 The above problem could be solved by the following configuration.
1.対向電極間に、少なくとも2種の半導体層と電解質層が設けられ、前記少なくとも2種の半導体層が電気的に直列に接続している光電変換素子であって、前記半導体層のうち少なくとも1種が酸化チタン層に下記(2)−13または(3)−6で表される化合物を担持してなる第1の層であり、 1. A photoelectric conversion element in which at least two kinds of semiconductor layers and an electrolyte layer are provided between the counter electrodes, and the at least two kinds of semiconductor layers are electrically connected in series , wherein at least one kind of the semiconductor layers is provided. Is a first layer formed by supporting a compound represented by the following (2) -13 or (3) -6 on a titanium oxide layer ,
前記第1の層以外の半導体層の少なくとも1種が、フタロシアニン化合物またはルテニウム錯体を含む第2の層であることを特徴とする光電変換素子。 The photoelectric conversion element, wherein at least one of the semiconductor layers other than the first layer is a second layer containing a phthalocyanine compound or a ruthenium complex .
2.前記第2の層がp型半導体を含む層であることを特徴とする前記1に記載の光電変換素子。 2 . 2. The photoelectric conversion element as described in 1 above, wherein the second layer is a layer containing a p-type semiconductor.
3.前記少なくとも2種の半導体層がいずれもn型半導体を含む層であることを特徴とする前記1に記載の光電変換素子。 3 . 2. The photoelectric conversion element as described in 1 above, wherein each of the at least two kinds of semiconductor layers is a layer containing an n-type semiconductor.
9.前記一般式(1)の構造を有する化合物を担持させてなる半導体層と電解質層が設けられていることを特徴とする前記1〜8の何れか1項に記載の光電変換素子。 9. 9. The photoelectric conversion element as described in any one of 1 to 8 above, wherein a semiconductor layer and an electrolyte layer on which a compound having the structure of the general formula (1) is supported are provided.
本発明により、変換効率が高く、安定で、耐久性の高い光電変換素子を提供することができた。 According to the present invention, a photoelectric conversion element having high conversion efficiency, stability, and high durability could be provided.
以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.
光電変換素子は、基本的に、少なくととも入射光側は透明な導電性支持体からなる電極、該導電性支持体上に設けられた光電変換層(半導体層)、電解質層及びもう一方の対向電極から構成されている。 The photoelectric conversion element basically includes an electrode made of a transparent conductive support at least on the incident light side, a photoelectric conversion layer (semiconductor layer) provided on the conductive support, an electrolyte layer, and the other side. It is comprised from the counter electrode.
本発明の光電変換素子について、図をもって説明する。 The photoelectric conversion element of the present invention will be described with reference to the drawings.
図1は、本発明の少なくとも2種の光電変換層(半導体層)を有するタンデム光電変換素子の構成断面図である。 FIG. 1 is a structural cross-sectional view of a tandem photoelectric conversion element having at least two types of photoelectric conversion layers (semiconductor layers) of the present invention.
図1(a)は、電極1,2及び3,4により各々対向電極を形成し、電極1及び3上には本発明の増感色素により色増感された光電変換層5,6が形成されており、各々対向電極間には電解質層7,8が設けられ、セルAとセルBが形成されている。光電変換層には何れもn型半導体が用いられた、NN極直列タンデムが形成されている。 In FIG. 1A, counter electrodes are formed by electrodes 1, 2 and 3, 4 respectively, and photoelectric conversion layers 5 and 6 color-sensitized by the sensitizing dye of the present invention are formed on electrodes 1 and 3, respectively. In addition, electrolyte layers 7 and 8 are provided between the counter electrodes, and cell A and cell B are formed. In each photoelectric conversion layer, an NN pole series tandem using an n-type semiconductor is formed.
矢印で示した入射光が透過するため、少なくとも電極1,2,3は透明な導電性支持体からなる電極であり、電極4は透明であっても、不透明の反射性の電極であっても良い。 Since the incident light indicated by the arrow is transmitted, at least the electrodes 1, 2, and 3 are electrodes made of a transparent conductive support, and the electrode 4 may be transparent or opaque reflective electrode. good.
図1(b)は、電極1及び3上に光電変換層5,6が形成されており、その間に共通の電極2′が設けられ、該電極間に電解質層7,8が形成されている。電極2′は両面に電極が形成され接続されている。光電変換層には何れもn型半導体を用い、セルAとセルBを並列に接続したNN極並列タンデムの例を示す。 In FIG. 1 (b), photoelectric conversion layers 5 and 6 are formed on the electrodes 1 and 3, a common electrode 2 'is provided therebetween, and electrolyte layers 7 and 8 are formed between the electrodes. . The electrode 2 'is connected with electrodes formed on both sides. An example of an NN pole parallel tandem in which n-type semiconductors are used for the photoelectric conversion layers and cells A and B are connected in parallel is shown.
一方、図1(c)は、電極1及び3上に光電変換層5,6が形成され、各々の光電変換層にはn型半導体又はp型半導体を用いて対向電極を形成し、該対向電極間に電解質層が形成された、NP極直列タンデムの例を示す。 On the other hand, in FIG. 1C, photoelectric conversion layers 5 and 6 are formed on the electrodes 1 and 3, and each photoelectric conversion layer is formed with a counter electrode using an n-type semiconductor or a p-type semiconductor. An example of an NP pole series tandem in which an electrolyte layer is formed between electrodes is shown.
光電変換層に用いられるp型半導体としては、具体的には、Cu2O,Cr2O3,Mn2O3,FeOx(x〜0.1),NiO,CoO,Pr2O3,Ag2O,MoO2,Bi2O3等が挙げられる。 Specific examples of the p-type semiconductor used for the photoelectric conversion layer include Cu 2 O, Cr 2 O 3 , Mn 2 O 3 , FeOx (x to 0.1), NiO, CoO, Pr 2 O 3 , Ag. 2 O, MoO 2 , Bi 2 O 3 and the like can be mentioned.
光電変換層に用いられるn型半導体としては、具体的には、ZnO,TiO2,SnO2,ThO2,V2O5,Nb2O5,Ta2O5,MoO3,WO3,MnO2等が挙げられる。 Specific examples of the n-type semiconductor used for the photoelectric conversion layer include ZnO, TiO 2 , SnO 2 , ThO 2 , V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 , MoO 3 , WO 3 and MnO. 2 etc. are mentioned.
これらの半導体は粉末として入手することができ、溶媒に分散し、必要によりバインダーを用いて電極板上に塗布,乾燥したのち、焼結することにより多孔質の半導体層を形成することができる。 These semiconductors can be obtained as a powder, and a porous semiconductor layer can be formed by dispersing in a solvent and, if necessary, applying and drying on an electrode plate using a binder, followed by sintering.
このようにして形成された半導体層に増感色素として、前記一般式(1)で示される構造を有する化合物を用いることにより、本発明の光電変換素子を得ることができ、タンデム光電変換素子の変換効率及び耐久性という問題を解決することができたものである。 By using the compound having the structure represented by the general formula (1) as the sensitizing dye in the semiconductor layer thus formed, the photoelectric conversion element of the present invention can be obtained, and the tandem photoelectric conversion element The problem of conversion efficiency and durability could be solved.
前記一般式(1)において、R1、R2で表されるアルキル基としては、例えば、メチル基、エチル基、ブチル基、オクチル基、ノニル基、オクタデシル基等であり、アリール基としては、例えば、フェニル基、ナフチル基、等を挙げることができ、複素環基としては、例えば、ピロール基、ピラゾール基、チアゾール基、イミダゾール基、トリアゾール基、ピリジル基、モルホリル基等を挙げることができる。また、R1、R2が互いに連結して環状構造を形成しても良い。 In the general formula (1), examples of the alkyl group represented by R 1 and R 2 include a methyl group, an ethyl group, a butyl group, an octyl group, a nonyl group, an octadecyl group, and the like. For example, a phenyl group, a naphthyl group, etc. can be mentioned, As a heterocyclic group, a pyrrole group, a pyrazole group, a thiazole group, an imidazole group, a triazole group, a pyridyl group, a morpholyl group etc. can be mentioned, for example. R 1 and R 2 may be connected to each other to form a cyclic structure.
Ar1で表されるアリール基としては、例えば、フェニル基、ナフチル基等が挙げられ、複素環基としては、例えば、ピロール基、ピラゾール基、チアゾール基、イミダゾール基、トリアゾール基、ピリジル基、モルホリル基等を挙げることができる。また、Ar1はR1、R2と互いに連結して環状構造を形成しても良い。 Examples of the aryl group represented by Ar 1 include a phenyl group and a naphthyl group. Examples of the heterocyclic group include a pyrrole group, a pyrazole group, a thiazole group, an imidazole group, a triazole group, a pyridyl group, and morpholyl. Groups and the like. Ar 1 may be linked to R 1 and R 2 to form a cyclic structure.
これらの基は、更に置換基を有しても良く、置換基としては、例えば、アルキル基、アルケニル基、アリール基、ヘテロ環基、ハロゲン原子、ヒドロキシ基、メルカプト基、アミノ基、シアノ基、カルボキシル基、スルホ基等を挙げることができる。 These groups may further have a substituent. Examples of the substituent include an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a halogen atom, a hydroxy group, a mercapto group, an amino group, a cyano group, A carboxyl group, a sulfo group, etc. can be mentioned.
また、Xは酸性基を表すか、酸性基を有する有機基を表し、酸性基としては、カルボキシル基、スルホ基、ポスホノ基、ヒドロキシ基、メルカプト基等を挙げることができる。 X represents an acidic group or an organic group having an acidic group, and examples of the acidic group include a carboxyl group, a sulfo group, a phosphono group, a hydroxy group, and a mercapto group.
これらの酸性基が結合する有機基としては、例えば、アルキル基、アルケニル基、アリール基、ヘテロ環基等であり、R1、R2で挙げたアルキル基、アリール基、ヘテロ環基と同様の基を挙げることができる。 Examples of the organic group to which these acidic groups are bonded include an alkyl group, an alkenyl group, an aryl group, and a heterocyclic group, and the same as the alkyl group, aryl group, and heterocyclic group mentioned in R 1 and R 2 . The group can be mentioned.
nは1〜8の整数を表し、好ましくは、2以上であり、特に好ましくは2又は3である。 n represents an integer of 1 to 8, preferably 2 or more, and particularly preferably 2 or 3.
特に好ましいXとしては、−CH=C(CN)COOH、−(ヘテロ環)−COOH等を挙げることができる。 Particularly preferred examples of X include —CH═C (CN) COOH, — (heterocycle) —COOH and the like.
前記一般式(1)において、R1、R2が、各々置換もしくは未置換のアリール基または複素環基であることが好ましい。 In the general formula (1), R 1 and R 2 are each preferably a substituted or unsubstituted aryl group or heterocyclic group.
前記一般式(1)において、R1、R2、Ar1、Xの少なくとも一つの置換基が炭素数6以上のアルキル基を含有することが好ましい。 In the general formula (1), it is preferable that at least one substituent of R 1 , R 2 , Ar 1 , and X contains an alkyl group having 6 or more carbon atoms.
以下に、前記一般式(1)で表される化合物の具体的に示すが、本発明はこれらの化合物に限定されるものではない。 Specific examples of the compound represented by the general formula (1) are shown below, but the present invention is not limited to these compounds.
本発明の増感色素は、一般的な合成法により調製することができる。 The sensitizing dye of the present invention can be prepared by a general synthesis method.
例えば、酸性基を有さないホルミル体にシアノ酢酸を反応させることにより、酸性基を導入した増感色素を得る方法が挙げられる。 For example, the method of obtaining the sensitizing dye which introduce | transduced the acidic group by making cyanoacetic acid react with the formyl body which does not have an acidic group is mentioned.
このようにして得られた本発明の増感色素は、半導体に含むことにより増感し、本発明に記載の効果を奏することが可能となる。ここで、半導体に増感色素を含むとは半導体表面への吸着、半導体が多孔質などのポーラスな構造を有する場合には、半導体の多孔質構造に前記増感色素を充填する等の種々の態様が挙げられる。 The sensitizing dye of the present invention thus obtained is sensitized by being contained in a semiconductor, and the effects described in the present invention can be achieved. Here, the inclusion of the sensitizing dye in the semiconductor means that the semiconductor is adsorbed on the surface of the semiconductor, and when the semiconductor has a porous structure such as a porous structure, the semiconductor has a porous structure filled with the sensitizing dye. An embodiment is mentioned.
また、光電変換層1m2あたりの本発明の増感色素の総含有量は0.01ミリモル〜100ミリモルの範囲が好ましく、更に好ましくは0.1ミリモル〜50ミリモルであり、特に好ましくは0.5ミリモル〜20ミリモルである。 Further, the total content of the sensitizing dye of the present invention per 1 m 2 of the photoelectric conversion layer is preferably in the range of 0.01 mmol to 100 mmol, more preferably 0.1 mmol to 50 mmol, particularly preferably 0.8. 5 to 20 mmol.
本発明の増感色素を用いて増感処理を行う場合、前記増感色素を単独で用いてもよいし、複数を併用してもよく、又他の化合物(例えば、米国特許第4,684,537号明細書、同4,927,721号明細書、同5,084,365号明細書、同5,350,644号明細書、同5,463,057号明細書、同5,525,440号明細書、特開平7−249790号公報、特開2000−150007号公報等に記載の化合物)と混合して用いることもできる。具体的には、フタロシアニン、アゾ顔料、スクアリウム、各種キレート等が用いられる。使用色素が、少なくとも2種の光電変換層で吸収波長の異なる化合物を使用することにより、より広範囲の波長の光を活用できるこちができ、高効率の変換効率の光電変換素子が期待される。 When the sensitizing treatment is performed using the sensitizing dye of the present invention, the sensitizing dye may be used alone or in combination, and other compounds (for example, US Pat. No. 4,684). No. 5,537, No. 4,927,721, No. 5,084,365, No. 5,350,644, No. 5,463,057, No. 5,525. , 440, JP-A-7-249790, JP-A-2000-150007, etc.) can also be used as a mixture. Specifically, phthalocyanine, azo pigments, squalium, various chelates, etc. are used. By using compounds having different absorption wavelengths in at least two types of photoelectric conversion layers, the dye used can be used to utilize light in a wider range of wavelengths, and a photoelectric conversion element with high conversion efficiency is expected.
特に、本発明のタンデム型光電変換素子を太陽電池として用いる場合には、光電変換の波長域をできるだけ広くして太陽光を有効に利用できるように吸収波長の異なる二種類以上の色素を用いることが好ましいく、本発明の増感色素を少なくとも1つの光電変換素子に用いることが必要である。 In particular, when the tandem photoelectric conversion element of the present invention is used as a solar cell, two or more kinds of dyes having different absorption wavelengths are used so that the wavelength range of photoelectric conversion can be made as wide as possible to effectively use sunlight. However, it is necessary to use the sensitizing dye of the present invention for at least one photoelectric conversion element.
半導体層に本発明の増感色素を含ませるには、増感色素を適切な溶媒(エタノールなど)に溶解し、その溶液中によく乾燥した光電変換層を長時間浸漬する方法が一般的である。 In order to include the sensitizing dye of the present invention in the semiconductor layer, a method in which the sensitizing dye is dissolved in an appropriate solvent (such as ethanol) and a well-dried photoelectric conversion layer is immersed in the solution for a long time is generally used. is there.
本発明の増感色素を複数種類併用したり、その他の増感色素とを併用して増感処理する際には、各々の増感色素の混合溶液を調製して用いてもよいし、それぞれの増感色素について別々の溶液を用意して、各溶液に順に浸漬して作製することもできる。各増感色素について別々の溶液を用意し、各溶液に順に浸漬して作製する場合は、光電変換層に増感色素等を含ませる順序がどのようであっても本発明に記載の効果を得ることができる。また、前記増感色素を単独で吸着させた半導体微粒子を混合する等することにより作製してもよい。 When using a plurality of sensitizing dyes of the present invention in combination, or in combination with other sensitizing dyes, a sensitizing dye mixed solution may be prepared and used. It is also possible to prepare separate solutions for these sensitizing dyes and immerse them in each solution in turn. When preparing a separate solution for each sensitizing dye and immersing in each solution in order, the effects described in the present invention can be obtained regardless of the order in which the sensitizing dye is included in the photoelectric conversion layer. Can be obtained. Further, it may be produced by mixing semiconductor fine particles adsorbed with the sensitizing dye alone.
また、本発明に係る光電変換層の増感処理の詳細については、後述する光電変換素子のところで具体的に説明する。 Further, details of the sensitizing treatment of the photoelectric conversion layer according to the present invention will be specifically described in the photoelectric conversion element described later.
また、空隙率の高い光電変換層の場合には、空隙に水分、水蒸気などにより水が半導体薄膜上、並びに半導体薄膜内部の空隙に吸着する前に、増感色素等の吸着処理を完了することが好ましい。 In the case of a photoelectric conversion layer having a high porosity, the adsorption treatment of a sensitizing dye or the like must be completed before water is adsorbed on the semiconductor thin film and in the voids inside the semiconductor thin film due to moisture, water vapor, etc. Is preferred.
(導電性支持体)
本発明の光電変換素子に用いられる導電性支持体には、金属板のような導電性材料や、ガラス板やプラスチックフイルムのような非導電性材料に導電性物質を設けた構造のものを用いることができる。導電性支持体に用いられる材料の例としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム)あるいは導電性金属酸化物(例えばインジウム−スズ複合酸化物、酸化スズにフッ素をドープしたもの)や炭素を挙げることができる。導電性支持体の厚さは特に制約されないが、0.3〜5mmが好ましい。
(Conductive support)
As the conductive support used in the photoelectric conversion element of the present invention, a conductive support having a structure in which a conductive material is provided on a conductive material such as a metal plate or a non-conductive material such as a glass plate or a plastic film is used. be able to. Examples of materials used for the conductive support include metal (for example, platinum, gold, silver, copper, aluminum, rhodium, indium) or conductive metal oxide (for example, indium-tin composite oxide, tin oxide doped with fluorine) And carbon). The thickness of the conductive support is not particularly limited, but is preferably 0.3 to 5 mm.
また導電性支持体は実質的に透明であることが好ましく、実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが更に好ましく、80%以上であることが最も好ましい。透明な導電性支持体を得るためには、ガラス板またはプラスチックフイルムの表面に、導電性金属酸化物からなる導電性層を設けることが好ましい。透明な導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。 The conductive support is preferably substantially transparent, and substantially transparent means that the light transmittance is 10% or more, more preferably 50% or more, and 80 % Or more is most preferable. In order to obtain a transparent conductive support, it is preferable to provide a conductive layer made of a conductive metal oxide on the surface of a glass plate or a plastic film. When a transparent conductive support is used, light is preferably incident from the support side.
導電性支持体は表面抵抗は、50Ω/cm2以下であることが好ましく、10Ω/cm2以下であることが更に好ましい。 The conductive support has a surface resistance of preferably 50 Ω / cm 2 or less, and more preferably 10 Ω / cm 2 or less.
《光電変換層の作製》
本発明に係る光電変換層の作製方法について説明する。
<< Production of photoelectric conversion layer >>
A method for manufacturing a photoelectric conversion layer according to the present invention will be described.
本発明に係る光電変換層の半導体が粒子状の場合には、半導体を導電性支持体に塗布あるいは吹き付けて、光電変換層を作製するのがよい。また、本発明に係る半導体が膜状であって、導電性支持体上に保持されていない場合には、半導体を導電性支持体上に貼合して光電変換層を作製することが好ましい。 When the semiconductor of the photoelectric conversion layer according to the present invention is in the form of particles, the photoelectric conversion layer is preferably produced by applying or spraying the semiconductor to a conductive support. In addition, when the semiconductor according to the present invention is in a film form and is not held on the conductive support, it is preferable to produce a photoelectric conversion layer by bonding the semiconductor onto the conductive support.
本発明に係る光電変換層の好ましい態様としては、上記導電性支持体上に半導体の微粒子を用いて焼成により形成する方法が挙げられる。 As a preferable embodiment of the photoelectric conversion layer according to the present invention, a method of forming by baking using fine particles of semiconductor on the conductive support can be mentioned.
本発明に係る半導体が焼成により作製される場合には、増感色素を用いての該半導体の増感(吸着、多孔質層への充填等)処理は、焼成後に実施することが好ましい。焼成後、半導体に水が吸着する前に素早く化合物の吸着処理を実施することが特に好ましい。 When the semiconductor according to the present invention is produced by firing, the sensitizing treatment (adsorption, filling into the porous layer, etc.) of the semiconductor using a sensitizing dye is preferably performed after firing. It is particularly preferable to perform the compound adsorption treatment quickly after the firing and before the water is adsorbed to the semiconductor.
以下、本発明に好ましく用いられる、光電変換層を半導体微粉末を用いて焼成により形成する方法について詳細に説明する。 Hereinafter, a method for forming a photoelectric conversion layer, which is preferably used in the present invention, by baking using semiconductor fine powder will be described in detail.
(半導体微粉末含有塗布液の調製)
まず、半導体の微粉末を含む塗布液を調製する。この半導体微粉末はその1次粒子径が微細な程好ましく、その1次粒子径は1〜5000nmが好ましく、更に好ましくは2〜50nmである。半導体微粉末を含む塗布液は、半導体微粉末を溶媒中に分散させることによって調製することができる。溶媒中に分散された半導体微粉末は、その1次粒子状で分散する。溶媒としては半導体微粉末を分散し得るものであればよく、特に制約されない。
(Preparation of coating liquid containing semiconductor fine powder)
First, a coating solution containing fine semiconductor powder is prepared. The finer the primary particle diameter of the semiconductor fine powder, the better. The primary particle diameter is preferably 1 to 5000 nm, more preferably 2 to 50 nm. The coating liquid containing the semiconductor fine powder can be prepared by dispersing the semiconductor fine powder in a solvent. The semiconductor fine powder dispersed in the solvent is dispersed in the form of primary particles. The solvent is not particularly limited as long as it can disperse the semiconductor fine powder.
前記溶媒としては、水、有機溶媒、水と有機溶媒との混合液が包含される。有機溶媒としては、メタノールやエタノール等のアルコール、メチルエチルケトン、アセトン、アセチルアセトン等のケトン、ヘキサン、シクロヘキサン等の炭化水素等が用いられる。塗布液中には、必要に応じ、界面活性剤や粘度調節剤(ポリエチレングリコール等の多価アルコール等)を加えることができる。溶媒中の金属化合物半導体微粉末濃度の範囲は0.1〜70質量%が好ましく、更に好ましくは0.1〜30質量%である。 Examples of the solvent include water, an organic solvent, and a mixed solution of water and an organic solvent. As the organic solvent, alcohols such as methanol and ethanol, ketones such as methyl ethyl ketone, acetone and acetyl acetone, hydrocarbons such as hexane and cyclohexane, and the like are used. A surfactant and a viscosity modifier (polyhydric alcohol such as polyethylene glycol) can be added to the coating solution as necessary. The range of the metal compound semiconductor fine powder concentration in the solvent is preferably 0.1 to 70% by mass, more preferably 0.1 to 30% by mass.
(半導体微粉末含有塗布液の塗布と形成された光電変換層の焼成処理)
上記のようにして得られた金属化合物半導体微粉末含有塗布液を、導電性支持体上に塗布または吹きつけ、乾燥等を行った後、空気中または不活性ガス中で焼成して、導電性支持体上に金属化合物半導体層(半導体膜)が形成される。
(Application of semiconductor fine powder-containing coating solution and baking treatment of the formed photoelectric conversion layer)
The coating solution containing the metal compound semiconductor fine powder obtained as described above is applied or sprayed onto a conductive support, dried, etc., and then baked in air or in an inert gas to be conductive. A metal compound semiconductor layer (semiconductor film) is formed on the support.
導電性支持体上に塗布液を塗布、乾燥して得られる皮膜は、半導体微粒子の集合体からなるもので、その微粒子の粒径は使用した半導体微粉末の1次粒子径に対応するものである。 The film obtained by applying and drying the coating liquid on the conductive support is composed of an aggregate of semiconductor fine particles, and the particle size of the fine particles corresponds to the primary particle size of the semiconductor fine powder used. is there.
このようにして導電性支持体等の導電層上に形成された半導体微粒子層は、導電性支持体との結合力や微粒子相互の結合力が弱く、機械的強度の弱いものであることから、機械的強度を高め、基板に強く固着した半導体層とするため前記半導体微粒子層の焼成処理が行われる。 Thus, the semiconductor fine particle layer formed on the conductive layer such as the conductive support is weak in bonding strength with the conductive support and fine particles, and has low mechanical strength. The semiconductor fine particle layer is baked to increase the mechanical strength and form a semiconductor layer that is strongly fixed to the substrate.
本発明においては、この光電変換層はどのような構造を有していてもよいが、多孔質構造膜(空隙を有する、ポーラスな層ともいう)であることが好ましい。 In the present invention, the photoelectric conversion layer may have any structure, but is preferably a porous structure film (also referred to as a porous layer having voids).
ここで、本発明に係る光電変換層の空隙率は10体積%以下が好ましく、更に好ましくは8体積%以下であり、特に好ましくは0.01体積%〜5体積%以下である。なお、光電変換層の空隙率は誘電体の厚み方向に貫通性のある空隙率を意味し、水銀ポロシメーター(島津ポアライザー9220型)等の市販の装置を用いて測定することができる。 Here, the porosity of the photoelectric conversion layer according to the present invention is preferably 10% by volume or less, more preferably 8% by volume or less, and particularly preferably 0.01% by volume to 5% by volume. Note that the porosity of the photoelectric conversion layer means a porosity that is penetrating in the thickness direction of the dielectric, and can be measured using a commercially available device such as a mercury porosimeter (Shimadzu porer 9220 type).
多孔質構造を有する焼成物膜になった光電変換層の膜厚は、少なくとも10nm以上が好ましく、更に好ましくは100〜10000nmである。 As for the film thickness of the photoelectric converting layer used as the baked material film | membrane which has a porous structure, 10 nm or more is preferable at least, More preferably, it is 100-10000 nm.
焼成処理時、焼成物膜の実表面積を適切に調製し、上記の空隙率を有する焼成物膜を得る観点から、焼成温度は1000℃より低いことが好ましく、更に好ましくは200〜800℃の範囲であり、特に好ましくは300〜800℃の範囲である。 From the viewpoint of appropriately preparing the actual surface area of the fired product film during the firing treatment and obtaining a fired product film having the above porosity, the firing temperature is preferably lower than 1000 ° C, more preferably in the range of 200 to 800 ° C. Especially preferably, it is the range of 300-800 degreeC.
また、見かけ表面積に対する実表面積の比は、半導体微粒子の粒径及び比表面積や焼成温度等によりコントロールすることができる。また、加熱処理後、半導体粒子の表面積を増大させたり、半導体粒子近傍の純度を高め、色素から半導体粒子への電子注入効率を高める目的で、例えば、四塩化チタン水溶液を用いた化学メッキや三塩化チタン水溶液を用いた電気化学的メッキ処理を行ってもよい。 The ratio of the actual surface area to the apparent surface area can be controlled by the particle size, specific surface area, firing temperature, etc. of the semiconductor fine particles. In addition, for the purpose of increasing the surface area of the semiconductor particles after heating, increasing the purity in the vicinity of the semiconductor particles, and increasing the efficiency of electron injection from the dye into the semiconductor particles, for example, chemical plating using a titanium tetrachloride aqueous solution or three An electrochemical plating process using a titanium chloride aqueous solution may be performed.
(半導体の増感処理)
半導体の増感処理は、前述のように本発明の増感色素を適切な溶媒に溶解し、その溶液に前記半導体を焼成した導電性支持体を浸漬することによって行われる。その際には光電変換層を焼成により形成させた導電性支持体を、予め減圧処理したり加熱処理したりして膜中の気泡を除去しおくことが好ましい。このような処理により、本発明の増感色素が光電変換層(半導体膜)内部深くに進入できるようになり、光電変換層(半導体膜)が多孔質構造膜である場合には特に好ましい。
(Semiconductor sensitization treatment)
As described above, the semiconductor sensitization treatment is performed by dissolving the sensitizing dye of the present invention in an appropriate solvent and immersing the conductive support obtained by firing the semiconductor in the solution. In that case, it is preferable to remove the bubbles in the film by subjecting the conductive support formed by firing the photoelectric conversion layer to pressure reduction treatment or heat treatment in advance. Such treatment allows the sensitizing dye of the present invention to enter deep inside the photoelectric conversion layer (semiconductor film), and is particularly preferable when the photoelectric conversion layer (semiconductor film) is a porous structure film.
本発明の増感色素を溶解するのに用いる溶媒は、前記化合物を溶解することができ、且つ半導体を溶解したり半導体と反応したりすることのないものであれば格別の制限はない。しかしながら、溶媒に溶解している水分及び気体が半導体膜に進入して、前記増感色素の吸着等の増感処理を妨げることを防ぐために、予め脱気及び蒸留精製しておくことが好ましい。 The solvent used for dissolving the sensitizing dye of the present invention is not particularly limited as long as it can dissolve the compound and does not dissolve the semiconductor or react with the semiconductor. However, in order to prevent moisture and gas dissolved in the solvent from entering the semiconductor film and hindering sensitizing treatment such as adsorption of the sensitizing dye, it is preferable to deaerate and purify in advance.
前記増感色素の溶解において、好ましく用いられる溶媒はメタノール、エタノール、n−プロパノールなどのアルコール系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサンなどのエーテル系溶媒、塩化メチレン、1,1,2−トリクロロエタンなどのハロゲン化炭化水素溶媒であり、特に好ましくはメタノール、エタノール、アセトン、メチルエチルケトン、テトラヒドロフラン、塩化メチレンである。 Solvents preferably used in dissolving the sensitizing dye include alcohol solvents such as methanol, ethanol and n-propanol, ketone solvents such as acetone and methyl ethyl ketone, diethyl ether, diisopropyl ether, tetrahydrofuran and 1,4-dioxane. Ether solvents, halogenated hydrocarbon solvents such as methylene chloride, 1,1,2-trichloroethane, and particularly preferably methanol, ethanol, acetone, methyl ethyl ketone, tetrahydrofuran, and methylene chloride.
(増感処理の温度、時間)
半導体を焼成した導電性支持体を本発明の増感色素を含む溶液に浸漬する時間は、光電変換層(半導体層)に前記増感色素が深く進入して吸着等を充分に進行させ、半導体を十分に増感させることが好ましい。また、溶液中での前記増感色素の分解等により生成して分解物が化合物の吸着を妨害することを抑制する観点から、25℃条件下では3〜48時間が好ましく、更に好ましくは4〜24時間である。この効果は、特に半導体膜が多孔質構造膜である場合において顕著である。但し、浸漬時間については25℃条件での値であり、温度条件を変化させた場合には、上記の限りではない。
(Tensing temperature and time)
The time for immersing the conductive support obtained by baking the semiconductor in the solution containing the sensitizing dye of the present invention is such that the sensitizing dye enters the photoelectric conversion layer (semiconductor layer) deeply so that adsorption or the like proceeds sufficiently, and the semiconductor Is preferably sufficiently sensitized. Further, from the viewpoint of suppressing degradation of the sensitizing dye in the solution and preventing the degradation product from interfering with the adsorption of the compound, it is preferably 3 to 48 hours under 25 ° C., more preferably 4 to 4 hours. 24 hours. This effect is particularly remarkable when the semiconductor film is a porous structure film. However, the immersion time is a value at 25 ° C., and is not limited to the above when the temperature condition is changed.
浸漬しておくにあたり本発明の増感色素を含む溶液は、前記色素が分解しないかぎりにおいて、沸騰しない温度にまで加熱して用いてもよい。好ましい温度範囲は10〜100℃であり、更に好ましくは25〜80℃であるが、前記の通り溶媒が前記温度範囲で沸騰する場合はこの限りでない。 In soaking, the solution containing the sensitizing dye of the present invention may be heated to a temperature that does not boil as long as the dye does not decompose. A preferable temperature range is 10 to 100 ° C., more preferably 25 to 80 ° C., but this is not the case when the solvent boils in the temperature range as described above.
《電解質》
次に本発明に用いられる電解質について説明する。
"Electrolytes"
Next, the electrolyte used in the present invention will be described.
本発明の光電変換素子においては、対向電極間に電解質が充填され、電解質層が形成される。電解質としてはレドックス電解質が好ましく用いられる。ここで、レドックス電解質としては、I-/I3-系や、Br-/Br3-系、キノン/ハイドロキノン系等が挙げられる。このようなレドックス電解質は従来公知の方法によって得ることができ、例えば、I-/I3-系の電解質は、ヨウ素のアンモニウム塩とヨウ素を混合することによって得ることができる。電解質層はこれらレドックス電解質の分散物で構成され、それら分散物は溶液である場合に液体電解質、常温において固体である高分子中に分散させた場合に固体高分子電解質、ゲル状物質に分散された場合にゲル電解質と呼ばれる。電解質層として液体電解質が用いられる場合、その溶媒としては電気化学的に不活性なものが用いられ、例えば、アセトニトリル、炭酸プロピレン、エチレンカーボネート等が用いられる。固体高分子電解質の例としては特開2001−160427号公報記載の電解質が、ゲル電解質の例としては「表面科学」21巻、第5号288〜293頁に記載の電解質が挙げられる。 In the photoelectric conversion element of the present invention, an electrolyte is filled between the counter electrodes to form an electrolyte layer. A redox electrolyte is preferably used as the electrolyte. Here, examples of the redox electrolyte include I − / I 3− , Br − / Br 3 − , and quinone / hydroquinone. Such a redox electrolyte can be obtained by a conventionally known method. For example, an I − / I 3− type electrolyte can be obtained by mixing iodine ammonium salt and iodine. The electrolyte layer is composed of dispersions of these redox electrolytes. These dispersions are dispersed in liquid electrolytes when they are solutions, solid polymer electrolytes and gel substances when dispersed in polymers that are solid at room temperature. It is called a gel electrolyte. When a liquid electrolyte is used as the electrolyte layer, an electrochemically inert solvent is used as the solvent, for example, acetonitrile, propylene carbonate, ethylene carbonate, or the like is used. Examples of the solid polymer electrolyte include the electrolyte described in JP-A No. 2001-160427, and examples of the gel electrolyte include the electrolyte described in “Surface Science” Vol. 21, No. 5, pages 288 to 293.
《対向電極》
本発明に用いられる対向電極について説明する。
《Counter electrode》
The counter electrode used in the present invention will be described.
前述した光電変換層(半導体層)が形成された導電性支持体に対向して設けられる対向電極は導電性を有するものであればよく、任意の導電性材料が用いられるが、I3-イオン等の酸化や他のレドックスイオンの還元反応を充分な速さで行わせる触媒能を持ったものの使用が好ましい。このようなものとしては、白金電極、導電材料表面に白金めっきや白金蒸着を施したもの、ロジウム金属、ルテニウム金属、酸化ルテニウム、カーボン等が挙げられる。 A counter electrode provided opposite to the photoelectric conversion layer (semiconductor layer) conductive support is formed as described above is as long as it has conductivity, but any conductive material is used, I 3- ions It is preferable to use a catalyst having a catalytic ability to cause oxidation or other redox ion reduction reaction at a sufficient speed. Examples of such a material include a platinum electrode, a surface of a conductive material subjected to platinum plating or platinum deposition, rhodium metal, ruthenium metal, ruthenium oxide, and carbon.
〔太陽電池〕
本発明の光電変換素子の好ましい実施態様として太陽電池が挙げられる。
[Solar cell]
A solar cell is mentioned as a preferable embodiment of the photoelectric conversion element of the present invention.
太陽電池は、本発明の光電変換素子の一態様であり、太陽光に最適の設計並びに回路設計が行われ、太陽光を光源として用いたときに最適な光電変換が行われるような構造を有する。即ち、色素増感された金属化合物半導体に太陽光が照射されうる構造となっている。本発明の太陽電池を構成する際には、前記光電極、電解質層及び対向電極をケース内に収納して封止するか、あるいはそれら全体を樹脂封止することが好ましい。 The solar cell is an aspect of the photoelectric conversion element of the present invention, and has a structure that allows optimum design and circuit design to sunlight and optimum photoelectric conversion when sunlight is used as a light source. . That is, it has a structure in which sunlight can be applied to a dye-sensitized metal compound semiconductor. When constituting the solar cell of the present invention, it is preferable that the photoelectrode, the electrolyte layer and the counter electrode are housed in a case and sealed, or the whole is sealed with resin.
本発明の太陽電池に太陽光または太陽光と同等の電磁波を照射すると、金属化合物半導体に吸着された本発明に係る増感色素は照射された光もしくは電磁波を吸収して励起する。励起によって発生した電子は金属化合物半導体に移動し、次いで導電性支持体を経由して対向電極に移動して、電荷移動層のレドックス電解質を還元する。一方、半導体に電子を移動させた本発明に係る増感色素は酸化体となっているが、対向電極から電解質層のレドックス電解質を経由して電子が供給されることにより、還元されて元の状態に戻り、同時に電荷移動層のレドックス電解質は酸化されて、再び対向電極から供給される電子により還元されうる状態に戻る。このようにして電子が流れ、本発明の光電変換素子を用いた太陽電池を構成することができる。 When the solar cell of the present invention is irradiated with sunlight or an electromagnetic wave equivalent to sunlight, the sensitizing dye according to the present invention adsorbed on the metal compound semiconductor absorbs the irradiated light or electromagnetic wave and excites it. Electrons generated by excitation move to the metal compound semiconductor, and then move to the counter electrode via the conductive support, thereby reducing the redox electrolyte of the charge transfer layer. On the other hand, the sensitizing dye according to the present invention in which electrons are transferred to a semiconductor is an oxidant, but is reduced by the supply of electrons from the counter electrode via the redox electrolyte of the electrolyte layer, and the original sensitizing dye is reduced. At the same time, the redox electrolyte of the charge transfer layer is oxidized and returned to a state where it can be reduced again by the electrons supplied from the counter electrode. In this way, electrons flow, and a solar cell using the photoelectric conversion element of the present invention can be configured.
参考例1〜7、実施例8、参考例9、10、実施例11
市販の酸化チタンペースト(粒径18nm)をフッ素ドープ酸化スズ(FTO)導電性ガラス基板へドクターブレード法により塗布し、60℃で10分間加熱してペーストを乾燥させた後、500℃で30分間焼成を行い、焼結後の膜厚が5μmの酸化チタン層を形成した。次に表1に記載の色素をエタノールに溶解させ、3×10-4Mの溶液を作製した。前記酸化チタンを焼結させたFTOガラス基板を、この溶液に室温で16時間浸漬させて、色素の吸着処理を行い第1の光電変換電極(N極)とした。
Reference Examples 1-7, Example 8, Reference Examples 9, 10, Example 11
A commercially available titanium oxide paste (particle size 18 nm) was applied to a fluorine-doped tin oxide (FTO) conductive glass substrate by the doctor blade method, heated at 60 ° C. for 10 minutes to dry the paste, and then at 500 ° C. for 30 minutes. Firing was performed to form a titanium oxide layer having a thickness of 5 μm after sintering. Next, the dyes listed in Table 1 were dissolved in ethanol to prepare a 3 × 10 −4 M solution. The FTO glass substrate on which the titanium oxide was sintered was immersed in this solution at room temperature for 16 hours, and dye adsorption treatment was performed to obtain a first photoelectric conversion electrode (N pole).
次にSnO2微粒子(粒径約20nm)を分散した酸化スズペーストを調整し、SnO2導電性ガラスからなる電極基板上にドクターブレード法で塗布、乾燥を行った後に500℃で30分間焼成を行い、膜厚5μmの多孔質状SnO2光電変換層を得た。これを3×10-4Mの亜鉛フタロシアニン(化合物A)のエタノール溶液に浸漬させて第2の光電変換電極(N極)を作製した。電解液にはヨウ化リチウム0.4M、ヨウ素0.05M、4−(t−ブチル)ピリジン0.5Mを含む3−メチルプロピオニトリル溶液を用い、先に作製した2つの光電変換電極と、白金をスパッタリングにより担持させたFTO電極を用いて図1(a)に示すNN極直列タンデムの光電変換セルを作製した。 Next, a tin oxide paste in which SnO 2 fine particles (particle size of about 20 nm) are dispersed is prepared, applied onto an electrode substrate made of SnO 2 conductive glass by a doctor blade method, dried, and then baked at 500 ° C. for 30 minutes. And a porous SnO 2 photoelectric conversion layer having a thickness of 5 μm was obtained. This was immersed in an ethanol solution of 3 × 10 −4 M zinc phthalocyanine (compound A) to produce a second photoelectric conversion electrode (N pole). As the electrolytic solution, a 2-methylpropionitrile solution containing lithium iodide 0.4M, iodine 0.05M, 4- (t-butyl) pyridine 0.5M, two photoelectric conversion electrodes prepared earlier, An NN pole series tandem photoelectric conversion cell shown in FIG. 1A was produced using an FTO electrode on which platinum was supported by sputtering.
尚、化合物Aは下記の調製方法により得られたものである。 Compound A was obtained by the following preparation method.
〔化合物Aの調製〕
化合物Aは下記の反応ルートで示される公知文献(Angew.Chem.Int.Ed.,(46),373−376,(2007))に記載の方法に従い合成した。
[Preparation of Compound A]
Compound A was synthesized according to a method described in a known document (Angew. Chem. Int. Ed., (46), 373-376, (2007)) shown by the following reaction route.
比較例1
参考例1の第1の光電変換電極(N極)と、白金を担持させたFTO電極で単一セルを作製した。
Comparative Example 1
A single cell was fabricated with the first photoelectric conversion electrode (N pole) of Reference Example 1 and an FTO electrode carrying platinum.
比較例2
参考例1において、表1に記載の色素をルテニウム色素に代えた他は参考例1と同様にして、NN極直列タンデムの光電変換セルを作製した。
Comparative Example 2
In Reference Example 1, an NN-pole series tandem photoelectric conversion cell was produced in the same manner as Reference Example 1 except that the dye described in Table 1 was replaced with a ruthenium dye.
参考例12
参考例1と同様に第1の光電変換層(N極)を用い、前記酸化チタンの焼結したFTOガラス基板をルテニウム色素のエタノール溶液に浸漬させて第3の光電変換電極(N極)を作製し、第1と第3の光電変換電極の間に白金のメッシュ電極を配置し、図1(b)に示すようなNN極並列タンデムの光電変換セルを作製した。
Reference Example 12
As in Reference Example 1, the first photoelectric conversion layer (N pole) was used, and the FTO glass substrate sintered with titanium oxide was immersed in an ethanol solution of ruthenium dye, so that the third photoelectric conversion electrode (N pole) was used. Then, a platinum mesh electrode was arranged between the first and third photoelectric conversion electrodes, and an NN pole parallel tandem photoelectric conversion cell as shown in FIG. 1B was manufactured.
比較例3
参考例12において、第1の光電変換層の色素を下記ルテニウム色素に変えた他は実施例12と同様にして、NN極並列タンデムの光電変換セルを作製した。
Comparative Example 3
In Reference Example 12, a NN pole parallel tandem photoelectric conversion cell was produced in the same manner as in Example 12 except that the dye of the first photoelectric conversion layer was changed to the following ruthenium dye.
参考例13
参考例1と同様に第1の光電変換層(N極)を用い、一方、前記酸化チタンを焼結したFTOガラス基板の酸化チタンを酸化ニッケルに代えて同様に焼結した酸化ニッケル焼結FTOガラス基板を調製した。湖の酸化ニッケル焼結基板を用い、市販のルテニウム色素のエタノール溶液に浸漬させて第4の光電変換電極(P極)を形成した。第1の光電変換電極(N極)と第4の光電変換電極(P極)を対向させて図1(c)に示すようなNP極直列タンデムの光電変換セルを作製した。
Reference Example 13
The first photoelectric conversion layer (N pole) was used as in Reference Example 1, while the nickel oxide sintered FTO was sintered in the same manner by replacing the titanium oxide of the FTO glass substrate sintered with the titanium oxide with nickel oxide. A glass substrate was prepared. Using the nickel oxide sintered substrate of the lake, it was immersed in the ethanol solution of the commercially available ruthenium pigment | dye, and the 4th photoelectric conversion electrode (P pole) was formed. 1st photoelectric conversion electrode (N pole) and 4th photoelectric conversion electrode (P pole) were made to oppose, and the photoelectric conversion cell of an NP pole series tandem as shown in FIG.1 (c) was produced.
比較例4
参考例13において、第1の光電変換層の色素をルテニウム色素に変えた他は参考例13と同様にして、NP極直列タンデムの光電変換セルを作製した。
Comparative Example 4
In Reference Example 13, an NP pole series tandem photoelectric conversion cell was produced in the same manner as Reference Example 13 except that the dye of the first photoelectric conversion layer was changed to ruthenium dye.
以上の様にして作製した光電変換セルを用い以下の評価を行った。 The following evaluation was performed using the photoelectric conversion cell produced as described above.
ルテニウム色素:ジチオシアナト−ビス(2,2’−ビピリジル−4,4’−ジカルボキシラート)ルテニウム
〔評価〕
第1〜第4の光電変換電極を13ppmのオゾン雰囲気下で20分間曝露させた後、同様に光電変換セルを作製し、オゾン処理の有無での発電特性の変化を比較した。
Ruthenium dye: Dithiocyanato-bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium [Evaluation]
After the first to fourth photoelectric conversion electrodes were exposed for 20 minutes in an ozone atmosphere of 13 ppm, photoelectric conversion cells were similarly produced, and changes in power generation characteristics with and without ozone treatment were compared.
評価は、強度100mW/cm2のキセノンランプ照射下、半導体電極に5×5mm2のマスクをかけた条件下で光電変換特性の測定を行った。即ち、実施例の光電変換素子について、I−Vテスターを用いて室温にて電流−電圧特性を測定し、短絡電流(Isc)、開放電圧(Voc)、及び形状因子(F.F.)を求め、これらから光電変換効率(η(%))を求めた。なお、太陽電池の光電変換効率(η(%))は、下記式(A)に基づいて算出した。 In the evaluation, photoelectric conversion characteristics were measured under the condition that a semiconductor electrode was covered with a 5 × 5 mm 2 mask under irradiation of a xenon lamp having an intensity of 100 mW / cm 2 . That is, the current-voltage characteristics of the photoelectric conversion elements of the examples were measured at room temperature using an IV tester, and the short circuit current (Isc), the open circuit voltage (Voc), and the form factor (FF) were measured. The photoelectric conversion efficiency (η (%)) was determined from these. In addition, the photoelectric conversion efficiency ((eta) (%)) of the solar cell was computed based on the following formula (A).
η=100×(Voc×Isc×F.F.)/P・・・(A)
ここで、Pは入射光強度[mW/cm-2]、Vocは開放電圧[V]、Iscは短絡電流密度[mA・cm-2]、F.F.は形状因子を示す。
η = 100 × (Voc × Isc × FF) / P (A)
Here, P is the incident light intensity [mW / cm −2 ], Voc is the open circuit voltage [V], Isc is the short-circuit current density [mA · cm −2 ], F.V. F. Indicates a form factor.
表1にオゾン曝露有無の特性評価を示す。 Table 1 shows the evaluation of the characteristics of ozone exposure.
本発明の色素は比較例のルテニウム色素に比べ、オゾンに対する安定性に優れるとともに、タンデム化することにより良好な変換効率を示すことがわかる。 It can be seen that the dye of the present invention is superior in stability to ozone as compared with the ruthenium dye of the comparative example, and exhibits a good conversion efficiency by tandemization.
1,2,3,4 電極
5,6 光電変換層
7,8 電解質層
1, 2, 3, 4 Electrodes 5, 6 Photoelectric conversion layer 7, 8 Electrolyte layer
Claims (3)
前記半導体層のうち少なくとも1種が酸化チタン層に下記(2)−13または(3)−6で表される化合物を担持してなる第1の層であり、
At least one of the semiconductor layers is a first layer formed by supporting a compound represented by the following (2) -13 or (3) -6 on a titanium oxide layer ,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007176067A JP5181550B2 (en) | 2007-07-04 | 2007-07-04 | Photoelectric conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007176067A JP5181550B2 (en) | 2007-07-04 | 2007-07-04 | Photoelectric conversion element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009016158A JP2009016158A (en) | 2009-01-22 |
JP5181550B2 true JP5181550B2 (en) | 2013-04-10 |
Family
ID=40356821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007176067A Expired - Fee Related JP5181550B2 (en) | 2007-07-04 | 2007-07-04 | Photoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5181550B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101497745B (en) * | 2009-03-04 | 2012-09-19 | 中国科学院长春应用化学研究所 | Organic dye and dye-sensitized solar cell prepared thereby |
KR101941982B1 (en) * | 2011-01-25 | 2019-01-24 | 가부시키가이샤 아데카 | Novel compound, dye and colored photosensitive composition |
EP2551865A3 (en) * | 2011-07-29 | 2016-05-25 | Konica Minolta Business Technologies, Inc. | Photoelectric conversion element and solar cell |
CN102637536A (en) * | 2012-04-28 | 2012-08-15 | 上海大学 | Preparation of solar battery sensitized by utilizing zinc phthalocyanine bisphenol A epoxide derivative |
CN102675897B (en) * | 2012-05-18 | 2015-04-29 | 陕西师范大学 | Thiourea/urea aromatic amine dye, as well as preparation method and application thereof |
JP6440296B2 (en) * | 2014-08-27 | 2018-12-19 | 公立大学法人首都大学東京 | Triphenylamine-linked dibenzopyromethene dyes as sensitizers for dye-sensitized solar cells |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1197725A (en) * | 1997-09-16 | 1999-04-09 | Fuji Photo Film Co Ltd | Photoelectric conversion element and photoelectric chemical cell |
SE9801799D0 (en) * | 1998-05-20 | 1998-05-20 | Sten Eric Lindquist | Dye sensitized nanostructured photovoltaic tandem cell |
JP2005538557A (en) * | 2002-09-10 | 2005-12-15 | アグフア−ゲヴエルト | Photovoltaic device comprising 1,3,5-tris-aminophenyl-benzene compound |
JP3997305B2 (en) * | 2004-11-18 | 2007-10-24 | 国立大学法人信州大学 | np tandem dye-sensitized solar cell |
JP4604183B2 (en) * | 2005-06-14 | 2010-12-22 | 独立行政法人産業技術総合研究所 | Ruthenium complex, dye-sensitized metal oxide semiconductor electrode containing the complex, and solar cell including the semiconductor electrode |
US20070028961A1 (en) * | 2005-08-04 | 2007-02-08 | General Electric Company | Organic dye compositions and use thereof in photovoltaic cells |
-
2007
- 2007-07-04 JP JP2007176067A patent/JP5181550B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009016158A (en) | 2009-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5572029B2 (en) | Metal complex dye, photoelectric conversion element and photoelectrochemical cell | |
JP5135774B2 (en) | Photoelectric conversion element and solar cell | |
Basu et al. | Highly stable photoelectrochemical cells for hydrogen production using a SnO 2–TiO 2/quantum dot heterostructured photoanode | |
JP5181814B2 (en) | Photoelectric conversion element and solar cell | |
Misra et al. | Synthesis, optical and electrochemical properties of new ferrocenyl substituted triphenylamine based donor–acceptor dyes for dye sensitized solar cells | |
JP5681716B2 (en) | Metal complex dye, photoelectric conversion element and photoelectrochemical cell | |
JP2008186752A (en) | Photoelectric conversion element and solar cell | |
JP5181550B2 (en) | Photoelectric conversion element | |
JP5194893B2 (en) | Dye-sensitized photoelectric conversion element and solar cell | |
JP2009269987A (en) | Novel compound, photoelectric transducer and solar cell | |
US20110277832A1 (en) | Method for production of titanium dioxide composite and photoelectric conversion device incorporated with the same | |
JPWO2012017872A1 (en) | Metal complex dye, photoelectric conversion element and photoelectrochemical cell | |
Bhattacharya et al. | CdTe nanoparticles decorated titania for dye sensitized solar cell: a novel co-sensitizer approach towards highly efficient energy conversion | |
JP2007265694A (en) | Dye-sensitized solar cell and its manufacturing method | |
JP2012051952A (en) | Pigment, photoelectric element and photoelectrochemical battery | |
JP5168761B2 (en) | Semiconductor for photoelectric conversion material, photoelectric conversion element, solar cell, and method for manufacturing semiconductor for photoelectric conversion material | |
JP2012156096A (en) | Photoelectric conversion element, and dye-sensitized solar cell comprising the same | |
JP5233318B2 (en) | Photoelectric conversion element and solar cell | |
JP2009093909A (en) | Dye-sensitized photoelectric conversion element, and manufacturing method thereof | |
JP5223362B2 (en) | Photoelectric conversion element and solar cell | |
JP2010168511A (en) | New compound, photoelectric transducer, and solar cell | |
Tedla et al. | Shelf-life studies on an ionic-liquid-stabilized dye-sensitized solar cell | |
JP2012036239A (en) | Metal complex dye, photoelectric conversion element, and photoelectrochemical cell | |
JP5206010B2 (en) | Dye-sensitized photoelectric conversion element and solar cell | |
JP5332114B2 (en) | Photoelectric conversion element and solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100303 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121231 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160125 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |