JP5180596B2 - Reaction method using sulfonylimidate as a nucleophile - Google Patents
Reaction method using sulfonylimidate as a nucleophile Download PDFInfo
- Publication number
- JP5180596B2 JP5180596B2 JP2008003733A JP2008003733A JP5180596B2 JP 5180596 B2 JP5180596 B2 JP 5180596B2 JP 2008003733 A JP2008003733 A JP 2008003733A JP 2008003733 A JP2008003733 A JP 2008003733A JP 5180596 B2 JP5180596 B2 JP 5180596B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon atoms
- group
- general formula
- represented
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heterocyclic Compounds Containing Sulfur Atoms (AREA)
- Furan Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、スルホニルイミデートの求核剤としての使用を提供するものである。より詳細には、本発明は、一般式(1)で表されるスルホニルイミデートを求核剤として使用し、求核反応生成物を製造する方法に関する。 The present invention provides the use of sulfonyl imidates as nucleophiles. More specifically, the present invention relates to a method for producing a nucleophilic reaction product using the sulfonyl imidate represented by the general formula (1) as a nucleophile.
医薬品産業や農薬産業においては新たな活性化合物の開発のために多数の化合物が製造されてきている。また、近年では有機EL素子などの素子材料として多くの有機化合物が製造されてきている。
このような有機化合物の製造においては、新しい有機化合物の合成手法の開発が望まれてきている。求核反応は有機化合物を製造する際の代表的な化学反応のひとつとして知られており、多くの産業分野で利用されてきている。特に、求核付加反応は、新たなC−C結合やC−N結合を生成させるための化学反応として開発が進められてきている(非特許文献1〜8参照)。しかし、これらの反応にはほぼ等量という多量の塩基が必要とされたり、また求核反応基質化合物の反応性を確保するために反応サイトに隣接する位置に電子吸引基を有していることが必要とされてきた(例えば、非特許文献9〜11参照)。
このために、塩基の使用量が少なく、かつ一般性の高い新しい求核試薬の開発が求められている。
In the pharmaceutical and agrochemical industries, a large number of compounds have been produced for the development of new active compounds. In recent years, many organic compounds have been produced as element materials such as organic EL elements.
In the production of such organic compounds, development of new synthetic methods for organic compounds has been desired. Nucleophilic reaction is known as one of typical chemical reactions in producing organic compounds and has been used in many industrial fields. In particular, the nucleophilic addition reaction has been developed as a chemical reaction for generating a new C—C bond or C—N bond (see Non-Patent Documents 1 to 8). However, these reactions require a large amount of base of approximately the same amount, and have an electron withdrawing group at a position adjacent to the reaction site to ensure the reactivity of the nucleophilic reaction substrate compound. Has been required (see, for example, Non-Patent Documents 9 to 11).
For this reason, development of a new nucleophilic reagent with a small amount of base and high generality is required.
本発明は、塩基の使用量が少なく、かつ一般性の高い新しい求核試薬を提供するものである。本発明は、本発明の求核試薬を用いた求核反応による各種の有機化合物の製造方法を提供する。 The present invention provides a new nucleophilic reagent that uses a small amount of base and is highly general. The present invention provides methods for producing various organic compounds by nucleophilic reaction using the nucleophilic reagent of the present invention.
本発明者らは、新しい求核試薬(求核剤)を開発してきたが、スルホニルイミデートは、従来から知られていたが、これを求核剤として用いる方法は開発されていなかった。本発明者らは、スルホニルイミデートが求核試薬(求核剤)としての反応性を有することを初めて見出したものである。本発明は、スルホニルイミデートを炭素求核剤として用いる初めての反応を提供するものである。 The present inventors have developed a new nucleophile (nucleophile), and sulfonyl imidate has been conventionally known, but a method using this as a nucleophile has not been developed. The present inventors have found for the first time that sulfonyl imidate has reactivity as a nucleophile (nucleophile). The present invention provides the first reaction using sulfonylimidate as a carbon nucleophile.
即ち、本発明は、次の一般式(1) That is, the present invention provides the following general formula (1)
(式中、R1、及びR2は、それぞれ独立して置換基を有してもよい炭化水素基を表し、R3及びR4は、それぞれ独立して水素原子又は置換基を有してもよい炭化水素基を表す。)
で表されるスルホニルイミデートを、塩基の存在下で求核反応基質化合物と反応させて求核反応生成物を製造する方法に関する。
また、本発明は、前記した本発明の方法で製造された求核反応生成物のスルホニルイミデート部分を、加水分解又は還元的加水分解して、対応するエステル、アミド、又はアルデヒドを製造する方法に関する。
さらに、本発明は、前記一般式(1)で表されるスルホニルイミデートを、求核反応における求核試薬(求核剤)として使用する方法に関する。また、本発明は、前記一般式(1)で表されるスルホニルイミデートの、求核反応における求核試薬(求核剤)として使用に関する。さらに本発明は、求核反応における求核試薬(求核剤)としての前記一般式(1)で表されるスルホニルイミデートに関する。
(In the formula, R 1 and R 2 each independently represent a hydrocarbon group which may have a substituent, and R 3 and R 4 each independently have a hydrogen atom or a substituent. Represents a good hydrocarbon group.)
Is reacted with a nucleophilic reaction substrate compound in the presence of a base to produce a nucleophilic reaction product.
The present invention also provides a method for producing a corresponding ester, amide, or aldehyde by hydrolyzing or reductively hydrolyzing the sulfonyl imidate moiety of the nucleophilic reaction product produced by the above-described method of the present invention. About.
Furthermore, this invention relates to the method of using the sulfonyl imidate represented by the said General formula (1) as a nucleophile (nucleophile) in a nucleophilic reaction. The present invention also relates to the use of the sulfonyl imidate represented by the general formula (1) as a nucleophile (nucleophile) in a nucleophilic reaction. Furthermore, this invention relates to the sulfonyl imidate represented by the said General formula (1) as a nucleophile (nucleophile) in a nucleophilic reaction.
本発明をより詳細に説明すれば以下のとおりとなる。
[1]前記一般式(1)で表されるスルホニルイミデートを、塩基の存在下で求核反応基質化合物と反応させて求核反応生成物を製造する方法。
[2]求核反応基質化合物が、次の一般式(2)
Y=Z−R5 (2)
(式中、YはR6−CH、R7−C(R8)、R9O−CO−N、又はR9−CO−Nを表し、ZはN、又はC−CO−OR10を表し、R5は置換基を有してもよい炭化水素基、−CORa、−COORa、又は−SO2−Ra(式中、Raは置換基を有してもよい炭化水素基を表す。)を表し、R6、R7、及びR8は、それぞれ独立して水素原子又は置換基を有してもよい炭化水素基を表し、R9及びR10はそれぞれ独立して置換基を有してもよい炭化水素基を表す。)
で表される不飽和化合物であって、求核反応生成物が次の一般式(3)
The present invention will be described in more detail as follows.
[1] A method for producing a nucleophilic reaction product by reacting a sulfonyl imidate represented by the general formula (1) with a nucleophilic reaction substrate compound in the presence of a base.
[2] A nucleophilic reaction substrate compound is represented by the following general formula (2)
Y = ZR 5 (2)
Wherein Y represents R 6 —CH, R 7 —C (R 8 ), R 9 O—CO—N, or R 9 —CO—N, Z represents N, or C—CO—OR 10 . R 5 represents a hydrocarbon group which may have a substituent, —CORa, —COORa, or —SO 2 —Ra (wherein, Ra represents a hydrocarbon group which may have a substituent). R 6 , R 7 , and R 8 each independently represent a hydrogen atom or a hydrocarbon group that may have a substituent, and R 9 and R 10 each independently have a substituent. Represents an optionally hydrocarbon group.)
A nucleophilic reaction product is represented by the following general formula (3):
(式中、R1、R2、R3、R4、Y、Z、及びR5は、前記一般式(1)及び(2)で示したものと同じである。)
である化合物である前記[1]に記載の方法。
[3]求核反応基質化合物が、次の一般式(4)
(In the formula, R 1 , R 2 , R 3 , R 4 , Y, Z, and R 5 are the same as those shown in the general formulas (1) and (2).)
The method according to [1] above, wherein the compound is
[3] A nucleophilic reaction substrate compound is represented by the following general formula (4):
(式中、R11は置換基を有してもよい炭化水素基、置換基を有してもよい複素環基、又は炭素数1〜10のアルコキシカルボニル基を表し、R12は置換基を有してもよい炭化水素オキシカルボニル基又は置換基を有してもよい炭化水素スルホニル基を表す。)
であって、求核反応生成物が次の一般式(5)
(In the formula, R 11 represents a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, or an alkoxycarbonyl group having 1 to 10 carbon atoms, and R 12 represents a substituent. It represents a hydrocarbon oxycarbonyl group which may have or a hydrocarbon sulfonyl group which may have a substituent.)
The nucleophilic reaction product is represented by the following general formula (5)
(式中、R1、R2、R3、R4、R11、及びR12は、前記一般式(1)及び(4)で示したものと同じである。)
で表されるアミノ化合物である前記[1]又は[2]に記載の方法。
[4]一般式(4)で表されるイミン化合物が、アルデヒドと一般式H2N−R12(式中、R12は前記一般式(4)で示したものと同じである。)で表されるアミノ化合物から、反応系中で生成されるものである前記[3]に記載の方法。
[5]求核反応基質化合物が、次の一般式(6)
(In the formula, R 1 , R 2 , R 3 , R 4 , R 11 , and R 12 are the same as those shown in the general formulas (1) and (4).)
The method according to [1] or [2] above, which is an amino compound represented by the formula:
[4] The imine compound represented by the general formula (4) is an aldehyde and a general formula H 2 N—R 12 (wherein R 12 is the same as that represented by the general formula (4)). The method according to [3] above, wherein the method is produced from the amino compound represented in the reaction system.
[5] Nucleophilic reaction substrate compound is represented by the following general formula (6)
(式中、R13、R14、R15、及びR16は、それぞれ独立して置換基を有してもよい炭化水素基を表す。)
であって、求核反応生成物が次の一般式(7)
(In the formula, R 13 , R 14 , R 15 , and R 16 each independently represent a hydrocarbon group that may have a substituent.)
The nucleophilic reaction product is represented by the following general formula (7)
(式中、R1、R2、R3、R4、R13、R14、R15、及びR16は、前記一般式(1)及び(6)で示したものと同じである。)
で表されるカルボニル化合物である前記[1]又は[2]に記載の方法。
[6]求核反応基質化合物が、次の一般式(8)
(In the formula, R 1 , R 2 , R 3 , R 4 , R 13 , R 14 , R 15 , and R 16 are the same as those shown in the general formulas (1) and (6).)
The method according to [1] or [2] above, which is a carbonyl compound represented by the formula:
[6] A nucleophilic reaction substrate compound is represented by the following general formula (8):
(式中、R17及びR18は、それぞれ独立して、置換基を有してもよい炭化水素基、又は置換基を有してもよい炭化水素オキシ基を表す。)
であって、求核反応生成物が次の一般式(9)
(In the formula, R 17 and R 18 each independently represents a hydrocarbon group which may have a substituent, or a hydrocarbon oxy group which may have a substituent.)
The nucleophilic reaction product is represented by the following general formula (9)
(式中、R1、R2、R3、R4、R17、及びR18は、前記一般式(1)及び(8)で示したものと同じである。)
で表されるヒドラジン化合物である前記[1]又は[2]に記載の方法。
[7]塩基の量が、一般式(1)で表されるスルホニルイミデートに対して0.01〜20モル%である前記[1]〜[6]のいずれかに記載の方法。
[8]求核反応生成物が、立体選択的生成物である前記[1]〜[7]のいずれかに記載の方法。
[9]前記[1]〜[8]のいずれかに記載の方法で製造された求核反応生成物のスルホニルイミデート部分を加水分解又は還元的加水分解して、対応するエステル、アミド、又はアルデヒドを製造する方法。
[10]前記一般式(1)で表されるスルホニルイミデートを、求核反応における求核試薬として使用する方法。
(In the formula, R 1 , R 2 , R 3 , R 4 , R 17 , and R 18 are the same as those shown in the general formulas (1) and (8).)
The method according to [1] or [2] above, which is a hydrazine compound represented by the formula:
[7] The method according to any one of [1] to [6], wherein the amount of the base is 0.01 to 20 mol% with respect to the sulfonyl imidate represented by the general formula (1).
[8] The method according to any one of [1] to [7], wherein the nucleophilic reaction product is a stereoselective product.
[9] above [1] to [8] or the hydrolyzed or reductive hydrolysis of sulfonyl imidate portion of nucleophilic reaction products prepared by the method described for the corresponding ester, amide, or A method for producing aldehydes.
[10] A method of using the sulfonyl imidate represented by the general formula (1) as a nucleophile in a nucleophilic reaction.
本発明は、前記一般式(1)で表されるスルホニルイミデートからなる新規な求核試薬(求核剤)を提供するものであり、本発明の方法は、本発明が提供する新規な求核試薬(求核剤)を求核反応に適用することを特徴とするものである。
したがって、本発明の方法は、前記一般式(1)で表されるスルホニルイミデートからなる求核試薬(求核剤)を用いる全ての方法を包含するものであり、本発明における求核反応基質化合物としては、求核反応において本発明の求核試薬との反応性を有する化合物のことを意味する。
本発明の方法における好ましい求核反応としては、ミカエル付加反応のような求核付加反応が挙げられる。本発明の求核付加反応における、付加される不飽和結合としては、C=C結合、C=N結合、及びN=N結合などが挙げられる
本発明の方法における好ましい求核反応基質化合物としては、前記した一般式(2)で表される化合物が挙げられる。より好ましい求核反応基質化合物としては、当該一般式(2)で表される化合物のうちの前記した一般式(4)、一般式(6)、又は一般式(8)で表される化合物が挙げられる。
The present invention provides a novel nucleophile (nucleophile) comprising the sulfonyl imidate represented by the general formula (1), and the method of the present invention is a novel nucleophile provided by the present invention. A nuclear reagent (nucleophile) is applied to a nucleophilic reaction.
Therefore, the method of the present invention includes all methods using a nucleophilic reagent (nucleophile) comprising the sulfonyl imidate represented by the general formula (1), and the nucleophilic reaction substrate in the present invention. The compound means a compound having reactivity with the nucleophilic reagent of the present invention in a nucleophilic reaction.
A preferable nucleophilic reaction in the method of the present invention includes a nucleophilic addition reaction such as Michael addition reaction. Examples of the unsaturated bond to be added in the nucleophilic addition reaction of the present invention include C═C bond, C═N bond, and N═N bond. Preferred nucleophilic reaction substrate compounds in the method of the present invention And compounds represented by the general formula (2) described above. As a more preferable nucleophilic reaction substrate compound, among the compounds represented by the general formula (2), the compounds represented by the general formula (4), the general formula (6), or the general formula (8) described above. Can be mentioned.
本発明における一般式(1)〜(9)における「炭化水素基」としては、アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、アリールアルケニル基などの飽和又は不飽和の炭化水素基が挙げられる。
アルキル基としては、炭素数1〜20、好ましくは炭素数1〜15、炭素数1〜10の直鎖状又は分枝状のアルキル基が挙げられる。このようなアルキル基の例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、などが挙げられる。
アルケニル基としては、炭素数2〜20、好ましくは炭素数2〜15、炭素数2〜10の直鎖状又は分枝状のアルケニル基が挙げられる。このようなアルケニル基の例としては、ビニル基、1−メチル−ビニル基、2−メチル−ビニル基、n−2−プロペニル基、1,2−ジメチル−ビニル基、1−メチル−プロペニル基、2−メチル−プロペニル基、n−1−ブテニル基、n−2−ブテニル基、n−3−ブテニル基などが挙げられる。
シクロアルキル基としては、炭素数3〜15、好ましくは炭素数3〜10の飽和又は不飽和の単環式、多環式又は縮合環式の脂環式炭化水素基が挙げられる。このようなシクロアルキル基としては、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、ビシクロ[1.1.0]ブチル基、トリシクロ[2.2.1.0]ヘプチル基、ビシクロ[3.2.1]オクチル基、ビシクロ[2.2.2.]オクチル基、アダマンチル基(トリシクロ[3.3.1.1]デカニル基)、ビシクロ[4.3.2]ウンデカニル基、トリシクロ[5.3.1.1]ドデカニル基、などが挙げられる。
アリール基としては、炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の炭素環式芳香族基が挙げられる。このようなアリール基としては、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントリル基、などが挙げられる。
アラルキル基としては、炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の炭素環式芳香族基(アリール基)に、前記した炭素数1〜20のアルキル基が結合した、炭素数7〜40、好ましくは炭素数7〜20、炭素数7〜15のアラルキル基(炭素環式芳香脂肪族基)が挙げられる。このような基としては、例えば、ベンジル基、フェネチル基、α−ナフチル−メチル基などが挙げられる。
アリールアルケニル基としては、炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の炭素環式芳香族基(アリール基)に、前記した炭素数2〜20のアルケニル基が結合した、炭素数8〜40、好ましくは炭素数8〜20、炭素数8〜15のアリールアルケニル基が挙げられる。このような基としては、例えば、スチリル基、2−ナフチル−ビニル基などが挙げられる
また、本発明における炭化水素基は、求核反応に悪影響を与えない範囲で、前記してきた炭化水素基における1個又は2個以上の炭素原子が、窒素原子、酸素原子、又は硫黄原子などの異種原子で置換されたものであってもよい。
The “hydrocarbon group” in the general formulas (1) to (9) in the present invention is a saturated or unsaturated hydrocarbon group such as an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, and an arylalkenyl group. Is mentioned.
Examples of the alkyl group include linear or branched alkyl groups having 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms and 1 to 10 carbon atoms. Examples of such alkyl groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, An octyl group, and the like.
Examples of the alkenyl group include linear or branched alkenyl groups having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms and 2 to 10 carbon atoms. Examples of such alkenyl groups include vinyl, 1-methyl-vinyl, 2-methyl-vinyl, n-2-propenyl, 1,2-dimethyl-vinyl, 1-methyl-propenyl, Examples include 2-methyl-propenyl group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group and the like.
Examples of the cycloalkyl group include saturated or unsaturated monocyclic, polycyclic or condensed cyclic alicyclic hydrocarbon groups having 3 to 15 carbon atoms, preferably 3 to 10 carbon atoms. Examples of such a cycloalkyl group include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a bicyclo [1.1.0] butyl group, a tricyclo [2.2.1.0] heptyl group, and a bicyclo group. [3.2.1] Octyl group, bicyclo [2.2.2. Octyl group, adamantyl group (tricyclo [3.3.1.1] decanyl group), bicyclo [4.3.2] undecanyl group, tricyclo [5.3.1.1] dodecanyl group, and the like.
Examples of the aryl group include monocyclic, polycyclic, or condensed cyclic carbocyclic aromatic groups having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms and 6 to 12 carbon atoms. Examples of such an aryl group include a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, and an anthryl group.
As the aralkyl group, a monocyclic, polycyclic or condensed cyclic carbocyclic aromatic group (aryl group) having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms and 6 to 12 carbon atoms, Examples thereof include aralkyl groups (carbocyclic araliphatic groups) having 7 to 40 carbon atoms, preferably 7 to 20 carbon atoms, and 7 to 15 carbon atoms, to which the above-described alkyl group having 1 to 20 carbon atoms is bonded. Examples of such a group include a benzyl group, a phenethyl group, and an α-naphthyl-methyl group.
The arylalkenyl group is a monocyclic, polycyclic or condensed cyclic carbocyclic aromatic group (aryl group) having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms and 6 to 12 carbon atoms. And an arylalkenyl group having 8 to 40 carbon atoms, preferably 8 to 20 carbon atoms, and 8 to 15 carbon atoms, to which the above alkenyl group having 2 to 20 carbon atoms is bonded. Examples of such a group include a styryl group, 2-naphthyl-vinyl group and the like. In addition, the hydrocarbon group in the present invention is within the above-described hydrocarbon group within a range that does not adversely affect the nucleophilic reaction. One or two or more carbon atoms may be substituted with a different atom such as a nitrogen atom, an oxygen atom, or a sulfur atom.
一般式(4)におけるR11の複素環基としては、1個〜4個、好ましくは1〜3個又は1〜2個の窒素原子、酸素原子、又は硫黄原子からなる異種原子を含有する3〜8員、好ましくは5〜8員の環を有する単環式、多環式、又は縮合環式の複素環基が挙げられる。このような複素環基としては、例えば、2−フリル基、2−チエニル基、2−ピロリル基、2−ピリジル基、2−インドール基、ベンゾイミダゾリル基などが挙げられる。
これらの炭化水素基や複素環基は、求核反応に悪影響を与えない各種の官能基で置換されていてもよい。このような置換基としては、例えば、前記してきたアルキル基、前記してきたアルケニル基、前記してきたシクロアルキル基、前記してきたアリール基、前記してきたアラルキル基、塩素原子などのハロゲン原子、水酸基、ニトロ基、1個〜4個の窒素原子、酸素原子、又は硫黄原子からなる異種原子を含有する3〜8員の環を有する複素環基、炭素数1〜20のアルコキシ基、炭素数2〜21のアルキルカルボニルオキシ基、炭素数7〜37のアリール−カルボニルオキシ基、炭素数8〜41のアラルキルカルボニルオキシ基、炭素数2〜21のアルコキシカルボニル基、炭素数7〜37のアリールオキシカルボニル基、炭素数8〜41のアラルキルオキシカルボニル基、置換若しくは非置換のアミノ基、アルキルシリル基、などが挙げられるが、これらに限定されるものではない。
The heterocyclic group represented by R 11 in the general formula (4) contains 1 to 4, preferably 1 to 3 or 1 to 2 hetero atoms containing nitrogen atoms, oxygen atoms, or sulfur atoms. Examples thereof include monocyclic, polycyclic, or condensed heterocyclic groups having a ˜8-membered, preferably 5-8-membered ring. Examples of such a heterocyclic group include a 2-furyl group, a 2-thienyl group, a 2-pyrrolyl group, a 2-pyridyl group, a 2-indole group, and a benzoimidazolyl group.
These hydrocarbon groups and heterocyclic groups may be substituted with various functional groups that do not adversely affect the nucleophilic reaction. Examples of such substituents include the above-described alkyl groups, the above-described alkenyl groups, the above-described cycloalkyl groups, the above-described aryl groups, the above-described aralkyl groups, halogen atoms such as chlorine atoms, hydroxyl groups, A nitro group, a heterocyclic group having a 3- to 8-membered ring containing a hetero atom composed of 1 to 4 nitrogen atoms, oxygen atoms or sulfur atoms, an alkoxy group having 1 to 20 carbon atoms, and 2 to 2 carbon atoms 21 alkylcarbonyloxy groups, C7-37 aryl-carbonyloxy groups, C8-41 aralkylcarbonyloxy groups, C2-21 alkoxycarbonyl groups, C7-37 aryloxycarbonyl groups Aralkyloxycarbonyl groups having 8 to 41 carbon atoms, substituted or unsubstituted amino groups, alkylsilyl groups, and the like. That, without being limited thereto.
一般式(1)における好ましいR1としては、炭素数1〜20、好ましくは炭素数1〜15、炭素数1〜10、さらに好ましくは炭素数1〜5の直鎖状又は分枝状のアルキル基が挙げられる。このようなアルキル基の例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、などが挙げられる。
一般式(1)における好ましいR2としては、炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式のアリール基が挙げられる。このようなアリール基としては、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントリル基、などが挙げられる。これらのアリール基は、炭素数1〜5のアルキル基などで置換されていてもよい。
一般式(1)における好ましいR3及びR4としては、それぞれ独立して水素原子又は前記したアルキル基が挙げられる。
Preferable R 1 in the general formula (1) is a linear or branched alkyl having 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms. Groups. Examples of such alkyl groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, An octyl group, and the like.
Preferable R 2 in the general formula (1) includes monocyclic, polycyclic, or condensed cyclic aryl groups having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms, and 6 to 12 carbon atoms. . Examples of such an aryl group include a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, and an anthryl group. These aryl groups may be substituted with an alkyl group having 1 to 5 carbon atoms.
Preferable R 3 and R 4 in the general formula (1) each independently include a hydrogen atom or the above-described alkyl group.
一般式(2)におけるR6、及び一般式(4)におけるR11の好ましい基としては、炭素数1〜20、好ましくは炭素数1〜15、炭素数1〜10の直鎖状又は分枝状のアルキル基;炭素数3〜15、好ましくは炭素数3〜10の飽和又は不飽和の単環式、多環式又はシクロアルキル基;炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式のアリール基;炭素数8〜40、好ましくは炭素数8〜20、炭素数8〜15のアリールアルケニル基;1個〜4個、好ましくは1〜3個又は1〜2個の窒素原子、酸素原子、又は硫黄原子からなる異種原子を含有する3〜8員、好ましくは5〜8員の環を有する単環式、多環式、又は縮合環式の複素環基;炭素数1〜10のアルコキシカルボニル基などが挙げられる。これらの基はアルキル基、ハロゲン、アルケニル基、などの置換基で置換されていてもよい。
一般式(2)におけるR7及びR8、及び一般式(6)におけるR13及びR14の好ましい基としては、水素原子又は炭素数1〜20、好ましくは炭素数1〜15、炭素数1〜10の直鎖状又は分枝状のアルキル基が挙げられる。
一般式(2)における−OR9、及び一般式(8)におけるR17の好ましい基としては、炭素数1〜20のアルキル基に酸素原子結合したアルコキシ基が挙げられる。このようなアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、t−ブトキシ基、ペンチルオキシ基などが挙げられる。
一般式(2)における−OR10、及び一般式(6)におけるR16の好ましい基としては、炭素数1〜20のアルキル基に酸素原子結合したアルコキシ基が挙げられる。このようなアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、t−ブトキシ基、ペンチルオキシ基などが挙げられる。
一般式(2)における好ましい=Z−R5としては、一般式(4)における=N−R12基、一般式(6)における=C−R15基、及び一般式(8)における=N−COR18基が挙げられる。好ましいR12としては、炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式のアリール基からなるアリールスルホニル基;炭素数1〜10のアルコキシカルボニル基などが挙げられる。これらの基はアルキル基、ハロゲン、アルケニル基、などの置換基で置換されていてもよい。好ましいR15としては、水素原子又はアルキル基が挙げられる。好ましいR18としては、炭素数1〜20のアルキル基に酸素原子結合したアルコキシ基が挙げられる。このようなアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、t−ブトキシ基、ペンチルオキシ基などが挙げられる。
Preferred groups for R 11 in R 6, and Formula in Formula (2) (4), 1 to 20 carbon atoms, preferably having 1 to 15 carbon atoms, straight-chain or branched having 1 to 10 carbon atoms An alkyl group having 3 to 15 carbon atoms, preferably a saturated or unsaturated monocyclic, polycyclic or cycloalkyl group having 3 to 10 carbon atoms; 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms, Monocyclic, polycyclic or condensed cyclic aryl group having 6 to 12 carbon atoms; arylalkenyl group having 8 to 40 carbon atoms, preferably 8 to 20 carbon atoms and 8 to 15 carbon atoms; 1 to 4 carbon atoms Monocyclic, polycyclic having 3 to 8 member, preferably 5 to 8 membered ring containing hetero atoms composed of 1 to 3, preferably 1 to 2 nitrogen atoms, oxygen atoms or sulfur atoms A cyclic or condensed heterocyclic group; an alkoxycarbonyl group having 1 to 10 carbon atoms, etc. And the like. These groups may be substituted with a substituent such as an alkyl group, a halogen, or an alkenyl group.
As preferable groups of R 7 and R 8 in the general formula (2) and R 13 and R 14 in the general formula (6), a hydrogen atom or a carbon number of 1 to 20, preferably a carbon number of 1 to 15, and a carbon number of 1 -10 linear or branched alkyl groups.
A preferred group of —OR 9 in the general formula (2) and R 17 in the general formula (8) includes an alkoxy group having an oxygen atom bonded to an alkyl group having 1 to 20 carbon atoms. Examples of such an alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, a t-butoxy group, and a pentyloxy group.
A preferred group of —OR 10 in the general formula (2) and R 16 in the general formula (6) includes an alkoxy group having an oxygen atom bonded to an alkyl group having 1 to 20 carbon atoms. Examples of such an alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, a t-butoxy group, and a pentyloxy group.
Preferred = Z—R 5 in the general formula (2) is ═N—R 12 group in the general formula (4), ═C—R 15 group in the general formula (6), and ═N in the general formula (8). -COR 18 group. R 12 is preferably an arylsulfonyl group composed of a monocyclic, polycyclic or condensed cyclic aryl group having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms and 6 to 12 carbon atoms; -10 alkoxycarbonyl groups and the like. These groups may be substituted with a substituent such as an alkyl group, a halogen, or an alkenyl group. Preferable R 15 includes a hydrogen atom or an alkyl group. Preferable R 18 includes an alkoxy group having an oxygen atom bonded to an alkyl group having 1 to 20 carbon atoms. Examples of such an alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, a t-butoxy group, and a pentyloxy group.
本発明の方法は、塩基の存在下で行われる。塩基としては、アミン類のような有機塩基、マグネシウム塩のような無機塩基のいずれであってよい。好ましい塩基としては、DBU (1,8−diazabicyclo[5.4.0]undec−7−ene)のような環状アミン類や、ビスブトキシマグネシウムのような金属塩などが挙げられる。また、本発明の方法は、モレキュラーシーブ(好ましく4オングストロームのもの)の存在下に行うこともできる。
塩基の使用量は特に制限はないが、従来の方法のように等量使用する必要が無いことが本発明の方法の特徴のひとつである。好ましい塩基の量は、一般式(1)で表されるスルホニルイミデートに対して0.01〜20モル%、より好ましくは1〜15モル%程度である。
本発明の方法は溶媒の存在下で行うのが好ましい。好ましい溶媒としては、DMF(ジメチルホルムアミド)、DCM(ジクロロメタン)などが挙げられるが、これに限定されるものではない。
一般式(2)などで表される求核反応基質化合物は、一般式(1)で表されるスルホニルイミデートに対して等量で行うことができるが、好ましくは0.8〜2当量、0.9〜1.5当量でおこなうことができる。
反応温度は、特に制限はなく−45℃〜溶媒の沸点までの範囲で選択することができる。好ましい反応温度は0〜室温が上げられる。反応時間は適宜選定することができるが、反応温度が低い場合には10〜50時間程度が挙げられる。
本発明の方法で製造された生成物は、クロマトグラフィーなどの精製手段により適宜精製することができる。
The process according to the invention is carried out in the presence of a base. The base may be an organic base such as amines or an inorganic base such as magnesium salt. Preferable bases include cyclic amines such as DBU (1,8-diazabiccyclo [5.4.0] undec-7-ene), metal salts such as bisbutoxymagnesium, and the like. The method of the present invention can also be carried out in the presence of molecular sieves (preferably 4 angstroms).
The amount of the base used is not particularly limited, but it is one of the features of the method of the present invention that it is not necessary to use an equal amount as in the conventional method. A preferable amount of the base is about 0.01 to 20 mol%, more preferably about 1 to 15 mol% with respect to the sulfonyl imidate represented by the general formula (1).
The process of the present invention is preferably carried out in the presence of a solvent. Preferred solvents include, but are not limited to, DMF (dimethylformamide), DCM (dichloromethane) and the like.
The nucleophilic reaction substrate compound represented by the general formula (2) and the like can be performed in an equivalent amount with respect to the sulfonyl imidate represented by the general formula (1), preferably 0.8 to 2 equivalents, It can be carried out at 0.9 to 1.5 equivalents.
The reaction temperature is not particularly limited and can be selected in the range from −45 ° C. to the boiling point of the solvent. A preferable reaction temperature is 0 to room temperature. Although reaction time can be selected suitably, when reaction temperature is low, about 10 to 50 hours are mentioned.
The product produced by the method of the present invention can be appropriately purified by a purification means such as chromatography.
本発明の方法で製造された化合物は、スルホニルイミデート部分のβ位が不斉炭素となり、アンチ体とシン体が存在する。本発明の方法は、立体選択的に進行し、いすれかの異性体が多量に生成する。通常の場合にはアンチ体が60%以上、又は80%以上で生成する。また、多くの場合には90%、又は95%以上でアンチ体を選択的に生成させることもできる。 In the compound produced by the method of the present invention, the β-position of the sulfonylimidate moiety becomes an asymmetric carbon, and there exist an anti-form and a syn-form. The process of the present invention proceeds stereoselectively and produces any isomer in large quantities. In the normal case, the anti-form is formed at 60% or more, or 80% or more. In many cases, the anti-isomer can be selectively produced at 90% or 95% or more.
本発明の方法で製造された生成物は、スルホニルイミデート部分(−C(OR1)=NSO2R2)を有しており、この部分を公知の手法で分解することにより、N−スルホニルアミド、エステル、アルデヒドなどに誘導することができる。
−C(OR1)=NSO2R2 → −CO−NH−SO2R2
−C(OR1)=NSO2R2 → −COOR1
−C(OR1)=NSO2R2 → −CHO
N−スルホニルアミドとする場合には、本発明の方法よる生成物を、含水アルコール(例えば、i−Prアルコール)中で硫酸などの酸の存在下で、加水分解することにより製造することができる。
エステルとする場合には、本発明の方法よる生成物を、酸又は塩基の存在下で加水分解することにより製造することができる。
アルデヒドとする場合には、水素化ジイソブチルアルミニウムなどの還元剤の存在下に反応させることにより製造することができる。
このようにして製造されたN−スルホニルアミド、エステル、アルデヒドは、β位に本発明の方法により導入された窒素原子又は炭素原子を有しており、β−アミノ酸誘導体などとすることができ、本発明の方法により産業上有用な化合物を簡便に製造することができる。さらに、前記したように本発明の方法は立体選択的に行うことができるので、片方の異性体を選択的に製造することができる。
The product produced by the method of the present invention has a sulfonyl imidate moiety (—C (OR 1 ) ═NSO 2 R 2 ), and this moiety is decomposed by a known method to produce N-sulfonyl It can be derived into amides, esters, aldehydes and the like.
-C (OR 1) = NSO 2 R 2 → -CO-NH-SO 2 R 2
-C (OR 1 ) = NSO 2 R 2 → -COOR 1
-C (OR 1 ) = NSO 2 R 2 → -CHO
In the case of N-sulfonylamide, the product according to the method of the present invention can be produced by hydrolysis in the presence of an acid such as sulfuric acid in a hydrous alcohol (for example, i-Pr alcohol). .
In the case of an ester, the product of the method of the present invention can be produced by hydrolysis in the presence of an acid or a base.
An aldehyde can be produced by reacting in the presence of a reducing agent such as diisobutylaluminum hydride.
The N-sulfonylamide, ester, and aldehyde thus produced have a nitrogen atom or carbon atom introduced by the method of the present invention at the β-position, and can be a β-amino acid derivative, Industrially useful compounds can be easily produced by the method of the present invention. Furthermore, since the method of the present invention can be performed stereoselectively as described above, one isomer can be selectively produced.
本発明は、反応に富んだ新規な求核試薬を提供するものであり、本発明の方法によれば、通常カルボニル化合物由来炭素求核剤は、等量以上の強塩基を用いて発生させるのが常であるが、本発明の方法においては触媒量の塩基を使用するだけで反応を進行させることができ効率的に行うことができる。また、本発明の方法は、立体選択的であり、光学活性体を選択的に製造することができる。 The present invention provides a novel nucleophile rich in reaction. According to the method of the present invention, the carbonyl compound-derived carbon nucleophile is usually generated using an equal amount or more of a strong base. However, in the method of the present invention, the reaction can be advanced and carried out efficiently only by using a catalytic amount of a base. In addition, the method of the present invention is stereoselective and can selectively produce an optically active substance.
以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
1H NMRと13C NMRは JEOL JNM-ECX-400, JNM-ECX-500または、JNM-ECX-600を使用しCDCl3を溶媒とし(他の溶媒を使用した場合は個別に記載)、テトラメチルシラン (δ = 0、1H NMR)またはCDCl3 (δ = 77.0、13C NMR)を内部標準物質として測定した。 IR スペクトルの測定は JASCO FT/IR-610 を、旋光度の測定は JASCO P-1010 を使用した.融点測定には YAZAWA BY-1 を使用した。カラムクロマトグラフィーには Silica gel 60 (Merck) を調整用薄層クロマトグラフィーにはWakogel B-5Fを使用した。 全ての反応はアルゴン雰囲気下で実施し、溶媒は定法に従い蒸留したものを使用した。
スルホニルイミデートは文献(Kupfer, R.; Nagel, M.; Wurthwein, E.-U.; Allmann, R. Chem. Ber. 1985, 118, 3089.)に記載の方法に従い製造した。
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.
1 H NMR and 13 C NMR were measured using JEOL JNM-ECX-400, JNM-ECX-500, or JNM-ECX-600, with CDCl 3 as the solvent (indicated separately when other solvents are used) Methylsilane (δ = 0, 1 H NMR) or CDCl 3 (δ = 77.0, 13 C NMR) was measured as an internal standard substance. JASCO FT / IR-610 was used to measure the IR spectrum, JASCO P-1010 was used to measure the optical rotation, and YAZAWA BY-1 was used to measure the melting point. Silica gel 60 (Merck) was used for column chromatography, and Wakogel B-5F was used for preparative thin layer chromatography. All the reactions were carried out under an argon atmosphere, and the solvent used was distilled according to a conventional method.
The sulfonyl imidate was prepared according to the method described in the literature (Kupfer, R .; Nagel, M .; Wurthwein, E.-U .; Allmann, R. Chem. Ber. 1985, 118, 3089.).
イミデート塩酸塩の製造
ニトリルとアルコールから、下記の反応式にしたがってそれぞれのイミデート塩酸塩を製造した。
Production of imidate hydrochloride Each imidate hydrochloride was produced from nitrile and alcohol according to the following reaction formula.
ニトリル(400mモル)とアルコール(400mモル)の混合液にHClガスを吹き込んだ(10〜20分間、発熱)。反応液をそのまま3〜10時間Ar雰囲気下で放置した。減圧濃縮後、ほぼ純粋なイミデート塩酸塩を得た(収率40〜80%)。 HCl gas was blown into a mixture of nitrile (400 mmol) and alcohol (400 mmol) (10-20 minutes, exothermic). The reaction solution was allowed to stand in an Ar atmosphere for 3 to 10 hours. After concentration under reduced pressure, almost pure imidate hydrochloride was obtained (yield 40-80%).
スルホニルイミデートの製造
実施例1で製造したイミデート塩酸塩(A)から、下記の反応式にしたがってスルホニルイミデート(6g)を製造した。
Production of sulfonyl imidate From the imidate hydrochloride (A) produced in Example 1, sulfonyl imidate (6 g) was produced according to the following reaction formula.
イミデート塩酸塩Aの塩化メチレン(50mL)溶液にトリエチルアミン(8.3mL、59.55mモル)を室温下滴下した。得られたけん濁液にパラトルエンスルホニルクロリド(TsCl)(3.785g、19.85mモル)とジメチルアミノピリジン(242.5mg、1.985mモル)を加えた。40時間撹拌した後、水に反応液を流し込み、塩化メチレンで抽出した。得られた有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮し反応粗生成物を得た。シリカゲルクロマトグラフィーにて精製した後、スルホニルイミデート6gを得た(4.565g,85% 収率)。
Mp. 38−39℃;
1H−NMR (CDCl3) δ :
7.82 (d, 2H, J = 8.5 Hz), 7.29 (d, 2H, J = 7.9 Hz),
4.97-5.10 (m, 1H), 2.88 (q, 2H, J = 7.6 Hz), 2.42 (s, 3H),
1.23 (d, 6H, J = 6.2 Hz), 1.21 (t, 3H, J = 6.2 Hz);
13C−NMR (CDCl3) δ :
176.3, 142.9, 139.4, 129.3, 126.4, 71.9, 27.8, 21.5, 21.1, 10.1;
IR (neat) 2983, 2942, 1597, 1496, 1465, 1383, 1356, 1312, 1235,
1183, 1157, 1093, 1032, 1017, 955, 909, 838, 814, 799,
692, 600, 555, 529 cm−1;
HRMS (FAB);
C13H20NO3Sとして、 計算値:[M+H]+ 270.1164,
実測値: 270.1167.
Triethylamine (8.3 mL, 59.55 mmol) was added dropwise at room temperature to a solution of imidate hydrochloride A in methylene chloride (50 mL). Paratoluenesulfonyl chloride (TsCl) (3.785 g, 19.85 mmol) and dimethylaminopyridine (242.5 mg, 1.985 mmol) were added to the resulting suspension. After stirring for 40 hours, the reaction solution was poured into water and extracted with methylene chloride. The obtained organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude reaction product. After purification by silica gel chromatography, 6 g of sulfonylimidate was obtained (4.565 g, 85% yield).
Mp. 38-39 ° C;
1 H-NMR (CDCl 3 ) δ:
7.82 (d, 2H, J = 8.5 Hz), 7.29 (d, 2H, J = 7.9 Hz),
4.97-5.10 (m, 1H), 2.88 (q, 2H, J = 7.6 Hz), 2.42 (s, 3H),
1.23 (d, 6H, J = 6.2 Hz), 1.21 (t, 3H, J = 6.2 Hz);
13 C-NMR (CDCl 3 ) δ:
176.3, 142.9, 139.4, 129.3, 126.4, 71.9, 27.8, 21.5, 21.1, 10.1;
IR (neat) 2983, 2942, 1597, 1496, 1465, 1383, 1356, 1312, 1235,
1183, 1157, 1093, 1032, 1017, 955, 909, 838, 814, 799,
692, 600, 555, 529 cm -1 ;
HRMS (FAB);
As C 13 H 20 NO 3 S, calculated value: [M + H] + 270.1164
Actual value: 270.1167.
イミンとスルホニルイミデートとの一般的反応
下記の反応式にしたがってイミン(1)とスルホニルイミデート(6)を反応させて、対応するアミン化合物(7d)〜(7x)を製造した。
General reaction of imine and sulfonyl imidate According to the following reaction formula, imine (1) and sulfonyl imidate (6) were reacted to produce the corresponding amine compounds (7d) to (7x).
4オングストロームのモレキュラーシーブ(以下、MS4Aという。)(50mg)の入っている容器に、イミン(0.45mmol)のDMF(0.5mL)溶液とスルホニルイミデート(0.3mmol)を加えた。その混合物を0℃に冷却した後、DBU(5mol%)のDMF(0.1mL)溶液を加えた。反応混合物を0℃にて24時間撹拌した後、Et2O(5mL)を加えて反応液を希釈した。MS4Aをろ別した後、母液を水で3回洗浄した。得られた有機層を無水Na2SO4にて乾燥した後、減圧濃縮し、反応粗生成物を得た。ジアステレオ選択性は反応粗生成物の1H−NMRにて決定した。シリカゲルクロマトグラフィーにて粗生成物を精製し、生成物を得た。
結果を次の表1に示す。
A solution of imine (0.45 mmol) in DMF (0.5 mL) and sulfonyl imidate (0.3 mmol) were added to a container containing 4 angstrom molecular sieve (hereinafter referred to as MS4A) (50 mg). The mixture was cooled to 0 ° C. and DBU (5 mol%) in DMF (0.1 mL) was added. After the reaction mixture was stirred at 0 ° C. for 24 hours, Et 2 O (5 mL) was added to dilute the reaction solution. After MS4A was filtered off, the mother liquor was washed 3 times with water. The obtained organic layer was dried over anhydrous Na 2 SO 4 and then concentrated under reduced pressure to obtain a reaction crude product. Diastereoselectivity was determined by 1 H-NMR of the reaction crude product. The crude product was purified by silica gel chromatography to obtain the product.
The results are shown in Table 1 below.
表1中の番号3では、イミン(1)を1当量、スルホニルイミデート(6)を5当量使用した。番号3、及び13〜21では、MS4Aを167mg添加した。番号3、15〜19、及び21では、塩基を10モル%使用した。番号5、及び8では、38時間反応させた。番号20では、40℃で36時間反応させた。番号16〜19では、反応を室温で行った。番号15〜19では、3当量のイミン(1)を使用した。 For number 3 in Table 1, 1 equivalent of imine (1) and 5 equivalents of sulfonylimidate (6) were used. In numbers 3 and 13-21, 167 mg of MS4A was added. In numbers 3, 15-19 and 21, 10 mol% of the base was used. In numbers 5 and 8, the reaction was performed for 38 hours. In No. 20, it was made to react at 40 degreeC for 36 hours. For numbers 16-19, the reaction was performed at room temperature. For numbers 15-19, 3 equivalents of imine (1) were used.
無機塩基を触媒として用いた反応実施例
下記の反応式にしたがって生成物7dを製造した。
Reaction Example Using Inorganic Base as Catalyst The product 7d was prepared according to the following reaction formula.
MS4A(50mg)とMg(OtBu)2(10mol%)の入っている容器に、イミン1b(0.45mmol)のDMF(0.6mL)溶液とスルホニルイミデート6c(0.3mmol)を加えた。反応混合物を室温にて17時間撹拌した後、Et2O(5mL)を加えて反応液を希釈した。MS4Aをろ別した後、母液を水で3回洗浄した。得られた有機層を無水Na2SO4にて乾燥した後、減圧濃縮し、反応粗生成物を得た。ジアステレオ選択性は反応粗生成物の1H−NMRにて決定した。シリカゲルクロマトグラフィーにて粗生成物を精製し、生成物7d(94% 収率、アンチ/シン=96/4)を得た。
Mp. 122−123℃;
1H−NMR (CDCl3) δ :
8.19 (s, 1H), 7.36 (d, 2H, J = 6.8 Hz), 6.93-7.05 (m, 4H),
6.89 (d, 1H, J = 7.3 Hz), 6.62 (d, 1H, J = 9.6 Hz),
5.03 (t, 1H, J = 10.5 Hz), 4.87 (quint, 1H, J = 6.2 Hz),
4.48 (sext, 1H, J = 5.9 Hz), 2.86 (s, 3H), 1.96 (s, 3H),
1.34 (s, 9H), 1.15 (d, 3H, J = 5.7 Hz),
0.98 (d, 3H, J = 6.2 Hz), 0.91 (d, 3H, J = 6.2 Hz);
13C−NMR (CDCl3) δ =
177.5, 154.7, 141.4, 140.5, 136.1, 134.5, 133.4, 132.4,
128.9, 128.3, 127.9, 127.7, 78.6, 72.1, 58.9, 46.0, 28.4,
21.0, 21.0, 20.6, 20.6, 14.9;
IR (neat) 3060, 3032, 2841, 2936, 2881, 1715, 1588, 1513, 1495,
1456, 1389, 1365, 1299, 1267, 1248, 1225, 1155, 1102,
1066, 1053, 1004, 973, 930, 910, 884, 851, 824, 738,
707, 644, 599, 553, 499, 465 cm−1;
HRMS (ESI);
C26H37N2O5Sとして、 計算値:[M+H]+ 489.2423, 実測値: 489.2417.
To a container containing MS4A (50 mg) and Mg (OtBu) 2 (10 mol%), a solution of imine 1b (0.45 mmol) in DMF (0.6 mL) and sulfonylimidate 6c (0.3 mmol) were added. The reaction mixture was stirred at room temperature for 17 hours and then Et 2 O (5 mL) was added to dilute the reaction. After MS4A was filtered off, the mother liquor was washed 3 times with water. The obtained organic layer was dried over anhydrous Na 2 SO 4 and then concentrated under reduced pressure to obtain a reaction crude product. Diastereoselectivity was determined by 1 H-NMR of the reaction crude product. The crude product was purified by silica gel chromatography to obtain the product 7d (94% yield, anti / sin = 96/4).
Mp. 122-123 ° C;
1 H-NMR (CDCl 3 ) δ:
8.19 (s, 1H), 7.36 (d, 2H, J = 6.8 Hz), 6.93-7.05 (m, 4H),
6.89 (d, 1H, J = 7.3 Hz), 6.62 (d, 1H, J = 9.6 Hz),
5.03 (t, 1H, J = 10.5 Hz), 4.87 (quint, 1H, J = 6.2 Hz),
4.48 (sext, 1H, J = 5.9 Hz), 2.86 (s, 3H), 1.96 (s, 3H),
1.34 (s, 9H), 1.15 (d, 3H, J = 5.7 Hz),
0.98 (d, 3H, J = 6.2 Hz), 0.91 (d, 3H, J = 6.2 Hz);
13 C-NMR (CDCl 3 ) δ =
177.5, 154.7, 141.4, 140.5, 136.1, 134.5, 133.4, 132.4,
128.9, 128.3, 127.9, 127.7, 78.6, 72.1, 58.9, 46.0, 28.4,
21.0, 21.0, 20.6, 20.6, 14.9;
IR (neat) 3060, 3032, 2841, 2936, 2881, 1715, 1588, 1513, 1495,
1456, 1389, 1365, 1299, 1267, 1248, 1225, 1155, 1102,
1066, 1053, 1004, 973, 930, 910, 884, 851, 824, 738,
707, 644, 599, 553, 499, 465 cm -1 ;
HRMS (ESI);
As C 26 H 37 N 2 O 5 S, calculated value: [M + H] + 489.2423, actual value: 489.2417.
1aと6eとの反応
下記の反応式にしたがって生成物7fを製造した。
Reaction of 1a and 6e Product 7f was prepared according to the following reaction formula.
MS4A(50mg)の入っている容器に、イミン1a(53.2mg,0.3mmol)のDMF(0.5mL)溶液を加えた。その混合物を0℃に冷却した後、スルホニルイミデート6e(340.9mg,1.5mmol)とDBU(10mol%)のDMF(0.1mL)溶液を加えた。反応混合物を0℃にて30分間撹拌した後、Et2O(5 mL)を加えて反応液を希釈した。MS4Aをろ別した後、母液を水で3回洗浄した。得られた有機層を無水Na2SO4にて乾燥した後、減圧濃縮し、反応粗生成物を得た。シリカゲルクロマトグラフィーにて粗生成物を精製し、生成物7f(95.8mg,79% 収率)を得た。
Mp. 80−81℃;
1H−NMR (C6D6) δ :
8.05-8.10 (m, 2H), 7.26-7.30 (m, 2H), 7.00-7.10 (m, 6H),
6.26 (d, 1H, J = 9.1 Hz), 5.47-5.57 (m, 1H), 3.92-4.03 (m, 2H), 3.59-3.81 (m, 3H), 2.95 (dd, 1H, J = 5.1, 14.2 Hz),
0.95 (t, 3H, J = 7.1 Hz), 0.82 (t, 3H, J = 7.1 Hz);
13C−NMR (C6D6) δ :
172.8, 155.9, 142.7, 142.0, 132.4, 129.0, 128.8, 127.0,
126.6, 64.8, 60.8, 53.3, 41.1, 14.6, 13.2;
IR (neat) 3360, 3065, 2982, 1719, 1599, 1523, 1473, 1446, 1397,
1374, 1305, 1243, 1155, 1091, 1041, 888, 755, 734, 700,
689, 631 cm−1;
HRMS (FAB);
C20H25N2O5Sとして、 計算値:[M+H]+ 405.1484, 実測値: 405.1487.
A solution of imine 1a (53.2 mg, 0.3 mmol) in DMF (0.5 mL) was added to a vessel containing MS4A (50 mg). After the mixture was cooled to 0 ° C., a solution of sulfonylimidate 6e (340.9 mg, 1.5 mmol) and DBU (10 mol%) in DMF (0.1 mL) was added. The reaction mixture was stirred at 0 ° C. for 30 min and Et 2 O (5 mL) was added to dilute the reaction. After MS4A was filtered off, the mother liquor was washed 3 times with water. The obtained organic layer was dried over anhydrous Na 2 SO 4 and then concentrated under reduced pressure to obtain a reaction crude product. The crude product was purified by silica gel chromatography to give the product 7f (95.8 mg, 79% yield).
Mp. 80-81 ° C;
1 H-NMR (C 6 D 6 ) δ:
8.05-8.10 (m, 2H), 7.26-7.30 (m, 2H), 7.00-7.10 (m, 6H),
6.26 (d, 1H, J = 9.1 Hz), 5.47-5.57 (m, 1H), 3.92-4.03 (m, 2H), 3.59-3.81 (m, 3H), 2.95 (dd, 1H, J = 5.1, 14.2 Hz),
0.95 (t, 3H, J = 7.1 Hz), 0.82 (t, 3H, J = 7.1 Hz);
13 C-NMR (C 6 D 6 ) δ:
172.8, 155.9, 142.7, 142.0, 132.4, 129.0, 128.8, 127.0,
126.6, 64.8, 60.8, 53.3, 41.1, 14.6, 13.2;
IR (neat) 3360, 3065, 2982, 1719, 1599, 1523, 1473, 1446, 1397,
1374, 1305, 1243, 1155, 1091, 1041, 888, 755, 734, 700,
689, 631 cm -1 ;
HRMS (FAB);
As C 20 H 25 N 2 O 5 S, calculated value: [M + H] + 405.1484, actual value: 405.1487.
3成分反応
下記の式(6)に示される反応式にしたがって生成物7zを製造した。
Three-component reaction The product 7z was produced according to the reaction formula shown in the following formula (6).
MS4A(50mg)とDMF(0.5mL)の入っている容器に、ベンズアルデヒド(45.7μL,0.45mmol)と2,5−キシリルスルホニルアミド(83.4mg,0.45mmol)を加えた。その混合物を室温にて20分間撹拌した後、0℃に冷却した。スルホニルイミデート6c(85.0mg,0.3mmol)とDBU(10mol%)のDMF(0.1mL)溶液を加えた。反応混合物を0℃にて23時間撹拌した後、Et2O(5mL)を加えて反応液を希釈した。MS4Aをろ別した後、母液を水で3回洗浄した。得られた有機層を無水Na2SO4にて乾燥した後、減圧濃縮し、反応粗生成物を得た。ジアステレオ選択性は反応粗生成物の1H−NMRにて決定した。シリカゲルクロマトグラフィーにて粗生成物を精製し、生成物7z(116.8mg,70% 収率)を得た。
Mp. 99−100℃;
1H−NMR (CDCl3); δ :
8.23 (s, 1H), 7.39 (s, 1H), 7.12 (d, 1H, J = 9.1 Hz),
6.90-6.97 (m, 3H), 6.87 (dd, 1H, J = 7.6, 1.4 Hz),
6.65-6.73 (m, 3H), 6.53 (qd, 2H, J = 7.6, 1.4 Hz),
5.03 (quint, 1H, J = 6.2 Hz),
4.68 (dd, 1H, J = 11.0, 9.3 Hz),
4.48 (qd, 1H, J = 11.0, 6.5 Hz), 3.00 (s, 3H),
2.62 (s, 3H), 1.95 (s, 3H), 1.78 (s, 3H),
1.40 (d, 3H, J = 6.2 Hz), 0.96 (d, 3H, J = 6.2 Hz),
0.91 (d, 3H, J = 6.2 Hz);
13C−NMR (CDCl3) δ =
177.0, 140.1, 140.0, 138.0, 136.1, 135.2, 135.0, 133.6,
133.2, 132.6, 132.2, 131.9, 129.7, 128.8, 128.3, 127.3,
73.1, 62.5, 46.4, 21.4, 21.1, 20.8, 20.5, 20.4, 20.0, 14.5;
IR (neat) 3060, 3029, 2982, 2936, 2878, 1592, 1578, 1493, 1458,
1386, 1359, 1331, 1292, 1226, 1208, 1162, 1102, 1065,
1030, 973, 910, 855, 824, 768, 747, 725, 707, 645,
607, 580, 548, 516, 501, 464, 436, 419 cm−1;
HRMS (FAB);
C29H37N2O5S2として、 計算値:[M+H]+ 557.2144, 実測値: 557.2151.
To a vessel containing MS4A (50 mg) and DMF (0.5 mL) was added benzaldehyde (45.7 μL, 0.45 mmol) and 2,5-xylylsulfonylamide (83.4 mg, 0.45 mmol). The mixture was stirred at room temperature for 20 minutes and then cooled to 0 ° C. A solution of sulfonylimidate 6c (85.0 mg, 0.3 mmol) and DBU (10 mol%) in DMF (0.1 mL) was added. After the reaction mixture was stirred at 0 ° C. for 23 hours, Et 2 O (5 mL) was added to dilute the reaction solution. After MS4A was filtered off, the mother liquor was washed 3 times with water. The obtained organic layer was dried over anhydrous Na 2 SO 4 and then concentrated under reduced pressure to obtain a reaction crude product. Diastereoselectivity was determined by 1 H-NMR of the reaction crude product. The crude product was purified by silica gel chromatography to obtain the product 7z (116.8 mg, 70% yield).
Mp. 99-100 ° C;
1 H-NMR (CDCl 3 ); δ:
8.23 (s, 1H), 7.39 (s, 1H), 7.12 (d, 1H, J = 9.1 Hz),
6.90-6.97 (m, 3H), 6.87 (dd, 1H, J = 7.6, 1.4 Hz),
6.65-6.73 (m, 3H), 6.53 (qd, 2H, J = 7.6, 1.4 Hz),
5.03 (quint, 1H, J = 6.2 Hz),
4.68 (dd, 1H, J = 11.0, 9.3 Hz),
4.48 (qd, 1H, J = 11.0, 6.5 Hz), 3.00 (s, 3H),
2.62 (s, 3H), 1.95 (s, 3H), 1.78 (s, 3H),
1.40 (d, 3H, J = 6.2 Hz), 0.96 (d, 3H, J = 6.2 Hz),
0.91 (d, 3H, J = 6.2 Hz);
13 C-NMR (CDCl 3 ) δ =
177.0, 140.1, 140.0, 138.0, 136.1, 135.2, 135.0, 133.6,
133.2, 132.6, 132.2, 131.9, 129.7, 128.8, 128.3, 127.3,
73.1, 62.5, 46.4, 21.4, 21.1, 20.8, 20.5, 20.4, 20.0, 14.5;
IR (neat) 3060, 3029, 2982, 2936, 2878, 1592, 1578, 1493, 1458,
1386, 1359, 1331, 1292, 1226, 1208, 1162, 1102, 1065,
1030, 973, 910, 855, 824, 768, 747, 725, 707, 645,
607, 580, 548, 516, 501, 464, 436, 419 cm -1 ;
HRMS (FAB);
As C 29 H 37 N 2 O 5 S 2 , calculated value: [M + H] + 557.2144, actual value: 557.2151.
スルホニルイミデート6aとメチルアクリレートとの反応
下記の反応式にしたがって生成物8を製造した。
Reaction of sulfonyl imidate 6a with methyl acrylate Product 8 was prepared according to the following reaction scheme.
MS4A(100mg)の入っている容器に、スルホニルイミデート6a(68.1mg,0.3mmol)のDMF(0.5mL)溶液とメチルアクリレート(38.7mg,0.45mmol)、DBU(10mol%)のDMF(0.1mL)溶液を室温にて加えた。反応混合物を室温にて20時間撹拌した後、Et2O(5mL)を加えて反応液を希釈した。MS4Aをろ別した後、母液を水で3回洗浄した。得られた有機層を無水Na2SO4にて乾燥した後、減圧濃縮し、反応粗生成物を得た。シリカゲルクロマトグラフィーにて粗生成物を精製し、生成物8(70.4mg,75%収率)を得た。
1H−NMR (CDCl3); δ :
8.02-8.08 (m, 2H), 6.98-7.05 (m, 3H), 3.84-3.92 (m, 1H),
3.40 (s, 3H), 3.08 (s, 3H), 2.28-2.33 (m, 1H), 2.15-2.24 (m, 1H),
1.92-2.00 (m, 1H), 1.64-1.74 (m, 1H), 1.35 (d, 3H, J = 6.8 Hz);
13C−NMR (CDCl3) δ :
178.5, 172.6, 143.2, 132.2, 128.8, 127.0, 54.7, 51.2, 38.8, 31.9,
29.3, 17.8;
IR (neat) 3064, 2952, 2879, 2852, 1738, 1603, 1446, 1350, 1307,
1263, 1197, 1155, 1123, 1092, 1026, 977, 951, 921, 839,
759, 734, 691, 626, 595, 536, 444, 419 cm−1;
HRMS (FAB);
C14H20NO5Sとして、 計算値:[M+H]+ 370.1683,
実測値: 370.1700.
In a container containing MS4A (100 mg), a solution of sulfonylimidate 6a (68.1 mg, 0.3 mmol) in DMF (0.5 mL), methyl acrylate (38.7 mg, 0.45 mmol), DBU (10 mol%) Of DMF (0.1 mL) was added at room temperature. The reaction mixture was stirred at room temperature for 20 hours and then Et 2 O (5 mL) was added to dilute the reaction. After MS4A was filtered off, the mother liquor was washed 3 times with water. The obtained organic layer was dried over anhydrous Na 2 SO 4 and then concentrated under reduced pressure to obtain a reaction crude product. The crude product was purified by silica gel chromatography to give product 8 (70.4 mg, 75% yield).
1 H-NMR (CDCl 3 ); δ:
8.02-8.08 (m, 2H), 6.98-7.05 (m, 3H), 3.84-3.92 (m, 1H),
3.40 (s, 3H), 3.08 (s, 3H), 2.28-2.33 (m, 1H), 2.15-2.24 (m, 1H),
1.92-2.00 (m, 1H), 1.64-1.74 (m, 1H), 1.35 (d, 3H, J = 6.8 Hz);
13 C-NMR (CDCl 3 ) δ:
178.5, 172.6, 143.2, 132.2, 128.8, 127.0, 54.7, 51.2, 38.8, 31.9,
29.3, 17.8;
IR (neat) 3064, 2952, 2879, 2852, 1738, 1603, 1446, 1350, 1307,
1263, 1197, 1155, 1123, 1092, 1026, 977, 951, 921, 839,
759, 734, 691, 626, 595, 536, 444, 419 cm -1 ;
HRMS (FAB);
As C 14 H 20 NO 5 S, calculated value: [M + H] + 370.1683,
Actual value: 370.1700.
スルホニルイミデート6aとジターシャリーブチルアゾジカルボキシレートとの反応
下記の反応式にしたがって、生成物9を製造した。
Reaction of sulfonyl imidate 6a with ditertiary butyl azodicarboxylate Product 9 was prepared according to the following reaction scheme.
MS4A(100mg)の入っている容器に、スルホニルイミデート6a(136.4mg,0.6mmol)のDMF(1.1mL)溶液とジターシャリーブチルアゾジカルボキシレート(152mg,0.66mmol)、DBU(5mol%)のDMF(0.1mL)溶液を室温にて加えた。反応混合物を室温にて1.5時間撹拌した後、Et2O(5mL)を加えて反応液を希釈した。MS4Aをろ別した後、母液を水で3回洗浄した。得られた有機層を無水Na2SO4にて乾燥した後、減圧濃縮し、反応粗生成物を得た。シリカゲルクロマトグラフィーにて粗生成物を精製し、生成物9(236.3mg,86% 収率)を得た。
1H−NMR(DMSO-d6, 70 ℃) δ :
8.16-8.80 (m, 1H), 7.90-7.94 (m, 2H), 7.53-7.69 (m, 3H),
5.50-5.63 (m, 1H), 3.70 (s, 3H), 1.35-1.45 (m, 21H);
13C−NMR(DMSO-d6, 70 ℃) δ :
141.6, 132.3, 128.7, 125.7, 79.3, 55.4, 55.3, 54.4, 27.7, 27.6,
14.6;
IR (neat) 3326, 2979, 1732, 1613, 1540, 1507, 1478, 1448, 1393,
1368, 1307, 1247, 1155, 1092, 1075, 1024, 955, 911, 854,
758, 733, 690, 611, 585 cm−1;
HRMS (FAB);
C20H32N3O7Sとして、計算値:[M+H]+ 458.1961, 実測値: 458.1975.
In a container containing MS4A (100 mg), a solution of sulfonylimidate 6a (136.4 mg, 0.6 mmol) in DMF (1.1 mL), di-tert-butyl azodicarboxylate (152 mg, 0.66 mmol), DBU ( 5 mol%) in DMF (0.1 mL) was added at room temperature. The reaction mixture was stirred at room temperature for 1.5 hours, then Et 2 O (5 mL) was added to dilute the reaction. After MS4A was filtered off, the mother liquor was washed 3 times with water. The obtained organic layer was dried over anhydrous Na 2 SO 4 and then concentrated under reduced pressure to obtain a reaction crude product. The crude product was purified by silica gel chromatography to give the product 9 (236.3 mg, 86% yield).
1 H-NMR (DMSO-d6, 70 ° C.) δ:
8.16-8.80 (m, 1H), 7.90-7.94 (m, 2H), 7.53-7.69 (m, 3H),
5.50-5.63 (m, 1H), 3.70 (s, 3H), 1.35-1.45 (m, 21H);
13 C-NMR (DMSO-d6, 70 ° C.) δ:
141.6, 132.3, 128.7, 125.7, 79.3, 55.4, 55.3, 54.4, 27.7, 27.6,
14.6;
IR (neat) 3326, 2979, 1732, 1613, 1540, 1507, 1478, 1448, 1393,
1368, 1307, 1247, 1155, 1092, 1075, 1024, 955, 911, 854,
758, 733, 690, 611, 585 cm -1 ;
HRMS (FAB);
As C 20 H 32 N 3 O 7 S, calculated value: [M + H] + 458.1961, actually measured value: 458.1975.
スルホニルイミデート7gの10への変換
下記の反応式にしたがって、生成物10を製造した。
Conversion of 7 g of sulfonylimidate to 10 Product 10 was prepared according to the following reaction scheme.
スルホニルイミデート7g(50 mg,0.092 mmol)の入っている容器に、i−PrOHと水の混合液(95/5,0.5mL)と濃硫酸(66mg)を加えた。反応液を80℃にて40分間撹拌した後、100℃にて3時間撹拌した。室温まで冷却した後、塩化メチレンで希釈した。飽和重曹水を加えた後、塩化メチレンで3回抽出した。有機層を無水硫酸マグネシウムで乾燥した後、減圧濃縮し生成物10(46.1mg,収率 定量的)を得た。 To a container containing 7 g (50 mg, 0.092 mmol) of sulfonylimidate, a mixture of i-PrOH and water (95/5, 0.5 mL) and concentrated sulfuric acid (66 mg) were added. The reaction solution was stirred at 80 ° C. for 40 minutes, and then stirred at 100 ° C. for 3 hours. After cooling to room temperature, it was diluted with methylene chloride. Saturated aqueous sodium hydrogen carbonate was added, and the mixture was extracted 3 times with methylene chloride. The organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain the product 10 (46.1 mg, quantitative yield).
スルホニルイミデート7yの11への変換
下記の反応式にしたがって、生成物11を製造した。
Conversion of sulfonylimidate 7y to 11 Product 11 was prepared according to the following reaction scheme.
スルホニルイミデート7y(82.3mg,0.19mmol)の入っている容器に、DMFと水の混合液(95/5,0.38mL)とDBU(10mol%)のDMF(0.03mL)溶液を加えた。反応液を室温にて33時間撹拌した後、Et2O(5mL)を加えて反応液を希釈した。水で3回洗浄した後、得られた有機層を無水Na2SO4にて乾燥した後、減圧濃縮し、反応粗生成物を得た。シリカゲルクロマトグラフィーにて粗生成物を精製し、生成物11(50.4 mg,90% 収率)を得た。 In a container containing sulfonylimidate 7y (82.3 mg, 0.19 mmol), a DMF / water mixture (95/5, 0.38 mL) and DBU (10 mol%) in DMF (0.03 mL) were added. added. After stirring the reaction solution at room temperature for 33 hours, Et 2 O (5 mL) was added to dilute the reaction solution. After washing with water three times, the obtained organic layer was dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure to obtain a reaction crude product. The crude product was purified by silica gel chromatography to obtain the product 11 (50.4 mg, 90% yield).
スルホニルイミデート7dの12aへの変換
下記の反応式にしたがって、生成物12aを製造した。
Conversion of sulfonylimidate 7d to 12a Product 12a was prepared according to the following reaction scheme.
実施例4で製造した7d(100mg,0.205mmol)のTHF(2mL)溶液を−70℃に冷却した後、Red−Al(65% w/wトルエン溶液、385μL,7当量)をゆっくり滴下した。18時間さらに撹拌した後、MeOH(0.1mL)を−70℃にて加え反応を停止した。5分間撹拌した後、水を加え室温まで昇温した。酢酸エチルと飽和塩化アンモニウム水溶液を加えた後、不溶物を濾過し、母液を酢酸エチルで3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮後、反応粗生成物を得た。シリカゲルクロマトグラフィーにて精製後、生成物12a(46.9mg,87% 収率)を得た。 7d (100 mg, 0.205 mmol) prepared in Example 4 in THF (2 mL) was cooled to −70 ° C., and then Red-Al (65% w / w toluene solution, 385 μL, 7 equivalents) was slowly added dropwise. . After further stirring for 18 hours, MeOH (0.1 mL) was added at −70 ° C. to stop the reaction. After stirring for 5 minutes, water was added and the temperature was raised to room temperature. Ethyl acetate and saturated aqueous ammonium chloride solution were added, the insoluble material was filtered, and the mother liquor was extracted three times with ethyl acetate. The obtained organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain a crude reaction product. After purification by silica gel chromatography, product 12a (46.9 mg, 87% yield) was obtained.
13の生成法
下記の反応式にしたがって、生成物13を製造した。
Production Method 13 According to the following reaction formula, product 13 was produced.
ベンズアルデヒド(60.9μL,0.6mmol)とDBU(18.3mg,0.12mmol)のDMF(0.2mL)溶液の入った容器に、2,5−キシリルスルホニルアミド(11.1mg,0.06mmol)を加えた。その溶液に、スルホニルイミデート6h(183.8mg,0.72mmol)のDMF(1mL)溶液を32時間かけて、低速添加した。低速添加終了後、さらに46時間撹拌後、Et2O(5mL)を加えて反応液を希釈した。水で3回洗浄した後、得られた有機層を無水Na2SO4にて乾燥した後、減圧濃縮し、反応粗生成物を得た。シリカゲルクロマトグラフィーにて粗生成物を精製し、生成物13(196.2mg,90% 収率、アンチ/シン=87/13)を得た。 In a container containing a solution of benzaldehyde (60.9 μL, 0.6 mmol) and DBU (18.3 mg, 0.12 mmol) in DMF (0.2 mL), 2,5-xylylsulfonylamide (11.1 mg,. 06 mmol) was added. To the solution, a solution of sulfonylimidate 6h (183.8 mg, 0.72 mmol) in DMF (1 mL) was slowly added over 32 hours. After completion of the low-speed addition, the reaction solution was diluted by adding Et 2 O (5 mL) after stirring for another 46 hours. After washing with water three times, the obtained organic layer was dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure to obtain a reaction crude product. The crude product was purified by silica gel chromatography to obtain the product 13 (196.2 mg, 90% yield, anti / sin = 87/13).
本発明は、新規な求核試薬を提供するものである。有機合成分野における新規な反応を提供することができることから、有機合成産業において極めて有用な方法を提供するものであり、産業上の利用可能性を有する。 The present invention provides a novel nucleophile. Since it can provide a new reaction in the field of organic synthesis, it provides a very useful method in the organic synthesis industry, and has industrial applicability.
Claims (6)
で表されるスルホニルイミデートを、1,8−diazabicyclo[5.4.0]undec−7−ene及びビスブトキシマグネシウムからなる群より選ばれる塩基の存在下で次の一般式(2)
Y=Z−R5 (2)
(式中、YはR6−CH、R 7 −C(R 8 )、又はR9O−CO−Nを表し、ZはN、又はC−CO−OR10 (式中、左末端のCはYと二重結合を形成するとともにR 5 と結合している)を表し、R5は炭素数6〜18のアリール基、−CORa、−COORa、又は−SO2−Ra(式中、Raは炭素数1〜10のアルキル基、又は炭素数6〜18のアリール基を表す。)を表し、R6は水素原子、炭素数3〜10のシクロアルキル基、置換基として炭素数1〜20のアルコキシ基、炭素数2〜10のアルケニル基、若しくはハロゲン原子を有していてもよい炭素数6〜18のアリール基、1〜2個の窒素原子、酸素原子、若しくは硫黄原子からなる異種原子を含有する5〜8員の複素環基、又は炭素数1〜10のアルコキシカルボニル基を表し、R 7 及びR 8 はそれぞれ独立して水素原子、炭素数1〜10のアルキル基を表し、R9及びR10はそれぞれ独立して炭素数1〜10のアルキル基を表す。)
で表される求核反応基質化合物と反応させて次の一般式(3)
で表わされる求核反応生成物を製造する方法。 The following general formula (1)
In the presence of a base selected from the group consisting of 1,8-diazabiccyclo [5.4.0] undec-7-ene and bisbutoxymagnesium, the following general formula (2)
Y = ZR 5 (2)
(In the formula, Y represents R 6 —CH, R 7 —C (R 8 ), or R 9 O—CO—N, Z represents N, or C—CO—OR 10 , Represents a double bond with Y and is bonded to R 5 ) , and R 5 is an aryl group having 6 to 18 carbon atoms, —CORa, —COORa, or —SO 2 —Ra (wherein Ra Represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 18 carbon atoms.), R 6 represents a hydrogen atom, a cycloalkyl group having 3 to 10 carbon atoms, or a substituent having 1 to 20 carbon atoms. An alkoxy group, an alkenyl group having 2 to 10 carbon atoms, or an aryl group having 6 to 18 carbon atoms which may have a halogen atom , 1 to 2 nitrogen atoms, oxygen atoms or sulfur atoms. 5- to 8-membered heterocyclic group containing 1 to 10 carbon atoms or alkoxy having 1 to 10 carbon atoms Represents a carbonyl group , R 7 and R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms. )
Is reacted with a nucleophilic reaction substrate compound represented by the following general formula (3):
A method for producing a nucleophilic reaction product represented by:
であって、求核反応生成物が次の一般式(5)
で表されるアミノ化合物である請求項1に記載の方法。 A nucleophilic reaction substrate compound is represented by the following general formula (4):
The nucleophilic reaction product is represented by the following general formula (5)
The method of Claim 1 which is an amino compound represented by these.
であって、求核反応生成物が次の一般式(7)
で表されるカルボニル化合物である請求項1に記載の方法。 Nucleophilic reaction substrate compound is represented by the following general formula (6)
The nucleophilic reaction product is represented by the following general formula (7)
The method of Claim 1 which is a carbonyl compound represented by these.
であって、求核反応生成物が次の一般式(9)
で表されるヒドラジン化合物である請求項1に記載の方法。 A nucleophilic reaction substrate compound is represented by the following general formula (8):
The nucleophilic reaction product is represented by the following general formula (9)
The method of Claim 1 which is a hydrazine compound represented by these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008003733A JP5180596B2 (en) | 2008-01-10 | 2008-01-10 | Reaction method using sulfonylimidate as a nucleophile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008003733A JP5180596B2 (en) | 2008-01-10 | 2008-01-10 | Reaction method using sulfonylimidate as a nucleophile |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009167109A JP2009167109A (en) | 2009-07-30 |
JP5180596B2 true JP5180596B2 (en) | 2013-04-10 |
Family
ID=40968734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008003733A Expired - Fee Related JP5180596B2 (en) | 2008-01-10 | 2008-01-10 | Reaction method using sulfonylimidate as a nucleophile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5180596B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5166321B2 (en) * | 2009-02-27 | 2013-03-21 | 独立行政法人科学技術振興機構 | Syn-selective catalytic Mannich-type reaction of sulfonylimidates using alkaline earth metals as catalysts |
JP5107286B2 (en) * | 2009-03-11 | 2012-12-26 | 独立行政法人科学技術振興機構 | Method using phosphonimidate as a nucleophile |
JP5254264B2 (en) * | 2010-03-10 | 2013-08-07 | 独立行政法人科学技術振興機構 | Method for allylation of sulfonylimidate |
JP5302918B2 (en) * | 2010-03-10 | 2013-10-02 | 独立行政法人科学技術振興機構 | Method for producing diaminonitrile analogue |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4701196B2 (en) * | 2007-03-09 | 2011-06-15 | 独立行政法人科学技術振興機構 | Silicon Lewis acid catalyst and reaction method using silicon Lewis acid catalyst |
-
2008
- 2008-01-10 JP JP2008003733A patent/JP5180596B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009167109A (en) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5113118B2 (en) | Reagent for organic synthesis, and organic synthesis reaction method using the reagent | |
JP6487568B2 (en) | Kinetic resolution by catalytic asymmetric hydrogenation of racemic δ-hydroxy ester and its application | |
JP5180596B2 (en) | Reaction method using sulfonylimidate as a nucleophile | |
EP2914574B1 (en) | New process | |
JP5369853B2 (en) | Process for producing α-fluoro-β-amino acids | |
KR20130090360A (en) | Method for preparing compounds through a novel michael-addition reaction using water or various acids as additives | |
CN107868033B (en) | Preparation method of phenylalanine compound | |
JP6676146B2 (en) | Novel production method of chromanol derivative | |
JP5107286B2 (en) | Method using phosphonimidate as a nucleophile | |
KR101554539B1 (en) | Development of Method for Amide Bond Formation via Metal-Free Aerobic Oxidative Amination of Aldehydes | |
JP5166321B2 (en) | Syn-selective catalytic Mannich-type reaction of sulfonylimidates using alkaline earth metals as catalysts | |
KR100968576B1 (en) | Process of preparing 2-acyl-3-amino-2-alkenoate | |
RU2742765C1 (en) | Method for preparing intermediate compound for synthesis of medicinal agent | |
EP2192110B1 (en) | Method of producing optically active n-(halopropyl)amino acid derivative | |
JP4840562B2 (en) | An optically active spiroisoxazoline-isoxazole derivative and a process for producing the same, and an asymmetric catalytic reaction using the metal complex. | |
JP6205530B2 (en) | Method for producing side chain precursor of paclitaxel and docetaxel | |
JP4659251B2 (en) | Process for producing hydroxy-4-oxatricyclo [4.3.1.13,8] undecan-5-one and (meth) acrylic acid ester thereof | |
JP2009046469A (en) | Method for preparing optically active allyl compound | |
JP4781048B2 (en) | Process for producing disubstituted β-ketoesters | |
JP5787399B2 (en) | Novel asymmetric catalyst, optically active carboxylic acid ester, optically active alcohol, and method for producing optically active carboxylic acid | |
JP5175460B2 (en) | Process for producing (meth) acrylic acid oxoadamantyl esters | |
JP3918468B2 (en) | 3,3-bis (alkoxycarbonyl-methylthio) propionitrile and process for producing the same | |
JP2014509300A (en) | Enantiomerically pure binaphthol derivative and method for producing the same (ENANTIOMERICLYPUREBINAPHALTERIVATIVESANDMETHODFORPREPARINGTHEMEME) | |
JPWO2005026108A1 (en) | Process for producing N, N'-dialkoxy-N, N'-dialkyloxamide | |
JPS6310751A (en) | Production of isocyanatoethyl ester of unsaturated carboxylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5180596 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |