Nothing Special   »   [go: up one dir, main page]

JP5167783B2 - 焦点検出装置および撮像装置 - Google Patents

焦点検出装置および撮像装置 Download PDF

Info

Publication number
JP5167783B2
JP5167783B2 JP2007302776A JP2007302776A JP5167783B2 JP 5167783 B2 JP5167783 B2 JP 5167783B2 JP 2007302776 A JP2007302776 A JP 2007302776A JP 2007302776 A JP2007302776 A JP 2007302776A JP 5167783 B2 JP5167783 B2 JP 5167783B2
Authority
JP
Japan
Prior art keywords
focus detection
pixel
imaging
image
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007302776A
Other languages
English (en)
Other versions
JP2009128579A (ja
Inventor
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007302776A priority Critical patent/JP5167783B2/ja
Publication of JP2009128579A publication Critical patent/JP2009128579A/ja
Application granted granted Critical
Publication of JP5167783B2 publication Critical patent/JP5167783B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Description

本発明は焦点検出装置および撮像装置に関する。
撮像画素が二次元状に配列された撮像素子において、一部の撮像画素を焦点検出画素に置き換えた撮像素子を用いて焦点検出を行う撮像装置が知られている(例えば、特許文献1参照)。
この出願の発明に関連する先行技術文献としては次のものがある。
特開2000−292686号公報
しかしながら、上述した従来の装置では、ライン露光方式(ローリングシャッター方式)で画素の露光制御を行う撮像素子(CMOSイメージセンサー)を用いた場合に、焦点検出画素列に属する焦点検出画素の間で露光タイミングが異なるため、移動被写体に対して焦点検出を行う場合や、焦点検出装置自体が動いたり振動したりする場合には、焦点検出精度が低下したり、間違った焦点検出結果を出力するという問題がある。
請求項1に記載の焦点検出装置は、光学系を介した光束を受光する複数の電荷蓄積型の画素を有する撮像素子と、前記画素のうち、前記撮像素子上の第1方向に沿って配列された第1画素列に対して同時に電荷蓄積制御するとともに、前記第1方向と交差する第2方向に沿って配列された第2画素列に対して順次蓄積制御する蓄積制御手段と、前記第1画素列と前記第2画素列の出力に基づいて前記光学系の焦点検出を行う焦点検出手段と、前記光学系の画面内における像の動きを検出する動き検出手段とを備え、前記焦点検出手段は、前記第1画素列の出力を用いた焦点検出が不能な場合は、前記第2画素列の出力を用いて焦点検出を行い、更に、前記焦点検出手段は、前記動き検出手段により像の動きが検出された場合は、前記第2画素列の出力を用いた焦点検出を禁止することを特徴とする。
本発明によれば、CMOSイメージセンサーのようにライン露光方式(ローリングシャッター方式)で蓄積制御を行う撮像素子においても、画面内の像の動きに対して安定して高精度の焦点検出を行うことができる。
一実施の形態の撮像素子および撮像装置として、レンズ交換式デジタルスチルカメラを例に上げて説明する。図1は一実施の形態のカメラの構成を示すカメラの横断面図である。一実施の形態のデジタルスチルカメラ201は交換レンズ202とカメラボディ203から構成され、交換レンズ202がマウント部204を介してカメラボディ203に装着される。カメラボディ203にはマウント部204を介して種々の撮影光学系を有する交換レンズ202が装着可能である。
交換レンズ202はレンズ209、ズーミング用レンズ208、フォーカシング用レンズ210、絞り211、レンズ駆動制御装置206などを備えている。レンズ駆動制御装置206は不図示のマイクロコンピューター、メモリ、駆動制御回路などから構成され、フォーカシング用レンズ210の焦点調節と絞り211の開口径調節のための駆動制御や、ズーミング用レンズ208、フォーカシング用レンズ210および絞り211の状態検出などを行う他、後述するボディ駆動制御装置214との通信によりレンズ情報の送信とカメラ情報の受信を行う。絞り211は、光量およびボケ量調整のために光軸中心に開口径が可変な開口を形成する。
カメラボディ203は撮像素子212、ボディ駆動制御装置214、液晶表示素子駆動回路215、液晶表示素子216、接眼レンズ217、メモリカード219などを備えている。撮像素子212には、撮像画素が二次元状に配置されるとともに、焦点検出位置に対応した部分に焦点検出画素が組み込まれている。この撮像素子212については詳細を後述する。
ボディ駆動制御装置214はマイクロコンピューター、メモリ、駆動制御回路などから構成され、撮像素子212の駆動制御と画像信号および焦点検出信号の読み出しと、焦点検出信号に基づく焦点検出演算と交換レンズ202の焦点調節を繰り返し行うとともに、画像信号の処理と記録、カメラの動作制御などを行う。また、ボディ駆動制御装置214は電気接点213を介してレンズ駆動制御装置206と通信を行い、レンズ情報の受信とカメラ情報(デフォーカス量や絞り値など)の送信を行う。
液晶表示素子216は電気的なビューファインダー(EVF:Electronic View Finder)として機能する。液晶表示素子駆動回路215は撮像素子212によるスルー画像を液晶表示素子216に表示し、撮影者は接眼レンズ217を介してスルー画像を観察することができる。メモリカード219は、撮像素子212により撮像された画像を記憶する画像ストレージである。
交換レンズ202を通過した光束により、撮像素子212の受光面上に被写体像が形成される。この被写体像は撮像素子212により光電変換され、画像信号と焦点検出信号がボディ駆動制御装置214へ送られる。
ボディ駆動制御装置214は、撮像素子212の焦点検出画素からの焦点検出信号に基づいてデフォーカス量を算出し、このデフォーカス量をレンズ駆動制御装置206へ送る。また、ボディ駆動制御装置214は、撮像素子212からの画像信号を処理してメモリカード219に格納するとともに、撮像素子212からのスルー画像信号を液晶表示素子駆動回路215へ送り、スルー画像を液晶表示素子216に表示させる。さらに、ボディ駆動制御装置214は、レンズ駆動制御装置206へ絞り制御情報を送って絞り211の開口制御を行う。
レンズ駆動制御装置206は、フォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じてレンズ情報を更新する。具体的には、ズーミング用レンズ208とフォーカシング用レンズ210の位置と絞り211の絞り値を検出し、これらのレンズ位置と絞り値に応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからレンズ位置と絞り値に応じたレンズ情報を選択する。
レンズ駆動制御装置206は、受信したデフォーカス量に基づいてレンズ駆動量を算出し、レンズ駆動量に応じてフォーカシング用レンズ210を合焦位置へ駆動する。また、レンズ駆動制御装置206は受信した絞り値に応じて絞り211を駆動する。
図2は撮影画面上の焦点検出位置を示す図であり、後述する焦点検出画素列により焦点検出を行うときに画面上で像をサンプリングする領域(焦点検出エリア、焦点検出位置)の一例を示す。この一実施の形態では、矩形の撮影画面100内の中央、左右、上下の5カ所に焦点検出エリア101〜105が配置される。長方形で示した焦点検出エリア101〜105の長手方向に、複数の焦点検出画素が直線的に配列される。
図3は撮像素子212の詳細な構成を示す正面図であり、(a)は図2に示す撮像素子212上の焦点検出エリア101、104、105の近傍を拡大して示し、(b)は図2に示す撮像素子212上の焦点検出エリア102、103の近傍を拡大して示す。まず、撮影画面100の水平方向(左右方向)の焦点検出エリア101、104、105の近くには、図3(a)に示すように、撮像用の撮像画素310と焦点検出用の焦点検出画素313、314が配置される。撮像画素310は水平および垂直方向に二次元状に正方格子配列され、焦点検出画素313、314は水平方向に配列されている。
撮像画素310は、図4に示すようにマイクロレンズ10、光電変換部11、不図示の色フィルターから構成される。色フィルターは赤(R)、緑(G)、青(B)の3種類からなり、それぞれの分光感度は図6に示す特性を示す。この一実施の形態では、各色フィルターを備えた撮像画素310がベイヤー配列された撮像素子212の例を示す。
一方、焦点検出画素313は、図5(a)に示すようにマイクロレンズ10と光電変換部16とから構成される。光電変換部16の形状はマイクロレンズ10の垂直2等分線に接する左半円である。また、焦点検出画素314は、図5(b)に示すようにマイクロレンズ10と光電変換部17とから構成される。光電変換部17の形状はマイクロレンズ10の垂直2等分線に接する右半円である。光電変換部16と17は、マイクロレンズ10を重ね合わせて表示した場合に左右水平方向に並んでおり、マイクロレンズ10の垂直2等分線に関して対称な形状をしている。焦点検出エリア101、104、105では、焦点検出画素313と焦点検出画素314が水平方向(光電変換部16と17の並び方向;図2に示す撮影画面100の左右方向)に交互に配置される。
焦点検出画素313、314には光量をかせぐために色フィルターが配置されておらず、その分光特性は光電変換を行うフォトダイオードの分光感度と、赤外カットフィルター(不図示)の分光特性を総合した図7に示すような分光特性となる。すなわち、図6に示す緑画素、赤画素、青画素の分光特性を加算したような分光特性となり、その感度の光波長領域は緑画素、赤画素、青画素の感度の光波長領域を包括している。焦点検出画素313、314は、撮像画素310の青(B)フィルターと緑(G)フィルターが配置されるべき行に配置されている。
次に、撮影画面100の垂直方向(上下方向)の焦点検出エリア102、103の近くでは、図3(b)に示すように、撮像用の撮像画素310と焦点検出用の焦点検出画素315、316が配置される。焦点検出画素315,316は、焦点検出画素313,314を90度回転した構造となっており、撮像面において垂直方向に配列されている。焦点検出画素315、316は、撮像画素310のBとGフィルターが配置されるべき列に配置されている。
図8は撮像画素310の断面図である。撮像画素310では、撮像用の光電変換部11の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部11が前方に投影される。光電変換部11は半導体回路基板29上に形成される。不図示の色フィルターはマイクロレンズ10と光電変換部11の中間に配置される
図9(a)は焦点検出画素313の断面図である。焦点検出画素313では、光電変換部16の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部16が前方に投影される。光電変換部16は半導体回路基板29上に形成されるとともに、その上にマイクロレンズ10が半導体イメージセンサーの製造工程を経て一体的かつ固定的に形成される。光電変換部16はマイクロレンズ10の光軸の片側に配置される。
図9(b)は焦点検出画素314の断面図である。焦点検出画素314では、光電変換部17の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部17が前方に投影される。光電変換部17は半導体回路基板29上に形成されるとともに、その上にマイクロレンズ10が半導体イメージセンサーの製造工程を経て一体的かつ固定的に形成される。光電変換部17はマイクロレンズ10の光軸の片側でかつ光電変換部16の反対側に配置される。
図10は、マイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す。図において、90は、交換レンズ202(図1参照)の予定結像面に配置されたマイクロレンズから前方dの距離に設定された射出瞳である。この距離dは、マイクロレンズの曲率、屈折率、マイクロレンズと光電変換部との間の距離などに応じて決まる距離であって、この明細書では測距瞳距離と呼ぶ。91は交換レンズの光軸、10a〜10dはマイクロレンズ、13a、13b、14a、14bは光電変換部、313a、313b、314a、314bは焦点検出画素、73,74、83,84は焦点検出光束である。
また、93は、マイクロレンズ10a、10cにより投影された光電変換部13a、13bの領域であり、この明細書では測距瞳と呼ぶ。図10では、説明を解りやすくするために楕円形の領域で示しているが、実際には光電変換部の形状が拡大投影された形状になる。同様に、94は、マイクロレンズ10b、10dにより投影された光電変換部14a、14bの領域であり、この明細書では測距瞳と呼ぶ。図10では、説明を解りやすくするために楕円形の領域で示しているが、実際には光電変換部の形状が拡大投影された形状になる。
図10では、隣接する4つの焦点検出画素313a、313b、314a、314bを模式的に例示しているが、その他の焦点検出画素においても光電変換部はそれぞれ対応した測距瞳から各マイクロレンズに到来する光束を受光する。焦点検出画素の配列方向は一対の測距瞳の並び方向、すなわち一対の光電変換部の並び方向と一致させる。
マイクロレンズ10a〜10dは交換レンズ202(図1参照)の予定結像面近傍に配置されており、マイクロレンズ10a〜10dによりその背後に配置された光電変換部13a、13b、14a、14bの形状がマイクロレンズ10a〜10cから測距瞳距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳93,94を形成する。すなわち、投影距離dにある射出瞳90上で各焦点検出画素の光電変換部の投影形状(測距瞳93,94)が一致するように、各焦点検出画素における光電変換部の投影方向が決定されている。
光電変換部13aは測距瞳93を通過し、マイクロレンズ10aに向う光束73によりマイクロレンズ10a上に形成される像の強度に対応した信号を出力する。同様に、光電変換部13bは測距瞳93を通過し、マイクロレンズ10cに向う光束83によりマイクロレンズ10c上に形成される像の強度に対応した信号を出力する。また、光電変換部14aは測距瞳94を通過し、マイクロレンズ10bに向う光束74によりマイクロレンズ10b上に形成される像の強度に対応した信号を出力する。同様に、光電変換部14bは測距瞳94を通過し、マイクロレンズ10dに向う光束84によりマイクロレンズ10d上に形成される像の強度に対応した信号を出力する。
上述した2種類の焦点検出画素を直線状に多数配置し、各画素の光電変換部の出力を測距瞳93および測距瞳94に対応した出力グループにまとめることによって、測距瞳93と測距瞳94をそれぞれ通過する焦点検出用光束が画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に一対の測距瞳の重心間隔に応じた変換演算を行うことによって、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。
図11は撮像素子212の回路構成を示す概念図である。撮像素子212はCMOSイメージセンサーとして構成され、蓄積制御はライン露光方式(ローリングシャッター方式)で制御される。説明を解りやすくするために、撮像素子212の回路構成を、4画素×4画素のレイアウトとして図示する。ここでは、2つの焦点検出画素313、314が3行目の2列目と3列目に配置され、その他は撮像画素310である。すなわち、画面水平方向に配置される焦点検出エリア101、104、105に対応して、焦点検出画素313、314が水平方向に配列されている。なお、画面垂直方向に配置される焦点検出エリア102,103に対応する焦点検出画素315、315の場合は、同じ列上にこれらの焦点検出画素315、315が配列される。例えば、2つの焦点検出画素315、315を3列目の2行目と3行目に配置したとして考えればよい。
上述したように、ライン露光方式では蓄積制御が行ごとに行われるので、同一行に配列される撮像画素と焦点検出画素に対しては露光タイミングの同時性が保証されているが、異なる行に跨って配列される撮像画素と焦点検出画素の間では露光タイミングにズレが生じる。
信号保持部502は、1行分の画素の画像信号を一時的に保持するバッファであり、垂直信号線501に出力されている同一行の画像信号を垂直走査回路503が発する制御信号ΦHに基づいてラッチする。撮像画素310および焦点検出画素313、314の電荷蓄積は、蓄積制御回路504が発する制御信号(ΦR1〜ΦR4)により行ごとに制御される。撮像画素310および焦点検出画素313、314からの画像信号の出力は、垂直走査回路503が発する制御信号(ΦS1〜ΦS4)により行ごとに独立に制御される。制御信号により選択された画素の画像信号は垂直信号線501へ出力される。信号保持部502に保持された画像信号は水平転送回路505が発する制御信号(ΦV1〜ΦV4)により、順次出力回路506へ転送され、出力回路506により予め設定された増幅度で増幅されて外部へ出力される。
図12は、図11に示す撮像画素310および焦点検出画素313、314の詳細な回路図である。光電変換部はフォトダイオード(PD)で構成される。PDで蓄積された電荷は浮遊拡散層(フローティングディフュージョン:FD)に蓄積される。FDは増幅MOSトランジスター(AMP)のゲートに接続されており、AMPはFDに蓄積された電荷の量に応じた信号を発生する。FDはリセットMOSトランジスター510を介して電源電圧Vddに接続されており、制御信号ΦRn(ΦR1〜ΦR4)によりリセットMOSトランジスター510がオンすることによって、FDおよびPDに溜まった電荷がクリアされリセット状態となる。AMPの出力は行選択MOSトランジスター512を介して垂直出力線501に接続されており、制御信号ΦSn(ΦS1〜ΦS4)により行選択MOSトランジスター512がオンすることによって、AMPの出力が垂直出力線501へ出力される。
図13は、図11に示す撮像素子212の動作を示すタイミングチャートである。1行目の撮像画素310は垂直走査回路503が発する制御信号ΦS1により選択され、選択された撮像画素310の画像信号は垂直信号線501へ出力される。制御信号ΦS1と同期して発せられる制御信号ΦHにより、垂直信号線501へ出力された1行目の画像信号は信号保持部502に一時的に保持される。信号保持部502に保持された1行目の撮像画素310の画像信号は、水平走査回路505から順次発せられる制御信号ΦV1〜ΦV4にしたがって出力回路506へ転送され、出力回路506で設定された増幅度で増幅されて外部へ出力される。
1行目の撮像画素310の画像信号の信号保持部502への転送が終了した時点で、蓄積制御回路504から発せられる制御信号ΦR1により1行目の撮像画素310がリセットされ、制御信号ΦR1の立ち下がりで1行目の撮像画素310の次の電荷蓄積が開始される。1行目の撮像画素310の画像信号の出力回路506からの出力が終了した時点において、2行目の撮像画素310は垂直走査回路503が発する制御信号ΦS2により選択され、選択された撮像画素310の画像信号が垂直信号線501へ出力される。以下、同様にして2行目の撮像画素310の画像信号の保持および撮像画素310のリセット、画像信号の出力および次の電荷蓄積の開始が行われる。
続いて3行目の撮像画素310と焦点検出画素313、314の画像信号の保持および画素のリセット、画像信号の出力および次の電荷蓄積の開始が行われる。さらに、続いて4行目の撮像画素310の画像信号の保持および撮像画素310のリセット、撮像画素310の画像信号の出力および次の電荷蓄積の開始が行われる。その後ふたたび1行目へ戻り、上述した動作が繰り返される。
1行目の撮像画素310の画像信号の電荷保持タイミングから、次回の1行目の撮像画素310の画像信号の電荷保持タイミングまでの周期Tsは、一定に制御される。撮像画素310および焦点検出画素313、314の電荷蓄積時間Ti(露光時間)は、画素のリセットタイミング(制御信号ΦRnの立ち下がり)から画像信号の保持タイミング(制御信号ΦSnがON中の制御信号ΦHの立ち上がり)までの時間となる。また、制御信号ΦR1〜ΦR4のパルス幅を変更することによって、撮像画素310および焦点検出画素313、314の電荷蓄積時間Ti(露光時間)を調整することが可能である。
図14は一実施の形態の撮像素子212の露光タイミングの説明図である。撮像素子212では、上述したライン露光方式によって画素の電荷蓄積タイミングの制御が行われる。一般に、N行の撮像素子では、図14に示すように、第1行目の画素の電荷蓄積開始と終了は時刻t1s、t2eとなり、N行目の画素の電荷蓄積開始と終了は時刻tNs、tNeとなる。そして、中間の行の画素の電荷蓄積開始と終了のタイミングは1行目の画素とN行目の画素の電荷蓄積タイミングの間の中間的なタイミングとなって、行ごとに電荷蓄積タイミングのズレを生じる。すなわち、g行目に配置された撮像画素と焦点検出画素の間では電荷蓄積の開始と終了が同時に行われるが、g行目に配置された撮像画素と焦点検出画素と(g+1)行目に配置された撮像画素と焦点検出画素の間では、電荷蓄積の開始と終了が(tNs−t1s)/(N−1)だけ異なることになり、電荷蓄積の同時性が失われる。
図15は、図1に示すデジタルスチルカメラ(撮像装置)の動作を示すフローチャートである。ボディ駆動制御装置214は、ステップ100でカメラの電源がオンされるとこの動作を開始する。ステップ110において、撮像画素と焦点検出画素をライン露光方式で蓄積制御して撮像画素と焦点検出画素からデータを読み出す。続くステップ120で、撮像画素のデータを電子ビューファインダーに表示させる。ステップ130では、画面水平方向に焦点検出画素313、314が配列された焦点検出エリア101、104、105から読み出された一対の像データに基づいて、後述する像ズレ検出演算処理(相関演算処理)を行い、各焦点検出エリアごとに像ズレ量を演算し、さらに像ズレ量をデフォーカス量に変換する。
ステップ140において、画面水平方向の焦点検出エリア101、104、105のすべてのエリアで焦点検出不能(信頼性のあるデフォーカス量が求まらなかった)であったか否かを調べ、少なくとも1つの焦点検出エリアで焦点検出可能であった場合はステップ160へ進み、すべてのエリアで焦点検出不能であった場合はステップ150へ進む。
水平方向のすべての焦点検出エリア101、104、105において焦点検出不能であった場合は、ステップ150で、垂直方向に焦点検出画素315、316が配列された焦点検出エリア102、103から読み出された一対の像データに基づいて、後述する像ズレ検出演算処理(相関演算処理)を行い、各焦点検出エリアごとに像ズレ量を演算し、さらに像ズレ量をデフォーカス量に変換する。
ステップ160では、画面水平方向の焦点検出エリア101、104、105の内のいずれか複数の焦点検出エリアでデフォーカス量が求まった場合は、選択処理(複数デフォーカス量の平均、または最も至近を示すデフォーカス量を選択など)をして最終的なデフォーカス量を算出する。画面水平方向の焦点検出エリア101、104、105の内の1つの焦点検出エリアでしかデフォーカス量が求まらなかった場合は、そのデフォーカス量を交換レンズ202の焦点調節を行うための最終的なデフォーカス量とする。
一方、画面水平方向のすべての焦点検出エリア101、104、105で焦点検出不能となり、画面垂直方向の焦点検出エリア102、103の両方でデフォーカス量が求まった場合には、上記選択処理によりいずれかを選択し、焦点検出エリア102、103の一方でのみデフォーカス量が得られた場合には、そのデフォーカス量を交換レンズ202の焦点調節を行うための最終的なデフォーカス量とする。画面水平方向および垂直方向のすべての焦点検出エリアで焦点検出不能であった場合は、焦点検出不能とする。
ステップ170において、合焦近傍か否か、つまり算出された最終的なデフォーカス量の絶対値が所定値以内であるか否かを調べる。合焦近傍でないと判定された場合はステップ180へ進み、デフォーカス量をレンズ駆動制御装置206へ送信し、交換レンズ202のフォーカシングレンズ210を合焦位置に駆動させた後、ステップ110へ戻って上述した動作を繰り返す。なお、焦点検出不能な場合もこのステップ180へ分岐し、レンズ駆動制御装置206へスキャン駆動命令を送信し、交換レンズ202のフォーカシングレンズ210を無限から至近までの間でスキャン駆動させた後、ステップ110へ戻って上述した動作を繰り返す。
一方、合焦近傍であると判定された場合はステップ190へ進み、レリーズボタン(不図示)が操作されてシャッターレリーズがなされたか否かを判定し、なされていないと判定された場合はステップ110へ戻って上述した動作を繰り返す。シャッターレリーズがなされたと判定された場合はステップ200へ進み、レンズ駆動制御装置206に対して絞り調整命令を送信し、交換レンズ202の絞り値を制御F値(撮影者または自動により設定されたF値)にする。絞り制御が終了した時点で、撮像素子212に撮像動作を行わせ、撮像素子212の撮像画素310およびすべての焦点検出画素313、314、315、316から画像データを読み出す。
ステップ210では、焦点検出画素列の各画素位置の画素データを焦点検出画素の周囲の撮像画素のデータに基づいて画素補間する。続くステップ220で、撮像画素のデータおよび補間されたデータからなる画像データをメモリーカード219に保存し、ステップ110へ戻って上述した動作を繰り返す。
以上の動作を実行することによって、電荷蓄積タイミングの同時性が保証された焦点検出エリア101、104、105において焦点検出が優先的に行われ、焦点検出エリア101、104、105において焦点検出不能な場合のみ、電荷蓄積タイミングの同時性が保証されない焦点検出エリア102,103において焦点検出を行うように制御されるので、被写体とカメラの相対的な変位が生じた場合であっても、電荷蓄積タイミングの非同時性に起因する焦点検出の誤動作の確率を減少させることができる。
ここで、図15のステップ130と150における像ズレ検出演算処理(相関演算処理)の詳細を説明する。焦点検出画素が検出する一対の像は、測距瞳がレンズの絞り開口によりけられて光量バランスが崩れている可能性があるので、光量バランスに対して像ズレ検出精度を維持できるタイプの相関演算を施す。焦点検出画素列から読み出された一対のデータ列(A11〜A1M、A21〜A2M:Mはデータ数)に対し、下記(1)式に示す相関演算を行い、相関量C(k)を演算する。
C(k)=Σ|A1n・A2n+1+k−A2n+k・A1n+1| ・・・(1)
(1)式において、Σ演算はnについて累積され、nのとる範囲は像ずらし量kに応じてA1n、A1n+1、A2n+k、A2n+1+kのデータが存在する範囲に限定される。像ずらし量kは整数であり、データ列のデータ間隔を単位とした相対的シフト量である。
(1)式の演算結果は、図16(a)に示すように、一対のデータの相関が高いシフト量(図16(a)ではk=kj=2)において相関量C(k)が極小(小さいほど相関度が高い)になる。次に、下記(2)式〜(5)式に示す3点内挿の手法を用い、連続的な相関量に対する極小値C(x)を与えるシフト量xを求める。
x=kj+D/SLOP ・・・(2),
C(x)= C(kj)-|D| ・・・(3),
D={C(kj-1)−C(k j+1)}/2 ・・・(4),
SLOP=MAX{C(kj+1)−C(kj),C(kj−1)−C(kj)} ・・・(5)
(2)式で算出されたずらし量xの信頼性があるかどうかは、以下のようにして判定される。図16(b)に示すように、一対のデータの相関度が低い場合は、内挿された相関量の極小値C(x)の値が大きくなる。したがって、C(x)が所定のしきい値以上の場合は算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいは、C(x)をデータのコントラストで規格化するために、コントラストに比例した値となるSLOPでC(x)を除した値が所定値以上の場合は、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいはまた、コントラストに比例した値となるSLOPが所定値以下の場合は、被写体が低コントラストであり、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。図16(c)に示すように、一対のデータの相関度が低く、シフト範囲kmin〜kmaxの間で相関量C(k)の落ち込みがない場合は、極小値C(x)を求めることができず、このような場合は焦点検出不能と判定する。
なお、相関演算式としては上記(1)式に限定されず、測距瞳がレンズの絞り開口によりけられて光量バランスが崩れていても像ズレ検出精度を維持できるタイプの相関演算式ならばどのような式でもよい。
算出されたずらし量xの信頼性があると判定された場合は、(6)式により像ズレ量shftに換算される。
shft=PY・x ・・・(6)
(6)式において、PYは検出ピッチ(焦点検出画素のピッチ)である。次に、(6)式で算出された像ズレ量に所定の変換係数kを乗じてデフォーカス量defへ変換する。
def=k・shft ・・・(7)
なお、変換係数kは図10に示す一対の測距瞳93,94の重心を見込む開き角θに依存しており、おおよそk=1/(2・Tan(θ/2))の関係がある。
《発明の他の実施の形態》
図17は、デジタルスチルカメラの変形例の動作を示すフローチャートである。上述した一実施の形態の動作(図15参照)では、常に、水平方向の焦点検出エリア101、104、105において、垂直方向の焦点検出エリア102、103に優先して焦点検出を行う例を示したが、状況に応じて、水平方向の焦点検出エリア101、104、105を垂直方向の焦点検出エリア102、103よりも優先して焦点検出を行うようにしてもよい。なお、図17に示す動作において、図15に示す動作と同じ動作を行うステップに対しては同一のステップ番号を付して相違点を中心に説明する。
この変形例の動作では、ステップ120と130の間にステップ121と122が追加されている。ステップ121で画面内の像の動きを検出し、像の動きがあった場合はステップ130へ進み、像の動きがない場合はステップ122へ進む。
像の動きの検出方法は、例えば、周知のブレ検出センサーをカメラボディに配置し、ブレ検出センサーの出力に応じて像の動きを検出してもよいし、あるいは、画像メモリをカメラボディに配置し、過去の画像データと今回の画像データとの間で周知の動きベクトルを算出し、この動きベクトルの大きさに応じて像の動きを検出してもよい。
ステップ122において、すべての焦点検出エリア101〜105から読み出された一対の像データに基づいて、像ズレ検出演算処理(相関演算処理)を行い、各焦点検出エリアごとに像ズレ量を演算し、さらに像ズレ量をデフォーカス量に変換してステップ160へ進む。
この変形例の動作によれば、像の動きがあった場合のみ、電荷蓄積タイミングの同時性が保証された焦点検出エリア101、104、105において焦点検出が優先的に行われ、像の動きがない場合はすべての焦点検出エリア101〜105において焦点検出が行われるため、より多くの焦点検出エリアを有効に利用することができる。
図18は、デジタルスチルカメラの他の変形例の動作を示すフローチャートである。図17に示す動作では、画面内で像の動きがある場合にのみ、水平方向の焦点検出エリア101、104、105において垂直方向の焦点検出エリア102、103に対して優先的に焦点検出を行っているが、像の動きがある場合に垂直方向の焦点検出エリア102、103における焦点検出を禁止するようにしてもよい。図18に示す動作では、図17に示す動作の内のステップ140と150の動作を削除し、ステップ130からステップ160へ進む。
この他の変形例の動作によれば、像の動きがあった場合(被写体とカメラの相対的な変位が生じた場合)には、電荷蓄積タイミングの非同時性に起因する焦点検出の誤動作を確実に防止することができる。
撮像素子における焦点検出エリアの配置は図2に示す配置に限定されず、対角線方向やその他の位置に水平方向および垂直方向に焦点検出エリアを配置することも可能である。
また、水平方向の焦点検出エリアと垂直方向の焦点検出エリアを近接して配置することによって、水平方向の焦点検出エリアが優先された場合でも実質的に焦点検出箇所を減ずることを防止できる。例えば、水平方向の焦点検出エリアと垂直方向の焦点検出エリアを交差して十字型の焦点検出エリアを配置することによって、画面内の像の動きにより垂直方向の焦点検出エリアにおける焦点検出が禁止された場合でも、十字型に交差する水平方向の焦点検出エリアで焦点検出を行うことができ、画面内の同じ位置において焦点検出を実行できる。
なお、水平方向と垂直方向の十字型の焦点検出エリアを構成する場合には、例えば図3(a)において、水平方向の焦点検出画素313と314の画素列の中央付近で、図3(b)に示す垂直方向の焦点検出画素315と316の配列が交差するようにすればよい。垂直方向の焦点検出画素315と316の配列は、緑と青の撮像画素の列に配置するのが望ましい。なお、交差点において垂直方向の焦点検出画素列を連続的に配列することはできないが、それによる焦点検出精度の低下は無視できる程度である。十字型の焦点検出エリアは撮影画面内の中央部、周辺部の多くの位置に配置することが望ましい。
図3に示す撮像素子において、焦点検出画素313、314、315、316はひとつの画素内にひとつの光電変換部を備えた例を示したが、ひとつの画素内に一対の光電変換部を備えてもよい。例えば、図19に示すように、撮像画素310の二次元配列の中に、ひとつの画素内に一対の光電変換部を備えた焦点検出画素311を複数個配列して撮像素子212Aを構成してもよい。この撮像素子212Aでは、焦点検出画素311が図3に示す焦点検出画素313と焦点検出画素314のペアに相当した機能を果たす。
この撮像素子212Aでは、図20に示すように、焦点検出画素311がマイクロレンズ10と一対の光電変換部12,13から構成される。焦点検出画素311には光量をかせぐために色フィルターは配置されておらず、その分光特性は光電変換を行うフォトダイオードの分光感度と、赤外カットフィルター(不図示)の分光特性を総合した分光特性(図7参照)となる。すなわち、図6に示す緑画素、赤画素、青画素の分光特性を加算したような分光特性となり、その感度の光波長領域は緑画素、赤画素、青画素の感度の光波長領域を包括している。
図3に示す撮像素子212では、撮像画素の配列中の一部に焦点検出画素を配置した例を示したが、図1においてカメラボディ203の撮影光路中にハーフミラーを配置して撮影光路を分割し、一方の光路に撮像専用の撮像素子を配置し、他方の光路に焦点検出画素のみが2次元状に配列された焦点検出専用の撮像素子を配置した構成のカメラに対しても、本発明を適用することが可能である。
上述した一実施の形態では、瞳分割位相差検出方式の焦点検出画素を用いた例を示したが、撮像画素を用いたコントラスト検出方式にも本発明を適用することができる。すなわち、水平方向に配列した撮像画素の画像データに基づくコントラスト検出を、垂直方向に配列した撮像画素の画像データに基づくコントラスト検出に対して優先する焦点検出装置を構成することも可能である。
図3に示す撮像素子では、撮像画素がベイヤー配列の色フィルターを備えた例を示したが、色フィルターの構成や配列はこれに限定されることはなく、補色フィルター(緑:G、イエロー:Ye、マゼンタ:Mg,シアン:Cy)の配列を採用してもよい。
図3に示す撮像素子では、焦点検出画素には色フィルターを設けない例を示したが、撮像画素と同色の色フィルターの内のひとつの色フィルター(たとえば緑色のフィルター)を設けるようにした場合でも、本発明を適用することができる。
図5、図20において、焦点検出画素の光電変換部の形状を半円形とした例を示したが、光電変換部の形状はこれに限定されず、他の形状であってもよい。例えば、焦点検出画素の光電変換部の形状を楕円や矩形や多角形にすることも可能である。
図3に示す撮像素子では、撮像画素と焦点検出画素が稠密正方格子配列に配置された例を示したが、稠密六方格子配列であってもよい。
本願発明に係わる撮像装置は、交換レンズとカメラボディから構成されるデジタルスチルカメラやフィルムスチルカメラに限定されず、レンズ一体型のデジタルスチルカメラやフィルムスチルカメラやビデオカメラにも適用できる。また、携帯電話などに内蔵される小型カメラモジュールや、監視カメラやロボット用の視覚認識装置等にも適用できる。あるいは、カメラ以外の焦点検出装置や測距装置やステレオ測距装置にも適用することができる。
一実施の形態のカメラの構成を示すカメラの横断面図 撮影画面上の焦点検出位置を示す図 一実施の形態の撮像素子の詳細な構成を示す正面図 撮像画素の構成を示す図 焦点検出画素の構成を示す図 撮像画素の分光特性を示す図 焦点検出画素の分光特性を示す図 撮像画素の断面図 焦点検出画素の断面図 マイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す図 一実施の形態の撮像素子の回路構成を示す概念図 図11に示す撮像画素および焦点検出画素の詳細な回路図 図11に示す撮像素子の動作を示すタイミングチャート 一実施の形態の撮像素子の露光タイミングの説明図 図1に示すデジタルスチルカメラ(撮像装置)の動作を示すフローチャート 焦点検出結果の信頼性を説明する図 図1に示すデジタルスチルカメラ(撮像装置)の変形例の動作を示すフローチャート 図1に示すデジタルスチルカメラ(撮像装置)の他の変形例の動作を示すフローチャート 変形例の撮像素子の正面図 図19に示す撮像素子で用いる焦点検出画素の構成を示す図
符号の説明
10;マイクロレンズ、11、12、13、16、17;光電変換部、201;カメラ(撮像装置)、212、212A;撮像素子、214;ボディ駆動制御装置、310;撮像画素、313、314、315、316;焦点検出画素、503;垂直走査回路、504;蓄積制御回路、505;水平走査回路

Claims (9)

  1. 光学系を介した光束を受光する複数の電荷蓄積型の画素を有する撮像素子と、
    前記画素のうち、前記撮像素子上の第1方向に沿って配列された第1画素列に対して同時に電荷蓄積制御するとともに、前記第1方向と交差する第2方向に沿って配列された第2画素列に対して順次蓄積制御する蓄積制御手段と、
    前記第1画素列と前記第2画素列の出力に基づいて前記光学系の焦点検出を行う焦点検出手段と、
    前記光学系の画面内における像の動きを検出する動き検出手段とを備え、
    前記焦点検出手段は、前記第1画素列の出力を用いた焦点検出が不能な場合は、前記第2画素列の出力を用いて焦点検出を行い、
    更に、前記焦点検出手段は、前記動き検出手段により像の動きが検出された場合は、前記第2画素列の出力を用いた焦点検出を禁止することを特徴とする焦点検出装置。
  2. 請求項1に記載の焦点検出装置において、
    前記動き検出手段は、焦点検出装置に加わる振れを検出することを特徴とする焦点検出装置。
  3. 請求項1に記載の焦点検出装置において、
    前記動き検出手段は、異なる時刻における前記撮像素子の出力を比較して像の動きを検出することを特徴とする焦点検出装置。
  4. 請求項1〜3のいずれか一項に記載の焦点検出装置において、
    前記撮像素子は、光学系による像を撮像する複数の撮像画素が二次元状に配列されており、
    前記第1画素列と前記第2画素列は、前記複数の撮像画素の配列中に設けられていることを特徴とする焦点検出装置。
  5. 請求項1〜4のいずれか一項に記載の焦点検出装置において、
    前記第1画素列と、前記第2画素列とが交差するように配列されることを特徴とする焦点検出装置。
  6. 請求項1〜5のいずれか一項に記載の焦点検出装置において、
    前記複数の画素は、前記光学系の瞳上の異なる領域を通る一対の光束を受光して前記光学系の焦点調節状態を検出するための信号を出力することを特徴とする焦点検出装置。
  7. 請求項6に記載の焦点検出装置において、
    前記画素は、マイクロレンズと該マイクロレンズに対して配置された一対の光電変換部から構成されることを特徴とする焦点検出装置。
  8. 請求項6に記載の焦点検出装置において、
    前記画素は、マイクロレンズと該マイクロレンズに対して配置された第1光電変換部から構成される第1焦点検出画素と、マイクロレンズと該マイクロレンズに対して配置された第2光電変換部から構成される第2焦点検出画素とを含むことを特徴とする焦点検出装置。
  9. 請求項1〜8のいずれか一項に記載の焦点検出装置を備えることを特徴とする撮像装置。
JP2007302776A 2007-11-22 2007-11-22 焦点検出装置および撮像装置 Active JP5167783B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302776A JP5167783B2 (ja) 2007-11-22 2007-11-22 焦点検出装置および撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302776A JP5167783B2 (ja) 2007-11-22 2007-11-22 焦点検出装置および撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012142096A Division JP5403117B2 (ja) 2012-06-25 2012-06-25 焦点検出装置および撮像装置

Publications (2)

Publication Number Publication Date
JP2009128579A JP2009128579A (ja) 2009-06-11
JP5167783B2 true JP5167783B2 (ja) 2013-03-21

Family

ID=40819574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302776A Active JP5167783B2 (ja) 2007-11-22 2007-11-22 焦点検出装置および撮像装置

Country Status (1)

Country Link
JP (1) JP5167783B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414358B2 (ja) * 2009-05-20 2014-02-12 キヤノン株式会社 撮像装置
JP5609098B2 (ja) * 2009-12-16 2014-10-22 株式会社ニコン 撮像装置
JP5491677B2 (ja) 2011-03-31 2014-05-14 富士フイルム株式会社 撮像装置及びその合焦制御方法
CN103403599B (zh) * 2011-03-31 2015-09-02 富士胶片株式会社 摄像装置及其对焦控制方法
JP2012237769A (ja) * 2011-05-09 2012-12-06 Nikon Corp 撮像装置
CN103842880B (zh) 2011-09-28 2015-11-25 富士胶片株式会社 成像设备和聚焦控制方法
JP5613843B2 (ja) * 2011-09-28 2014-10-29 富士フイルム株式会社 固体撮像素子、撮像装置、及び合焦制御方法
JP5677628B2 (ja) 2012-06-07 2015-02-25 富士フイルム株式会社 撮像装置及び撮像方法
JP5942757B2 (ja) 2012-09-28 2016-06-29 株式会社ニコン 焦点検出装置および撮像装置
JP5962830B2 (ja) * 2015-09-03 2016-08-03 株式会社ニコン 焦点検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295587A (ja) * 1998-04-09 1999-10-29 Olympus Optical Co Ltd 焦点調節装置
JP4007713B2 (ja) * 1999-04-06 2007-11-14 オリンパス株式会社 撮像装置
JP2007243731A (ja) * 2006-03-09 2007-09-20 Canon Inc シフトレジスタ、固体撮像素子及び制御方法
JP4935162B2 (ja) * 2006-04-11 2012-05-23 株式会社ニコン 撮像装置、カメラおよび画像処理方法

Also Published As

Publication number Publication date
JP2009128579A (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5092685B2 (ja) 撮像素子および撮像装置
JP5256711B2 (ja) 撮像素子および撮像装置
JP5045350B2 (ja) 撮像素子および撮像装置
JP5167783B2 (ja) 焦点検出装置および撮像装置
JP4867552B2 (ja) 撮像装置
US8063978B2 (en) Image pickup device, focus detection device, image pickup apparatus, method for manufacturing image pickup device, method for manufacturing focus detection device, and method for manufacturing image pickup apparatus
JP5180717B2 (ja) 撮像装置
US9357121B2 (en) Image capturing apparatus and control method thereof
JP5211590B2 (ja) 撮像素子および焦点検出装置
JP2009141390A (ja) 撮像素子および撮像装置
JP2008103885A (ja) 撮像素子、焦点検出装置および撮像装置
JP5699480B2 (ja) 焦点検出装置およびカメラ
JP4858529B2 (ja) 撮像素子および撮像装置
JP5609098B2 (ja) 撮像装置
JP5186895B2 (ja) 撮像装置
JP5609232B2 (ja) 撮像装置
JP2010243772A (ja) 撮像装置
JP5228777B2 (ja) 焦点検出装置および撮像装置
JP5962830B2 (ja) 焦点検出装置
JP5804104B2 (ja) 焦点調節装置
JP5403117B2 (ja) 焦点検出装置および撮像装置
JP2010039106A (ja) 撮像素子、焦点検出装置および撮像装置
JP2009151155A (ja) 焦点検出装置、焦点調節装置および撮像装置
JP2016189019A (ja) 焦点調節装置および電子カメラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R150 Certificate of patent or registration of utility model

Ref document number: 5167783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250